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Abstract 

The term regression analysis coincides with finding a real value parameter that can be used for 

prediction purposes. It differs from classification in the sense that, in classification the categorical or 

discrete values form the basis of model as opposed to regression where the numerical parameters are 

employed for the same. 

Computationally regression analysis is generally more expensive than classification analysis though the 

same can differ in different contexts. 

The prediction analysis is nothing but a synonym of regression and classification analysis as in both of 

these we do nothing but try to predict the numerical value or categorize our data point on the basis of 

class labels. 

With the advancement of Artificial Intelligence during the globalization era, its subfields including 

Machine Learning, Deep Learning and the contemporary domain of Reinforcement Learning have 

shown promising results that extend its functionality and application from medicine, health care, 

transportation and evolution to politics, geo-science and various other viably hidden technical domains 

like forensics, criminal activities, court procedures and other various aspects. 

The taxi fare prediction is one such small application of the vast array of contributions that has been 

bestowed upon by this promising field. 

For our considerations we have used the data of New York City and its corresponding borough has the 

basis for developing our regression model. 

The sprawling city of NYC is over cumbered with a huge string of taxi chains running across the city 

which provide a seemingly accurate description of the data that we are going to need to able to process 

as a preliminary requirement for our model. 

The abstraction is done in terms of variable charging across different sections of the city and other 

aspects like weather or road conditions or traffic jams which are not considered while forming the data 

but they surely have an implicit impact on the overall fare result that we are going to obtain at the end 

of the formulation of this whole process. 

The inclusion of inflated charges is an important indicator of the fact that this project can be utilized for 

future purposes as well even when the fare prices change by a certain margin.
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Chapter 1: - INTRODUCTION 

1.1 Introduction 

Predictive analysis is the cornerstone of many upstream activities in data science as well as the machine 

learning paradigm. The main aim is to generate a user defined data set from some preprocessed 

information that is available via repositories, documents or articles over the websites. These are most 

often investigated in the fields of illness, natural catastrophe, and fare prediction. Additionally, it may 

be used to discover how to prevent future disasters and how to decrease the damage caused by a 

particular one. Regression analysis may be used to investigate the effects of variables measured on 

several scales, such as the influence of price modifications and the amount of promotional activities. 

These benefits make it easier for market researchers, data analysts, and data scientists to find and pick 

the best set of variables to incorporate into predictive modeling. 

When used in conjunction with other business analytical techniques, regression analysis helps firms 

better understand the significance of their data points and utilize them to inform decision-making. 

Regression analysis makes it possible to see how, when one of the independent variables is changed, 

the dependent variable's typical value changes while the other independent variables stay the same. 

This powerful statistical technique is thus used by business analysts and other data specialists to get rid 

of unimportant variables and concentrate on the important ones. 

The benefit of regression analysis is that it makes it possible to use data analysis to help companies 

make better decisions. A firm's future weeks, months, and years may be altered by having a better 

understanding of the issues. 

Regression is a generic machine learning approach used to predict a continuous real value and here we 

are likely to predict dependent variables by using the independent features embedded in our regression 

equation, and the project dubbed "NYC Taxi Fare Prediction" is a regression model. For this objective, 

a regression model is used to forecast the taxi prices in and around the various boroughs of New York 

City in accordance with the variables that the dataset creator has supplied. The distances are given in 

the form of coordinates which are nothing but the latitudes and longitudes in degrees. The dataset, 

which is nothing more than the corresponding data-time that indicates the pickup time of a specific 

passenger or group of passengers, is associated with the key. 

When making the necessary projection, fare inflation is also taken into account. 
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1.2 Problem Statement 

The main aim of the problem associated with the project is to estimate the “fare charges” that are to be 

paid by the passengers for a trip around NYC and the fares have some independent precursors 

associated with it that we need to entertain under our regression model so that we be able to get near to 

approximate value of the fare charges. 

According to the specified parameters, it considers the pickup time, the latitude and longitude of the 

start location, the latitude and longitude of the end location, the count of passengers and the fare 

amount per passenger. 

It employs several operations, including the Haversine formula and Manhattan distance. The number of 

passengers and the likelihood of traffic congestion are also considered when assessing the fee. 

It uses the assistance of predictive assessment, which makes certain adjustments to data from already-

existing data sets in order to identify new trends and fashions. Then, future outcomes and trends are 

predicted using those advances and styles. Acting predictive analysis helps us forecast next 

developments and overall performance. Additionally, it is known as prognosis assessment or prognostic 

method prediction. 

1.3 Objectives 

The major objective is already been described in the problem statement, which is predicting the fare 

charges of the passengers for taxi rides that they take across the NYC [Abbr. 1.1]. 

Other objectives include the determination of best possible technique for regression, or in simple terms, 

the best possible regression model that is most optimal for our current scenario and how we can find 

the distance between two longitudes and latitudes on the earth using different methodologies or 

trigonometric formulae and functions. 

We will also need to evaluate inflation costs because each year the prices of the taxi fares are increased 

leading us to carefully consider what fare charges to consider in that particular session with the use of 

inflation factor that is embedded in the code and is separately devised into a column called as 

“inflation_costs”. 

Another major objective could be to reduce the error which again falls under selecting the best possible 

model or mechanism for determining the taxi fares using the available information. 
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1.4 Methodology 

The methodology we're employing is a subset of BQML [Abbr. 1.2] models, where data is handled in 

the frontend as database queries. But we can just use the conventional basic machine learning protocols 

and concepts for its backend implementation. 

For regression, prediction, and forecasting purposes, BQML uses linear regression; however, for 

classification issues, it uses binary logistic regression and multiclass logistic regression approaches. 

BQML processing works similarly to any generalized machine learning model creation process in that 

we first choose the pertinent features from our raw data, then process and clean our dataset by 

removing or replacing any null or missing values, then apply our model (either Linear Regression or 

Logistic Regression), and finally validate using any model performance evaluation, such as RMSE 

(Root Mean Square Error) for evaluation of our model. 

We may also employ the Random Forest and SVR [Abbr. 1.3] approaches in contrast to Linear 

Regression since they can also be used to predict or forecast data. 

The cost of a taxi ride depends on the distance travelled and how long it takes to get there (the sum of 

the drop-off fee, distance fee, and time fee). Although it is simple to estimate the distance and drop 

charge, it is more difficult to determine the time. It is the end outcome of intricate, nonlinear traffic 

dynamics. 

The dataset for the underlying research, known as "new- york - city - taxi- fare - prediction," was 

given by Google as part of a competition that was organised in 2018 in conjunction with an exclusive 

cooperation with Coursera. The event was referred to as the "Playground Prediction Competition." 

The key, fee amount, date and time of the journey, latitude and longitude of the start location, latitude 

and longitude of the end location, and count of the passengers are the eight parameters that make up the 

dataset. 

The original training dataset had close to 55 million data points, which were reduced for sampling 

reasons and RAM [Abbr. 1.4] constraints to 1 million. 

By analyzing data gathered from taxis, we are attempting to resolve a similar issue: calculating travel 

duration without real-time data. Making such estimations would improve projections for the future. 

We have also used SVR (Support Vector Regression) for regression purposes in this context. 
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Support vector machines are expected to perform well for taxi fare analysis because they have better 

generalization capabilities and guarantee global minima for given training data. Our findings 

demonstrate that the SVR predictor may dramatically lower both relative mean errors and root-mean-

squared errors of anticipated fares when compared to alternative.  

But a better alternative would be to use Random Forest or Extreme Gradient Boosting (XGB) (a more 

effective technique called LightBGM can also be used, [see Appendix A.1]). While, Random Forest 

stays more true to the accuracy, the XGB [Abbr. 1.5] is used to efficiently compute the taxi fares even 

without taking significant amount of time which is truly remarkable considering the constraints that we 

have with respect to the size of the RAM and the performance of the CPU [Abbr. 1.6] of our device. 

Let us look at the libraries and platforms that we have used for creating our project. 

1.4.1 Python 

 

Figure 1.1: - Python logo 

Python is a general purpose, high-level interpreted programming language and it finds applications in 

wide variety of contexts like data analysis, machine learning, general-purpose problem solving, web 

server development, environment testing and content creation. 

It is widely known for its simplicity and readability. Python code is easy to read and understand, even 

for people who are not experienced programmers.  

This makes it an ideal language for beginners, as well as for experienced developers who want to 

quickly prototype and test new ideas. 

Python comes with a huge amount of versatility. Python can be used for a wide range of applications, 

from small scripts to large-scale web applications and data processing pipelines. It has a large and 

active community of developers who contribute to its ecosystem by developing libraries, frameworks, 

and tools that extend its functionality. 
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1.4.2 Jupyter Notebook 

Jupyter Notebook serves as the platform for creating the project-specific notebook. Project Jupyter is 

where the Jupyter Notebook is suggested. Project Jupyter's goal is to offer interactive computing 

services, open standards, and open-source software for a range of programming languages. In 2014, 

Brian Granger and Fernando Pérez split it from IPython. 

 

Figure 1.2: - Jupyter Notebook logo 

 

The interface of Jupyter Notebook is divided into two main areas: the notebook area and the kernel 

area. The notebook area is where users can create and edit notebooks, which are essentially documents 

that contain a series of cells. Each cell can contain code, text, or multimedia elements such as images 

and videos. The kernel area is where the code is executed, and the results are displayed in the notebook 

area. This architecture allows for easy experimentation and data exploration. 

Jupyter Notebook offers many features that make it a popular choice for data scientists and researchers. 

One of its most useful features is its ability to display data visualizations directly in the notebook.  

