

NYC TAXI FARE PREDICTION AND VISUALIZATION

Project report submitted in partial fulfillment of the requirement for the degree of

Bachelor of Technology

in

Computer Science and Engineering/Information Technology

By

(Sparsh Batta (191296))

(Mehul Kansal (191299))

Under the supervision of

(Dr. Jagpreet Sidhu)

to

Department of Computer Science & Engineering and Information Technology

Jaypee University of Information Technology Waknaghat, Solan-173234,

Himachal Pradesh

I

Certificate

Candidate’s Declaration

I hereby declare that the work presented in this report entitled “NYC Taxi Fare Prediction and

Visualization” in partial fulfillment of the requirements for the award of the degree of Bachelor of

Technology in Computer Science and Engineering/Information Technology submitted in the

department of Computer Science & Engineering and Information Technology, Jaypee University of

Information Technology Waknaghat is an authentic record of my own work carried out over a period

from January 2023 to May 2023 under the supervision of Dr. Jagpreet Sidhu (Assistant Professor

(SG), Department of CSE & IT).

I also authenticate that I have carried out the above mentioned project work under the proficiency

stream "Data Science”.

The matter embodied in the report has not been submitted for the award of any other degree or

diploma.

(Student Signature)

Sparsh Batta (191296)

(Student Signature)

Mehul Kansal (191299)

This is to certify that the above statement made by the candidate is true to the best of my knowledge.

(Supervisor Signature)

Supervisor Name

Designation

Department name

Dated:

II

III

Acknowledgement

We are quite grateful to have this as the conclusion of our mission because it took a lot of perseverance

and assistance from many people to complete and make such a significant effect on. All that we have

accomplished is directly related to their oversight and assistance, for which we are really grateful.

We honor and thank Dr. Jagpreet Sidhu for enabling us to work on the project at Jaypee University of

Information Technology and for providing all of us with the guidance and instruction that enabled us to

successfully finish the project. Despite the fact that he had involved time management, we are really

thankful to him for providing such above-average support and guidance. We are also grateful towards

Mr. Mohan Sharma and Mr. Ravi Raina, our respective lab coordinators who provided us with required

resources for the successful accomplishment of our project.

We owe a huge debt of gratitude to our project manager Dr. Jagpreet Sidhu, who showed a genuine

interest in our errand work and led the group of us until the project's conclusion by providing all the

necessary information for developing a strong framework.

We are grateful and sufficiently honored to have received ongoing assistance, which enabled us to

successfully complete our endeavor task. In a similar vein, we should extend our sincere gratitude to

each and every one of them for their helpful assistance.

Sparsh Batta

191296

Mehul Kansal

191299

IV

TABLE OF CONTENT

Title Page No.

Main Title _

Certification [Candidate’s Declaration] I

Plagiarism Certificate II

Acknowledgment III

Table of Content IV

List of Abbreviations VI

List of Figures VIII

List of Tables XI

Abstract XII

CHAPTER 1: INTRODUCTION (1)

1.1 Introduction 1

1.2 Problem Statement 2

1.3 Objectives 2

1.4 Methodology 3

 1.4.1 Python 4

 1.4.2 Jupyter Notebook 5

 1.4.3 NumPy 6

 1.4.4 Pandas 7

 1.4.5 Sklearn 7

 1.4.6 Plotly 8

 1.4.7 XGBoost 8

 1.4.8 TensorFlow 9

 1.4.9 Keras 10

 1.4.10 Shapely 11

1.5 Organization 15

CHAPTER 2: LITERATURE SURVEY (17)

CHAPTER 3: SYSTEM DEVELOPMENT (28)

3.1 Analytical 28

 3.1.1 Vaex 29

 3.1.2 Dask 31

V

 3.1.3 Dataset splitting in chunks 31

 3.1.4 Drawbacks of Vaex and Dask 32

3.2 Computational 33

 3.2.1 Working of Haversine Formula 33

3.3 Experimental 34

 3.3.1 Using Shapely library 36

3.4 Mathematical 37

3.5 Statistical 39

CHAPTER 4: EXPERIMENTS AND RESULT ANALYSIS (42)

4.1 Evaluation Metrics 42

 4.1.1 Mean Absolute Error (MAE) 42

 4.1.2 Mean Squared Error (MSE) 43

 4.1.3 Root Mean Squared Error (RMSE) 43

 4.1.4 Root Mean Squared Logarithmic Error (RMSLE) 43

 4.1.5 R-Squared Error 44

 4.1.6 Generalized function for evaluation_metrics 45

4.2 Linear Regression 45

4.3 SVR (Support Vector Regression) 47

4.4 Random Forest Regression Model 48

4.5 XGB (Extreme Gradient Boosting) Regression 50

4.6 Voting Regressor 51

4.7 Bagging Regressor 53

4.8 HistGradientBoosting Regressor 54

4.9 Artificial Neural Network (ANN) 55

4.10 Extended EDA for Evaluation Metrics 58

4.11 K-Fold Cross Validation 59

CHAPTER 5: CONCLUSIONS (61)

5.1 Conclusions 61

5.2 Future Scope 61

5.3 Applications 61

REFERENCES (62)

APPENDIX (63)

VI

LIST OF ABBREVIATIONS

Abbreviation No. Abbreviation Description Page No.

Abbr. 1.1 NYC New York City 2

Abbr. 1.2 BQML Big Query Machine Learning 3

Abbr. 1.3 SVR Support Vector Regression 3

Abbr. 1.4 RAM Random Access Memory 3

Abbr. 1.5 XGB Xtreme Gradient Boosting 4

Abbr. 1.6 CPU Central Processing Unit 4

Abbr. 1.7 GUI Graphical Unit Interface 5

Abbr. 1.8 API Application Programming

Interface

8

Abbr. 1.9 GPU Graphics Processing Unit 9

Abbr. 1.10 TPU Tensor Processing Unit 9

Abbr. 1.11 GEOS Open Source Geometry Engine 11

Abbr. 1.12 GIS Geographic Information Systems 12

Abbr. 1.13 EDA Exploratory Data Analysis 12

Abbr. 1.14 MAE Mean Absolute Error 16

Abbr. 1.15 MSE Mean Squared Error 16

Abbr. 1.16 RMSE Root Mean Squared Error 16

Abbr. 1.17 RMSLE Root Mean Squared Logarithmic

Error

16

Abbr. 2.1 SVM Support Vector Machine 17

Abbr. 2.2 OLS Ordinary Least Squares 20

Abbr. 2.3 ITS Intelligent Transport System 23

Abbr. 2.4 RNN Recurrent Neural Network 26

Abbr. 2.5 ANN Artificial Neural Network 26

Abbr. 3.1 JDA James Donald Armstrong 31

Abbr. 3.2 NVIDIA Next Version/ Nevada Invidia 31

Abbr. 3.3 NASA National Aeronautics and Space

Administration

31

Abbr. 3.4 CSV Comma Separated Value 32

Abbr. 3.5 JFK John F. Kennedy 34

VII

Abbr. 3.6 UTC Coordinated Universal Time 41

Abbr. 4.1 SSE Sum of Squared Errors 45

Abbr. 4.2 ReLU Rectified Linear Activation Unit 56

VIII

LIST OF FIGURES

Figure Caption Page No.

Figure 1.1 Python logo 4

Figure 1.2 Jupyter Notebook logo 5

Figure 1.3 NumPy logo 6

Figure 1.4 Pandas logo 7

Figure 1.5 Sklearn logo 7

Figure 1.6 Plotly logo 8

Figure 1.7 XGBoost logo 8

Figure 1.8 TensorFlow logo 9

Figure 1.9 Keras logo 10

Figure 1.10 Shapely logo 11

Figure 1.11 Matplotlib logo 13

Figure 1.12 Seaborn logo 13

Figure 1.13 Ensemble learning 14

Figure 1.14 Voting and Bagging 14

Figure 1.15 Plotly library uses 15

Figure 2.1 SVR outliers 17

Figure 2.2 Random Forest 18

Figure 2.3 XGB framework 19

Figure 2.4 Lasso v/s Linear Regression 21

Figure 2.5 Forward Selection 21

Figure 2.6 Duration and Amount graph 22

Figure 2.7 SVM in ITS 23

Figure 2.8 House Price Prediction with

ANN

27

Figure 3.1 Structure of dataset 28

Figure 3.2 Vaex logo 29

Figure 3.3 Out-of-core ML 30

Figure 3.4 Vaex Mini Batches 30

Figure 3.5 Dask logo 31

Figure 3.6 Syntax for chunk size 32

IX

Figure 3.7 Haversine formula 33

Figure 3.8 Extended Haversine 34

Figure 3.9 Haversine in succinct 34

Figure 3.10 JFK airport 35

Figure 3.11 LaGuardia airport 35

Figure 3.12 Newark airport 35

Figure 3.13 Manhattan borough 35

Figure 3.14 Shapely logo 36

Figure 3.15 Boundaries in shapely 36

Figure 3.16 Bearing angle 37

Figure 3.17 Haversine function 37

Figure 3.18 Point class in Shapely 38

Figure 3.19 Lambda function on airports 38

Figure 3.20 Inclusion of features 39

Figure 3.21 Correlation Heat Map 39

Figure 3.22 Correlation Bar Plot 40

Figure 3.23 Pearson’s correlation coefficient 40

Figure 3.24 Different types of correlations 41

Figure 4.1 Mean Absolute Error 42

Figure 4.2 Mean Squared Error 43

Figure 4.3 Root Mean Squared Error 43

Figure 4.4 RMSE v/s RMSLE 44

Figure 4.5 R-Squared Error 44

Figure 4.6 evaluation_metrics description 45

Figure 4.7 Best fit line 45

Figure 4.8 Linear regression equation 46

Figure 4.9 Determining ß0 and ß1 46

Figure 4.10 Pipeline class description 46

Figure 4.11 Linear Regression Model 47

Figure 4.12 SVR epsilon tube 48

Figure 4.13 SVR model 48

Figure 4.14 Random Forest Regressor 49

X

Figure 4.15 Random Forest Model 49

Figure 4.16 Boosting method 50

Figure 4.17 XGB model 50

Figure 4.18 Voting Regressor Working 51

Figure 4.19 Voting Regressor Model 52

Figure 4.20 Bagging Regressor Working 53

Figure 4.21 Bagging Regressor Model 53

Figure 4.22 HistGradientBoosting Model and

Working

55

Figure 4.23 Standard Scaler for ANN 56

Figure 4.24 ANN Model and Working 56

Figure 4.25 ANN on Early Stopping 57

Figure 4.26 Evaluation Result of ANN 57

Figure 4.27 RMSE v/s RSquared plot 58

Figure 4.28 Pie chart of RMSE 59

Figure 4.29 Pie chart of RSquared 59

Figure 4.30 RMSE under K-Fold 60

Figure 4.31 RSquared under K-Fold 60

Figure 4.32 Generalized working of K-Fold

Cross Validation

60

XI

LIST OF TABLES

Figure Description of Table Page No.

