
MICROSERVICE BACKEND IN TYPESCRIPT FOR
POLKACHAIN EXPLORER

Project report submitted in partial fulfillment of the requirement for the degree
of Bachelor of Technology

in

Computer Science and Engineering

by

Malay Srivastava (191352)

Under the supervision of

Dr. Vipul Sharma

to

Department of Computer Science & Engineering and Information Technology

Jaypee University of Information Technology,
Waknaghat, Solan-173234, Himachal Pradesh



I

DECLARATION

I hereby declare that this submission is my own work carried out at Antier

Solutions Pvt. Ltd., Mohali from February 2023 to May 2023 and that, to the best of my

knowledge and belief, it contains no material previously published or written by another

person nor material which has been accepted for the award of any other degree or diploma

from a university or other institute of higher learning, except where due acknowledgment

has been made in the text.

SUBMITTED BY:

Malay Srivastava

191352

Computer Science & Engineering and Information Technology Department.

Jaypee University of Information Technology, Waknaghat, Solan



II

CERTIFICATE

I hereby declare that the work presented in this report entitledMICROSERVICE

BACKEND IN TYPESCRIPT FOR POLKACHAIN EXPLORER in partial

fulfilment of the requirements for the award of the degree of Bachelor of Technology in

Computer Science and Engineering/Information Technology submitted in the

department of Computer Science & Engineering and Information Technology, Jaypee

University of Information Technology Waknaghat is an authentic record of work carried

out over a period from February 2023 to May 2023 under the supervision of Veer Pratap

Singh (Senior Software Developer). The matter embodied in the report has not been

submitted for the award of any other degree or diploma.

Malay Srivastava

191352

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

Mr. Veer Pratap Singh

Senior Software Developer

Antier Solutions

Dated: 13-05-2023

Dr. Vipul Sharma

Assistant Professor (SG)

Department of Computer Science & Engineering

Dated:



III

ACKNOWLEDGEMENT

This report is not just a result of hard work by me but there has been a joint

contribution by a lot of other people who I would like to thank.

I would like to thank Ms.Amandeep Kaur, Manager of HR in Talent Acquisition,

of Antier Solutions, Mohali for giving me an opportunity to be a part of this organization.

I also would like to thank Mr. Veer Pratap Singh for mentoring me throughout

my project and helping me learn new concepts and technologies. It is indeed with a great

sense of pleasure and immense sense of gratitude that I acknowledge the help of these

individuals.

I am highly indebted to Mr. Pankaj Kumar, Training & Placement Coordinator of

our college for the facilities provided to accomplish this job. I would also like to thank the

Head of our Department Dr.Vivek Kumar Sehgal and the faculty for teaching us the skills

required for this job.

Special thanks to my mentor in the college Dr. Vipul Sharma who supported me

throughout the whole and guided me to achieve the best.

Finally, I must acknowledge with due respect the constant support and patience of

my parents.

Malay Srivastava

191352



IV

ACKNOWLEDGEMENT

This report is not just a result of hard work by me but there has been a joint contribution
by a lot of other people who I would like to thank.

I would like to thank Rashmi Singh, Manager of HR in Talent Acquisition, of Zopsmart
Technologies, Bangalore for allowing me to do an internship within the organization.

I also would like to thank Ms. Mithali R. Shetty and all the people that worked along with
me at Zopsmart Technologies, Bangalore for their patience and openness. They created an
enjoyable working environment.

I also would like to thank Mr. V. Vaishnav and Ms. Mahak Singhania for mentoring me
throughout my internship and helping me learn new concepts and technologies. It is
indeed with a great sense of pleasure and immense sense of gratitude that I acknowledge
the help of these individuals.

I am highly indebted to Mr. Pankaj Kumar, Training & Placement Coordinator of our
college for the facilities provided to accomplish this internship. I would also like to thank
the Head of our Department Dr.Vivek Kumar Sehgal and the faculty for teaching us the
skills required for this internship.
Special thanks to my mentor in the college Dr. Diksha Hooda who supported me
throughout the whole and guided me to achieve the best.

Finally, I must acknowledge with due respect the constant support and patients of my
parents.