This is made possible by the use of libraries such as Matplotlib, Seaborn, and Plotly. These libraries 

allow users to create high-quality visualizations such as line charts, scatter plots, heat maps, and more. 

Jupyter Notebook has an excellent support for interactive widgets. These widgets allow users to create 

graphical user interfaces (GUIs) [Abbr. 1.7] for their code, making it easier to interact with and 

manipulate data. Jupyter Notebook also supports the integration of external tools and libraries, such as 

TensorFlow and Keras, which are commonly used for machine learning and deep learning. 
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1.4.3 NumPy 

NumPy is a powerful Python library for numerical computations, especially for arrays and matrices. It 

provides an array object that is much more efficient than Python's built-in lists for numerical 

computations. NumPy is widely used in the scientific and data analysis communities.  

 

Figure 1.3: - NumPy Logo 

 

Python now has access to the computing power of languages like C and FORTRAN thanks to NumPy. 

Using Python's NumPy module, you may work with multidimensional arrays and matrices. It is perfect 

for scientific or mathematical operations due to its effectiveness and quickness.  

Signal processing and linear algebra are also supported by NumPy. Therefore, if you need to do any 

mathematical operations on your data, NumPy is unquestionably the library for you. 

There are several ways that Python lists and NumPy arrays are different from one another. First off, 

NumPy arrays contain more dimensions than Python lists do. Second, whereas NumPy arrays are 

homogeneous, Python lists are varied.  

This means that each member of a NumPy array must be of the same type. Third, NumPy arrays are 

more efficient than Python lists. NumPy arrays may be created in a variety of ways. One method is to 

create an array from a Python list.  

Once it has been created, a NumPy array can be modified in a variety of ways. For example, you may 

change an array's shape or use an index to retrieve its elements. Mathematical operations like addition, 

multiplication, and division may also be performed on NumPy arrays. 

 

 



7 
 

1.4.4 Pandas 

 

Figure 1.4: - Pandas Logo 

Pandas is a popular open-source data library for Python widely used for working with CSV and Excel 

files. It provides data structures and functions for working with structured data, including tables and 

time series. Pandas has a deep rooted integration with NumPy which makes it suitable for numerical 

and mathematical computations associated with the data sets. 

Pandas mainly processes the data in the form of Data Frame, which is a two-dimensional table with 

labeled columns and rows. Data Frames can be manipulated and analyzed using a wide range of 

functions provided by Pandas. 

Pandas also provides a Series object, which is a one-dimensional array with labels. Series can be used 

to represent time series data or any other type of data where each value has a label. Series are often 

used as the columns of a Data Frame. 

1.4.5 Sklearn 

 

Figure 1.5: - Sklearn Logo 

It provides a wide range of machine learning algorithms like classification, regression, clustering and 

also for several very specific visualization purposes like statistics involved with the inferences drawn 

from various models. 
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Sklearn also provides functions for data preprocessing, model selection, and evaluation. Sklearn is built 

on top of NumPy, SciPy, and Matplotlib, making it a powerful tool for data analysis and machine 

learning. 

1.4.6 Plotly 

 

Figure 1.6: - Plotly Logo 

Plotly is a powerful open-source data visualization library for Python. It provides a variety of 

visualization tools, including scatter plots, line plots, bar charts, and heat maps. Plotly can create 

interactive visualizations that can be easily customized, including hover effects, zooming, and panning.  

Plotly also provides a range of APIs [Abbr. 1.8] for integrating visualizations into web applications, as 

well as the ability to export visualizations to various file formats. With Plotly, users can create high-

quality and professional-looking visualizations with ease, making it a popular tool for data analysts, 

scientists, and engineers. 

1.4.7 XGBoost 

 

Figure 1.7: - XGBoost Logo 

XGBoost is an open-source machine learning library for Python that is widely used for building high-

performance, scalable, and accurate models for classification, regression, and ranking problems. It is 
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designed to be highly efficient and scalable, with support for distributed computing on clusters. It also 

includes a range of advanced algorithms for feature selection, regularization, and optimization. 

1.4.8 TensorFlow 

 

Figure 1.8: - TensorFlow Logo 

Google created the open-source, high-performance machine learning package known as TensorFlow. 

With a large developer and research community that contribute to its development and use it for a 

variety of applications, it was first released in 2015 and has since then; it has been widely employed in 

many day-to-day deep learning tasks and automations. 

TensorFlow's primary goal is to streamline the creation and application of machine learning models. It 

offers an adaptable and expandable framework for developing models utilizing a variety of algorithms 

and methods, such as deep learning, reinforcement learning, and others. Developers can quickly build 

and train models that can handle huge datasets and challenging tasks with TensorFlow. 

Making computational graphs, which are a set of mathematical operations that specify the structure of a 

machine learning model, is one of TensorFlow's core capabilities. Faster model training and 

deployment are made possible by the fact that this graph may be optimized for and run on a range of 

hardware, including CPUs, GPUs [Abbr. 1.9], and TPUs [Abbr. 1.10]. 

Another crucial aspect of TensorFlow is its high-level APIs, which give programmers a straightforward 

and user-friendly interface for creating and refining machine learning models. Many different 

programming languages, including Python, C++, and Java, are supported by TensorFlow, making it 

usable by a variety of developers. 

TensorFlow offers various high-level APIs and tools which make it easier to create, share, analyze and 

save machine learning models in addition to its core library. There are two of these: TensorFlow Lite, 
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which enables models to be deployed on mobile and embedded devices, and TensorFlow Hub, which 

offers a repository of pre-trained models that can be readily included into new applications. 

TensorFlow is a robust and adaptable machine learning toolkit that has emerged as a crucial tool for 

academics and developers working on a variety of applications like image recognition, text analysis 

and for simple regression or classification purposes. Its widespread use, scalability, and adaptability are 

evidence of its use, and it will probably continue to be a significant force in the machine learning 

industry for years to come. 

1.4.9 Keras 

 

Figure 1.9: - Keras Logo 

Keras is an open source high-end deep learning module built on top of TensorFlow library. Due to its 

simplicity, usability, and versatility, it has grown in popularity since its initial release in 2015 and is 

now among the most widely used deep learning libraries. 

Keras is made to make creating and experimenting with deep learning models simple for developers. It 

offers a user-friendly interface for creating neural networks, allowing programmers to concentrate on 

the model's design rather than the implementation's minute details. 

One of the primary characteristics of Keras is its modularity, which enables programmers to construct 

sophisticated neural networks out of layer combinations of basic building components. Convolutional, 

recurrent, and dense pre-built layers, among many others, are all included in Keras and are simply 

coupled to produce unique neural network topologies. 
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The ease with which Keras can transition between several backends, such as TensorFlow or Theano, 

without modifying the code, is another key aspect. As a result, developers can test out many deep 

learning frameworks and pick the one that best suits their requirements. 

Additionally, Keras offers a variety of helpful tools for deep learning model training. It offers a variety 

of optimizers, like Adam and RMSprop that can be used to effectively train models on huge datasets. It 

also offers a selection of evaluation metrics and loss functions that can be used to gauge a model's 

effectiveness during training and testing. 

Along with its fundamental features, Keras has a number of high-level APIs that make it simple to 

create and train deep learning models for particular tasks. For example, Keras has an image 

preprocessing API for jobs like image recognition and a text preprocessing API that makes it simple to 

preprocess text data for tasks like natural language processing. 

Keras is a strong and adaptable deep learning package that makes it simple for developers to construct 

and test neural networks. Its simplicity and usability make it the perfect choice for deep learning novice 

developers, while its versatility and adaptability make it a potent tool for deep learning experts. 

1.4.10 Shapely 

 

Figure 1.10: - Shapely Logo 

Shapely is a Python module that offers resources for working with planar geometric objects. The GEOS 

[Abbr. 1.11] library, which offers an interface to several computational geometry techniques, is built 

within it. Shapely is utilized in many different fields, including robotics, computer-aided design, and 

geographic information systems. 

The capacity of Shapely to represent and manipulate several kinds of geometric objects, including as 

points, lines, polygons, and collections of these things, is one of its primary characteristics. These 

objects can be built from the ground up or imported from different sources, including shape files or 

geojson files. 
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Additionally, Shapely offers a broad selection of geometric operations that can be applied to these 

objects. These procedures cover both spatial analysis (such as buffering and convex hull computation) 

and spatial predicates (such as contains, intersects, and touches). Developers who need to interact with 

geometric objects in their applications frequently choose Shapely's API because it is simple to use and 

straightforward. 

Integrating Shapely with other Python libraries like Matplotlib and Fiona is another one of its important 

features. Shapely objects can be visualized using Matplotlib, and Fiona offers utilities for reading and 

publishing GIS [Abbr. 1.12] data in a variety of formats. As a result, integrating Shapely into current 

GIS workflows and projects is simple. 

Additionally, Shapely supports a number of coordinate systems, such as projected, geographic, and 

Cartesian coordinate systems. Developers are able to work with data which are extracted from different 

references and translate it between various coordinate systems as necessary thanks to this. 

Shapely has a sizable and active community of developers and users, and it is open source and 

regularly updated. Users can get help and resources from this group, and the library is always being 

developed and improved. 

Shapely is a strong and adaptable Python module for working with geometric objects. Its user-friendly 

API and wealth of capabilities make it the perfect option for developers who must work with geometric 

data in their applications, and its connection with other Python libraries and support for different 

coordinate systems make it a flexible tool for working with GIS data. 

