MICROSERVICE BACKEND IN TYPESCRIPT FOR
POLKACHAIN EXPLORER

Project report submitted in partial fulfillment of the requirement for the degree
of Bachelor of Technology

in
Computer Science and Engineering
by

Malay Srivastava (191352)

Under the supervision of

Dr. Vipul Sharma

to

Department of Computer Science & Engineering and Information Technology

Jaypee University of Information Technology,
Waknaghat, Solan-173234, Himachal Pradesh

DECLARATION

I hereby declare that this submission is my own work carried out at Antier
Solutions Pvt. Ltd., Mohali from February 2023 to May 2023 and that, to the best of my
knowledge and belief, it contains no material previously published or written by another
person nor material which has been accepted for the award of any other degree or diploma
from a university or other institute of higher learning, except where due acknowledgment

has been made in the text.

SUBMITTED BY:

Malay Srivastava

191352

Computer Science & Engineering and Information Technology Department.

Jaypee University of Information Technology, Waknaghat, Solan

CERTIFICATE

I hereby declare that the work presented in this report entitted MICROSERVICE
BACKEND IN TYPESCRIPT FOR POLKACHAIN EXPLORER in partial
fulfilment of the requirements for the award of the degree of Bachelor of Technology in
Computer Science and Engineering/Information Technology submitted in the
department of Computer Science & Engineering and Information Technology, Jaypee
University of Information Technology Waknaghat is an authentic record of work carried
out over a period from February 2023 to May 2023 under the supervision of Veer Pratap
Singh (Senior Software Developer). The matter embodied in the report has not been

submitted for the award of any other degree or diploma.

Malay Srivastava

191352

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

Mr. Veer Pratap Singh
Senior Software Developer

Antier Solutions

Dated: 13-05-2023

Dr. Vipul Sharma
Assistant Professor (SG)

Department of Computer Science & Engineering

Dated:

11

ACKNOWLEDGEMENT

This report is not just a result of hard work by me but there has been a joint

contribution by a lot of other people who I would like to thank.

I would like to thank Ms.Amandeep Kaur, Manager of HR in Talent Acquisition,

of Antier Solutions, Mohali for giving me an opportunity to be a part of this organization.

I also would like to thank Mr. Veer Pratap Singh for mentoring me throughout
my project and helping me learn new concepts and technologies. It is indeed with a great
sense of pleasure and immense sense of gratitude that I acknowledge the help of these

individuals.

I am highly indebted to Mr. Pankaj Kumar, Training & Placement Coordinator of
our college for the facilities provided to accomplish this job. I would also like to thank the
Head of our Department Dr.Vivek Kumar Sehgal and the faculty for teaching us the skills
required for this job.

Special thanks to my mentor in the college Dr. Vipul Sharma who supported me

throughout the whole and guided me to achieve the best.

Finally, I must acknowledge with due respect the constant support and patience of

my parents.

Malay Srivastava

191352

11

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT
PLAGIARISM VERIFICATION REPORT

Date: e s
Type of Document (Tick): FhD Thﬁii| |M.TE:I1 Dissertation/ Rep-urt| |B.TE€|1 Project Report | Fap-erl

Mame: __Department: Enrolment No

Contact No. E-mail.

Mame of the Supervisor:

Title of the Thesis/Dissertation/Project Report/Paper (In Capital letters):

UNDERTAKING

| undertake that | am aware of the plagiarism related norms/ regulations, if | found guilty of any plagiarism and
copyright wiolations in the above thesis/report even after award of degree, the University reserves the rights to
withdraw/revoke my degreefreport. Kindly allow me to avail Plagiarism verification report for the document
mentioned above.
Complete Thesis/Report Pages Detail:

— Total No. of Pages =

— Total No. of Preliminary pages =

— Total No. of pages accommodate bibliography/freferences =

[(Signature of Student)
FOR DEPARTMENT USE
We have checked the thesis/report as per norms and found Similarity Index at ..o (%). Therefore, we

are forwarding the complete thesis/report for final plagiarism check. The plagiarism verification report may be
handed over to the candidate.

[Signature of Guide/Supervisor) Signature of HOD
FOR LRC USE
The above document was scanned for plagiarism check. The outcome of the same is reported below:
Copy Received on Excluded Similarity Index Generated Plagiarism Report Details
(%a) (Title, Abstract & Chapters)
o All Preliminary Wenth Cpents
Pages
Report Generated on e Bibliography/ima Character Counts
L S
Eesnines Submission ID Total Pages Scanned
* 14 Words String
File Size
Checked by
Mame 8 Signature Librarian

1\

TABLE OF CONTENTS

DECLARATION I
CERTIFICATE 11
ACKNOWLEDGEMENT 111
PLAGIARISM CERTIFICATE v
LIST OF ABBREVIATIONS VI
LIST OF FIGURES VII
LIST OF TABLES VIII
ABSTRACT IX
1. Chapter-1 INTRODUCTION 1
1.1 Company 1
1.2 Introduction 1
1.3 Objectives 1
1.4 Motivation 2
1.5 Libraries/Frameworks Used 2
1.6 Technical Requirements 3
2. Chapter-2 LITERATURE SURVEY 4
3. Chapter-3 SYSTEM DEVELOPMENT S
3.1 Methodology 6
4. Chapter-4 PERFORMANCE ANALYSIS 35
5. Chapter-5 CONCLUSIONS 56
6. REFERENCES 57

LIST OF ABBREVIATIONS

CQL Cassandra Query Language

VI

LIST OF FIGURES

Fig. 1 System Design

Fig. 2 CQL Schema for Cassandra Database
Fig. 3 Packet Structure

Fig. 4 Layered Architecture

Fig. 5 Docker yml File

VII

LIST OF TABLES

Table 1. List of References
Table 2. Comparison of Existing vs Proposed work
Table 3. The vocabulary of gestures / words chosen

VIII

ABSTRACT

Creating a micro service backend is quite simple but the challenge comes when
the code has to be tested and optimized,structured, cleaned and maintained and thus here

we follow the Eslint Typescript backend structure.