Oshin Dhawan
191435



V

TABLE OF CONTENTS

DECLARATION I

CERTIFICATE II

ACKNOWLEDGEMENT III

PLAGIARISM CERTIFICATE IV

LIST OF ABBREVIATIONS VI

LIST OF FIGURES VII

LIST OF TABLES VIII

ABSTRACT IX

1. Chapter-1 INTRODUCTION
1.1 Company
1.2 Introduction
1.3 Objectives
1.4 Motivation
1.5 Libraries/Frameworks Used
1.6 Technical Requirements

1
1
1
1
2
2
3

2. Chapter-2 LITERATURE SURVEY 4

3. Chapter-3 SYSTEM DEVELOPMENT
3.1 Methodology

5
6

4. Chapter-4 PERFORMANCE ANALYSIS 55

5. Chapter-5 CONCLUSIONS 56

6. REFERENCES 57



VI

LIST OF ABBREVIATIONS

CQL Cassandra Query Language



VII

LIST OF FIGURES

Fig. 1 System Design

Fig. 2 CQL Schema for Cassandra Database

Fig. 3 Packet Structure

Fig. 4 Layered Architecture

Fig. 5 Docker yml File



VIII

LIST OF TABLES

Table 1. List of References

Table 2. Comparison of Existing vs Proposed work

Table 3. The vocabulary of gestures / words chosen



IX

ABSTRACT

Creating a micro service backend is quite simple but the challenge comes when

the code has to be tested and optimized,structured, cleaned and maintained and thus here

we follow the Eslint Typescript backend structure.

The backend structure has followed the MVC architecture and followed the eslint

rules to provide strictness in code. Focus on more functional components than class

components.

Talking about the database, we have used the no sql type database CQL providing fast

read query.

Polkadot functions are implemented to interact with the blockchain and other

libraries are used for testing and printing-saving logs.



1. INTRODUCTION

1.1 Company

Antier Solutions is a technology company that provides blockchain development

services and solutions. The company is headquartered in Mohali, Punjab, India, and has

additional offices in Canada, the United Kingdom, and the United States.

Antier Solutions offers a range of blockchain development services, including

cryptocurrency exchange development, smart contract development, blockchain

consulting, and ICO development. The company also provides white label cryptocurrency

exchange solutions for businesses looking to launch their own exchanges.

In addition to blockchain development services, Antier Solutions also offers web

development, mobile app development, and digital marketing services. The company has

worked with a variety of clients, from startups to large enterprises, across a range of

industries including finance, healthcare, and e-commerce.

1.2 Introduction

It is a backend service that implements Read and add operations based on the

polka blockchain structure. Functions at each layer have their own unit test. There is also

an implementation of interface that checks the type of data exchanged between the

structures.

1.3 Objectives

To create testable, structured, clean and maintainable web applications by using

industrial best practices.



1.4 Motivation

To apply industrial best practices and create a fast, scalable and secure service..

1.5 Libraries/Frameworks Used

MOVING FORWARDWITH NODEJS



All the backend framework such as implementing http request, sending response to

server, writing program logic etc is written in NodeJs.

1.6 Technical Requirements

VSCode is an IDE to write clean code .

- Postman API platform for building and using APIs.

- Docker server provides a database management system with querying and

connectivity capabilities

1.6.1 Hardware Configuration

Table 1 : Hardware Configuration

Processor Apple M1 chip, 8-core CPU

RAM 8 GB

Hard Disk 256 GB SSD

Monitor 13’’

Mouse
Keyboard

Table 2 : Software Configuration

Operating System Ubuntu

Language Typescript

Runtime environment ExpressJs

Package Manager NodeJs



2. LITERATURE SURVEY

1) NodeJS Documentation

2) Cassandra Documentation

3) Docker

4) Git and Github

Official documentary that familiarizes you with the concepts of a version control

system i.e Git and how it works with GitHub.



3. SYSTEM DESIGN

Fig. 1 - System Design



3.1 METHODOLOGY

3.1.1 Identification of features

The micro service features:

- Explorer: Polkadot-JS includes an explorer that allows you to view the

state of the Polkadot network. You can view the latest blocks, transactions,

and events, and explore the network topology. You can also view

information about specific parachains and their associated tokens.