Table 2.1 Comparison of different models on

the basis of final inference

25

XII

Abstract

The term regression analysis coincides with finding a real value parameter that can be used for

prediction purposes. It differs from classification in the sense that, in classification the categorical or

discrete values form the basis of model as opposed to regression where the numerical parameters are

employed for the same.

Computationally regression analysis is generally more expensive than classification analysis though the

same can differ in different contexts.

The prediction analysis is nothing but a synonym of regression and classification analysis as in both of

these we do nothing but try to predict the numerical value or categorize our data point on the basis of

class labels.

With the advancement of Artificial Intelligence during the globalization era, its subfields including

Machine Learning, Deep Learning and the contemporary domain of Reinforcement Learning have

shown promising results that extend its functionality and application from medicine, health care,

transportation and evolution to politics, geo-science and various other viably hidden technical domains

like forensics, criminal activities, court procedures and other various aspects.

The taxi fare prediction is one such small application of the vast array of contributions that has been

bestowed upon by this promising field.

For our considerations we have used the data of New York City and its corresponding borough has the

basis for developing our regression model.

The sprawling city of NYC is over cumbered with a huge string of taxi chains running across the city

which provide a seemingly accurate description of the data that we are going to need to able to process

as a preliminary requirement for our model.

The abstraction is done in terms of variable charging across different sections of the city and other

aspects like weather or road conditions or traffic jams which are not considered while forming the data

but they surely have an implicit impact on the overall fare result that we are going to obtain at the end

of the formulation of this whole process.

The inclusion of inflated charges is an important indicator of the fact that this project can be utilized for

future purposes as well even when the fare prices change by a certain margin.

1

Chapter 1: - INTRODUCTION

1.1 Introduction

Predictive analysis is the cornerstone of many upstream activities in data science as well as the machine

learning paradigm. The main aim is to generate a user defined data set from some preprocessed

information that is available via repositories, documents or articles over the websites. These are most

often investigated in the fields of illness, natural catastrophe, and fare prediction. Additionally, it may

be used to discover how to prevent future disasters and how to decrease the damage caused by a

particular one. Regression analysis may be used to investigate the effects of variables measured on

several scales, such as the influence of price modifications and the amount of promotional activities.

These benefits make it easier for market researchers, data analysts, and data scientists to find and pick

the best set of variables to incorporate into predictive modeling.

When used in conjunction with other business analytical techniques, regression analysis helps firms

better understand the significance of their data points and utilize them to inform decision-making.

Regression analysis makes it possible to see how, when one of the independent variables is changed,

the dependent variable's typical value changes while the other independent variables stay the same.

This powerful statistical technique is thus used by business analysts and other data specialists to get rid

of unimportant variables and concentrate on the important ones.

The benefit of regression analysis is that it makes it possible to use data analysis to help companies

make better decisions. A firm's future weeks, months, and years may be altered by having a better

understanding of the issues.

Regression is a generic machine learning approach used to predict a continuous real value and here we

are likely to predict dependent variables by using the independent features embedded in our regression

equation, and the project dubbed "NYC Taxi Fare Prediction" is a regression model. For this objective,

a regression model is used to forecast the taxi prices in and around the various boroughs of New York

City in accordance with the variables that the dataset creator has supplied. The distances are given in

the form of coordinates which are nothing but the latitudes and longitudes in degrees. The dataset,

which is nothing more than the corresponding data-time that indicates the pickup time of a specific

passenger or group of passengers, is associated with the key.

When making the necessary projection, fare inflation is also taken into account.

2

1.2 Problem Statement

The main aim of the problem associated with the project is to estimate the “fare charges” that are to be

paid by the passengers for a trip around NYC and the fares have some independent precursors

associated with it that we need to entertain under our regression model so that we be able to get near to

approximate value of the fare charges.

According to the specified parameters, it considers the pickup time, the latitude and longitude of the

start location, the latitude and longitude of the end location, the count of passengers and the fare

amount per passenger.

It employs several operations, including the Haversine formula and Manhattan distance. The number of

passengers and the likelihood of traffic congestion are also considered when assessing the fee.

It uses the assistance of predictive assessment, which makes certain adjustments to data from already-

existing data sets in order to identify new trends and fashions. Then, future outcomes and trends are

predicted using those advances and styles. Acting predictive analysis helps us forecast next

developments and overall performance. Additionally, it is known as prognosis assessment or prognostic

method prediction.

1.3 Objectives

The major objective is already been described in the problem statement, which is predicting the fare

charges of the passengers for taxi rides that they take across the NYC [Abbr. 1.1].

Other objectives include the determination of best possible technique for regression, or in simple terms,

the best possible regression model that is most optimal for our current scenario and how we can find

the distance between two longitudes and latitudes on the earth using different methodologies or

trigonometric formulae and functions.

We will also need to evaluate inflation costs because each year the prices of the taxi fares are increased

leading us to carefully consider what fare charges to consider in that particular session with the use of

inflation factor that is embedded in the code and is separately devised into a column called as

“inflation_costs”.

Another major objective could be to reduce the error which again falls under selecting the best possible

model or mechanism for determining the taxi fares using the available information.

3

1.4 Methodology

The methodology we're employing is a subset of BQML [Abbr. 1.2] models, where data is handled in

the frontend as database queries. But we can just use the conventional basic machine learning protocols

and concepts for its backend implementation.

For regression, prediction, and forecasting purposes, BQML uses linear regression; however, for

classification issues, it uses binary logistic regression and multiclass logistic regression approaches.

BQML processing works similarly to any generalized machine learning model creation process in that

we first choose the pertinent features from our raw data, then process and clean our dataset by

removing or replacing any null or missing values, then apply our model (either Linear Regression or

Logistic Regression), and finally validate using any model performance evaluation, such as RMSE

(Root Mean Square Error) for evaluation of our model.

We may also employ the Random Forest and SVR [Abbr. 1.3] approaches in contrast to Linear

Regression since they can also be used to predict or forecast data.

The cost of a taxi ride depends on the distance travelled and how long it takes to get there (the sum of

the drop-off fee, distance fee, and time fee). Although it is simple to estimate the distance and drop

charge, it is more difficult to determine the time. It is the end outcome of intricate, nonlinear traffic

dynamics.

The dataset for the underlying research, known as "new- york - city - taxi- fare - prediction," was

given by Google as part of a competition that was organised in 2018 in conjunction with an exclusive

cooperation with Coursera. The event was referred to as the "Playground Prediction Competition."

The key, fee amount, date and time of the journey, latitude and longitude of the start location, latitude

and longitude of the end location, and count of the passengers are the eight parameters that make up the

dataset.

The original training dataset had close to 55 million data points, which were reduced for sampling

reasons and RAM [Abbr. 1.4] constraints to 1 million.

By analyzing data gathered from taxis, we are attempting to resolve a similar issue: calculating travel

duration without real-time data. Making such estimations would improve projections for the future.

We have also used SVR (Support Vector Regression) for regression purposes in this context.

4

Support vector machines are expected to perform well for taxi fare analysis because they have better

generalization capabilities and guarantee global minima for given training data. Our findings

demonstrate that the SVR predictor may dramatically lower both relative mean errors and root-mean-

squared errors of anticipated fares when compared to alternative.

But a better alternative would be to use Random Forest or Extreme Gradient Boosting (XGB) (a more

effective technique called LightBGM can also be used, [see Appendix A.1]). While, Random Forest

stays more true to the accuracy, the XGB [Abbr. 1.5] is used to efficiently compute the taxi fares even

without taking significant amount of time which is truly remarkable considering the constraints that we

have with respect to the size of the RAM and the performance of the CPU [Abbr. 1.6] of our device.

Let us look at the libraries and platforms that we have used for creating our project.

1.4.1 Python

Figure 1.1: - Python logo

Python is a general purpose, high-level interpreted programming language and it finds applications in

wide variety of contexts like data analysis, machine learning, general-purpose problem solving, web

server development, environment testing and content creation.

It is widely known for its simplicity and readability. Python code is easy to read and understand, even

for people who are not experienced programmers.

This makes it an ideal language for beginners, as well as for experienced developers who want to

quickly prototype and test new ideas.

Python comes with a huge amount of versatility. Python can be used for a wide range of applications,

from small scripts to large-scale web applications and data processing pipelines. It has a large and

active community of developers who contribute to its ecosystem by developing libraries, frameworks,

and tools that extend its functionality.

5

1.4.2 Jupyter Notebook

Jupyter Notebook serves as the platform for creating the project-specific notebook. Project Jupyter is

where the Jupyter Notebook is suggested. Project Jupyter's goal is to offer interactive computing

services, open standards, and open-source software for a range of programming languages. In 2014,

Brian Granger and Fernando Pérez split it from IPython.

Figure 1.2: - Jupyter Notebook logo

The interface of Jupyter Notebook is divided into two main areas: the notebook area and the kernel

area. The notebook area is where users can create and edit notebooks, which are essentially documents

that contain a series of cells. Each cell can contain code, text, or multimedia elements such as images

and videos. The kernel area is where the code is executed, and the results are displayed in the notebook

area. This architecture allows for easy experimentation and data exploration.

Jupyter Notebook offers many features that make it a popular choice for data scientists and researchers.

One of its most useful features is its ability to display data visualizations directly in the notebook.

This is made possible by the use of libraries such as Matplotlib, Seaborn, and Plotly. These libraries

allow users to create high-quality visualizations such as line charts, scatter plots, heat maps, and more.

Jupyter Notebook has an excellent support for interactive widgets. These widgets allow users to create

graphical user interfaces (GUIs) [Abbr. 1.7] for their code, making it easier to interact with and

manipulate data. Jupyter Notebook also supports the integration of external tools and libraries, such as

TensorFlow and Keras, which are commonly used for machine learning and deep learning.

6

1.4.3 NumPy

NumPy is a powerful Python library for numerical computations, especially for arrays and matrices. It

provides an array object that is much more efficient than Python's built-in lists for numerical

computations. NumPy is widely used in the scientific and data analysis communities.

Figure 1.3: - NumPy Logo

Python now has access to the computing power of languages like C and FORTRAN thanks to NumPy.

Using Python's NumPy module, you may work with multidimensional arrays and matrices. It is perfect

for scientific or mathematical operations due to its effectiveness and quickness.

Signal processing and linear algebra are also supported by NumPy. Therefore, if you need to do any

mathematical operations on your data, NumPy is unquestionably the library for you.