The backend structure has followed the MVC architecture and followed the eslint
rules to provide strictness in code. Focus on more functional components than class
components.

Talking about the database, we have used the no sql type database CQL providing fast
read query.

Polkadot functions are implemented to interact with the blockchain and other

libraries are used for testing and printing-saving logs.

IX

1. INTRODUCTION

1.1 Company

Antier Solutions is a technology company that provides blockchain development
services and solutions. The company is headquartered in Mohali, Punjab, India, and has

additional offices in Canada, the United Kingdom, and the United States.

Antier Solutions offers a range of blockchain development services, including
cryptocurrency exchange development, smart contract development, blockchain
consulting, and ICO development. The company also provides white label cryptocurrency

exchange solutions for businesses looking to launch their own exchanges.

In addition to blockchain development services, Antier Solutions also offers web
development, mobile app development, and digital marketing services. The company has
worked with a variety of clients, from startups to large enterprises, across a range of

industries including finance, healthcare, and e-commerce.

ancier

Decentralizing tha Warld

1.2 Introduction

It is a backend service that implements Read and add operations based on the
polka blockchain structure. Functions at each layer have their own unit test. There is also
an implementation of interface that checks the type of data exchanged between the

structures.

1.3 Objectives

To create testable, structured, clean and maintainable web applications by using

industrial best practices.

PAGE "* MERGEFORMAT I

1.4 Motivation

To apply industrial best practices and create a fast, scalable and secure service..

1.5 Libraries/Frameworks Used

1.

1.

iv.

Vi.

Polkadot API: Polkadot API is a JavaScript library that provides a simple and easy-
to-use interface to interact with the Polkadot network. It allows you to query data,

send transactions, and subscribe to events on the Polkadot network.

Web3.js: Web3 js is a collection of libraries that allow you to interact with Ethereum
and other Ethercum-compatible networks, including Polkadot. It provides
functionalities such as sending transactions, signing messages, and querying data

from the blockchain.

Express.js: Express.js is a popular Node.js framework for building web applications
and APIs. You can use it to create a RESTful API to interact with the Polkadot

network and expose your data to the web.

React.js: React.js is a JavaScript library for building user interfaces. You can use it to
create a frontend for your Polkadot explorer and display the data in a user-friendly

way.

MongoDB: MongoDB is a popular NoSQL database that can be used to store data
related to the Polkadot network. You can use it to store blocks, transactions, accounts,

and other data related to your Polkadot explorer.

WebSocket: WebSocket is a protocol that allows you to establish a two-way
communication channel between a client and a server. You can use it to subscribe to
real-time updates from the Polkadot network and receive notifications when new

blocks or transactions are added to the blockchain.

MOVING FORWARD WITH NODEJS

PAGE "* MERGEFORMAT I

All the backend framework such as implementing http request, sending response to

server, writing program logic etc is written in NodeJs.

1.6 Technical Requirements

VSCode is an IDE to write clean code .
- Postman API platform for building and using APIs.
- Docker server provides a database management system with querying and

connectivity capabilities

1.6.1 Hardware Configuration

Table 1 : Hardware Configuration

Processor Apple M1 chip, 8-core CPU
RAM 8 GB

Hard Disk 256 GB SSD

Monitor 137

Mouse

Keyboard

Table 2 : Software Configuration

Operating System Ubuntu
Language Typescript
Runtime environment ExpressJs
Package Manager Nodels

PAGE "* MERGEFORMAT I

2. LITERATURE SURVEY

1) NodeJS Documentation

Node.js is an open-source, cross-platform, back-end JavaScript runtime

environment built on the V8 engine of Google Chrome.

2) Cassandra Documentation

Cassandra is a distributed NoSQL database that is designed to handle large
amounts of data across multiple servers. It provides high availability and fault

tolerance, and 1s optimized for read and write performance.

3) Docker

Docker is a popular containerization platform that allows you to create, deploy,

and run applications in a lightweight, portable, and isolated environment called a

container.

4) Git and Github

Official documentary that familiarizes you with the concepts of a version control

system i.e Git and how it works with GitHub.

PAGE "* MERGEFORMAT I

3. SYSTEM DESIGN

Request Body

Polkachain Database

Response

End

Fig. 1 - System Design

PAGE "* MERGEFORMAT I

3.1 METHODOLOGY

3.1.1 Identification of features

The micro service features:

Explorer: Polkadot-JS includes an explorer that allows you to view the
state of the Polkadot network. You can view the latest blocks, transactions,
and events, and explore the network topology. You can also view

information about specific parachains and their associated tokens.