- Accounts: Polkadot-JS allows you to create and manage accounts on the

Polkadot network. You can generate new account keys, import existing

keys, and manage your balances and transactions.

- Tools: Polkadot-JS includes several tools for interacting with the Polkadot

network. For example, you can use the extrinsic tool to send transactions,

the storage tool to view and manipulate storage values, and the chain state

tool to view the state of the chain at a particular block height.

- Developer tools: Polkadot-JS includes several developer tools for building

applications on the Polkadot network. For example, you can use the

Polkadot-JS API to interact with the Polkadot network programmatically,

and the Polkadot-JS UI library to build custom user interfaces.

- Integration: Polkadot-JS can be integrated with other tools and platforms,

such as Metamask, to provide a seamless user experience for interacting

with the Polkadot network.



3.1.2 CQL Schema

Fig. 2 - CQL Schema for Cassandra Database

3.1.3 Study Material

LINUX



MVC Structure



Fig. 3 - Packet Structure

By following the MVC pattern, Node.js applications can be structured in a way that
separates concerns and makes the code easier to maintain and scale.

NPM Packages
Each and every nodejs program is made of packages. All the program in nodejs
enviroment start running in the main package
math/rand:- In package rand, environment is deterministic i.e. when run rand. In return
same number, and if we want different results each time we use, rand.Seed
With import use ()-for clarity[Factored statement] and " " with
packages When exporting names use Capital letter with its
package- ex: Pi(math.Pi) We can use fmt: formatted i/o package
to format all this

Functions:func()

JavaScript (JS) and ECMAScript 6 (ES6) are both used for writing functions in Node.js.
However, ES6 introduced some new features for writing functions that make the code



more concise and expressive. Here are some differences between JS and ES6 functions in
Node.js:

Arrow Functions:
ES6 introduced the arrow function syntax, which provides a more concise way to define
functions. Instead of using the "function" keyword, you can use the "=>" operator. Here's
an example:

JS:

function add(x, y) {
return x + y;
}

ES6:

const add = (x, y) => x + y;

Import:

File Watchers:

Variables

let x = 10;
if (true) {



let x = 20;
console.log(x); // outputs 20
}
console.log(x); // outputs 10

const pi = 3.14;
pi = 3; // Error: Assignment to constant variable.

const arr = [1, 2, 3];
arr.push(4); // mutation is allowed
console.log(arr); // outputs [1, 2, 3, 4]

Interfaces:

```
interface User {
id: number;
name: string;
email: string;
}

function getUserById(id: number): User {
// fetch user by ID and return it as a User object
}
```

Type annotations:

```



function addNumbers(a: number, b: number): number {
return a + b;
}
```

Third-party libraries:

The `use` keyword:

FOR



IF

SWITCH



Promise

Overall, Promise objects are a powerful way to work with asynchronous operations in

Node.js, allowing you to handle successful and failed outcomes separately, and chain

together multiple operations in a readable way.



CLASSES

In TypeScript, you can define classes in Node.js using the same syntax as in modern

JavaScript. Here's an example:

ARRAYS

Arrays are an essential part of JavaScript and can be used in Node.js just like in a

browser-based JavaScript environment. You can define an array in Node.js using the

same syntax as in JavaScript:

```

const myArray = [1, 2, 3, 4, 5];



```

In this example, we define an array named `myArray` with five elements.

You can access elements in an array using their index. The index of the first element is 0,

and the index of the last element is the length of the array minus 1. Here's an example:

```

console.log(myArray[0]); // Output: 1

console.log(myArray[4]); // Output: 5

```

```

myArray.push(6);

console.log(myArray); // Output: [1, 2, 3, 4, 5, 6]

```

You can remove elements from an array using the `pop` method:

myArray.pop();

SLICES



RANGE



console.log(range(1, 5)); // Output: [1, 2, 3, 4, 5]

console.log(range(1, 10, 2)); // Output: [1, 3, 5, 7, 9]

MAPS



PANIC: run-time error

Variadic Functions

Function Values

function createGreeting(name) {

return function() {

console.log(`Hello, ${name}!`);

}

}



const sayHelloToJohn = createGreeting('John');

sayHelloToJohn(); // Output: Hello, John!