There are several ways that Python lists and NumPy arrays are different from one another. First off,

NumPy arrays contain more dimensions than Python lists do. Second, whereas NumPy arrays are

homogeneous, Python lists are varied.

This means that each member of a NumPy array must be of the same type. Third, NumPy arrays are

more efficient than Python lists. NumPy arrays may be created in a variety of ways. One method is to

create an array from a Python list.

Once it has been created, a NumPy array can be modified in a variety of ways. For example, you may

change an array's shape or use an index to retrieve its elements. Mathematical operations like addition,

multiplication, and division may also be performed on NumPy arrays.

7

1.4.4 Pandas

Figure 1.4: - Pandas Logo

Pandas is a popular open-source data library for Python widely used for working with CSV and Excel

files. It provides data structures and functions for working with structured data, including tables and

time series. Pandas has a deep rooted integration with NumPy which makes it suitable for numerical

and mathematical computations associated with the data sets.

Pandas mainly processes the data in the form of Data Frame, which is a two-dimensional table with

labeled columns and rows. Data Frames can be manipulated and analyzed using a wide range of

functions provided by Pandas.

Pandas also provides a Series object, which is a one-dimensional array with labels. Series can be used

to represent time series data or any other type of data where each value has a label. Series are often

used as the columns of a Data Frame.

1.4.5 Sklearn

Figure 1.5: - Sklearn Logo

It provides a wide range of machine learning algorithms like classification, regression, clustering and

also for several very specific visualization purposes like statistics involved with the inferences drawn

from various models.

8

Sklearn also provides functions for data preprocessing, model selection, and evaluation. Sklearn is built

on top of NumPy, SciPy, and Matplotlib, making it a powerful tool for data analysis and machine

learning.

1.4.6 Plotly

Figure 1.6: - Plotly Logo

Plotly is a powerful open-source data visualization library for Python. It provides a variety of

visualization tools, including scatter plots, line plots, bar charts, and heat maps. Plotly can create

interactive visualizations that can be easily customized, including hover effects, zooming, and panning.

Plotly also provides a range of APIs [Abbr. 1.8] for integrating visualizations into web applications, as

well as the ability to export visualizations to various file formats. With Plotly, users can create high-

quality and professional-looking visualizations with ease, making it a popular tool for data analysts,

scientists, and engineers.

1.4.7 XGBoost

Figure 1.7: - XGBoost Logo

XGBoost is an open-source machine learning library for Python that is widely used for building high-

performance, scalable, and accurate models for classification, regression, and ranking problems. It is

9

designed to be highly efficient and scalable, with support for distributed computing on clusters. It also

includes a range of advanced algorithms for feature selection, regularization, and optimization.

1.4.8 TensorFlow

Figure 1.8: - TensorFlow Logo

Google created the open-source, high-performance machine learning package known as TensorFlow.

With a large developer and research community that contribute to its development and use it for a

variety of applications, it was first released in 2015 and has since then; it has been widely employed in

many day-to-day deep learning tasks and automations.

TensorFlow's primary goal is to streamline the creation and application of machine learning models. It

offers an adaptable and expandable framework for developing models utilizing a variety of algorithms

and methods, such as deep learning, reinforcement learning, and others. Developers can quickly build

and train models that can handle huge datasets and challenging tasks with TensorFlow.

Making computational graphs, which are a set of mathematical operations that specify the structure of a

machine learning model, is one of TensorFlow's core capabilities. Faster model training and

deployment are made possible by the fact that this graph may be optimized for and run on a range of

hardware, including CPUs, GPUs [Abbr. 1.9], and TPUs [Abbr. 1.10].

Another crucial aspect of TensorFlow is its high-level APIs, which give programmers a straightforward

and user-friendly interface for creating and refining machine learning models. Many different

programming languages, including Python, C++, and Java, are supported by TensorFlow, making it

usable by a variety of developers.

TensorFlow offers various high-level APIs and tools which make it easier to create, share, analyze and

save machine learning models in addition to its core library. There are two of these: TensorFlow Lite,

10

which enables models to be deployed on mobile and embedded devices, and TensorFlow Hub, which

offers a repository of pre-trained models that can be readily included into new applications.

TensorFlow is a robust and adaptable machine learning toolkit that has emerged as a crucial tool for

academics and developers working on a variety of applications like image recognition, text analysis

and for simple regression or classification purposes. Its widespread use, scalability, and adaptability are

evidence of its use, and it will probably continue to be a significant force in the machine learning

industry for years to come.

1.4.9 Keras

Figure 1.9: - Keras Logo

Keras is an open source high-end deep learning module built on top of TensorFlow library. Due to its

simplicity, usability, and versatility, it has grown in popularity since its initial release in 2015 and is

now among the most widely used deep learning libraries.

Keras is made to make creating and experimenting with deep learning models simple for developers. It

offers a user-friendly interface for creating neural networks, allowing programmers to concentrate on

the model's design rather than the implementation's minute details.

One of the primary characteristics of Keras is its modularity, which enables programmers to construct

sophisticated neural networks out of layer combinations of basic building components. Convolutional,

recurrent, and dense pre-built layers, among many others, are all included in Keras and are simply

coupled to produce unique neural network topologies.

11

The ease with which Keras can transition between several backends, such as TensorFlow or Theano,

without modifying the code, is another key aspect. As a result, developers can test out many deep

learning frameworks and pick the one that best suits their requirements.

Additionally, Keras offers a variety of helpful tools for deep learning model training. It offers a variety

of optimizers, like Adam and RMSprop that can be used to effectively train models on huge datasets. It

also offers a selection of evaluation metrics and loss functions that can be used to gauge a model's

effectiveness during training and testing.

Along with its fundamental features, Keras has a number of high-level APIs that make it simple to

create and train deep learning models for particular tasks. For example, Keras has an image

preprocessing API for jobs like image recognition and a text preprocessing API that makes it simple to

preprocess text data for tasks like natural language processing.

Keras is a strong and adaptable deep learning package that makes it simple for developers to construct

and test neural networks. Its simplicity and usability make it the perfect choice for deep learning novice

developers, while its versatility and adaptability make it a potent tool for deep learning experts.

1.4.10 Shapely

Figure 1.10: - Shapely Logo

Shapely is a Python module that offers resources for working with planar geometric objects. The GEOS

[Abbr. 1.11] library, which offers an interface to several computational geometry techniques, is built

within it. Shapely is utilized in many different fields, including robotics, computer-aided design, and

geographic information systems.

The capacity of Shapely to represent and manipulate several kinds of geometric objects, including as

points, lines, polygons, and collections of these things, is one of its primary characteristics. These

objects can be built from the ground up or imported from different sources, including shape files or

geojson files.

12

Additionally, Shapely offers a broad selection of geometric operations that can be applied to these

objects. These procedures cover both spatial analysis (such as buffering and convex hull computation)

and spatial predicates (such as contains, intersects, and touches). Developers who need to interact with

geometric objects in their applications frequently choose Shapely's API because it is simple to use and

straightforward.

Integrating Shapely with other Python libraries like Matplotlib and Fiona is another one of its important

features. Shapely objects can be visualized using Matplotlib, and Fiona offers utilities for reading and

publishing GIS [Abbr. 1.12] data in a variety of formats. As a result, integrating Shapely into current

GIS workflows and projects is simple.

Additionally, Shapely supports a number of coordinate systems, such as projected, geographic, and

Cartesian coordinate systems. Developers are able to work with data which are extracted from different

references and translate it between various coordinate systems as necessary thanks to this.

Shapely has a sizable and active community of developers and users, and it is open source and

regularly updated. Users can get help and resources from this group, and the library is always being

developed and improved.

Shapely is a strong and adaptable Python module for working with geometric objects. Its user-friendly

API and wealth of capabilities make it the perfect option for developers who must work with geometric

data in their applications, and its connection with other Python libraries and support for different

coordinate systems make it a flexible tool for working with GIS data.

Now, let’s have a close look at the structure of the project. The project is organized in the form of six

stages.

i.) Loading

ii.) Formulation

iii.) Cleaning

iv.) EDA [Abbr. 1.13]

v.) Model Examination

vi.) Extended EDA along with K- Fold Cross Validation

The first stage includes the loading up of dataset from local machine and the dataset has been taken

from kaggle. The data is then analyzed for further changes, or for inclusions and exclusions.

13

The second stage is where we implement several functions like the Haversine formula and some

helper functions. The Haversine formula is used to calculate the distance between two latitudes and

longitudes situated over the surface of the earth. Along with that, several features are also incorporated

that will make our computation easier, more logical and more concise, like the inclusion of all the

points that are near the Newark airport under that particular new feature called as ‘Newark’, which will

allow us to distribute all the data points close to that particular airport or any other specific location for

that matter, and in turn it would become easier for our model to actually look into the geographical

pattern of the city that we are trying to portray here. The third step is the data cleaning stage, where

redundant features are removed and the null or empty values are taken care of.

Since, our dataset does not contain too many features, so the methods like feature selection, feature

reduction would not be preferable to be applied here. Several other factors are also taken into account,

like for example; we drop the ‘key’ feature as it has no practical significance; we drop the passenger

count under 1 which basically means that the particular ride has no passengers and along with that, we

also drop the negative fare count.

Figure 1.11: - Matplotlib is a famous graph plotting library employed for data science and machine

learning operations and is designed for Python

Figure 1.12: - Seaborn is a library that uses matplotlib as a base library for plotting the graphs but

additionally incorporate some more features to make the graphs look more attractive and user friendly.

14

For visualization purposes, we have used Matplotlib and Seaborn (which is built on top of Matplotlib

for having redefined and user friendly functionality).

For modeling purposes, the generalized approach of ensemble learning has been employed. The power

of ensemble learning can simply be judged from the fact of the number of models that it encompasses

within it.

Figure 1.13: - A broad idea about ensemble learning (credits: jcchouinard.com)

A voting regressor, a type of ensemble meta-estimator, fits a number of base regressors to the whole

dataset one at a time.

The many predictions are averaged to produce the final projection. Machine learning algorithms may

be made more accurate and efficient by using a technique known as bagging, also known as Bootstrap

aggregating.

We can manage whether we need to reduce the bias error or variance error using ensemble learning

techniques. To avoid the data being overfit, both classification and regression models require bagging,

particularly decision tree approaches. The graphic below illustrates the distinction between a voting

regressor and a bagging regressor:

Figure 1.14: - Difference between Voting and Bagging Methods

15

The extended EDA is performed on the models in the fifth stage in order to statistically monitor how

well various models that we have used on our dataset are performing. For this, we've chosen "Plotly," a

more capable and user-friendly graph plotting toolkit that allows for more user input. The Plotly Python

graphing module produces the interactive, publishable graphs. We can easily construct several graphs

like pie charts, bar plots, histograms, polar charts, heat maps and more using the interactive Plotly

library. Its user interaction is most powerful tool that manages it to suppress Plotly. Below is an

illustration of a common graph made using the Plotly library.