Accounts: Polkadot-JS allows you to create and manage accounts on the
Polkadot network. You can generate new account keys, import existing

keys, and manage your balances and transactions.

Tools: Polkadot-JS includes several tools for interacting with the Polkadot
network. For example, you can use the extrinsic tool to send transactions,
the storage tool to view and manipulate storage values, and the chain state

tool to view the state of the chain at a particular block height.

Developer tools: Polkadot-JS includes several developer tools for building
applications on the Polkadot network. For example, you can use the
Polkadot-JS API to interact with the Polkadot network programmatically,
and the Polkadot-JS Ul library to build custom user interfaces.

Integration: Polkadot-JS can be integrated with other tools and platforms,

such as Metamask, to provide a seamless user experience for interacting

with the Polkadot network.

PAGE "* MERGEFORMAT I

3.1.2 CQL Schema

Activities Visual Studio Code ¥ May 10 16:37

‘s index.ts - explorer-backend - Visual Studio Code

File Edit Selection View Go Run Terminal Help

TERMINAL

API/INIT: RPC
APT/INIT

PI/INIT

Lns,Col27 Spaces:3 UTF8 LF (3 TypeScript v Prettier /@ (3

Fig. 2 - CQL Schema for Cassandra Database

3.1.3 Study Material
LINUX

Linux is a free and open-source operating system that is based on the Unix
operating system. It was first created in 1991 by Linus Torvalds, and since then has
become one of the most widely used operating systems, powering everything from

servers and supercomputers to mobile phones and embedded devices.

Overall, Linux 1s a highly customizable and powerful operating system that
provides a wide range of tools and features for both developers and users. Its open-source
nature and large community of developers make it a popular choice for building and

running a wide variety of applications and systems.

Here are some commonly used Linux commands:
Is: Lists the contents of a directory.

cd: Changes the current directory.

pwd: Displays the current working directory.
mkdir: Creates a new directory.

rm: Removes a file or directory.

cp: Copies files or directories.

mv: Moves or renames files or directories.

e AN

PAGE "* MERGEFORMAT I

9. touch: Creates an empty file or updates the access and modification times of
an existing file.

10. cat: Displays the contents of a file.

11. nano/vim: A text editor for editing files in the terminal.

12. grep: Searches for a pattern in a file or output.

13. chmod: Changes the permissions of a file or directory.

14. chown: Changes the ownership of a file or directory.

15.tar: Archives and compresses files or directories.

16. curl/wget: Downloads files from the internet.

17. ps: Lists the running processes.

18. top: Displays real-time system resource usage information.

19. df: Shows disk space usage for file systems.

20. du: Shows disk

MVC Structure

1. In Node.js, the Model-View-Controller (MVC) architectural pattern is commonly
used to organize code into separate and distinct components. Here's how it works:

2. Model: The model represents the data and business logic of the application. It
defines how the data is stored, retrieved, and manipulated. In Node.js, the model
can be implemented as a module that interacts with a database or other data source.

3. View: The view is responsible for presenting the data to the user. It can be
implemented as a template engine that generates HTML, CSS, and JavaScript
code. The view is typically passive and does not contain any business logic.

4. Controller: The controller acts as the intermediary between the model and the
view. It receives input from the user through the view, processes the input using
the model, and updates the view with the results. In Node.js, the controller can be
implemented as a module that handles HT'TP requests and responses.

PAGE "* MERGEFORMAT I

Activities Visual Studio Code ~

Y

File Edit Selection View Go Run Terminal Help

~ OPEN EDITORS

! @ EXPLORER
2 i

common

» controllers

> OUTLINE
> TIMELINE
3¢ jo feature/txFee* & ®@O0MA0

Fig. 3 - Packet Structure

By following the MVC pattern, Node.js applications can be structured in a way that
separates concerns and makes the code easier to maintain and scale.

NPM Packages

Each and every nodejs program is made of packages. All the program in nodejs
enviroment start running in the main package

math/rand:- In package rand, environment is deterministic i.e. when run rand. In return
same number, and if we want different results each time we use, rand.Seed

With import use ()-for clarity[Factored statement] and " " with

packages When exporting names use Capital letter with its

package- ex: Pi(math.Pi) We can use fmt: formatted i/o package

to format all this

Functions:func()

JavaScript (JS) and ECMAScript 6 (ES6) are both used for writing functions in Node.js.
However, ES6 introduced some new features for writing functions that make the code

PAGE "* MERGEFORMAT I

more concise and expressive. Here are some differences between JS and ES6 functions in
Node.js:

Arrow Functions:

ES6 introduced the arrow function syntax, which provides a more concise way to define
functions. Instead of using the "function" keyword, you can use the "=>" operator. Here's
an example:

JS:

function add(x, y) {
return x +y;

}

ESé6:
constadd = (x,y) =>x +vy;

Import:

In Node.js, you can use the "require” function to import modules or files. The "require”
function is a built-in function in Node.js that allows you to include external modules and
make them available in your code.

File Watchers:

nodemon:

"nodemon" is a package that monitors changes to your Node.js application and
automatically restarts the server when changes are detected. This can be useful during
development, as it saves you the hassle of manually restarting the server after making
changes. Here's an example of using "nodemon" to monitor a Node.js file:

Variables

In Node.js, variables are declared using the var, let, or const keywords.