METHODS



We can define methods on type. We can define methods on non-struct types also.

Webcanbonlybdeclarebabmethodbwithbabreceiverbwhosebtypebisbdefinedbinbthebsame

package asbmethodbincludingbbuiltbinbtypesblikebint.

Therebarebtwobreasonsbtobusebabpointerbreceiver:

Thebfirstbisbsobthatbthebmethodbcanbmodifybthebvaluebthatbitsbreceiverbpointsbto.

Thebsecondbisbtobavoidbcopyingbthebvaluebonbeachbmethodbcall.

Thisbcanbbebmorebefficient

if the receiverbisbablargebstruct.

Allbmethodsbonbabgivenbtypebshouldbhavebeitherbvalueborbpointerbreceivers, but not

a mixture of both.

Receiver Arguments:



● Value receiver argument can only reference methods with value receiver whereas

pointer receiver argument references methods with both value and pointer

receiver: METHOD SETS

● We use value receivers when we don’t want changes to be reflected in the original

value, while using slices, maps, etc

● We can use a pointer receiver when we want the changes to be reflected or when

we want to access methods either way or when the struct is quite large to avoid

duplicate copies.

INTERFACES

Interface type is defined as method signature of a particular underlying base.

Abvaluebofbinterfacebtypebcanbholdbanybvaluebthatbimplementsbthosebmethod

sbi.ebsame methodsbwithbdifferentbtypebisbimplementedbbybinterface]

To define an interface in Node.js, you can use the interface keyword. Here's an example:

Interfaces are implemented implicitly.

Therebisbnobexplicitbdeclarationbofbintent,bno "implements"bkeyword.

interface Person {

name: string;

age: number;

greet(): void;

}

Zero value of interface is nil.

Abstract type underlying which is our concrete type (struct, float, etc): can be thought of

as a tuple

of a value and a concrete type: (value, type)



In case of pointer receiver: (&{Hello}, *main.T)

Ifbthebconcretebvaluebinsidebthebinterfacebitselfbisbnil,bthebmethodbwillbbebcalledb

withbabnil receiverb&bdoesn’tbtriggerbabnullbpointerbexception. Interface value that

holds a nil concrete value is itself non-nil.

Abnilbinterfacebvaluebholdsbneitherbvaluebnorbconcretebtype.

Callinbabmethodbonbabnilbinterfacebisbabrun-timeberrorbbecausebtherebisbnobtypebin

sidebthe

Interfacebtuplebtobindicatebwhichbconcretebmethodbtobcall.

Thebinterfacebtypebthatbspecifiesbzerobmethodsbisbknownbasbthebemptybinterface:bin

terface{}.

Anbemptybinterfacebmaybholdbvaluesbofbanybtype.bEverybtypebimplementsbatbleastb

zero methods.Emptybinterfacesbarebusedbbybcodebthatbhandlesbvaluesbof unknown

type.

var i interface{}

i=42 (type->int)

TYPE ASSERTION

Type assertion in Node.js is a way to tell the compiler that you know more about the type

of a variable than the compiler does. It is also known as type casting.

Type SWITCH



}

}

ASYNC AND AWAIT



fetchData().then(data => {

console.log(data);

}).catch(error => {

console.error(error);

});

Readers

const fs = require('fs');

const stream = fs.createReadStream('file.txt');



stream.on('data', (chunk) => {

console.log(`Received ${chunk.length} bytes of data.`);

});

stream.on('end', () => {

console.log('Finished reading file.');

});

stream.on('error', (error) => {

console.error(`Error reading file: ${error.message}`);

});

REST- Represntation State Transfer



Response Status Codes

1. 200:OK, Success

2. 201: Success+Created

3. 202: Accepted, request received but not completed

4. 204: No content

5. 400: Bad Request, incorrect syntax

6. 404: Not found

7. 405: Method Not Allowed

8. 500: Internal Server Error

HTTP package

1. HTTP protocols



Create : Post-> new data

Read : Get-> retrieve data

Update: Put-> update data

Delete: Delete-> delete data

1. Import the `http` package:

const http = require('http');