Figure 1.15: - Examples of different plots created using Plotly library

The sixth stage also includes the use of K Fold Cross Validation in order to determine whether a better

way is there in order to verify the error stats of our model using the evaluation metrics.

We have used a total of 5 folds in order to determine the evaluation metrics corresponding to only

linear regression and XGB (Extreme Gradient Boosting) due to the device and RAM constraints.

1.5 Organization

The organization of the report is as follows: -

Chapter 1: - It provides details about the project and the notion behind it. The problem that we are

working upon, the major objective of the project, its different features and how we are going to

ensemble everything is the core content of chapter 1

Chapter 2: - Different journals, articles and research papers over the internet have been explored in

order to get a definite idea about the various intuitions of the project and how different models can be

used.

The effect of different models on the evaluation metrics of our project is also taken into consideration.

Chapter 3: - This chapter let us to go deeper into the analytical, mathematical and experimental

interpretation of our data set and how we can manipulate or modify our data set to suit our conditions.

16

It also takes into account the EDA, which is termed as the statistical interpretation of our data.

The EDA in most of the forms is achieved by matplotlib and seaborn libraries, but we can also utilize

better libraries such as Plotly having more user friendliness and more user intervention with robust

features like data hovering capabilities and is available in vibrant colors and unique designs.

Chapter 4: - It basically covers the evaluation metrics that will define the accuracy of our models and

each and every model is discussed in detail.

A total of 5 evaluation metrics, namely the MAE [Abbr. 1.14], MSE [Abbr. 1.15], RMSE [Abbr.

1.16], RMSLE [Abbr. 1.17] and R-Squared Error are taken into account for determining the accuracy

of our model. And along with that why and how each model is used in a particular context is also

mentioned here.

Chapter 5: - Under this chapter, the conclusion of our project and the future scope associated with it

have been discussed in regards to further techniques and optimizations that can be implemented in our

dataset for better accuracy in a relatively less amount of time.

Along with that, optimizations related to collecting massive data on a much quicker basis would also be

considered in the light of training over large datasets.

Note: -

The references and appendices are appended at the end for indulging into the various contexts related

with the source of the project and for describing as from where the said text was referenced.

Note that some references may be in the form of textual publications while some have been extracted

from some publications that were conceived in the form of seminars or virtual meetings.

The appendices have been referenced in the inner text wherever they have been referred and are purely

meant for gathering on some extra insight into that topic which otherwise would have been a futile and

irrelevant exercise to include within the main context.

These include some of the side-referenced topics such as Lasso Regression, Ridge Regression,

LightBGM and Intelligent Transportation System (ITS).

The Figures, tables, sections and subsections corresponding to each chapter have been described above

and have been excluded from the main content for modularity.

17

Chapter 2: - LITERATURE SURVEY

Regression analysis is a statistical method used to analyze the relationship between a dependent

variable and one or more independent variables. It involves the use of a regression model to estimate

the values of the dependent variable based on the values of the independent variables. The objective of

regression analysis is to find the best-fitting line or curve that can predict the values of the dependent

variable based on the independent variables.

Regression and classification are two common types of statistical modeling techniques used in machine

learning and data analysis.

Linear regression is the simplest and the most basic method of regression that is used for prediction

purposes. But there are several other regression analysis techniques that we need to look forward to.

The SVR method, commonly called as the Support Vector Regression method is a subclass of SVM

[Abbr. 2.1] algorithms that is used for regression purposes. Though, it is majorly used as a classifier

rather than a regressor, but we can still utilize the power of SVM kernels in order to get a best fit line

that will help us to arrive at an optimal result and reduce the RMSE (Root Mean Squared Errors).

According to a sciencedirect.com article by Helman written in 2019, SVR is described as follows: -

“SVR applies the same premise as SVM, but to regression issues. SVMs are frequently used to

categorize and organize issues. Regression using SVMs is not always well-documented. SVRs are these

models. Finding a function that approximates the mapping from the input domain to the actual number

in the training sample is difficult when using regression. SVR focuses mostly on taking into account

factors within a decision's parameters. The widely used SVR method gives you freedom and allows you

to select your level of error tolerance through the use of both a reasonable error margin () and an

acceptance adjustment that is higher than the acceptable error rate.”

Figure 2.1: - A diagram showing the hyper planes within which our regression line is contained. The

black dotes represent the points fitted by SVR while the concentric dots are outliers

18

Unlike linear regression, SVR does not assume a linear relationship between the variables. Instead, it

tries to find a nonlinear relationship between the variables by transforming the data into a higher-

dimensional space. SVR aims to find a hyperplane that has the maximum distance from the closest data

points to it, while still keeping the error within a certain tolerance level. This tolerance level is set by a

parameter called epsilon. SVR is less sensitive to outliers than linear regression, and it can handle

nonlinear relationships between variables.

Random Forest, probably one the best algorithm for prediction purposes is nothing but a collection of

several decision trees which when ensemble together provides a series of outputs that is determined

using “Majority Voting”

Higher accuracy is obtained and overfitting is avoided because to the larger number of trees in the

forest.

Figure 2.2: - A diagram which depicts the general representation of the working of a typical Random

Forest architecture.

The gradient boosting techniques like XGB (Extreme Gradient Boosting) Regressor generally

outperform Random Forests but with a little tweaking in the data set or by taking extremely large

amount of data, Random Forests can yield better results.

XGBoost is generally faster than Random Forest as it is optimized for speed and performance but on

the other hand, Random Forest is generally more interpretable than XGBoost as it provides feature

importance scores for each feature, while XGBoost's feature importance is more difficult to interpret.

19

Figure 2.3: - A basic representation of how a typical XGB model performs deep penetration of trees in

a sequential fashion, one after the other

According to Wikipedia, The XGB has some salient features which make it better than the usual

Random Forests. These are as follows: -

i.) Using single, distributed systems and performing outside core computation

ii.) Additional randomization criteria

iii.) Selecting features automatically

iv.) A corresponding decrease in leaf nodes

v.) Faster processing due to the effects of gradient boosting

XGBoost can handle large datasets and distributed computing more efficiently than Random Forest.

The Random Forests, though works well on small datasets are typically employed for large data where

we have near about millions of records because of its strong accuracy. The XGB, even though has

gradient boosting can sometimes fail to surpass the Random forests in terms of speed as it uses

sequential generation of trees whereas Random Forests make use of parallel generation of trees and

finally the voting algorithm predicts the results.

The research paper proposed by Christophoros Antoniades, Delara Fadavi, Antoine Foba Amon Jr.

titled, “Fare and Duration Prediction: A Study of New York City Taxi Rides” which was

presented in December 16, 2016 at Stanford University proposes the same idea about Random Forest.

In the section 5.2 they stated that,

“Given that it can simulate the nonlinearities of traffic and location effect, the random forest model

performs better than any other models. Although the pickup and drop-off sites are taken into account,

the model does not have a mechanism to estimate the effects of the places along the route. When

travelling through high-speed zones with little to no traffic, regions with heavy traffic can still be

reached reasonably quickly. They are regarded to reasonably forecast duration and fare given the

factors that have been taken into consideration in the models. Rotating the geographic coordinates

20

does not result in a substantial increase in forecast accuracy, even if employing rides per hour and

average speed per hour improves the models and hence serves as proxies for traffic modeling.”

The dataset is termed as “new- york – city - taxi- fare - prediction” that issued for the underlying

project and has been provided by Google in context of a competition held in 2018 in association with

an exclusive partnership with Coursera. The competition was titled “Playground Prediction

Competition”.

The dataset consists of 8 columns consisting of the key, taxi fare charges, the latitudes and

longitudes of start location and end location, the number of passengers or travellers and the cost

per head.

In the context of predicting taxi fares across a city, linear regression can be used to model the

relationship between the fare amount (dependent variable) and various predictor variables, such as

distance traveled, time of day, and location.

To use linear regression for predicting taxi fares across the city, you would typically start by collecting

data on past taxi rides from a variety of sources, such as taxi companies, government data sets, or

online APIs. This data should include information on the fare amount, distance traveled, time of day,

and location (such as latitude and longitude).

Once you have collected the data, you would typically split it into two sets: a training set and a testing

set. The training set is used to train the linear regression model, while the testing set is used to evaluate

its accuracy.

To train the linear regression model, you would typically use an algorithm such as OLS [Abbr. 2.2] or

gradient descent to find the coefficients that minimize the sum of squared errors between the predicted

fares and the actual fares in the training set. The resulting model can then be used to predict fares for

new taxi rides based on their distance, time of day, and location. It is important to note that the

accuracy of the predictions depends on the quality and quantity of the data used to train the model.

Other factors that can affect the accuracy of the predictions include the choice of predictor variables,

the functional form of the model (e.g., linear, quadratic, or higher-order), and the presence of outliers or

other sources of noise in the data.

Though, not necessary here, we can regularize the coefficients of our linear regression using the lasso

technique [see Appendix A.2], however a better method than lasso is ridge regression [see Appendix

A.4].

21

Figure 2.4: - Difference between best-fit lines considered under Linear Regression and Lasso

Regression

The lasso approach may be used to decrease coefficients in order to further find the best collection of

variables to employ. A model that is sparser and simpler to interpret is produced by using lasso.

The penalizing parameter in Lasso is run across a range of values for both the above said prediction

models. In order to choose the value of to be utilized, the lasso model with the lowest error is found

using cross validation. The values that produced the minimum cross validation error in each case are

very close to zero. The optimal parameter, for example, is 1.19 10 for the fare regression. Due to these

findings, we must utilize the forward-selected linear regression model rather than the lasso method

penalizes 5 variables.

Figure 2.5: - Forward selection using linear regression

Following feature selection in, linear regression can be a viable approach for understanding the effect

of number of variables on our parameter Cp (complexity parameter). The longitude of the pickup

location is a continuous variable that represents the east-west position of the location relative to the

22

prime meridian, which is a reference line that runs through Greenwich, England and is used as a

reference for determining longitude.

Including pickup longitude as a predictor variable in a linear regression model can be useful because it

provides information about the geographic location of the pickup, which can be an important factor in

determining the fare amount. For example, taxi fares in urban areas may be higher than in suburban or

rural areas due to factors such as higher demand and congestion.

When using pickup longitude as a predictor variable in linear regression, it is important to ensure that

the variable is appropriately scaled and centered to avoid issues such as Multicollinearity and bias in

the coefficient estimates. One important thing that we can observe is that distribution of ride duration

and fare amount is almost similar with some fluctuations in between.