Now, let’s have a close look at the structure of the project. The project is organized in the form of six 

stages. 

i.) Loading 

ii.)  Formulation 

iii.)  Cleaning 

iv.)  EDA [Abbr. 1.13] 

v.)  Model Examination 

vi.)  Extended EDA along with K- Fold Cross Validation 

The first stage includes the loading up of dataset from local machine and the dataset has been taken 

from kaggle. The data is then analyzed for further changes, or for inclusions and exclusions. 
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The second stage is where we implement several functions like the Haversine formula and some 

helper functions. The Haversine formula is used to calculate the distance between two latitudes and 

longitudes situated over the surface of the earth. Along with that, several features are also incorporated 

that will make our computation easier, more logical and more concise, like the inclusion of all the 

points that are near the Newark airport under that particular new feature called as ‘Newark’, which will 

allow us to distribute all the data points close to that particular airport or any other specific location for 

that matter, and in turn it would become easier for our model to actually look into the geographical 

pattern of the city that we are trying to portray here. The third step is the data cleaning stage, where 

redundant features are removed and the null or empty values are taken care of.  

Since, our dataset does not contain too many features, so the methods like feature selection, feature 

reduction would not be preferable to be applied here. Several other factors are also taken into account, 

like for example; we drop the ‘key’ feature as it has no practical significance; we drop the passenger 

count under 1 which basically means that the particular ride has no passengers and along with that, we 

also drop the negative fare count. 

 

Figure 1.11: - Matplotlib is a famous graph plotting library employed for data science and machine 

learning operations and is designed for Python 

 

Figure 1.12: - Seaborn is a library that uses matplotlib as a base library for plotting the graphs but 

additionally incorporate some more features to make the graphs look more attractive and user friendly. 
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For visualization purposes, we have used Matplotlib and Seaborn (which is built on top of Matplotlib 

for having redefined and user friendly functionality). 

For modeling purposes, the generalized approach of ensemble learning has been employed. The power 

of ensemble learning can simply be judged from the fact of the number of models that it encompasses 

within it. 

 

Figure 1.13: - A broad idea about ensemble learning (credits: jcchouinard.com) 

A voting regressor, a type of ensemble meta-estimator, fits a number of base regressors to the whole 

dataset one at a time. 

The many predictions are averaged to produce the final projection. Machine learning algorithms may 

be made more accurate and efficient by using a technique known as bagging, also known as Bootstrap 

aggregating. 

We can manage whether we need to reduce the bias error or variance error using ensemble learning 

techniques.  To avoid the data being overfit, both classification and regression models require bagging, 

particularly decision tree approaches. The graphic below illustrates the distinction between a voting 

regressor and a bagging regressor: 

 

Figure 1.14: - Difference between Voting and Bagging Methods 
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The extended EDA is performed on the models in the fifth stage in order to statistically monitor how 

well various models that we have used on our dataset are performing. For this, we've chosen "Plotly," a 

more capable and user-friendly graph plotting toolkit that allows for more user input. The Plotly Python 

graphing module produces the interactive, publishable graphs. We can easily construct several graphs 

like pie charts, bar plots, histograms, polar charts, heat maps and more using the interactive Plotly 

library. Its user interaction is most powerful tool that manages it to suppress Plotly. Below is an 

illustration of a common graph made using the Plotly library. 

 

Figure 1.15: - Examples of different plots created using Plotly library 

The sixth stage also includes the use of K Fold Cross Validation in order to determine whether a better 

way is there in order to verify the error stats of our model using the evaluation metrics.  

We have used a total of 5 folds in order to determine the evaluation metrics corresponding to only 

linear regression and XGB (Extreme Gradient Boosting) due to the device and RAM constraints. 

1.5 Organization 

The organization of the report is as follows: - 

Chapter 1: - It provides details about the project and the notion behind it. The problem that we are 

working upon, the major objective of the project, its different features and how we are going to 

ensemble everything is the core content of chapter 1 

Chapter 2: - Different journals, articles and research papers over the internet have been explored in 

order to get a definite idea about the various intuitions of the project and how different models can be 

used.  

The effect of different models on the evaluation metrics of our project is also taken into consideration. 

Chapter 3: - This chapter let us to go deeper into the analytical, mathematical and experimental 

interpretation of our data set and how we can manipulate or modify our data set to suit our conditions.  
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It also takes into account the EDA, which is termed as the statistical interpretation of our data.  

The EDA in most of the forms is achieved by matplotlib and seaborn libraries, but we can also utilize 

better libraries such as Plotly having more user friendliness and more user intervention with robust 

features like data hovering capabilities and is available in vibrant colors and unique designs. 

Chapter 4: - It basically covers the evaluation metrics that will define the accuracy of our models and 

each and every model is discussed in detail.  

A total of 5 evaluation metrics, namely the MAE [Abbr. 1.14], MSE [Abbr. 1.15], RMSE [Abbr. 

1.16], RMSLE [Abbr. 1.17] and R-Squared Error are taken into account for determining the accuracy 

of our model. And along with that why and how each model is used in a particular context is also 

mentioned here. 

Chapter 5: - Under this chapter, the conclusion of our project and the future scope associated with it 

have been discussed in regards to further techniques and optimizations that can be implemented in our 

dataset for better accuracy in a relatively less amount of time.  

Along with that, optimizations related to collecting massive data on a much quicker basis would also be 

considered in the light of training over large datasets. 

Note: - 

The references and appendices are appended at the end for indulging into the various contexts related 

with the source of the project and for describing as from where the said text was referenced. 

Note that some references may be in the form of textual publications while some have been extracted 

from some publications that were conceived in the form of seminars or virtual meetings. 

The appendices have been referenced in the inner text wherever they have been referred and are purely 

meant for gathering on some extra insight into that topic which otherwise would have been a futile and 

irrelevant exercise to include within the main context. 

These include some of the side-referenced topics such as Lasso Regression, Ridge Regression, 

LightBGM and Intelligent Transportation System (ITS). 

The Figures, tables, sections and subsections corresponding to each chapter have been described above 

and have been excluded from the main content for modularity. 
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Chapter 2: - LITERATURE SURVEY 

Regression analysis is a statistical method used to analyze the relationship between a dependent 

variable and one or more independent variables. It involves the use of a regression model to estimate 

the values of the dependent variable based on the values of the independent variables. The objective of 

regression analysis is to find the best-fitting line or curve that can predict the values of the dependent 

variable based on the independent variables.  

Regression and classification are two common types of statistical modeling techniques used in machine 

learning and data analysis. 

Linear regression is the simplest and the most basic method of regression that is used for prediction 

purposes. But there are several other regression analysis techniques that we need to look forward to. 

The SVR method, commonly called as the Support Vector Regression method is a subclass of SVM 

[Abbr. 2.1] algorithms that is used for regression purposes. Though, it is majorly used as a classifier 

rather than a regressor, but we can still utilize the power of SVM kernels in order to get a best fit line 

that will help us to arrive at an optimal result and reduce the RMSE (Root Mean Squared Errors). 

According to a sciencedirect.com article by Helman written in 2019, SVR is described as follows: - 

“SVR applies the same premise as SVM, but to regression issues. SVMs are frequently used to 

categorize and organize issues. Regression using SVMs is not always well-documented. SVRs are these 

models. Finding a function that approximates the mapping from the input domain to the actual number 

in the training sample is difficult when using regression. SVR focuses mostly on taking into account 

factors within a decision's parameters. The widely used SVR method gives you freedom and allows you 

to select your level of error tolerance through the use of both a reasonable error margin () and an 

acceptance adjustment that is higher than the acceptable error rate.” 

 

Figure 2.1: - A diagram showing the hyper planes within which our regression line is contained. The 

black dotes represent the points fitted by SVR while the concentric dots are outliers 
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Unlike linear regression, SVR does not assume a linear relationship between the variables. Instead, it 

tries to find a nonlinear relationship between the variables by transforming the data into a higher-

dimensional space. SVR aims to find a hyperplane that has the maximum distance from the closest data 

points to it, while still keeping the error within a certain tolerance level. This tolerance level is set by a 

parameter called epsilon. SVR is less sensitive to outliers than linear regression, and it can handle 

nonlinear relationships between variables. 

Random Forest, probably one the best algorithm for prediction purposes is nothing but a collection of 

several decision trees which when ensemble together provides a series of outputs that is determined 

using “Majority Voting” 

Higher accuracy is obtained and overfitting is avoided because to the larger number of trees in the 

forest. 

 

Figure 2.2: - A diagram which depicts the general representation of the working of a typical Random 

Forest architecture. 

 

The gradient boosting techniques like XGB (Extreme Gradient Boosting) Regressor generally 

outperform Random Forests but with a little tweaking in the data set or by taking extremely large 

amount of data, Random Forests can yield better results. 

XGBoost is generally faster than Random Forest as it is optimized for speed and performance but on 

the other hand, Random Forest is generally more interpretable than XGBoost as it provides feature 

importance scores for each feature, while XGBoost's feature importance is more difficult to interpret. 
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Figure 2.3: - A basic representation of how a typical XGB model performs deep penetration of trees in 

a sequential fashion, one after the other 

According to Wikipedia, The XGB has some salient features which make it better than the usual 

Random Forests. These are as follows: - 

i.) Using single, distributed systems and performing outside core computation 

ii.) Additional randomization criteria 

iii.) Selecting features automatically 

iv.) A corresponding decrease in leaf nodes 

v.) Faster processing due to the effects of gradient boosting 

XGBoost can handle large datasets and distributed computing more efficiently than Random Forest. 

The Random Forests, though works well on small datasets are typically employed for large data where 

we have near about millions of records because of its strong accuracy. The XGB, even though has 

gradient boosting can sometimes fail to surpass the Random forests in terms of speed as it uses 

sequential generation of trees whereas Random Forests make use of parallel generation of trees and 

finally the voting algorithm predicts the results. 