The var keyword declares a variable globally, or locally to an entire function, regardless
of block scope. However, it 1s generally recommended to use let and const instead of var,

as they provide better scoping and are block-scoped.

The let keyword declares a variable that is block-scoped, meaning it is only accessible
within the block where it is defined. For example:

let x = 10;
if (true) {

PAGE "* MERGEFORMAT I

let x = 20;
console.log(x); // outputs 20

}

console.log(x); // outputs 10

The const keyword is similar to let, but once a variable is defined with const, it cannot be
reassigned. This makes const useful for defining constants or values that should not be

changed. For example:

const pi = 3.14;
pi = 3;// Error: Assignment to constant variable.

It's important to note that while const prevents reassignment of a variable, it does not

prevent mutation of an object or array. For example:

const arr =[1, 2, 3];
arr.push(4); / mutation is allowed

console.log(arr); // outputs [1, 2, 3, 4]

Interfaces:

Interfaces can be used to define the shape of objects and their properties. This can
help catch type errors early on and make your code more readable. For example:

interface User {
1d: number;
name: string;
email: string;

}

function getUserByld(id: number): User {
// fetch user by ID and return it as a User object

h
Type annotations:

Type annotations can be used to specify the type of a variable or function
parameter. This can also help catch type errors early on. For example:

PAGE "* MERGEFORMAT I

function addNumbers(a: number, b: number): number {
return a + b;

8
Third-party libraries:
There are many third-party libraries available for use with Node s and TypeScript.

Some popular choices include Express for building web applications, TypeORM
for database interactions, and Jest for testing.

The “use’ keyword:
The "use’ keyword i1s commonly used m middleware functions in Nodes

applications. Middleware functions can be used to add functionality to an HTTP
request/response cycle. For example:

import express, { Request, Response, NextFunction } from 'express';
const app = express();
function logRequest(req: Request, res: Response, next: Nextlunction) {

console.log("$ {req.method} request to ${req.path}");
next();

b

app.use(logRequest);

In this example, the "logRequest’ function i1s middleware that logs the method and
path of each incoming request. The 'use’ method 1s used to apply this middleware
to all incoming requests.

These are just a few examples of how TypeScript can be used to write components
in Node.js. By taking advantage of TypeScript's powerful type system and libraries,
you can write more robust and maintainable code for your Node.js applications.

FOR

A for loop in Node.js is used to execute a block of code repeatedly for a specified number
of times or for a given range of values. Here's an example of a basic for loop in Node js:

PAGE "* MERGEFORMAT I

constarr =[1, 2, 3, 4, 5];

for (const num of arr) {
console.log(num);

)
const arr = [1, 2, 3, 4, 5];

for (let 1 = 0; 1 <arr.length; 1++) {
console.log(arr[1]);

}

IF

In this example, the if statement checks whether the value of the num variable is greater
than 5. If it is, the code inside the curly braces is executed, which logs a message to the

console.

Here's a breakdown of the different parts of the if statement:

if: This 1s the keyword that starts the if statement.

(num > 5): This is the condition that the if statement checks. If it is true, the code mside
the curly braces is executed; if it is false, the code is skipped.

{ ... }: This is the body of the if statement, which contains the code that is executed if the
condition is true.

You can also use an else statement to execute a different block of code if the condition is

false:

SWITCH

PAGE "* MERGEFORMAT I

The switch statement checks the value of the day variable and executes a different block
of code depending on its value. If day is 1, the first message is logged; if it is 2, the
second message 1s logged; and so on. If the value of day doesn't match any of the cases,

the default block is executed.

Here's a breakdown of the different parts of the switch statement:

switch: This 1s the keyword that starts the switch statement.
day: This is the variable that the switch statement checks.
case: These are the different cases that the switch statement checks. If the value of day

matches one of the cases, the corresponding block of code 1s executed.

break: This keyword is used to end each case block and prevent the execution of
subsequent cases.

default: This block is executed if the value of day doesn't match any of the cases.

{ ... }: This is the body of each case block, which contains the code that is executed if the

value of day matches the corresponding case.

Promise

In Node js, the Promise object is used to represent a value that may not be available yet,
but will be resolved at some point in the future. You can create a new Promise object

using the Promise constructor, which takes a function as its argument.

myPromise
then(result == {

console.log(result);

)

.catch(error => {

console.error(error);

3

Overall, Promise objects are a powerful way to work with asynchronous operations in
Node.js, allowing you to handle successful and failed outcomes separately, and chain

together multiple operations in a readable way.