Figure 2.6: - Duration and fare amount, both follow the same distribution

This implies that just like fare amounts, travel time also increases at the same pace. So, instead of fare

amounts, we can also focus on journals that help us to compute the predicted time travelled between

various locations.

In a 2004 IEEE research paper published by Chun-Hsin Wu, Jan-Ming Ho and D. T. Lee, the idea of

SVM is proposed and that is used for time travel prediction.

In many transportation analyses, travel-time data serve as the foundational components for a variety of

performance indicators.

Transportation systems can benefit greatly from the application of regression techniques. These

techniques can be used to aid in the planning, designing, operation, and evaluation of such systems.

When it comes to advanced traveler information systems, the use of travel-time data can be especially

valuable for providing pre-trip and en route information. By analyzing such data, drivers and

passengers can make more informed decisions, such as adjusting their timetables or route choices.

23

Support Vector Machines (SVM) are a popular machine learning technique that can be used in

transportation systems and route guidance systems for a variety of purposes. SVMs can be trained on

large datasets of traffic and travel time information to predict future travel times, traffic congestion, and

other factors that impact route planning and guidance.

In transportation systems, SVMs can be used for traffic prediction, vehicle tracking, and real-time route

optimization. For example, SVMs can predict traffic congestion and suggest alternative routes to

drivers to help them avoid delays. They can also be used to optimize traffic signals to improve traffic

flow and reduce congestion.

In route guidance systems, SVMs can be used to suggest the most efficient route for drivers based on

real-time traffic information. By analyzing traffic data from multiple sources, SVMs can identify the

fastest and most reliable routes for drivers to take, even in high traffic areas.

SVMs can also be used in transportation planning and design. By analyzing historical traffic data,

SVMs can predict future traffic patterns and help transportation planners design more efficient and

effective transportation systems.

Support Vector Machines (SVMs) are a type of machine learning algorithm that are relatively robust to

noisy or faulty data. SVMs work by finding the hyperplane that best separates the classes of data points

in a high-dimensional space.

There are several studies that use SVM to vision-based intelligent cars for (ITSs) [Abbr. 2.3] [see

Appendix A.3], such as head identification, traffic-pattern recognition, and vehicle detection.

Figure 2.7: - SVM is regarded as one of the pioneer methods for Intelligent Transport System (ITS’s)

SVM has recently been used to forecast time series, Support vector regression (SVR), which has

demonstrated numerous innovations and convincing results, like predicting forecasts of the financial

market, power price, power consumption calculation, reconstruction of Systems in chaos. Except for

the forecast of traffic flow,

24

But there aren't many SVR outcomes for time-series analysis. Given the numerous positive outcomes

of time-varying SVR prediction applications drive our research in modeling travel times with SVR.

It seems that SVR is one of the best algorithms for travel-time prediction and seemingly outperforms

many regression models that are in the same pace.

But this is not always the case.

The study article "Fare and Duration Prediction: A Study of New York City Taxi Rides" suggested

using the Random Forest approach to forecast the fare charges.

The time it takes to travel from one place to another depends on the destination because there are more

cars on the road at different times of the day.

While it's impossible to account for every location between the beginning and ending points of a route,

we can use the pickup and drop-off locations to simulate the effects of traffic and congestion. However,

linear models don't account for nonlinear effects of locations on traffic and travel time.

Random forest is a machine learning technique that can be used for predicting taxi fares. This

technique works by combining many decision trees that are created using bootstrapped samples of the

training data.

Each tree segments non-overlapping areas of the predictor space, which is the set of all potential values

for the qualities that may impact the fare amount.

To improve the accuracy of the random forest model, the range of predictor space can be narrowed

down to include only the most relevant variables that have the most significant impact on the fare

amount.

Additionally, averaging over more trees also helps to improve the accuracy of the model.

We have considered four publications that revolve around the whole scenario of our

The below table describes the different research papers proposing the different models, their

methodologies and the final inference that they make.

25

Author(s) Journal/Conference,

year

Published

By

(IEEE,

Elsevier,

Springer)

Methodology Inference

Chun- Hsin Wu, Jan-

Ming Ho, D.T. Lee

2004 IEEE SVR (Support

Vector

Regression)

Moderately

Optimal

Kunal Soni 2019 IJSRCSEIT Linear

Regression

Moderately

Optimal

Christophoros

Antoniades, Delara

Fadavi, Antoine Foba

Amon Jr.

2016 IEEE Random

Forest, SVR

and Linear

Regression

Random

Forest

outperforms

SVR and

Linear

Regression

Jun Xu, Rouhollah

Rahmatizadeh, Ladislau

Boloni and Damala

Turgut

2017 IEEE Neural

Networks

Neural

Networks can

be a pretty

good choice

for regression

purposes for

huge data set

Table 2.1: Comparison of different research papers on the basis of methodologies and inference drawn

at the end

26

There are very rare research papers which signify the use of Artificial Neural Networks for predicting

real values, or in simple terms, solving the regression problems.

But we can look at a similar research paper that focuses on finding taxi demand using RNN [Abbr. 2.4]

RNN’s are mostly used for predicting text and speech records but they can also be employed for

regression purposes.

Real-time prediction of taxi demand is a challenging problem that has gained a lot of attention in recent

years. One popular approach to solving this problem is to use recurrent neural networks (RNNs). RNNs

are a class of artificial neural networks that can process sequential data and have been used in various

fields, including speech recognition, image captioning, and natural language processing.

To predict taxi demand, the first step is to collect historical data on taxi demand, including the time of

day, day of the week, and other relevant factors such as weather, events, and holidays. This data can

then be used to train an RNN model, which can learn to recognize patterns and relationships between

these factors and the demand for taxis.

Once the model has been trained, it can be used to make real-time predictions of taxi demand based on

current and historical data. For example, the model can be used to predict the demand for taxis in the

next hour based on the current time of day, the day of the week, and other relevant factors.

There are several challenges associated with real-time prediction of taxi demand using RNNs. One

challenge is the need for large amounts of historical data to train the model effectively. Another

challenge is the need to process data quickly and efficiently in real-time to make accurate predictions.

Despite these challenges, real-time prediction of taxi demand using RNNs has shown promising results

in various studies. These models have the potential to improve the efficiency of taxi services and

reduce wait times for customers.

Moving on to artificial neural networks, which are the simplest form of Neural Networks, they can be

easily employed for regression purposes.

A typical example of how ANN [Abbr. 2.5] can be used to formulate a regression problem, such as

predicting the price of a house using different features or parameters associated with it like its weight,

age, doors etc.

27

Figure 2.8: - Prediction of house price using ANN

Artificial neural networks can be utilized to predict a numerical value in regression problems by

training the network to learn the correlation between the input variables and the continuous output

variable.

The ANNs model the relationship between inputs and the output by learning the mapping between

them. The basic type of ANN for regression is a feed-forward neural network with a single hidden

layer. Input layer receives input variables, the hidden layer processes this information, and the output

layer provides the predicted value.

 During training, the network adjusts the weights and biases to minimize the difference between the

predicted output and the actual output, using a loss function such as mean squared error.

To avoid overfitting, regularization techniques such as dropout or weight decay can be used. Hyper

parameters, such as the number of neurons in the hidden layer, learning rate, and activation functions,

can be optimized to enhance the model's performance.

And the main difference between them lies in their architecture and their ability to handle sequential

data.

The basic neural networks have a simple feed forward architecture where data flows through the input

layer, hidden layers and finally through the output layer, while the latter, more complex have loops in

their architecture that allow the previous output to be fed back into the network as input.

28

Chapter 3: - SYSTEM DEVELOPMENT

3.1 Analytical

The analytical treatment of the model is based on the fact that we have to analyze our dataset and pick

up the best and the most reasonable features that we require and drop off the features that are

redundant.

The structure of the dataset is as follows: -

Figure 3.1:- The structure of the dataset which consists of 8 features by default (including the

fare_amount)

The dataset contains a total of 55 million data points corresponding to the taxi rides around the

different boroughs of New York City from 2008-2016. This dataset was proposed by Google and was

provided as a problem for the “Playground Prediction Competition” which was held in 2018 under

the partnership of Google and Coursera

The key is redundant so can be removed from our dataset as it contains the same information as that of

pickup_date_time.

The pickup_date_time is in UTC format, so it can be split into weekdays, hours, minutes, and seconds

for easy computation.

The fare_amount provided here is not treated analytically with respect to the inflation that occurs in

the prices every year.

29

So, we need to take extra care for that as well in order to get a better predicted answer that will stand

the test of time even after decades.

The passenger_count is denoted by a number that denotes the number of people that are present in a

particular ride.

As for the RAM and device constraints it would not be possible to account for 55 million rows and

most of the operations that we are trying to perform (some of them like Random Forests, SVR and

Voting Regressor may be quite costly for a large number of data points) would end up choking the

whole internal memory.

As for our purposes we are only accounting for about 80,000 data points as of now.

Some of the libraries and the methods that we tried to use for the purpose of achieving the desired

speed are as follows: -

3.1.1 Vaex

Figure 3.2: - Vaex library logo

Vaex is a Python module for exploring and visualizing large tabular datasets using lazy Out-of-Core

Data Frames (comparable to Pandas). On an N-dimensional grid, it can compute statistics like mean,

total, count, standard deviation, etc. up to a billion ((10^9)) objects/rows per second. Histograms,

density charts, and 3D volume rendering are used in visualization to enable interactive large data

exploration. For optimum speed, Vaex makes advantage of memory mapping, a zero memory copy

policy, and lazy calculations (no memory wasted).

As Vaex uses the concept of Out-Of-Core data frame, so it is library that is categorized under Out-Of-

Core Machine Learning which is an emerging field in ML that relies on the concept of multi-cored

CPU for parallel processing to achieve maximum throughput.

30

Figure 3.3: - Vaex Out-of-Core Machine Learning embraces the idea of Multi-Core CPU

Processing data that is too vast to fit within a computer's main memory is often referred to as being

out-of-core.

Randomly accessing portions of a dataset often results in a (relatively) minimal performance hit when

the dataset neatly fits into the main memory of a machine.

Figure 3.4: - Vaex creates mini batches of our dataset and only one particular batch is loaded into the

memory at a particular time

It becomes exceedingly costly to randomly search to a chunk of data or to analyze the same data more

than once when data must be stored in a medium like a huge rotating hard disc or an external computer

network.

An out-of-core algorithm would attempt to retrieve all pertinent data in a single sequence in such a

situation.

31

However, given the deep memory structure of current computers, switching from random to sequential

access can improve speed even for datasets that fit in memory.

Actually, as it ensures that there will always be a little bit of data in the main memory at any one

moment, the capacity to learn gradually from a mini-batch of instances is essential to out-of-core

learning.

It may take some adjusting to get a mini-batch size that balances relevance and memory footprint.