The research paper proposed by Christophoros Antoniades, Delara Fadavi, Antoine Foba Amon Jr. 

titled, “Fare and Duration Prediction: A Study of New York City Taxi Rides”  which was 

presented in December 16, 2016 at Stanford University proposes the same idea about Random Forest. 

In the section 5.2 they stated that,  

“Given that it can simulate the nonlinearities of traffic and location effect, the random forest model 

performs better than any other models. Although the pickup and drop-off sites are taken into account, 

the model does not have a mechanism to estimate the effects of the places along the route. When 

travelling through high-speed zones with little to no traffic, regions with heavy traffic can still be 

reached reasonably quickly. They are regarded to reasonably forecast duration and fare given the 

factors that have been taken into consideration in the models. Rotating the geographic coordinates 
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does not result in a substantial increase in forecast accuracy, even if employing rides per hour and 

average speed per hour improves the models and hence serves as proxies for traffic modeling.” 

The dataset is termed as “new- york – city - taxi- fare - prediction” that issued for the underlying 

project and has been provided by Google in context of a competition held in 2018 in association with 

an exclusive partnership with Coursera. The competition was titled “Playground Prediction 

Competition”. 

The dataset consists of 8 columns consisting of the key, taxi fare charges, the latitudes and 

longitudes of start location and end location, the number of passengers or travellers and the cost 

per head. 

In the context of predicting taxi fares across a city, linear regression can be used to model the 

relationship between the fare amount (dependent variable) and various predictor variables, such as 

distance traveled, time of day, and location. 

To use linear regression for predicting taxi fares across the city, you would typically start by collecting 

data on past taxi rides from a variety of sources, such as taxi companies, government data sets, or 

online APIs. This data should include information on the fare amount, distance traveled, time of day, 

and location (such as latitude and longitude). 

Once you have collected the data, you would typically split it into two sets: a training set and a testing 

set. The training set is used to train the linear regression model, while the testing set is used to evaluate 

its accuracy. 

To train the linear regression model, you would typically use an algorithm such as OLS [Abbr. 2.2] or 

gradient descent to find the coefficients that minimize the sum of squared errors between the predicted 

fares and the actual fares in the training set. The resulting model can then be used to predict fares for 

new taxi rides based on their distance, time of day, and location. It is important to note that the 

accuracy of the predictions depends on the quality and quantity of the data used to train the model. 

Other factors that can affect the accuracy of the predictions include the choice of predictor variables, 

the functional form of the model (e.g., linear, quadratic, or higher-order), and the presence of outliers or 

other sources of noise in the data. 

Though, not necessary here, we can regularize the coefficients of our linear regression using the lasso 

technique [see Appendix A.2], however a better method than lasso is ridge regression [see Appendix 

A.4]. 
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Figure 2.4: - Difference between best-fit lines considered under Linear Regression and Lasso 

Regression 

 

The lasso approach may be used to decrease coefficients in order to further find the best collection of 

variables to employ. A model that is sparser and simpler to interpret is produced by using lasso. 

The penalizing parameter in Lasso is run across a range of values for both the above said prediction 

models. In order to choose the value of to be utilized, the lasso model with the lowest error is found 

using cross validation. The values that produced the minimum cross validation error in each case are 

very close to zero. The optimal parameter, for example, is 1.19 10 for the fare regression. Due to these 

findings, we must utilize the forward-selected linear regression model rather than the lasso method 

penalizes 5 variables. 

 

Figure 2.5: - Forward selection using linear regression 

Following feature selection in, linear regression can be a viable approach for understanding the effect 

of number of variables on our parameter Cp (complexity parameter). The longitude of the pickup 

location is a continuous variable that represents the east-west position of the location relative to the 
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prime meridian, which is a reference line that runs through Greenwich, England and is used as a 

reference for determining longitude. 

Including pickup longitude as a predictor variable in a linear regression model can be useful because it 

provides information about the geographic location of the pickup, which can be an important factor in 

determining the fare amount. For example, taxi fares in urban areas may be higher than in suburban or 

rural areas due to factors such as higher demand and congestion. 

When using pickup longitude as a predictor variable in linear regression, it is important to ensure that 

the variable is appropriately scaled and centered to avoid issues such as Multicollinearity and bias in 

the coefficient estimates. One important thing that we can observe is that distribution of ride duration 

and fare amount is almost similar with some fluctuations in between. 

 

Figure 2.6: - Duration and fare amount, both follow the same distribution 

This implies that just like fare amounts, travel time also increases at the same pace. So, instead of fare 

amounts, we can also focus on journals that help us to compute the predicted time travelled between 

various locations.  

In a 2004 IEEE research paper published by Chun-Hsin Wu, Jan-Ming Ho and D. T. Lee, the idea of 

SVM is proposed and that is used for time travel prediction. 

In many transportation analyses, travel-time data serve as the foundational components for a variety of 

performance indicators. 

Transportation systems can benefit greatly from the application of regression techniques. These 

techniques can be used to aid in the planning, designing, operation, and evaluation of such systems. 

When it comes to advanced traveler information systems, the use of travel-time data can be especially 

valuable for providing pre-trip and en route information. By analyzing such data, drivers and 

passengers can make more informed decisions, such as adjusting their timetables or route choices. 
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Support Vector Machines (SVM) are a popular machine learning technique that can be used in 

transportation systems and route guidance systems for a variety of purposes. SVMs can be trained on 

large datasets of traffic and travel time information to predict future travel times, traffic congestion, and 

other factors that impact route planning and guidance. 

In transportation systems, SVMs can be used for traffic prediction, vehicle tracking, and real-time route 

optimization. For example, SVMs can predict traffic congestion and suggest alternative routes to 

drivers to help them avoid delays. They can also be used to optimize traffic signals to improve traffic 

flow and reduce congestion. 

In route guidance systems, SVMs can be used to suggest the most efficient route for drivers based on 

real-time traffic information. By analyzing traffic data from multiple sources, SVMs can identify the 

fastest and most reliable routes for drivers to take, even in high traffic areas. 

SVMs can also be used in transportation planning and design. By analyzing historical traffic data, 

SVMs can predict future traffic patterns and help transportation planners design more efficient and 

effective transportation systems. 

Support Vector Machines (SVMs) are a type of machine learning algorithm that are relatively robust to 

noisy or faulty data. SVMs work by finding the hyperplane that best separates the classes of data points 

in a high-dimensional space.  

There are several studies that use SVM to vision-based intelligent cars for (ITSs) [Abbr. 2.3] [see 

Appendix A.3], such as head identification, traffic-pattern recognition, and vehicle detection. 

 

Figure 2.7: - SVM is regarded as one of the pioneer methods for Intelligent Transport System (ITS’s) 

SVM has recently been used to forecast time series, Support vector regression (SVR), which has 

demonstrated numerous innovations and convincing results, like predicting forecasts of the financial 

market, power price, power consumption calculation, reconstruction of Systems in chaos. Except for 

the forecast of traffic flow,  
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But there aren't many SVR outcomes for time-series analysis. Given the numerous positive outcomes 

of time-varying SVR prediction applications drive our research in modeling travel times with SVR. 

It seems that SVR is one of the best algorithms for travel-time prediction and seemingly outperforms 

many regression models that are in the same pace. 

But this is not always the case. 

The study article "Fare and Duration Prediction: A Study of New York City Taxi Rides" suggested 

using the Random Forest approach to forecast the fare charges. 

The time it takes to travel from one place to another depends on the destination because there are more 

cars on the road at different times of the day.  

While it's impossible to account for every location between the beginning and ending points of a route, 

we can use the pickup and drop-off locations to simulate the effects of traffic and congestion. However, 

linear models don't account for nonlinear effects of locations on traffic and travel time.  

Random forest is a machine learning technique that can be used for predicting taxi fares. This 

technique works by combining many decision trees that are created using bootstrapped samples of the 

training data.  

Each tree segments non-overlapping areas of the predictor space, which is the set of all potential values 

for the qualities that may impact the fare amount. 

To improve the accuracy of the random forest model, the range of predictor space can be narrowed 

down to include only the most relevant variables that have the most significant impact on the fare 

amount.  

Additionally, averaging over more trees also helps to improve the accuracy of the model. 

We have considered four publications that revolve around the whole scenario of our 

The below table describes the different research papers proposing the different models, their 

methodologies and the final inference that they make. 
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Author(s) Journal/Conference, 

year 

Published 

By 

(IEEE, 

Elsevier, 

Springer) 

Methodology Inference 

Chun- Hsin Wu,  Jan-

Ming Ho, D.T. Lee  

2004  IEEE  SVR (Support 

Vector 

Regression)  

Moderately 

Optimal  

Kunal Soni  2019  IJSRCSEIT  Linear 

Regression  

Moderately 

Optimal 

Christophoros 

Antoniades, Delara 

Fadavi, Antoine Foba 

Amon Jr.  

2016  IEEE  Random 

Forest, SVR 

and Linear 

Regression  

Random 

Forest 

outperforms 

SVR and 

Linear 

Regression  

Jun Xu, Rouhollah 

Rahmatizadeh, Ladislau 

Boloni and Damala 

Turgut 

2017 IEEE Neural 

Networks 

Neural 

Networks can 

be a pretty 

good choice 

for regression 

purposes for 

huge data set 

Table 2.1: Comparison of different research papers on the basis of methodologies and inference drawn 

at the end 
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There are very rare research papers which signify the use of Artificial Neural Networks for predicting 

real values, or in simple terms, solving the regression problems. 