2. Create a server object using the `http.createServer()` method:

const server = http.createServer();

3. Use the `server.on()` method to handle requests:

server.on('request', (req, res) => {

// Handle request here

});

4. Set the response status and headers:

res.writeHead(200, {'Content-Type': 'text/plain'});

5. Write the response body:



res.write('Hello World!');

6. End the response:

res.end();

Here's an example of a simple RESTful API server using the `http` package:

const http = require('http');

const server = http.createServer();

server.on('request', (req, res) => {

if (req.method === 'GET' && req.url === '/') {

res.writeHead(200, {'Content-Type': 'text/plain'});

res.write('Hello World!');

res.end();

} else {

res.writeHead(404, {'Content-Type': 'text/plain'});

res.write('Not Found');

res.end();

}

});

server.listen(3000, () => {

console.log('Server running on port 3000');

});



To use a function as a request handler, you can simply pass the function as a callback to

the server's request event:

const http = require('http');

function requestHandler(req, res) {

// handle the request

}

const server = http.createServer();

server.on('request', requestHandler);

server.listen(3000, () => {

console.log('Server listening on port 3000');

});

In this example, the requestHandler function is passed as the callback for the server's

request event. Whenever the server receives a request, it will invoke the requestHandler

function with the request and response objects.

HTTPtest Package

In Node.js, you can use the http module to test HTTP servers. The http module provides a

ClientRequest class that can be used to make HTTP requests to a server.

Here's an example of how to use the http module to test an HTTP server:

const http = require('http');

const assert = require('assert');



const server = http.createServer((req, res) => {

res.statusCode = 200;

res.setHeader('Content-Type', 'text/plain');

res.end('Hello World\n');

});

server.listen(3000, () => {

console.log('Server listening on port 3000');

});

const req = http.request({

host: 'localhost',

port: 3000,

path: '/'

}, (res) => {

let data = '';

res.on('data', (chunk) => {

data += chunk;

});

res.on('end', () => {

assert.strictEqual(res.statusCode, 200);

assert.strictEqual(data, 'Hello World\n');

console.log('Test passed!');

server.close();

});

});

req.on('error', (err) => {

console.error(err);

});

req.end();

Layered architecture: Layers are autonomous from one another and interact via

interfaces.



Fig. 4 - Layered Architecture

Basically, this aids in the modularization, readability, and maintainability of our

application.

HTTP layer, Service layer, and Store layer are the three layers of this.

Table 3 - HTTP Layer, Service Layer & Store Layer

1. HTML layer

checks the request body, headers, and query/path parameters for

validity.

2. Service layer : Implements business logic and communicates with datastore layer

3. Store layer executes database-level queries.

1. Each layer uses an interface (methods with defined input parameters

and output types) to communicate with the layer above it or below it.

2. The interface, database, and server for each layer are all mocked during

testing, depending on the circumstances.

Dependency Injection:

It is a way of writing code where the dependencies of a specific object or struct are

provided at the time the object is initialized.

We are able to specify when to reuse the same dependency instance and when to create

new ones.

Our structs are less closely coupled to their dependencies because they are no longer in

charge of establishing them.

Factory method



It is a design pattern that addresses the issue of creating product objects without

identifying the concrete classes for those objects. Instead of directly calling the new

operator, it defines a method that can be used to create objects.

i. Simple factory

ii. Interface factories

MICRO SERVICES

Small, independent services that communicate over clearly defined APIs make up the

architectural and organizational strategy of software development known as

"microservices." Small, self-contained teams own and operate these services.

Microservices' advantages

● Adaptable Scaling

The demand for each microservice's underlying app feature can be scaled

independently of the others. This enables teams to maintain service availability

during times of high demand, accurately estimate the cost of a feature, and size

infrastructure appropriately.

● Simple Deployment

● Reusable Code



Docker

Docker is a platform for developing, deploying, and running applications inside

containers. Containers are lightweight, standalone executables that can run in any

environment with the Docker runtime installed, making it easy to build and deploy

applications across different environments.