3.1.2 Dask

Figure 3.5:- Dask library logo

The working principle of Dask is similar to that of the Vaex library.

Dask is a parallel computing-focused open-source Python library. Python programming can be scaled

via Dask from single-core local workstations to massive distributed cloud clusters.

On GitHub, Dask was built in December 2014 by Matthew Rocklin and has received over 9.8k ratings

and 500 contributors.

Retail, governmental, financial, as well as life science and geophysical institutes, utilize Dask. Among

the companies that utilize Dask are Wal-Mart, Wayfair, Grub Hub, JDA [Abbr. 3.1], General Motors,

NVIDIA [Abbr. 3.2], Harvard Medical School, Capital One, and NASA [Abbr. 3.3].

3.1.3 Dataset splitting in chunks

Even with compression, your data file may occasionally be too big to load entirely into memory. So

how do you swiftly process it?

You can only put a portion of the file into memory at once by importing and processing the data in

batches. So you can process files that take up more RAM.

32

Pandas allows us to read data in parts rather than reading everything into memory. With CSV [Abbr.

3.4], we can only load a small number of the lines into memory at once.

In particular, an iterator across DataFrames rather than a single DataFrame is returned if the chunk size

parameter is used with pandas.read_csv.

The syntax and the working of the modified Pandas function is highlighted below: -

Figure 3.6:- Syntax of chunk size for pandas.read_csv method

The other issue with enormous volumes of data is that computing may also create a bottleneck, which

chunking doesn't alleviate. So, the first two techniques, viz. the Vaex and the Dask libraries seem to be

the better choice.

3.1.4 Drawbacks of Vaex and Dask

Though Dask and Vaex provide speed but it comes at a functional cost. So, have preferred to use

traditional pandas in our final choice because of the following reasons: -

 Dask performs weirdly with some very crucial and useful Pandas functions like shape or

describe and as such cannot be used as a dedicated data frame management library.

 Vaex though is better than Dask at most aspects still lacks the capability to manipulate the axis

of the dataset and lacks the incorporation of lambda functions inside the features of the

dataframe.

33

3.2 Computational

One of the biggest tasks in this project was to achieve the distance between the two positions marked

by their latitudes and longitudes (as is signified by pickup_latitude, pickup_longitude,

dropoff_latitude and dropoff_longitude)

The following task can be achieved by the Haversine formula and this is what we implemented as our

standard algorithm for computing the distance between two geographical points on earth given their

latitudes and longitudes.

3.2.1 Working of Haversine Formula

Since the Earth is large and circular with a radius of 6,371 km, we may imagine it to be flat at close

ranges.

However, despite the fact that the Earth's diameter is around 12,000 km, flat-Earth formulae for

determining the distance between two sites begin to exhibit observable inaccuracies when the distance

exceeds 20 km.

Spherical geometry, or the study of forms on a sphere's surface, must thus be taken into account when

computing distances on a sphere.

To determine the sides and angles of spherical polygons, spherical geometry takes into account

spherical trigonometry, which analyses connections between trigonometric functions.

These spherical polygons are formed by several large circles that cross each other on a sphere.

Figure 3.7: - Haversine Formula finds curvature distance between two geographical locations given

their latitudes and longitudes

The additional trigonometric functions (except sine, cosine and tangent) that were used in the past were

versine, haversine, coversine, hacoversine, exsecant, and excosecant.

34

But these old obsolete trigonometric functions can be written in the form of simpler functions like sine,

cosine etc.

For instance, haversine (θ) = sin² (θ/2).

But this is not the formula that we define while considering the latitudes and longitudes.

Figure 3.8: - Extended haversine formula for including the latitudes and longitudes

The ‘d’ in the above formula signifies the distance between the two points given their latitudes and

longitudes.

Figure 3.9: - Haversine formula written in a more succinct form

3.3 Experimental

Apart from the haversine formula, we have also made some extensions in case of dimensionality of our

dataset and performed experimental splitting on our dataset to increment the possible values of the

evaluation metrics.

There are a total of 3 airports in New York City, namely JFK [Abbr. 3.5], LaGuardia and Newark.

The points that are near a particular specific airport has been included in what is called a virtual circle

so that all the coordinates that near to any of those particular airports are considered as a part of that

area.

35

Same thing, we have done with all the places that are within or around the Manhattan borough of New

York City. The coordinates we got from online resources corresponding to the following places that we

mentioned above are as follows: -

Figure 3.10: - Coordinates of JFK airport

Figure 3.11: - Coordinates of LaGuardia airport

Figure 3.12: - Coordinates of Newark airport

Figure 3.13: - Coordinates of Manhattan borough of NYC

36

In these files the coordinates are separated by commas and we cannot practically utilize them in this

format unless of course, we modify them to suit our requirements, specifications and conditions. For

that purpose, we have used Shapely library.

3.3.1 Using Shapely library

Figure 3.14: - Shapely library logo

If you wish to mix them, the library lets you interact with the three primary types of geometric objects:

Point, Line String, and Polygons+ geometry collections.

 There are many more, including linear rings, multi-points, multi-polygons, etc., but for now they will

work just well because the approaches are extremely portable.

Figure 3.15: - The boundaries as defined by shapely, dilation defines the central path while erosion

defines the spatial area around the path

The main aim of using Shapely library is to predict the given geometrical shape from the set of

coordinates and this would be our aim in order to define a particular region where that particular

coordinates marked under the text files as shown above, are present.

37

And after that we would have rough idea and when we will loop over all the data points, we would be

able to categorize each one of these points as belonging to or not belonging to that particular region.

3.4 Mathematical

The mathematical portion of the project mainly relies on computing the value of the angle in which will

denote the value in which we are facing. This function is a pre- requisite parameter for our regression

models. It is also known as the bearing angle and its value lies between -180 to 180 degrees (or –π to

+π in radians).

Figure 3.16: - This function is used to compute the direction in which we are facing by using simple

trigonometric functions using NumPy library

Figure 3.17: - The Haversine function is used to compute the distance between two points over a

geographical area given their latitudes and longitudes

38

Figure 3.18: - The Point class which is provided by Shapely module is used for marking regions near

the airports

The positions which are near the airports have been marked by Points class of Shapely module and

those points which are within the boundary of that particular area are marked as true (or 1) otherwise

they are marked as 0.

Figure 3.19: - The lambda function has been applied on all the points to verify whether a particular

pickup point lies under the boundary of that airport or not

Apart from that, in cleaning stage, we need to heed to some of the edge cases, like we need to identify

whether: -

 There exists a negative fare amount for any given ride

 The passenger count is less than 1

 There exists a NaN or empty value

 There exists a redundant feature like the ‘key’

We will take care of all of these steps in the cleaning stage of our project.

39

Apart from that, EDA (Exploratory Data Analysis) also forms a crucial part of mathematical

interpretation of our model which we are going to discuss now in the statistical portion.

3.5 Statistical

The statistical section of our project mainly relies on the outputs and the inferences drawn under the

EDA (Exploratory Data Analysis) which is nothing but the statistical interpretation of our dataset for

better understanding of hidden patterns.

The first and foremost task is to map the correlation between different features of our dataset in order to

get a clear cut idea about the definite relationships that they have with each other.

Our modified and updated dataset looks something like this: -

Figure 3.20: - The number of features is increased from 8 to 24 in view of the inclusion of new

features (actually 23 as ‘key’ acts as redundant data)

Figure 3.21: - Correlation heat map for features. The one in dark shades are highly correlated

40

But evaluating the correlation of every feature with every other feature seems to be a redundant task so;

we would like to apply a more succinct approach.

As our main target variable is inflated_fare amount, so we would like to have a bar plot considering

the correlation of fare amount with every other available

Figure 3.22: - Bar plot which accurately signifies the positive, negative and zero correlation between

the features and fare amount considered after inflation

In the bar plot, the length of the bar signifies the magnitude of correlation, and the direction with

respect to x and y axis signifies whether it is positively or negatively correlated.

The coefficient of correlation used here is Pearson coefficient which is defined by the following

formula,

Figure 3.23: - Pearson’s correlation coefficient

41

Figure 3.24: - Positive, negative and no correlation

Different types of correlations as described in the above figure are as follows: -

i.) Positive Correlation: - It signifies a relationship between two variables where if the value

of one increases, the value of other also increases, but maybe at a different pace.

ii.) Negative Correlation: - It signifies a relationship between two variables where if the value

of one increases, the value of other decrease, but maybe at a different pace.

iii.) No Correlation: - It signifies a relationship between two variables where the increase or

decrease in the value of one variable has no direct or apparent effect on the value of other

variable.

The above plot signifies that among the airports JFK is most positively correlated with our

inflated_fare amount followed by LaGuardia and Newark.

The dropoff_manhattan and pickup_manhattan are most negatively correlated with our inflated fare

amount.

As the pickup and drop off locations were by default given in UTC [Abbr. 3.6] format, we had to split

it up in terms of years, months, weekdays, hours, minutes and seconds.

On the basis of this we have devised several graphs corresponding to different parameters.

The parameter corresponding to y-axis would be fare amounts and corresponding on x-axis would be

any date time parameter like hours, minutes, seconds, weekdays, months etc.

It would give us a definite idea about the variation of histograms with respect to different date time

durations.

42

Chapter 4: - EXPERIMENTS AND RESULT ANALYSIS

Experimental result analysis is a specialized field that gives coaches and players unbiased data to

observe or analyze the performance based on certain experimental inferences.

Systematic observation, which gives accurate, trustworthy, and comprehensive information on

performance, serves as the foundation for this procedure.

There are total of six models that we have used for prediction purposes, namely the Linear

Regression, SVR (Support Vector Regression),Random Forests, XGB (Extreme Gradient

Boosting), Voting Regressor and Bagging Regressor.

We will take each of these regressions one by one and analyze the performance based on a total of five

evaluation metrics.

NOTE: - All the results generated in the subsequent models as shown below are fluctuating as the

input seeded to these models has a random state between 37 and 40

4.1 Evaluation Metrics Formulations

Some general formulations corresponding to evaluation metrics are described below.

4.1.1 Mean Absolute Error: - It measures the absolute difference between the predicted and actual

values of a set of data.

Figure 4.1: - Formula for Calculating Mean Absolute Error

43

4.1.2 Mean Squared Error (MSE): - It measures the sum of square of differences between actual and

predicted values.

Figure 4.2: - Formula for Calculating Mean Squared Error

4.1.3 Root Mean Squared Error (RMSE): - It is just a derived formulation with having square root

over the entire calculated MSE value.