But we can look at a similar research paper that focuses on finding taxi demand using RNN [Abbr. 2.4] 

RNN’s are mostly used for predicting text and speech records but they can also be employed for 

regression purposes. 

Real-time prediction of taxi demand is a challenging problem that has gained a lot of attention in recent 

years. One popular approach to solving this problem is to use recurrent neural networks (RNNs). RNNs 

are a class of artificial neural networks that can process sequential data and have been used in various 

fields, including speech recognition, image captioning, and natural language processing. 

To predict taxi demand, the first step is to collect historical data on taxi demand, including the time of 

day, day of the week, and other relevant factors such as weather, events, and holidays. This data can 

then be used to train an RNN model, which can learn to recognize patterns and relationships between 

these factors and the demand for taxis. 

Once the model has been trained, it can be used to make real-time predictions of taxi demand based on 

current and historical data. For example, the model can be used to predict the demand for taxis in the 

next hour based on the current time of day, the day of the week, and other relevant factors. 

There are several challenges associated with real-time prediction of taxi demand using RNNs. One 

challenge is the need for large amounts of historical data to train the model effectively. Another 

challenge is the need to process data quickly and efficiently in real-time to make accurate predictions. 

Despite these challenges, real-time prediction of taxi demand using RNNs has shown promising results 

in various studies. These models have the potential to improve the efficiency of taxi services and 

reduce wait times for customers. 

Moving on to artificial neural networks, which are the simplest form of Neural Networks, they can be 

easily employed for regression purposes. 

A typical example of how ANN [Abbr. 2.5] can be used to formulate a regression problem, such as 

predicting the price of a house using different features or parameters associated with it like its weight, 

age, doors etc. 
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Figure 2.8: - Prediction of house price using ANN 

 

Artificial neural networks can be utilized to predict a numerical value in regression problems by 

training the network to learn the correlation between the input variables and the continuous output 

variable.  

The ANNs model the relationship between inputs and the output by learning the mapping between 

them. The basic type of ANN for regression is a feed-forward neural network with a single hidden 

layer. Input layer receives input variables, the hidden layer processes this information, and the output 

layer provides the predicted value. 

 During training, the network adjusts the weights and biases to minimize the difference between the 

predicted output and the actual output, using a loss function such as mean squared error.  

To avoid overfitting, regularization techniques such as dropout or weight decay can be used. Hyper 

parameters, such as the number of neurons in the hidden layer, learning rate, and activation functions, 

can be optimized to enhance the model's performance. 

And the main difference between them lies in their architecture and their ability to handle sequential 

data. 

The basic neural networks have a simple feed forward architecture where data flows through the input 

layer, hidden layers and finally through the output layer, while the latter, more complex have loops in 

their architecture that allow the previous output to be fed back into the network as input. 
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Chapter 3: - SYSTEM DEVELOPMENT 

3.1 Analytical 

The analytical treatment of the model is based on the fact that we have to analyze our dataset and pick 

up the best and the most reasonable features that we require and drop off the features that are 

redundant. 

The structure of the dataset is as follows: - 

 

Figure 3.1:- The structure of the dataset which consists of 8 features by default (including the 

fare_amount) 

The dataset contains a total of 55 million data points corresponding to the taxi rides around the 

different boroughs of New York City from 2008-2016. This dataset was proposed by Google and was 

provided as a problem for the “Playground Prediction Competition” which was held in 2018 under 

the partnership of Google and Coursera 

The key is redundant so can be removed from our dataset as it contains the same information as that of 

pickup_date_time.   

The pickup_date_time is in UTC format, so it can be split into weekdays, hours, minutes, and seconds 

for easy computation. 

The fare_amount provided here is not treated analytically with respect to the inflation that occurs in 

the prices every year.  
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So, we need to take extra care for that as well in order to get a better predicted answer that will stand 

the test of time even after decades. 

The passenger_count is denoted by a number that denotes the number of people that are present in a 

particular ride. 

As for the RAM and device constraints it would not be possible to account for 55 million rows and 

most of the operations that we are trying to perform (some of them like Random Forests, SVR and 

Voting Regressor may be quite costly for a large number of data points) would end up choking the 

whole internal memory. 

As for our purposes we are only accounting for about 80,000 data points as of now. 

Some of the libraries and the methods that we tried to use for the purpose of achieving the desired 

speed are as follows: - 

3.1.1 Vaex 

 

Figure 3.2: - Vaex library logo 

Vaex is a Python module for exploring and visualizing large tabular datasets using lazy Out-of-Core 

Data Frames (comparable to Pandas). On an N-dimensional grid, it can compute statistics like mean, 

total, count, standard deviation, etc. up to a billion ((10^9)) objects/rows per second. Histograms, 

density charts, and 3D volume rendering are used in visualization to enable interactive large data 

exploration. For optimum speed, Vaex makes advantage of memory mapping, a zero memory copy 

policy, and lazy calculations (no memory wasted). 

 

As Vaex uses the concept of Out-Of-Core data frame, so it is library that is categorized under Out-Of-

Core Machine Learning which is an emerging field in ML that relies on the concept of multi-cored 

CPU for parallel processing to achieve maximum throughput. 
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Figure 3.3: - Vaex Out-of-Core Machine Learning embraces the idea of Multi-Core CPU 

Processing data that is too vast to fit within a computer's main memory is often referred to as being 

out-of-core.  

Randomly accessing portions of a dataset often results in a (relatively) minimal performance hit when 

the dataset neatly fits into the main memory of a machine.  

 

Figure 3.4: - Vaex creates mini batches of our dataset and only one particular batch is loaded into the 

memory at a particular time 

 

It becomes exceedingly costly to randomly search to a chunk of data or to analyze the same data more 

than once when data must be stored in a medium like a huge rotating hard disc or an external computer 

network. 

An out-of-core algorithm would attempt to retrieve all pertinent data in a single sequence in such a 

situation.  
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However, given the deep memory structure of current computers, switching from random to sequential 

access can improve speed even for datasets that fit in memory. 

Actually, as it ensures that there will always be a little bit of data in the main memory at any one 

moment, the capacity to learn gradually from a mini-batch of instances is essential to out-of-core 

learning.  

It may take some adjusting to get a mini-batch size that balances relevance and memory footprint. 

3.1.2 Dask 

 

Figure 3.5:- Dask library logo 

The working principle of Dask is similar to that of the Vaex library. 

Dask is a parallel computing-focused open-source Python library. Python programming can be scaled 

via Dask from single-core local workstations to massive distributed cloud clusters.  

On GitHub, Dask was built in December 2014 by Matthew Rocklin and has received over 9.8k ratings 

and 500 contributors. 

Retail, governmental, financial, as well as life science and geophysical institutes, utilize Dask. Among 

the companies that utilize Dask are Wal-Mart, Wayfair, Grub Hub, JDA [Abbr. 3.1], General Motors, 

NVIDIA [Abbr. 3.2], Harvard Medical School, Capital One, and NASA [Abbr. 3.3]. 

3.1.3 Dataset splitting in chunks 

Even with compression, your data file may occasionally be too big to load entirely into memory. So 

how do you swiftly process it? 

You can only put a portion of the file into memory at once by importing and processing the data in 

batches. So you can process files that take up more RAM. 
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Pandas  allows us to read data in parts rather than reading everything into memory. With CSV [Abbr. 

3.4], we can only load a small number of the lines into memory at once. 

In particular, an iterator across DataFrames rather than a single DataFrame is returned if the chunk size 

parameter is used with pandas.read_csv. 

The syntax and the working of the modified Pandas function is highlighted below: - 

 

Figure 3.6:- Syntax of chunk size for pandas.read_csv method 

 

The other issue with enormous volumes of data is that computing may also create a bottleneck, which 

chunking doesn't alleviate. So, the first two techniques, viz. the Vaex and the Dask libraries seem to be 

the better choice. 

3.1.4 Drawbacks of Vaex and Dask 

Though Dask and Vaex provide speed but it comes at a functional cost. So, have preferred to use 

traditional pandas in our final choice because of the following reasons: - 

 Dask performs weirdly with some very crucial and useful Pandas functions like shape or 

describe and as such cannot be used as a dedicated data frame management library. 

 Vaex though is better than Dask at most aspects still lacks the capability to manipulate the axis 

of the dataset and lacks the incorporation of lambda functions inside the features of the 

dataframe. 
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3.2 Computational 

One of the biggest tasks in this project was to achieve the distance between the two positions marked 

by their latitudes and longitudes (as is signified by pickup_latitude, pickup_longitude, 

dropoff_latitude and dropoff_longitude) 

The following task can be achieved by the Haversine formula and this is what we implemented as our 

standard algorithm for computing the distance between two geographical points on earth given their 

latitudes and longitudes. 

3.2.1 Working of Haversine Formula 

Since the Earth is large and circular with a radius of 6,371 km, we may imagine it to be flat at close 

ranges.  

However, despite the fact that the Earth's diameter is around 12,000 km, flat-Earth formulae for 

determining the distance between two sites begin to exhibit observable inaccuracies when the distance 

exceeds 20 km.  

Spherical geometry, or the study of forms on a sphere's surface, must thus be taken into account when 

computing distances on a sphere. 

To determine the sides and angles of spherical polygons, spherical geometry takes into account 

spherical trigonometry, which analyses connections between trigonometric functions.  

These spherical polygons are formed by several large circles that cross each other on a sphere. 