PAGE "* MERGEFORMAT I

CLASSES

In TypeScript, you can define classes in Node.js using the same syntax as in modern

JavaScript. Here's an example:

class Person {
firstName: string;

lastName: string;

constructor(firstName: string, lastName: string) {

this.firstName = firstName;

this.lastName = lastName;

}

getFullName(): string {
return $ {this.firstName} ${this.lastName}";

}
}

To use this class in your Node.js application, you can create a new instance of the class

using the new keyword:

const person = new Person('John', 'Doe");

console.log(person.getkullName()); // Output: John Doe

ARRAYS

Arrays are an essential part of JavaScript and can be used in Node.js just like in a

browser-based JavaScript environment. You can define an array in Node.js using the

same syntax as in JavaScript:

const myArray = [1, 2, 3, 4, 5];

PAGE "* MERGEFORMAT I

In this example, we define an array named ‘'myArray’ with five elements.
You can access elements in an array using their index. The index of the first element is 0,

and the index of the last element is the length of the array minus 1. Here's an example:

console.log(myArray[0]); // Output: 1
console.log(myArray[4]); // Output: 5

You can add elements to an array using the “push’ method:

myArray.push(6);
console.log(myArray); // Output: [1, 2, 3, 4, 5, 6]

You can remove elements from an array using the ‘pop” method:
myArray.pop();

console.log(myArray); // Output: [1, 2, 3, 4, 5]

You can iterate over an array using a “for’ loop or the “forEach’™ method:
for (let 1 = 0; 1 <myAurray.length; i++) {

console.log(myArray[i]);
}

myArray.forEach(item => console.log(item))

SLICES

PAGE "* MERGEFORMAT I

In Node_js, you can use the same syntax as in JavaScript to slice arrays. Slicing is a way

to extract a portion of an array without modifying the original array. Here's an example:

const myArray = [1, 2, 3,4, 5];
const mySlice = myArray.slice(1, 4);
console.log(mySlice); // Output: [2, 3, 4]

In this example, we define an array named ‘myArray’ with five elements. We then use the
‘slice’ method to extract a portion of the array starting at index 1 and ending at index 3.

The resulting slice is assigned to a variable named "mySlice’.

The “slice” method takes two arguments: the starting index (inclusive) and the ending
index (exclusive) of the slice. If the second argument 1s omitted, the slice will include all

elements from the starting index to the end of the array.

You can also use negative indices to slice from the end of the array. For example:

const myArray = [1, 2, 3, 4, 5];
const mySlice = myArray.slice(-3);
console.log(mySlice); // Output: [3, 4, 5]

Slicing 1s a useful technique when you want to work with a subset of an array without
modifying the original array. It's commonly used in functional programming and in

situations where you need to extract a specific range of elements from an array.

RANGE

PAGE "* MERGEFORMAT I

A Range 1s a form of for loop that iterates over a slice/map.

For each iteration it returns an index and copy of value at that index.
We can also skip the index or value by assigning .

Syntax:

function range(start: number, end: number, step: number = 1): number[] {
const result = [];
for (let 1 = start; 1 <= end; 1 += step) {
result.push(i);
}

return result;

}

console.log(range(1, 5)); // Output: [1, 2, 3, 4, 5]
console.log(range(1, 10, 2)); // Output: [1, 3, 5, 7, 9]

MAPS

Maps are a built-in data structure in Node.js (and in JavaScript in general) that allow you
to store key-value pairs. A key-value pair is a set of two linked data items: a key that is
used to retrieve the value, and the value itself. Here's an example of how to use a Map in

Node.js:

const myMap = new Map();
myMap.set("keyl", "valuel");
myMap.set("key2", "value2");

console.log(myMap.get("keyl")); / Output: "valuel"
console.log(myMap.get("key2")); / Output: "value2"

PAGE "* MERGEFORMAT I

In this example, we create a new Map object called ‘myMap” using the ‘new Map()’
syntax. We then use the ‘set()’ method to add two key-value pairs to the Map: "keyl™

and "valuel™, and ""key2"" and "value2" .

To retrieve the value associated with a specific key, we use the "get()" method, passing n

the key as an argument.

PANIC: run-time error

Variadic Functions

In Node.js, you can create a variadic function by using the rest parameter syntax, which

allows you to pass an arbitrary number of arguments to a function. Here's an example:

function sum(...numbers: number|[]): number {
let total = 0;
for (const number of numbers) {
total += number;
}

return total;

[y

console.log(sum(1, 2, 3)); // Output: 6
console.log(sum(4, 5, 6, 7)); // Output: 22

Function Values

function createGreeting(name) {
return function() {

console.log(‘Hello, $ {name}!");

b
b

PAGE "* MERGEFORMAT I

const sayHelloToJohn = createGreeting('John');

sayHelloToJohn(); // Output: Hello, John!

A closure 1s a function value that references variables from outside its body.

The function may access and assign to the referenced variables; in this sense the function

1s "bound" to the variables.

METHODS

In Node js, as well as in JavaScript, a method is simply a function that is defined as a
property of an object. The main difference between a function and a method is that a

method is associated with an object, and can access and modify the object's properties.
Here's an example of defining a method in Node js:

const person = {
name: 'John',
age: 30,
greet: function() {

console.log("Hello, my name is $ {this.name}, and I'm ${this.age} years old.");

}
3

PAGE "* MERGEFORMAT I

person.greet(); // Output: Hello, my name 1s John, and I'm 30 years old.

class Person {
constructor(name, age) {
this.name = name;
this.age = age;

}

greet() {
console.log("Hello, my name is ${this.name}, and I'm ${this.age} years old.");

h
h

const john = new Person('John', 30);
john.greet(); // Output: Hello, my name is John, and I'm 30 years old.

We can define methods on type. We can define methods on non-struct types also.
We can only declare a method with a receiver whose type is defined in the same

package as method including built in types like int.
There are two reasons to use a pointer receiver:
The first is so that the method can modify the value that its receiver points to.

