Please use this identifier to cite or link to this item: http://ir.juit.ac.in:8080/jspui/jspui/handle/123456789/5533
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBhardwaj, Charu-
dc.contributor.authorSood, Meenakshi [Guided by]-
dc.date.accessioned2022-08-03T13:27:37Z-
dc.date.available2022-08-03T13:27:37Z-
dc.date.issued2017-
dc.identifier.urihttp://ir.juit.ac.in:8080/jspui//xmlui/handle/123456789/5533-
dc.description.abstractCompressed sensing is an optimization based formalized framework based upon sub-Nyquist sampling principle of exploiting only the sparse signal of interest. It exploits the sparsity of the signal to reconstruct it from less number of measurements than required by the Nyquist sampling criteria. A nascent field of compressive sensing is explored in this paper for accurate acquisition and reconstruction of signals, images and video sequences. The algorithm is proposed for compression and efficient recovery of image and video based on the concept of compressive sensing. Three basic reconstruction techniques (Basic Pursuit (l1) Minimization, Least Square (l2) Minimization and Orthogonal Matching Pursuit) are applied on image samples and they are compared based on quality performance criteria. The performance parameters like compression ratio, peak signal to noise ratio and structural similarity index are evaluated for different image and video samples for critical analysis of these performance parameters is done for different reconstruction schemes. Finally it is concluded that compressive sensing based approach is better than the traditional compression schemes and Basic Pursuit (l1) methods gives the better image quality with a tradeoff among other parameters enabling faster acquisition, compression and reconstruction.en_US
dc.language.isoenen_US
dc.publisherJaypee University of Information Technology, Solan, H.P.en_US
dc.subjectCompressed sensingen_US
dc.subjectAlgorithmen_US
dc.subjectImagesen_US
dc.subjectVideosen_US
dc.titlePerformance Evaluation of Compression for Images and Videos Using Compressive Sensing Techniqueen_US
dc.typeProject Reporten_US
Appears in Collections:Dissertations (M.Tech.)



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.