 

Figure 3.7: - Haversine Formula finds curvature distance between two geographical locations given 

their latitudes and longitudes 

The additional trigonometric functions (except sine, cosine and tangent) that were used in the past were 

versine, haversine, coversine, hacoversine, exsecant, and excosecant. 
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But these old obsolete trigonometric functions can be written in the form of simpler functions like sine, 

cosine etc. 

For instance, haversine (θ) = sin² (θ/2). 

But this is not the formula that we define while considering the latitudes and longitudes. 

 

Figure 3.8: - Extended haversine formula for including the latitudes and longitudes 

 

The ‘d’ in the above formula signifies the distance between the two points given their latitudes and 

longitudes. 

 

 

Figure 3.9: - Haversine formula written in a more succinct form 

3.3 Experimental 

Apart from the haversine formula, we have also made some extensions in case of dimensionality of our 

dataset and performed experimental splitting on our dataset to increment the possible values of the 

evaluation metrics. 

There are a total of 3 airports in New York City, namely JFK [Abbr. 3.5], LaGuardia and Newark. 

The points that are near a particular specific airport has been included in what is called a virtual circle 

so that all the coordinates that near to any of those particular airports are considered as a part of that 

area. 
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Same thing, we have done with all the places that are within or around the Manhattan borough of New 

York City. The coordinates we got from online resources corresponding to the following places that we 

mentioned above are as follows: - 

 

Figure 3.10: - Coordinates of JFK airport 

 

Figure 3.11: - Coordinates of LaGuardia airport 

 

Figure 3.12: - Coordinates of Newark airport 

 

Figure 3.13: - Coordinates of Manhattan borough of NYC 
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In these files the coordinates are separated by commas and we cannot practically utilize them in this 

format unless of course, we modify them to suit our requirements, specifications and conditions. For 

that purpose, we have used Shapely library. 

3.3.1 Using Shapely library 

 

Figure 3.14: - Shapely library logo 

 

If you wish to mix them, the library lets you interact with the three primary types of geometric objects: 

Point, Line String, and Polygons+ geometry collections. 

 There are many more, including linear rings, multi-points, multi-polygons, etc., but for now they will 

work just well because the approaches are extremely portable. 

 

 

Figure 3.15: - The boundaries as defined by shapely, dilation defines the central path while erosion 

defines the spatial area around the path 

 

The main aim of using Shapely library is to predict the given geometrical shape from the set of 

coordinates and this would be our aim in order to define a particular region where that particular 

coordinates marked under the text files as shown above, are present. 
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And after that we would have rough idea and when we will loop over all the data points, we would be 

able to categorize each one of these points as belonging to or not belonging to that particular region. 

3.4 Mathematical 

The mathematical portion of the project mainly relies on computing the value of the angle in which will 

denote the value in which we are facing. This function is a pre- requisite parameter for our regression 

models. It is also known as the bearing angle and its value lies between -180 to 180 degrees (or –π to 

+π in radians). 

 

Figure 3.16: - This function is used to compute the direction in which we are facing by using simple 

trigonometric functions using NumPy library 

 

Figure 3.17: - The Haversine function is used to compute the distance between two points over a 

geographical area given their latitudes and longitudes  
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Figure 3.18: - The Point class which is provided by Shapely module is used for marking regions near 

the airports 

 

The positions which are near the airports have been marked by Points class of Shapely module and 

those points which are within the boundary of that particular area are marked as true (or 1) otherwise 

they are marked as 0. 

 

 

Figure 3.19: - The lambda function has been applied on all the points to verify whether a particular 

pickup point lies under the boundary of that airport or not 

 

Apart from that, in cleaning stage, we need to heed to some of the edge cases, like we need to identify 

whether: - 

 There exists a negative fare amount for any given ride 

 The passenger count is less than 1 

 There exists a NaN or empty value 

 There exists a redundant feature like the ‘key’ 

We will take care of all of these steps in the cleaning stage of our project. 
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Apart from that, EDA (Exploratory Data Analysis) also forms a crucial part of mathematical 

interpretation of our model which we are going to discuss now in the statistical portion. 

3.5 Statistical 

The statistical section of our project mainly relies on the outputs and the inferences drawn under the 

EDA (Exploratory Data Analysis) which is nothing but the statistical interpretation of our dataset for 

better understanding of hidden patterns. 

The first and foremost task is to map the correlation between different features of our dataset in order to 

get a clear cut idea about the definite relationships that they have with each other. 

Our modified and updated dataset looks something like this: - 

 

Figure 3.20: - The number of features is increased from 8 to 24 in view of the inclusion of new 

features (actually 23 as ‘key’ acts as redundant data) 

 

 

Figure 3.21: - Correlation heat map for features. The one in dark shades are highly correlated  
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But evaluating the correlation of every feature with every other feature seems to be a redundant task so; 

we would like to apply a more succinct approach. 

As our main target variable is inflated_fare amount, so we would like to have a bar plot considering 

the correlation of fare amount with every other available  

 

Figure 3.22: - Bar plot which accurately signifies the positive, negative and zero correlation between 

the features and fare amount considered after inflation 

 

In the bar plot, the length of the bar signifies the magnitude of correlation, and the direction with 

respect to x and y axis signifies whether it is positively or negatively correlated. 

The coefficient of correlation used here is Pearson coefficient which is defined by the following 

formula, 

 

Figure 3.23: - Pearson’s correlation coefficient 



41 
 

 

Figure 3.24: - Positive, negative and no correlation 

Different types of correlations as described in the above figure are as follows: - 

i.) Positive Correlation: - It signifies a relationship between two variables where if the value 

of one increases, the value of other also increases, but maybe at a different pace.  

 

ii.) Negative Correlation: - It signifies a relationship between two variables where if the value 

of one increases, the value of other decrease, but maybe at a different pace. 

 

iii.) No Correlation: - It signifies a relationship between two variables where the increase or 

decrease in the value of one variable has no direct or apparent effect on the value of other 

variable. 

The above plot signifies that among the airports JFK is most positively correlated with our 

inflated_fare amount followed by LaGuardia and Newark. 

The dropoff_manhattan and pickup_manhattan are most negatively correlated with our inflated fare 

amount. 

As the pickup and drop off locations were by default given in UTC [Abbr. 3.6] format, we had to split 

it up in terms of years, months, weekdays, hours, minutes and seconds. 

On the basis of this we have devised several graphs corresponding to different parameters. 

The parameter corresponding to y-axis would be fare amounts and corresponding on x-axis would be 

any date time parameter like hours, minutes, seconds, weekdays, months etc. 

It would give us a definite idea about the variation of histograms with respect to different date time 

durations. 
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Chapter 4: - EXPERIMENTS AND RESULT ANALYSIS 

Experimental result analysis is a specialized field that gives coaches and players unbiased data to 

observe or analyze the performance based on certain experimental inferences.  

Systematic observation, which gives accurate, trustworthy, and comprehensive information on 

performance, serves as the foundation for this procedure. 

There are total of six models that we have used for prediction purposes, namely the Linear 

Regression, SVR (Support Vector Regression),Random Forests, XGB (Extreme Gradient 

Boosting), Voting Regressor and Bagging Regressor. 

We will take each of these regressions one by one and analyze the performance based on a total of five 

evaluation metrics. 

NOTE: - All the results generated in the subsequent models as shown below are fluctuating as the 

input seeded to these models has a random state between 37 and 40 

4.1 Evaluation Metrics Formulations 

Some general formulations corresponding to evaluation metrics are described below. 

4.1.1 Mean Absolute Error: - It measures the absolute difference between the predicted and actual 

values of a set of data. 

 

 

Figure 4.1: - Formula for Calculating Mean Absolute Error 
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4.1.2 Mean Squared Error (MSE): - It measures the sum of square of differences between actual and 

predicted values. 

 

Figure 4.2: - Formula for Calculating Mean Squared Error 

 

4.1.3 Root Mean Squared Error (RMSE): - It is just a derived formulation with having square root 

over the entire calculated MSE value. 

 

 

Figure 4.3: - Formula for Calculating Root Mean Squared Error 

 

4.1.4 Root Mean Squared Logarithmic Error (RMSLE): - The Root Mean Squared Logarithmic 

Error (RMSLE) is the same as RMSE except that it adds a logarithmic function around both the 

predicted and the observed values and adds a 1 to them for avoiding the occurrence of 0 as natural log 

of 0 is undefined. 
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Figure 4.4: - Difference Between RMSE and RMSLE 

 

4.1.5 R-Squared Error: - R-Squared is basically how good your model is in comparison to the 

average difference between sum of squares of original and mean value. The numerator is comprised of 

basically your residual while the denominator is composes of the average sum of squares corresponding 

to the regression problem.  

The negative value of R-Square signifies the fact that the average score is better than the error score as 

prediction made by your model while the positive score signifies the complementary fact. 

 

 

Figure 4.5: - Formulation of R-Squared Error 
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4.1.6 Generalized function for evaluation metrics: - We have incorporated a generalized function for 

calculating and storing the evaluation metrics in a dictionary for the purpose of EDA on the final 

results. 

The function is as follows: - 

 

Figure 4.6: - evaluation_metrics generalized function 

 

4.2 Linear Regression: - In linear regression, we try to accommodate a best fit line that minimizes the 

SSE [Abbr. 4.1] or RMSE (Root Mean Squared Error). 

 

Figure 4.7: - Best fit line as devised under linear regression 
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Figure 4.8: - The linear regression line is defined by the regression coefficients ß0 and ß1 

The value of ß0 and ß1 is as follows: - 

 

Figure 4.9: - Formulae for determining the regression coefficients ß0 and ß1 

 

For the purpose of generating the model, we have used pipeline feature of Sklearn which works in the 

intended fashion as that of a typical generalized pipeline of model construction as mentioned in many 

theoretical contexts which includes the scaling method and afterwards the main model that we are 

going to use. 

