Please use this identifier to cite or link to this item: http://ir.juit.ac.in:8080/jspui/jspui/handle/123456789/10186
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGupta, Tripti-
dc.contributor.authorKumar, Pankaj [Guided by]-
dc.date.accessioned2023-09-30T09:08:45Z-
dc.date.available2023-09-30T09:08:45Z-
dc.date.issued2023-
dc.identifier.urihttp://ir.juit.ac.in:8080/jspui/jspui/handle/123456789/10186-
dc.descriptionEnrollment No. 191346, 191506en_US
dc.description.abstractAn approach called SMOTE (Synthetic Minority Over-sampling Technique) was developed to deal with the issue of unbalanced datasets in machine learning. When one class has a disproportionately smaller number of examples than another, the datasets are imbalanced, which makes it challenging for machine learning models to correctly forecast the minority class.en_US
dc.language.isoen_USen_US
dc.publisherJaypee University of Information Technology, Solan, H.P.en_US
dc.subjectSentiment analysisen_US
dc.subjectNatural language processingen_US
dc.subjectEncoderen_US
dc.subjectDecoderen_US
dc.titleSentimental Analysisen_US
dc.typeProject Reporten_US
Appears in Collections:B.Tech. Project Reports

Files in This Item:
File Description SizeFormat 
Sentimental Analysis.pdf3.16 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.