The second is to avoid copying the value on each method call.

This can be more efficient
if the receiver is a large struct.

All methods on a given type should have either value or pointer receivers, but not

a mixture of both.

Receiver Arguments:

PAGE "* MERGEFORMAT I

e Value receiver argument can only reference methods with value receiver whereas
pointer receiver argument references methods with both value and pointer

receiver: METHOD SETS

e We use value receivers when we don’t want changes to be reflected in the original

value, while using slices, maps, etc

e We can use a pointer receiver when we want the changes to be reflected or when
we want to access methods either way or when the struct is quite large to avoid

duplicate copies.

INTERFACES
Interface type is defined as method signature of a particular underlying base.

A value of interface type can hold any value that implements those method

s i.e same methods with different type is implemented by interface]

To define an interface in Node.js, you can use the interface keyword. Here's an example:

Interfaces are implemented implicitly.

There is no explicit declaration of intent, no "implements" keyword.

interface Person {
name: string;
age: number;
greet(): void;

}

Zero value of interface is nil.

Abstract type underlying which is our concrete type (struct, float, etc): can be thought of

as a tuple

of a value and a concrete type: (value, type)

PAGE "* MERGEFORMAT I

In case of pointer receiver: (& {Hello}, *main.T)

If the concrete value inside the interface itself is nil, the method will be called
with a nil receiver & doesn’t trigger a null pointer exception. Interface value that

holds a nil concrete value is itself non-nil.

A nil interface value holds neither value nor concrete type.
Callin a method on a nil interface is a run-time error because there is no type in
side the

Interface tuple to indicate which concrete method to call.

The interface type that specifies zero methods is known as the empty interface: in
terface{}.

An empty interface may hold values of any type. Every type implements at least
zero methods.Empty interfaces are used by code that handles values of unknown
type.

var 1 interface{}

1=42 (type->int)

TYPE ASSERTION

Type assertion in Node.js is a way to tell the compiler that you know more about the type

of a variable than the compiler does. It is also known as type casting.

Type assertion 1s used when you have a value of one type and you need to convert it to
another type. This 1s especially useful when working with JavaScript code that may not
have types.

In Node.js, type assertion 1s done using the as keyword. Here's an example:

const myNumber: any = 42;

const myString: string = myNumber as string;

console.log(myString); // Output: undefined

Type SWITCH

PAGE "* MERGEFORMAT I

Type switches in Node.js are used to determine the type of a value at runtime. It allows
you to write code that can handle different types of values without knowing their types at

compile-time.

To use a type switch in Node.js, you first define a switch statement with an expression
that you want to check the type of. Inside the switch statement, you define cases for each

type that you want to handle.

Here's an example:

function doSomething(value: string | number): void {
switch (typeof value) {

case 'string":
console.log('value 1s a string');
break;

case 'number":
console.log('value is a number');
break;

default:

console.log('value 1s of an unknown type');

doSomething(‘hello'); // Output: value is a string
doSomething(42); // Output: value 1s a number

doSomething(true); // Output: value is of an unknown type
Type switches can be very useful when working with dynamic data in Nodejs. They

allow you to write more flexible and robust code that can handle different types of values

without crashing or throwing errors.

ASYNC AND AWAIT

PAGE "* MERGEFORMAT I

Async/await 1s a way to write asynchronous code in a synchronous style in Node_js. It
allows you to write code that looks synchronous, but actually runs asynchronously under
the hood. Async/await 1s built on top of Promises, and it makes it easier to work with

them.

To use async/await in Node.js, you first need to define an asynchronous function using
the async keyword. Inside the async function, you can use the await keyword to wait for a

Promise to resolve before continuing execution.

async function fetchData() {
const response = await fetch('https://api.example.com/data");
const data = await response.json();

return data;

}

fetchData().then(data => {
console.log(data);
}).catch(error => {

console.error(error);

1)

Readers

To read files efficiently in Node.js, you can use the stream module. Streams are a way
to handle large amounts of data in a more efficient manner by processing it piece by
piece instead of loading it all into memory at once.

One type of stream in Node.js 1s a Readable stream, which represents a source of data

that can be read from. You can create a Readable stream for a file using the

fs.createReadStream() method. Here's an example:

const fs = require('fs");

const stream = fs.createReadStream('file.txt');

PAGE "* MERGEFORMAT I

stream.on('data’, (chunk) => {
console.log("Received ${chunk.length} bytes of data.");
$);

stream.on('end’, () => {
console.log('Finished reading file.");

1)

stream.on('error', (error) => {

console.error("Error reading file: ${error.message}");

1)

REST- Represntation State Transfer

REST (Representational State Transfer) is an architectural style used to build web
services that uses HI'TP methods like GET, POST, PUT, and DELETE to perform the
operations on resources. A RESTtul API is a web-based API that uses REST architecture
to interact with web-based clients.

RESTful APIs use the following HIT'TP methods to perform operations:

- GET: Used to retrieve a resource from the server.

PAGE "* MERGEFORMAT I

- POST: Used to create a new resource on the server.
- PUT: Used to update an existing resource on the server.

- DELETE: Used to delete a resource from the server.

RESTful APIs are stateless, meaning that each request is independent and self-contained.
The server does not store any state information about the client session. Instead, all

necessary data is sent along with the request itself.