A typical example showcasing the use of pipeline method is as follows: - 

 

Figure 4.10: - Use of sklearn.pipeline.Pipeline feature to create a virtual pipeline of events 
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Figure 4.11: - Construction of linear regression model and corresponding evaluation based on 

evaluation metrics 

The RMSE corresponding to Linear Regression model is that of approximately 6.532 while the Mean 

Absolute Error is 3.997, and R-Squared Error which is 0.4947 which is average at best. Being one the 

most basic and the fastest algorithms that are devised for regression, it is not performing up to the 

mark.  

So, in order to reduce the value of evaluation metrics (or to increase the value of R-Squared Error) we 

need to take into picture, more complex regression models such as that of SVR (Support Vector 

Regression) and Random Forests. 

4.3 SVR (Support Vector Regression) 

Support vector regression is the regression form of SVM (Support Vector Machine) that tries to fit the 

line (called as the best-fit-line) within the constraints of the epsilon tube.  

The epsilon here denotes the marginal distance between the positive and negative hyper planes and the 

corresponding best fit line.  

The errors or outlier points are present outside the range of both of the positive and negative hyper 

planes and in between them is our regression line or the best-fit- line.  

The distance between either of the planes and the regression line is denoted by epsilon (ε) which is also 

the radii of the tube.  

The tube-like structure denotes the maximum capability of our model to tolerate or resist the outliers 

that are not defined or included under our model. 
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A typical illustrative design of SVR in a graphical representation is as follows: - 

 

Figure 4.12: - A typical diagram of an epsilon SVR (Support Vector Regression) tube that signifies the 

marginal distance between the regression line and either of the hyper planes 

 

 

Figure 4.13: - Construction of SVR model and corresponding evaluation based on evaluation metrics 

The RMSE corresponding to SVR model is that of approximately 5.968 while the Mean Absolute Error 

is 3.267, and R-Squared Error which is 0.578 which is slightly better than the linear regression model 

but still not up to the mark. 

4.4 Random Forest Regression Model 

The random forest is an ensemble learning technique that falls under the category of bagging method. It 

utilizes the power of multiple decision trees in order to make a prediction.  

To decrease variation within a noisy dataset, ensemble learning techniques like bagging, often referred 

to as bootstrap aggregation, are frequently utilized. 
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In bagging, a random sample of data from a training set is picked with replacement, which allows for 

multiple selections of the individual data points.  

These weak models are then trained independently using many data samples, and depending on the 

task—for example, classification or regression—the average or majority of those predictions result in a 

more accurate estimate. 

The random forests can be used as a classifier or a regressor. In a classifier, the final result is provided 

by the Majority Voting.  

But in case of regressor, it is obtained by taking the mean or average of all the computed results taken 

from each of the individual decision trees. 

 

Figure 4.14: - A typical Random Forest Regressor 

 

Figure 4.15: - Construction of Random Forest Regressor model and corresponding evaluation based on 

evaluation metrics 
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Here the n_estimators parameter signifies the number of decision trees that our Random Forest model 

is using for creation of Random Forest Regressor. 

The RMSE corresponding to Random Forest model is that of approximately 4.519 while the Mean 

Absolute Error is 1.931, and R-Squared Error which is 0.758 which is quite good. For obtaining more 

accuracy, a bagging model like the random forest, needs more data which is outside the scope of the 

device constraints. 

4.5 XGB (Extreme Gradient Boosting) Regression 

It is an advanced form of Random Forests and instead of bagging uses the boosting technique of 

ensemble learning for prediction of the continuous values. 

While both bagging and boosting converts a set of weak learners into strong learners, bagging achieves 

it through parallel computation and processing of all the weak learners and boosting uses the concept of 

sequential learning and processing. Moreover, boosting also takes into account the power and 

robustness of gradient boosting in order to achieve efficient result in less amount of time. 

 

Figure 4.16: - The boosting method as used by XGB (Extreme Gradient Boosting) 

 

Figure 4.17: - Construction of XGB model and corresponding evaluation based on evaluation metrics 
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The learning rate, the gamma values and the max_depth are hyper parameters here. The gamma value 

defines the minimum loss reduction that is required for further partition and max_depth is used for 

determining the maximum depth of decision tree that would be used in XGB. 

The RMSE corresponding to XGB regressor model is that of approximately 4.637 while the Mean 

Absolute Error is 1.882, and R-Squared Error which is 0.745 which is quite good. For obtaining more 

accuracy, a boosting model like XGB also needs more data which is outside the scope of the device 

constraints.  

The time taken by XGB is 16.17 seconds while that of Random Forests is nearly 1040 seconds which 

is approximately 17.33 minutes. 

From this data, we can easily verify how much faster XGB is as compared to Random Forests, even 

though both of them compute the result with nearly the same accuracy. 

4.6 Voting Regressor 

Voting regression technique is also a method of ensemble learning which utilizes the power of various 

machine learning models to create a better regressor model that finally undergoes voting to verify the 

best possible answer. 

A typical voting regressor is as follows: - 

 

Figure 4.18: - A typical voting regressor model 

 

Just like Random Forest, it also finds out the mean of all the predicted results and shows that as the 

final output. 
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The voting regressor is based on the fact that several classification models instead of being trained 

separately can be trained in a combined fashion and then voting is the done in the form of collecting the 

mean value of all the estimated results. 

The voting regressor is one of the best models when it comes to the situation where the robustness of 

one model and the speed or efficiency of other model is required. 

 

The predictions made by the voting regressor model on our dataset are as follows: - 

 

Figure 4.19: - Construction of voting regressor model and corresponding evaluation based on 

evaluation metrics 

The models that we have considered under voting regressor are as follows: - 

i.) Random Forest 

ii.) XGB (Extreme Gradient Boosting) 

iii.) SVR (Support Vector Regression) 

 

The constructor of voting regressor class takes a tuple of models as a parameter as shown above. 

The RMSE corresponding to voting regressor model is that of approximately 4.601 while the Mean 

Absolute Error is 2.061, and R-Squared Error which is 0.7492 which is almost accurate as Random 

Forests and XGB, but has a huge runtime of 1427.82 seconds which is near 23 minutes. 
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4.7 Bagging Regressor 

The bagging regressor is yet another ensemble learning technique which takes into account a base 

model and then it allocated that base model over some k subsets of our data. The final predictions 

derived from these k subsets are then aggregated by taking the mean of all the available results. It falls 

under the bagging technique of ensemble method, just as random forests, the only difference being that, 

while random forests take into account, a decision tree as their core base model, the bagging regressor 

can consider any known regression model as one of its base model. 

 

Figure 4.20: - A typical representation of the working of Bagging model in ensemble learning 

The predictions and the values of the evaluation metrics as obtained under bagging regressor are 

obtained as shown below: - 

 

Figure 4.21: - Construction of bagging regressor model and corresponding evaluation based on 

evaluation metrics 
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The bagging regressor takes into account n_estimators parameter which denotes the number of subsets 

in which we have to divide our dataset and corresponding to that the number of base models that we 

require for that purpose. 

Of all the regression models that we have applied so far, the bagging regressor outperforms all with the 

base model being XGB (Extreme Gradient Boosting). That’s why it took only a mere 51 seconds to 

complete the whole operation. 

The RMSE corresponding to voting regressor model is that of approximately 4.4279 while the Mean 

Absolute Error is 1.843, and R-Squared Error which is 0.7678 which is probably the most accurate 

score we have obtained so far. 

4.8 HistGradientBoosting Regressor 

In machine learning, the HistGradientBoosting gradient boosting algorithm is used for classification 

and regression applications. It shares similarities with other gradient boosting algorithms like XGBoost 

and LightGBM, but also differs in a few key ways that make it especially effective for big datasets. 

Histogram-based gradient boosting is the main distinction between HistGradientBoosting and other 

gradient boosting techniques. This indicates that rather than doing the boosting operation directly on 

the individual data points, the algorithm discretizes the feature space into histograms. Because it 

requires fewer calculations to update the gradients at each step, this method can be substantially faster 

than other gradient boosting algorithms. 

HistGradientBoosting also has the benefit of using an early halting method to help avoid over fitting. 

Every time a boosting iteration is performed, the algorithm analyses the validation loss and terminates 

training when the loss stops decreasing. By doing so, the model is better able to generalize to new data 

and avoid being over fit to the training set of data. 

HistGradientBoosting is a versatile technique that may be applied to a variety of datasets because it 

handles both category and numerical data. It has the ability to handle missing values and automatically 

encrypt categorical data using a number of methods, including one-hot encoding and target encoding. 

Early stopping is used in HistGradientBoosting to train models for regression and classification 

problems. It can handle both numerical and categorical data and is especially well suited for huge 

datasets. It is a versatile and effective tool for machine learning because of its capacity to prevent over 

fitting and support for missing values and categorical input. 
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The predictions and the values of the evaluation metrics as obtained under bagging regressor are 

obtained as shown below: - 

 

Figure 4.22: - Construction of HistGradientBoosting regressor model and corresponding evaluation 

based on evaluation metrics 

 

The RMSE corresponding to HistGradientBoosting regressor model is that of approximately 4.468 

while the Mean Absolute Error is 1.9230, and R-Squared Error which is 0.7634 which is again as 

nearly accurate as Random Forests and XGB. 

Being extremely fast and an optimized version of traditional Gradient Boosting algorithm, it merely 

takes 1.12 seconds to complete the prediction process. 

