Please use this identifier to cite or link to this item: http://ir.juit.ac.in:8080/jspui/jspui/handle/123456789/9176
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJain, Sankalp-
dc.contributor.authorRanjan, Piyush-
dc.contributor.authorSengupta, Dipankar-
dc.contributor.authorNaik, Pradeep Kumar-
dc.date.accessioned2023-01-13T10:01:36Z-
dc.date.available2023-01-13T10:01:36Z-
dc.date.issued2014-
dc.identifier.urihttp://ir.juit.ac.in:8080/jspui/jspui/handle/123456789/9176-
dc.description.abstractA top–down predictor, called TpPred, is developed which consists of 3 level of hierarchical classification using cascade of neural networks from sequence derived features. The 1st layer of the prediction engine is for identifying a query protein as transport protein or not; the 2nd layer for the main functional class; and the 3rd layer for the sub-functional class. The overall success rates for all the three layers are higher than 65% that were obtained through rigorous cross-validation tests on the very stringent benchmark datasets in which none of the proteins has 30% sequence identity with any other in the same class or subclass. TpPred achieved good prediction accuracies and could nicely complement experimental approaches for identification of transport proteins. TpPred is freely available to be use in-house as a standalone version and is accessible at http://www.juit.ac.in/attachments/tppred/Home.html.en_US
dc.language.isoenen_US
dc.publisherJaypee University of Information Technology, Solan, H.P.en_US
dc.subjectTransport proteinsen_US
dc.subjectHierarchical classificationen_US
dc.subjectNeural networksen_US
dc.subjectSequence derived featuresen_US
dc.titleTpPred: A Tool for Hierarchical Prediction of Transport Proteins Using Cluster of Neural Networks and Sequence Derived Featuresen_US
dc.typeArticleen_US
Appears in Collections:Journal Articles



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.