To use a RESTful API, clients send requests to a server, specifying the HTTP method, the
resource to operate on, and any necessary data. The server then returns a response, which

may include data, status information, or error messages.

RESTful APIs are widely used in web development, particularly in mobile app
development. They offer a flexible and scalable way to interact with data stored on

remote servers.

Response Status Codes

200:0K, Success

201: Success+Created

202: Accepted, request received but not completed
204: No content

400: Bad Request, incorrect syntax

404: Not found

405: Method Not Allowed

® NS kWD =

500: Internal Server Error

HTTP package

The http package provides a client and a server. The server is made of handlers. The

handler takes a request and based on that it returns a response.

1. HTTP protocols

PAGE "* MERGEFORMAT I

Create : Post-> new data

Read : Get-> retrieve data

Update: Put-> update data

Delete: Delete-> delete data

In Node js, the built-in “http® package provides an easy way to create a RESTtul API

SErver.

To create a RESTful API server using the “http” package, you can follow these steps:

1. Import the “http* package:

const http = require('http');

2. Create a server object using the "http.createServer()’ method:

const server = http.createServer();

3. Use the “server.on()’ method to handle requests:

server.on('request’, (req, res) => {

// Handle request here
1);

4. Set the response status and headers:

res.writeHead(200, {'Content-Type": 'text/plain'});

5. Write the response body:

PAGE "* MERGEFORMAT I

res.write('Hello World!");

6. End the response:

res.end();

Here's an example of a simple RESTful API server using the “http" package:

const http = require('http');

const server = http.createServer();

server.on('request’, (req, res) => {

if (req.method ==="'GET' && req.url ==="/") {
res.writeHead(200, {'Content-Type': 'text/plain'});
res.write('Hello World!");
res.end();

} else {
res.writeHead(404, {'Content-Type": 'text/plain'});
res.write('Not Found');

res.end();

}
s

server.listen(3000, () => {

console.log('Server running on port 3000');

s

This example creates a server that responds to GET requests to the root path (*/*) with a
"Hello World!" message, and responds to all other requests with a "Not Found" message.

The server listens on port 3000.

PAGE "* MERGEFORMAT I

Functions as handlers
In Node.js, functions can be used as request handlers for HTTP servers. These functions

are often referred to as "middleware" functions.

To use a function as a request handler, you can simply pass the function as a callback to

the server's request event:

const http = require('http");

function requestHandler(req, res) {

// handle the request

}

const server = http.createServer();

server.on('request’, requestHandler);

server.listen(3000, () => {

console.log('Server listening on port 3000');

s

In this example, the requestHandler function is passed as the callback for the server's
request event. Whenever the server receives a request, it will invoke the requestHandler

function with the request and response objects.

HTTPtest Package

In Node.js, you can use the http module to test HTTP servers. The http module provides a

ClientRequest class that can be used to make HTTP requests to a server.

Here's an example of how to use the http module to test an HTTP server:

const http = require('http');

const assert = require('assert');

PAGE "* MERGEFORMAT I

const server = http.createServer((req, res) => {
res.statusCode = 200;
res.setHeader('Content-Type', 'text/plain');
res.end('Hello World\n');

1)

server.listen(3000, () => {

console.log('Server listening on port 3000");

1)

const req = http.request({
host: 'localhost',
port: 3000,
path: /'
}, (res) = {
letdata=";
res.on('data’, (chunk) => {
data += chunk;
1)
res.on('end', () => {
assert.strictEqual(res.statusCode, 200);
assert.strictEqual(data, 'Hello World\n');
console.log('Test passed!");

server.close();

s
1

req.on('error’, (err) => {
console.error(err);

1);
req.end();

Layered architecture: Layers are autonomous from one another and interact via

interfaces.

PAGE "* MERGEFORMAT I

4

User ::> .
Request ‘:> HTTP Layer : Service LaYEF Store Layer

Fig. 4 - Layered Architecture

Basically, this aids in the modularization, readability, and maintainability of our

application.

HTTP layer, Service layer, and Store layer are the three layers of this.

Table 3 - HTTP Layer, Service Layer & Store Layer
checks the request body, headers, and query/path parameters for
1. HTML layer validity.
2. Service layer : Implements business logic and communicates with datastore layer

3. Store layer executes database-level queries.

1. Each layer uses an interface (methods with defined input parameters

and output types) to communicate with the layer above it or below it.

2. The interface, database, and server for each layer are all mocked during

testing, depending on the circumstances.

Dependency Injection:

It is a way of writing code where the dependencies of a specific object or struct are

provided at the time the object is initialized.

We are able to specify when to reuse the same dependency instance and when to create
new ones.
Our structs are less closely coupled to their dependencies because they are no longer in

charge of establishing them.

Factory method

PAGE "* MERGEFORMAT I

It is a design pattern that addresses the issue of creating product objects without
identifying the concrete classes for those objects. Instead of directly calling the new

operator, it defines a method that can be used to create objects.

i. Simple factory

ii. Interface factories

MICRO SERVICES

Small, independent services that communicate over clearly defined APIs make up the
architectural and organizational strategy of software development known as

"microservices." Small, self-contained teams own and operate these services.