4.9 Artificial Neural Network (ANN) 

In regression tasks, ANNs are used to predict a continuous output variable based on a set of input 

variables. The process of training an ANN for regression involves adjusting the weights of the 

connections between neurons so that the network can learn to approximate the underlying function that 

maps the input variables to the output variable. 

The feed forward neural network is a popular ANN type used for regression analysis. An input layer, 

one or more hidden layers, and an output layer make up this kind of network. The anticipated output 

variable is produced by the output layer, which also receives the input variables. The calculations 

required to convert the input variables into the anticipated output variable are carried out by the hidden 

layers. 

The network is initially initialized with random weights before being trained for regression using a 

feed-forward neural network. Following that, the network is shown the input-output pair-based training 



56 
 

data. For each input, the network computes its output, and an error value is determined by comparing 

the predicted and actual outputs. 

The weights in the network are modified using the back propagation algorithm to bring the predicted 

output values closer to the actual output values. The procedure is repeated until the error on the training 

data is below a predetermined threshold or for a predetermined number of iterations. 

Here are the steps that have been taken while formulating the prediction using Sequential ANN using 

Keras library. 

 

Figure 4.23: - Construction of Standard Scaler for Neural Network Model 

 

Figure 4.24: - Construction of Deep Learning ANN Model 

Here we have used ReLU has an activation function. ReLU [Abbr. 4.2] is a commonly used activation 

function in artificial neural networks, particularly in deep learning models. It is a simple function that 

applies a non-linear transformation to the input, mapping negative values to zero, and leaving positive 

values unchanged. 

ReLU is popular because it is computationally efficient, easy to implement, and has been shown to be 

effective in many different types of neural networks. Additionally, ReLU helps to address the vanishing 
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gradient problem that can occur in deep neural networks, which can prevent learning from taking place 

effectively. 

However, one potential downside of ReLU is that it can lead to "dead neurons" in the network, where 

the neuron always outputs zero, due to a negative bias in the input. This can be mitigated by using 

variants of ReLU, such as Leaky ReLU or Parametric ReLU, which allow for a small positive output 

for negative inputs, or by using a different activation function altogether. 

Here we have also used the concept of Early Stopping to stop our epoch iteration after the point where 

no significant improvement in efficiency is apparently visible. 

 

 

Figure 4.25: -Running ANN based on early stopping procedure and corresponding evaluation based on 

evaluation metrics 

 

 

Figure 4.26: - The final evaluation result of Neural Networks 

 

As seen from the above figure, the RMSE corresponding to Artificial Neural Network regressor model 

is that of approximately 5.094 while the Mean Absolute Error is 2.182, and R-Squared Error which is 

0.729 which is just a little less than Random Forest and other ensemble learning techniques that we 

applied previously. 
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It so happens because Neural Networks tend to train on a million of rows and it is outside the device 

constraints to let the model train on such a large amount of data, which may otherwise have boosted the 

efficiency from 0.729 of R-Squared error to nearly about 0.9. 

4.10 Extended EDA for Evaluation Metrics 

Now that we have applied all of our regression models on our datasets, it’s time for us to statistically 

analyze their performances using the evaluation metrics through which we have determined the 

performance of each of the following models. 

 

Figure 4.27: - The RMSE v/s R-Squared plot 

By observing the data, we can see that Linear Regression has the worst error figure while the Bagging 

Regressor, XGB and Random Forest almost perform equally well in terms of RMSE. 

And as R-Squared is inversely proportional to RMSE, so the models with poor RMSE score (higher 

value of RMSE) will obviously have corresponding lower value of R-Squared Error.  

The pie plots present below divides the whole set of regression models on the basis of their share in the 

total RMSE and R-Squared errors obtained so far using all the models combined together. 
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Figure 4.28: - Pie Chart corresponding to distribution of RMSE 

 

Figure 4.29: - Pie Chart corresponding to distribution of R-Squared Error 

 

4.11 K Fold Cross Validation 

As already mentioned before, K-Fold Cross Validation is a method of describing the validation by 

splitting the whole dataset into k parts, in which we train by k-1 parts and test by the remaining part. 

An array of results is obtained after performing this operation and the function that we have employed 

for this purpose is cross_val_score which is provided under the sklearn.model_selection module. 

The parameter cv=5 denotes the number of cross validation sets or simply the value of k which in this 

case is 5.It simply means that we need to take into account 5 values for any of the evaluation metrics 

that we are trying to compute whether it is an RMSE or R-Squared Error. 

As the k-fold cross validation will be applied for 5 times for each of the k data subsets, we have only 

applied it for Linear Regression as a means of demonstration. 
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The low specifications of our device have bounded us to test it over the Linear Regression and XGB 

model only in order to avoid crashing of system.  

 

Figure 4.30: - RMSE computation under K-Fold 

 

Figure 4.31: - R-Squared computation under K-Fold 

 

 

Figure 4.32: - Generalized working of K-Fold Cross Validation with k=5 
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Chapter 5: - CONCLUSIONS 

5.1 Conclusions 

The major inference drawn from this project is that we were able to predict taxi fare prices near to a 

RMSE of 4.22 and R-Squared Error of about 0.79 which indicates an accuracy of about 79% on 

approximate scale. It can be further optimized by taking the large data set but unfortunately we have 

considered only 90k points out of a total of 55 million extended rows due to the RAM and device 

constraints. 

5.2 Future Scope 

The major challenge that is up ahead in this project is the inclusion of scaling factor and how it can 

modify our results. As of now, we have only focused upon the simple regression models or some 

complex ensemble learning techniques which yielded some quite good results considering the amount 

of data set points that we inputted. Inclusion of lasso and ridge regression is one more thing to look 

forward to. 

Along with that, it would also be a nice idea to look up to different techniques by which we would be 

able to handle large data as the one that we have currently faced. Use of efficient data processing 

libraries like Dask or Vaex is good but in the long run they don’t help much in terms of providing the 

desired functionality which is fulfilled by Pandas.  

5.3 Applications 

The project of ours can find use in many of the scenarios as mentioned below: - 

i.) In the apps that are driven by real-life problems like the geo-location apps such as Maps, 

Tom-Tom API and much more for traffic analysis. 

ii.) Can be used by Traffic Surveillance Authorities and unicorn start-ups or companies like 

Uber to monitor the effect of increasing fare prices along with the inflation and the 

increased number of passengers. 

iii.) Can also be used by taxi passengers themselves for self- evaluation of the fare amount that 

they have spent in total within a particular year. 

iv.) Majorly the usage of this project is to predict the fare prices given any position of 

coordinates of pickup and drop off locations which will also be valid for the upcoming 

decades due to the inclusion of inflation. 
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APPENDIX 

A.1 LightGBM 

An open-source package called Light Gradient Boosted Machine, or Light GBM for short, offers a 

practical and fast implementation of the gradient boosting technique. 

By using a sort of autonomous feature selection and concentrating on boosting cases with greater 

gradients, LightGBM expands the gradient boosting technique. This can hasten training significantly 

and enhance prediction performance. 

As a result, when using tabular data for regression and classification predictive modelling tasks, 

LightGBM has established itself as the de facto method for machine learning contests. As a result, 

together with Extreme Gradient Boosting, it bears some of the responsibility for the improved 

acceptance and widespread use of gradient boosting techniques in general (XGBoost). 

 

A.2 Lasso Regression 

It is a type of regularisation method used in regression problems. For a more accurate forecast, it is 

preferred over simple regression techniques without regularization.  

Shrinkage is used in this model. When data values shrink toward the mean, this is referred to as 

shrinkage. Simple, sparse models are encouraged by the lasso procedure. 

The coefficients of the remaining features are decreased to zero and a random feature is chosen from 

the highly linked ones.  

Additionally, as the model parameters vary, the selected variable varies at random. Generally speaking, 

ridge regression performs better than this. 

A.3 Intelligent Transportation System (ITS) 

The use of sensing, analysis, control, and communications technology in ground transportation to 

increase security, mobility, and effectiveness is known as an intelligent transportation system. An 

intelligent transportation system consists of a variety of applications that process and exchange 

information to reduce traffic, enhance traffic management, lessen the impact on the environment, and 

boost the advantages of transportation for both business users and the general public. 
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The use of information and control technologies in the operation of transportation systems is the 

technological foundation of intelligent transportation systems (ITS).  

Communications, automated control, and computer hardware and software are some of these 

technologies. It takes expertise from several engineering fields, such as civil, electrical, mechanical, 

industrial, and their allied disciplines, to apply these technologies to transportation.  

The majority of transportation issues are brought on by a lack of timely and accurate information as 

well as by a lack of system-wide coordination amongst employees.  

Therefore, information technology's positive contribution is to provide improved knowledge to enable 

system participants to reach mutually beneficial decisions. 

 

A.4 Ridge Regression 

In situations when the independent variables are strongly correlated, ridge regression is a technique for 

estimating the coefficients of multiple-regression models. It has been used to a variety of disciplines, 

including engineering, chemistry, and econometrics. 

This technique carries out L2 regularization. Predicted values differ much from real values when the 

problem of Multicollinearity arises, least-squares are unbiased, and variances are significant. 

It is optimally a better and a more robust method than lasso regression. 

Ordinary least squares (OLS) regression is the analysis technique used to assess the association 

between independent variables (Features) and a dependent variable (Target). By minimising the sum of 

squares in the difference between the observed and predicted values of the dependent variable, the 

method predicts ties. 

Ridge regression, on the other hand, refers to a type of linear regression model where the coefficients 

are estimated using a biased estimator rather than the Ordinary Least Squares (OLS) estimator and have 

a smaller variance. 

 