Some common use cases for Docker include:

- Developing and testing applications in a consistent, isolated environment

- Packaging and deploying applications in a portable, containerized format

- Running legacy applications on modern infrastructure

- Scaling and managing containerized applications in production environments

- Building and distributing pre-configured environments for specific use cases



Overall, Docker provides a powerful and flexible platform for building and deploying

applications, and is widely used in modern software development and deployment

workflows.

Fig. 5 - Docker yml File

POLKADOT



HUSKY (Git Hooks)

Husky simplifies the process of configuring Git hooks by providing a convenient

API to create and manage them. It allows you to define your hooks as scripts in

your package.json file and then automatically installs them as Git hooks in your

project's .git/hooks directory.

Some examples of hooks that you can manage with Husky include:

Pre-commit: Runs before a commit is created and can be used to perform linting,

formatting, or other checks on the code being committed.

Pre-push: Runs before a push is executed and can be used to run tests, check for

vulnerabilities, or other checks on the code being pushed.



Post-merge: Runs after a merge is completed and can be used to perform additional

setup or configuration tasks.

CODE

App.ts

Initialization of middleware and controllers.
Other functionality, like Winston logs and cors, was also added.



Cassandra connection:
Here we connect cassandra service running on docker to our micro service backend.



Polka Chain Initialisation:

Here we initialize the polkachain testnet chain with the service.
The values of endpoints have beer derived from the environment file i.e, .env.





Services:

In Node.js, a worker service is a module that runs in the background and performs a
specific task or set of tasks without blocking the main event loop of the application.
Worker services are typically used for computationally intensive or long-running tasks
that would otherwise block the event loop and make the application unresponsive.



Workers:

Here are some common characteristics of worker services in Node.js:

Worker services are typically implemented using the Worker API, which allows you to
create and manage background threads in Node.js.
Worker services are often designed to be run as separate processes or clusters, allowing
you to take advantage of multi-core CPUs and distribute the workload across multiple
threads.



Interfaces:

In Node.js, an interface is a contract or agreement between two or more modules,
specifying the methods, properties, and behavior that they must implement in order to
work together. Interfaces are often used to define the API or public interface of a module,
allowing other modules to interact with it in a consistent and predictable way.



Helpers:

In Node.js, helpers are utility functions or modules that provide common functionality or
assist in specific tasks. Helpers are often used to avoid repeating code, simplify complex
tasks, or provide common functionality across multiple modules or applications.



Contract Initialised:

Here we initialized smart contracts for our query functions to be used on polkachain.





4. PERFORMANCE ANALYSIS

1. Unit Test Coverage

Performed unit test coverage and found all 44 tests ran successfully i.e PASS
with a total coverage of 94.7%.

2. Linter Check

Performed a linter check using command golangci-lint run which makes sure

that the program is properly formatted and follows standard code guidelines

such as no gocognit complexity or funlen to be 0 etc. There were no linter

errors found in this project.



5. CONCLUSION

5.1 Results Achieved

The main aim of the training was to be able to understand and implement the concepts

of GoLang, MySQL, Unit Testing, being able to create a web application

successfully performing basic CRUD operations and can be tested using postman

using the three layered architecture.

5.2 Applications Contributions

GoLang have been part of a variety of real world/ open source applications, some of

the which are listed below.

Docker, a set of tools for deploying Linux containers, Kubernetes container

management system

1. Dropbox, who migrated some of their critical components from Python to Go

2. Ethereum, The go-ethereum implementation of the Ethereum Virtual Machine,

blockchain for the Ether cryptocurrency

3. Gitlab, a web-based DevOps lifecycle tool that provides a Git-repository, wiki,

issue-tracking, continuous integration, deployment pipeline features etc.

5.3 Limitations

The application implements only the backend part but front end can be done for the
same to make the application more attractive and user friendly.

5.4 Future Work / Scope

1. Front-end for application

2. Make the program more extensive


	b9775d304d14c3c1173e768037cb2768e3bde5eb7129d2201532c9f92b66e60f.pdf
	DECLARATION
	CERTIFICATE
	ACKNOWLEDGEMENT
	ACKNOWLEDGEMENT

	Malay major project report for plag check.docx