Figure 4.3: - Formula for Calculating Root Mean Squared Error

4.1.4 Root Mean Squared Logarithmic Error (RMSLE): - The Root Mean Squared Logarithmic

Error (RMSLE) is the same as RMSE except that it adds a logarithmic function around both the

predicted and the observed values and adds a 1 to them for avoiding the occurrence of 0 as natural log

of 0 is undefined.

44

Figure 4.4: - Difference Between RMSE and RMSLE

4.1.5 R-Squared Error: - R-Squared is basically how good your model is in comparison to the

average difference between sum of squares of original and mean value. The numerator is comprised of

basically your residual while the denominator is composes of the average sum of squares corresponding

to the regression problem.

The negative value of R-Square signifies the fact that the average score is better than the error score as

prediction made by your model while the positive score signifies the complementary fact.

Figure 4.5: - Formulation of R-Squared Error

45

4.1.6 Generalized function for evaluation metrics: - We have incorporated a generalized function for

calculating and storing the evaluation metrics in a dictionary for the purpose of EDA on the final

results.

The function is as follows: -

Figure 4.6: - evaluation_metrics generalized function

4.2 Linear Regression: - In linear regression, we try to accommodate a best fit line that minimizes the

SSE [Abbr. 4.1] or RMSE (Root Mean Squared Error).

Figure 4.7: - Best fit line as devised under linear regression

46

Figure 4.8: - The linear regression line is defined by the regression coefficients ß0 and ß1

The value of ß0 and ß1 is as follows: -

Figure 4.9: - Formulae for determining the regression coefficients ß0 and ß1

For the purpose of generating the model, we have used pipeline feature of Sklearn which works in the

intended fashion as that of a typical generalized pipeline of model construction as mentioned in many

theoretical contexts which includes the scaling method and afterwards the main model that we are

going to use.

A typical example showcasing the use of pipeline method is as follows: -

Figure 4.10: - Use of sklearn.pipeline.Pipeline feature to create a virtual pipeline of events

47

Figure 4.11: - Construction of linear regression model and corresponding evaluation based on

evaluation metrics

The RMSE corresponding to Linear Regression model is that of approximately 6.532 while the Mean

Absolute Error is 3.997, and R-Squared Error which is 0.4947 which is average at best. Being one the

most basic and the fastest algorithms that are devised for regression, it is not performing up to the

mark.

So, in order to reduce the value of evaluation metrics (or to increase the value of R-Squared Error) we

need to take into picture, more complex regression models such as that of SVR (Support Vector

Regression) and Random Forests.

4.3 SVR (Support Vector Regression)

Support vector regression is the regression form of SVM (Support Vector Machine) that tries to fit the

line (called as the best-fit-line) within the constraints of the epsilon tube.

The epsilon here denotes the marginal distance between the positive and negative hyper planes and the

corresponding best fit line.

The errors or outlier points are present outside the range of both of the positive and negative hyper

planes and in between them is our regression line or the best-fit- line.

The distance between either of the planes and the regression line is denoted by epsilon (ε) which is also

the radii of the tube.

The tube-like structure denotes the maximum capability of our model to tolerate or resist the outliers

that are not defined or included under our model.

48

A typical illustrative design of SVR in a graphical representation is as follows: -

Figure 4.12: - A typical diagram of an epsilon SVR (Support Vector Regression) tube that signifies the

marginal distance between the regression line and either of the hyper planes

Figure 4.13: - Construction of SVR model and corresponding evaluation based on evaluation metrics

The RMSE corresponding to SVR model is that of approximately 5.968 while the Mean Absolute Error

is 3.267, and R-Squared Error which is 0.578 which is slightly better than the linear regression model

but still not up to the mark.

4.4 Random Forest Regression Model

The random forest is an ensemble learning technique that falls under the category of bagging method. It

utilizes the power of multiple decision trees in order to make a prediction.

To decrease variation within a noisy dataset, ensemble learning techniques like bagging, often referred

to as bootstrap aggregation, are frequently utilized.

49

In bagging, a random sample of data from a training set is picked with replacement, which allows for

multiple selections of the individual data points.

These weak models are then trained independently using many data samples, and depending on the

task—for example, classification or regression—the average or majority of those predictions result in a

more accurate estimate.

The random forests can be used as a classifier or a regressor. In a classifier, the final result is provided

by the Majority Voting.

But in case of regressor, it is obtained by taking the mean or average of all the computed results taken

from each of the individual decision trees.

Figure 4.14: - A typical Random Forest Regressor

Figure 4.15: - Construction of Random Forest Regressor model and corresponding evaluation based on

evaluation metrics

50

Here the n_estimators parameter signifies the number of decision trees that our Random Forest model

is using for creation of Random Forest Regressor.

The RMSE corresponding to Random Forest model is that of approximately 4.519 while the Mean

Absolute Error is 1.931, and R-Squared Error which is 0.758 which is quite good. For obtaining more

accuracy, a bagging model like the random forest, needs more data which is outside the scope of the

device constraints.

4.5 XGB (Extreme Gradient Boosting) Regression

It is an advanced form of Random Forests and instead of bagging uses the boosting technique of

ensemble learning for prediction of the continuous values.

While both bagging and boosting converts a set of weak learners into strong learners, bagging achieves

it through parallel computation and processing of all the weak learners and boosting uses the concept of

sequential learning and processing. Moreover, boosting also takes into account the power and

robustness of gradient boosting in order to achieve efficient result in less amount of time.

Figure 4.16: - The boosting method as used by XGB (Extreme Gradient Boosting)

Figure 4.17: - Construction of XGB model and corresponding evaluation based on evaluation metrics

51

The learning rate, the gamma values and the max_depth are hyper parameters here. The gamma value

defines the minimum loss reduction that is required for further partition and max_depth is used for

determining the maximum depth of decision tree that would be used in XGB.

The RMSE corresponding to XGB regressor model is that of approximately 4.637 while the Mean

Absolute Error is 1.882, and R-Squared Error which is 0.745 which is quite good. For obtaining more

accuracy, a boosting model like XGB also needs more data which is outside the scope of the device

constraints.

The time taken by XGB is 16.17 seconds while that of Random Forests is nearly 1040 seconds which

is approximately 17.33 minutes.

From this data, we can easily verify how much faster XGB is as compared to Random Forests, even

though both of them compute the result with nearly the same accuracy.

4.6 Voting Regressor

Voting regression technique is also a method of ensemble learning which utilizes the power of various

machine learning models to create a better regressor model that finally undergoes voting to verify the

best possible answer.

A typical voting regressor is as follows: -

Figure 4.18: - A typical voting regressor model

Just like Random Forest, it also finds out the mean of all the predicted results and shows that as the

final output.

52

The voting regressor is based on the fact that several classification models instead of being trained

separately can be trained in a combined fashion and then voting is the done in the form of collecting the

mean value of all the estimated results.

The voting regressor is one of the best models when it comes to the situation where the robustness of

one model and the speed or efficiency of other model is required.

The predictions made by the voting regressor model on our dataset are as follows: -

Figure 4.19: - Construction of voting regressor model and corresponding evaluation based on

evaluation metrics

The models that we have considered under voting regressor are as follows: -

i.) Random Forest

ii.) XGB (Extreme Gradient Boosting)

iii.) SVR (Support Vector Regression)

The constructor of voting regressor class takes a tuple of models as a parameter as shown above.

The RMSE corresponding to voting regressor model is that of approximately 4.601 while the Mean

Absolute Error is 2.061, and R-Squared Error which is 0.7492 which is almost accurate as Random

Forests and XGB, but has a huge runtime of 1427.82 seconds which is near 23 minutes.

53

4.7 Bagging Regressor

The bagging regressor is yet another ensemble learning technique which takes into account a base

model and then it allocated that base model over some k subsets of our data. The final predictions

derived from these k subsets are then aggregated by taking the mean of all the available results. It falls

under the bagging technique of ensemble method, just as random forests, the only difference being that,

while random forests take into account, a decision tree as their core base model, the bagging regressor

can consider any known regression model as one of its base model.

Figure 4.20: - A typical representation of the working of Bagging model in ensemble learning

The predictions and the values of the evaluation metrics as obtained under bagging regressor are

obtained as shown below: -

Figure 4.21: - Construction of bagging regressor model and corresponding evaluation based on

evaluation metrics

54

The bagging regressor takes into account n_estimators parameter which denotes the number of subsets

in which we have to divide our dataset and corresponding to that the number of base models that we

require for that purpose.

Of all the regression models that we have applied so far, the bagging regressor outperforms all with the

base model being XGB (Extreme Gradient Boosting). That’s why it took only a mere 51 seconds to

complete the whole operation.

The RMSE corresponding to voting regressor model is that of approximately 4.4279 while the Mean

Absolute Error is 1.843, and R-Squared Error which is 0.7678 which is probably the most accurate

score we have obtained so far.

4.8 HistGradientBoosting Regressor

In machine learning, the HistGradientBoosting gradient boosting algorithm is used for classification

and regression applications. It shares similarities with other gradient boosting algorithms like XGBoost

and LightGBM, but also differs in a few key ways that make it especially effective for big datasets.

Histogram-based gradient boosting is the main distinction between HistGradientBoosting and other

gradient boosting techniques. This indicates that rather than doing the boosting operation directly on

the individual data points, the algorithm discretizes the feature space into histograms. Because it

requires fewer calculations to update the gradients at each step, this method can be substantially faster

than other gradient boosting algorithms.

HistGradientBoosting also has the benefit of using an early halting method to help avoid over fitting.

Every time a boosting iteration is performed, the algorithm analyses the validation loss and terminates

training when the loss stops decreasing. By doing so, the model is better able to generalize to new data

and avoid being over fit to the training set of data.

HistGradientBoosting is a versatile technique that may be applied to a variety of datasets because it

handles both category and numerical data. It has the ability to handle missing values and automatically

encrypt categorical data using a number of methods, including one-hot encoding and target encoding.

Early stopping is used in HistGradientBoosting to train models for regression and classification

problems. It can handle both numerical and categorical data and is especially well suited for huge

datasets. It is a versatile and effective tool for machine learning because of its capacity to prevent over

fitting and support for missing values and categorical input.

55

The predictions and the values of the evaluation metrics as obtained under bagging regressor are

obtained as shown below: -

Figure 4.22: - Construction of HistGradientBoosting regressor model and corresponding evaluation

based on evaluation metrics

The RMSE corresponding to HistGradientBoosting regressor model is that of approximately 4.468

while the Mean Absolute Error is 1.9230, and R-Squared Error which is 0.7634 which is again as

nearly accurate as Random Forests and XGB.

Being extremely fast and an optimized version of traditional Gradient Boosting algorithm, it merely

takes 1.12 seconds to complete the prediction process.

4.9 Artificial Neural Network (ANN)

In regression tasks, ANNs are used to predict a continuous output variable based on a set of input

variables. The process of training an ANN for regression involves adjusting the weights of the

connections between neurons so that the network can learn to approximate the underlying function that

maps the input variables to the output variable.

The feed forward neural network is a popular ANN type used for regression analysis. An input layer,

one or more hidden layers, and an output layer make up this kind of network. The anticipated output

variable is produced by the output layer, which also receives the input variables. The calculations

required to convert the input variables into the anticipated output variable are carried out by the hidden

layers.

The network is initially initialized with random weights before being trained for regression using a

feed-forward neural network. Following that, the network is shown the input-output pair-based training

56

data. For each input, the network computes its output, and an error value is determined by comparing

the predicted and actual outputs.

The weights in the network are modified using the back propagation algorithm to bring the predicted

output values closer to the actual output values. The procedure is repeated until the error on the training

data is below a predetermined threshold or for a predetermined number of iterations.

Here are the steps that have been taken while formulating the prediction using Sequential ANN using

Keras library.

Figure 4.23: - Construction of Standard Scaler for Neural Network Model

Figure 4.24: - Construction of Deep Learning ANN Model

Here we have used ReLU has an activation function. ReLU [Abbr. 4.2] is a commonly used activation

function in artificial neural networks, particularly in deep learning models. It is a simple function that

applies a non-linear transformation to the input, mapping negative values to zero, and leaving positive

values unchanged.

ReLU is popular because it is computationally efficient, easy to implement, and has been shown to be

effective in many different types of neural networks. Additionally, ReLU helps to address the vanishing

57

gradient problem that can occur in deep neural networks, which can prevent learning from taking place

effectively.

However, one potential downside of ReLU is that it can lead to "dead neurons" in the network, where

the neuron always outputs zero, due to a negative bias in the input. This can be mitigated by using

variants of ReLU, such as Leaky ReLU or Parametric ReLU, which allow for a small positive output

for negative inputs, or by using a different activation function altogether.

Here we have also used the concept of Early Stopping to stop our epoch iteration after the point where

no significant improvement in efficiency is apparently visible.

Figure 4.25: -Running ANN based on early stopping procedure and corresponding evaluation based on

evaluation metrics

Figure 4.26: - The final evaluation result of Neural Networks

As seen from the above figure, the RMSE corresponding to Artificial Neural Network regressor model

is that of approximately 5.094 while the Mean Absolute Error is 2.182, and R-Squared Error which is

0.729 which is just a little less than Random Forest and other ensemble learning techniques that we

applied previously.

58

It so happens because Neural Networks tend to train on a million of rows and it is outside the device

constraints to let the model train on such a large amount of data, which may otherwise have boosted the

efficiency from 0.729 of R-Squared error to nearly about 0.9.

4.10 Extended EDA for Evaluation Metrics

Now that we have applied all of our regression models on our datasets, it’s time for us to statistically

analyze their performances using the evaluation metrics through which we have determined the

performance of each of the following models.

Figure 4.27: - The RMSE v/s R-Squared plot

By observing the data, we can see that Linear Regression has the worst error figure while the Bagging

Regressor, XGB and Random Forest almost perform equally well in terms of RMSE.

And as R-Squared is inversely proportional to RMSE, so the models with poor RMSE score (higher

value of RMSE) will obviously have corresponding lower value of R-Squared Error.

The pie plots present below divides the whole set of regression models on the basis of their share in the

total RMSE and R-Squared errors obtained so far using all the models combined together.

59

Figure 4.28: - Pie Chart corresponding to distribution of RMSE

Figure 4.29: - Pie Chart corresponding to distribution of R-Squared Error

4.11 K Fold Cross Validation

As already mentioned before, K-Fold Cross Validation is a method of describing the validation by

splitting the whole dataset into k parts, in which we train by k-1 parts and test by the remaining part.

An array of results is obtained after performing this operation and the function that we have employed

for this purpose is cross_val_score which is provided under the sklearn.model_selection module.

The parameter cv=5 denotes the number of cross validation sets or simply the value of k which in this

case is 5.It simply means that we need to take into account 5 values for any of the evaluation metrics

that we are trying to compute whether it is an RMSE or R-Squared Error.

As the k-fold cross validation will be applied for 5 times for each of the k data subsets, we have only

applied it for Linear Regression as a means of demonstration.

60

The low specifications of our device have bounded us to test it over the Linear Regression and XGB

model only in order to avoid crashing of system.

Figure 4.30: - RMSE computation under K-Fold

Figure 4.31: - R-Squared computation under K-Fold

Figure 4.32: - Generalized working of K-Fold Cross Validation with k=5

61

Chapter 5: - CONCLUSIONS

5.1 Conclusions

The major inference drawn from this project is that we were able to predict taxi fare prices near to a

RMSE of 4.22 and R-Squared Error of about 0.79 which indicates an accuracy of about 79% on

approximate scale. It can be further optimized by taking the large data set but unfortunately we have

considered only 90k points out of a total of 55 million extended rows due to the RAM and device

constraints.

5.2 Future Scope

The major challenge that is up ahead in this project is the inclusion of scaling factor and how it can

modify our results. As of now, we have only focused upon the simple regression models or some

complex ensemble learning techniques which yielded some quite good results considering the amount

of data set points that we inputted. Inclusion of lasso and ridge regression is one more thing to look

forward to.

Along with that, it would also be a nice idea to look up to different techniques by which we would be

able to handle large data as the one that we have currently faced. Use of efficient data processing

libraries like Dask or Vaex is good but in the long run they don’t help much in terms of providing the

desired functionality which is fulfilled by Pandas.

5.3 Applications

The project of ours can find use in many of the scenarios as mentioned below: -

i.) In the apps that are driven by real-life problems like the geo-location apps such as Maps,

Tom-Tom API and much more for traffic analysis.

ii.) Can be used by Traffic Surveillance Authorities and unicorn start-ups or companies like

Uber to monitor the effect of increasing fare prices along with the inflation and the

increased number of passengers.

iii.) Can also be used by taxi passengers themselves for self- evaluation of the fare amount that

they have spent in total within a particular year.

iv.) Majorly the usage of this project is to predict the fare prices given any position of

coordinates of pickup and drop off locations which will also be valid for the upcoming

decades due to the inclusion of inflation.

62

REFERENCES

A) Books

[1] Andreas C. Muller, Sarah Guido, “Introduction to Machine Learning With Python”.

Sebastopol, California, USA: Shroff, O'Reilly Media, 2016.

[2] Geron Aurelien, “Hands-On Machine Learning with Scikit-Learn and Tensor Flow:

Concepts, Tools, and Techniques to Build Intelligent Systems”.

 Sebastopol, California, USA: O'Reilly Media, 2017.

B) Conferences and Conference Meetings

[1] Vanajakshi, L., S. C. Subramanian, and R. Sivanandan. "Travel time and fare prediction

under heterogeneous traffic conditions using global positioning system data from buses." IET

intelligent transport systems 3.1 (2009): 1-9.

[2] Wu, Chun-Hsin, Jan-Ming Ho, and Der -Tsai Lee. "Travel-time and fare prediction with

support vector regression." IEEE transactions on intelligent transportation systems 5.4 (2004):

276-281.

[3] Yildirimoglu, Mehmet, and Nikolas Geroliminis. "Experienced travel time prediction for

congested freeways." Transportation Research Part B: Methodological 53 (2013): 45-63.

[4] Biagioni, James, et al. "Easytracker: automatic transit tracking, mapping, and arrival time

prediction using smart phones." Proceedings of the 9th ACM Conference on Embedded

Networked Sensor Systems, ACM, 2011.

C) Datasets

[1] Google LLC, “nyc-taxi-fare-prediction” Google-Coursera, Kaggle, “Playground Prediction

Competition, 2016.

D) Journals

[1] Jamal I. Daoud, “Multicollinearity and Regression Analysis” Journal of Physics,

International Islamic University Malaysia, Kuala Lumpur, Malaysia, Conf. Ser. 949 012009,

2017.

63

APPENDIX

A.1 LightGBM

An open-source package called Light Gradient Boosted Machine, or Light GBM for short, offers a

practical and fast implementation of the gradient boosting technique.

By using a sort of autonomous feature selection and concentrating on boosting cases with greater

gradients, LightGBM expands the gradient boosting technique. This can hasten training significantly

and enhance prediction performance.

As a result, when using tabular data for regression and classification predictive modelling tasks,

LightGBM has established itself as the de facto method for machine learning contests. As a result,

together with Extreme Gradient Boosting, it bears some of the responsibility for the improved

acceptance and widespread use of gradient boosting techniques in general (XGBoost).

A.2 Lasso Regression

It is a type of regularisation method used in regression problems. For a more accurate forecast, it is

preferred over simple regression techniques without regularization.

Shrinkage is used in this model. When data values shrink toward the mean, this is referred to as

shrinkage. Simple, sparse models are encouraged by the lasso procedure.

The coefficients of the remaining features are decreased to zero and a random feature is chosen from

the highly linked ones.

Additionally, as the model parameters vary, the selected variable varies at random. Generally speaking,

ridge regression performs better than this.

A.3 Intelligent Transportation System (ITS)

The use of sensing, analysis, control, and communications technology in ground transportation to

increase security, mobility, and effectiveness is known as an intelligent transportation system. An

intelligent transportation system consists of a variety of applications that process and exchange

information to reduce traffic, enhance traffic management, lessen the impact on the environment, and

boost the advantages of transportation for both business users and the general public.

64

The use of information and control technologies in the operation of transportation systems is the

technological foundation of intelligent transportation systems (ITS).

Communications, automated control, and computer hardware and software are some of these

technologies. It takes expertise from several engineering fields, such as civil, electrical, mechanical,

industrial, and their allied disciplines, to apply these technologies to transportation.

The majority of transportation issues are brought on by a lack of timely and accurate information as

well as by a lack of system-wide coordination amongst employees.

Therefore, information technology's positive contribution is to provide improved knowledge to enable

system participants to reach mutually beneficial decisions.

A.4 Ridge Regression

In situations when the independent variables are strongly correlated, ridge regression is a technique for

estimating the coefficients of multiple-regression models. It has been used to a variety of disciplines,

including engineering, chemistry, and econometrics.

This technique carries out L2 regularization. Predicted values differ much from real values when the

problem of Multicollinearity arises, least-squares are unbiased, and variances are significant.

It is optimally a better and a more robust method than lasso regression.

Ordinary least squares (OLS) regression is the analysis technique used to assess the association

between independent variables (Features) and a dependent variable (Target). By minimising the sum of

squares in the difference between the observed and predicted values of the dependent variable, the

method predicts ties.

Ridge regression, on the other hand, refers to a type of linear regression model where the coefficients

are estimated using a biased estimator rather than the Ordinary Least Squares (OLS) estimator and have

a smaller variance.