Applications can be expanded and developed more easily thanks to microservices designs,

which also speed up the time it takes to market new features.
Microservices' advantages

e Adaptable Scaling

The demand for each microservice's underlying app feature can be scaled
independently of the others. This enables teams to maintain service availability
during times of high demand, accurately estimate the cost of a feature, and size

infrastructure appropriately.

e Simple Deployment

Continuous integration and delivery are made possible by microservices, making
it simple to test new concepts and roll them back if they don't work. The low cost
of failure makes it possible to try more things and experiment more quickly with

code modifications and new feature time-to-market.

o Reusable Code

PAGE "* MERGEFORMAT I

Teams can use functions for many purposes by dividing software mto discrete,
well-defined modules. A service created for one function can be used as a
foundation for another feature. This allows an application to self-bootstrap since

developers may add new features without having to write code from scratch.

Docker

Docker is a platform for developing, deploying, and running applications inside
containers. Containers are lightweight, standalone executables that can run in any
environment with the Docker runtime installed, making it easy to build and deploy

applications across different environments.

Docker allows you to package an application with all its dependencies into a single
container, which can then be run on any Docker-compatible system. This makes it
easy to move applications between development, testing, and production
environments, and ensures that the application runs consistently across different

environments.

Docker provides a simple command-line interface for building, managing, and
deploying containers, and supports a wide range of operating systems, programming
languages, and application architectures. Docker also provides a number of tools and
services for managing and scaling containerized applications, including Docker
Compose for managing multi-container applications, and Docker Swarm for

managing container clusters.

Some common use cases for Docker include:

- Developing and testing applications in a consistent, isolated environment

- Packaging and deploying applications in a portable, containerized format

- Running legacy applications on modern infrastructure

- Scaling and managing containerized applications in production environments

- Building and distributing pre-configured environments for specific use cases

PAGE "* MERGEFORMAT I

Overall, Docker provides a powerful and flexible platform for building and deploying

applications, and is widely used in modern software development and deployment

workflows.

Fig. 5 - Docker yml File

POLKADOT

Polkadot is a next-generation blockchain protocol designed to connect different
blockchain networks and enable them to work together seamlessly. It is a multi-chain
network that allows for interoperability between different blockchain platforms,

making it possible to transfer value, data, and assets between them.
The Polkadot protocol was created by the Web3 Foundation, a non-profit organization

dedicated to developing decentralized technologies. The project was founded by Gavin

Wood, who was also a co-founder of Ethereum.

PAGE "* MERGEFORMAT I

Polkadot uses a unique consensus mechanism called "Nominated Proof-of-Stake"
(NPoS), which allows users to nominate validators to participate in block production
and earn rewards. The system is designed to be highly scalable and efficient, with the

ability to process up to 1 million transactions per second.

One of the key features of Polkadot is its ability to support multiple parallel chains,
known as "parachains." These parachains can be customized for different use cases,
such as smart contracts, decentralized finance (DeFi), or identity management, and can

communicate with each other through the Polkadot relay chain.

Polkadot also includes a governance system that allows token holders to vote on proposed
changes to the protocol, including upgrades and amendments. This helps ensure that the

protocol remains decentralized and community-driven.

HUSKY (Git Hooks)
Husky 1s a popular Node.js library that helps you to manage Git hooks easily in
your project. Git hooks are scripts that can be executed automatically by Git

whenever certain actions occur, such as committing or pushing code.

Husky simplifies the process of configuring Git hooks by providing a convenient
API to create and manage them. It allows you to define your hooks as scripts in
your package.json file and then automatically installs them as Git hooks in your

project's .git/hooks directory.

Some examples of hooks that you can manage with Husky include:

Pre-commit: Runs before a commit is created and can be used to perform linting,
formatting, or other checks on the code being committed.

Pre-push: Runs before a push is executed and can be used to run tests, check for

vulnerabilities, or other checks on the code being pushed.

PAGE "* MERGEFORMAT I

Post-merge: Runs after a merge is completed and can be used to perform additional

setup or configuration tasks.

CODE

App-ts

initiali
p.u

multi: true })

gerDocument)

, as (req
LogHelper. readLo

Initialization of middleware and controllers.
Other functionality, like Winston logs and cors, was also added.

PAGE "* MERGEFORMAT I

Cassandra connection:
Here we connect cassandra service running on docker to our micro service backend.

» 2 ormOpti 22 defaultReplicationStrateqy
dra = require(dr
ndra-driver');

connect = Exp a.createClient({
clientOptions:
contactPoints: [process.env.contactPoints || '12
localDataCenter: 'datacenterl',
protocolOptions: { port: 9042 },
keyspace: process.env.keyspace || 'e
queryOptions: { consistency: E
paging: { local: }
socketOptions: { readTimeout: 60000 },
ormOptions:
defaultReplicationStrategy: [
class: 'Si
replication factor: IJ

W
migration: 'safe
Hi

console.log('Cassandra conne

module.exports = { connect };

> (1) OUTPUT DEBUGCONSOLE TERMINAL Vo A

r.gnpm
L{gsu...
d sudo

fvar/lib/cassandra/data/explorer/Block-74301e90eff511ed9e331fffb387a7f6/nb-1-big
INFO [Native-Transport-Requests-1] 2023-05-11 12:17:51,964 Keyspace.java:381 - Creating
replication strategy explorer params KeyspaceParams{durable writes=true, replication=ReplicationPar

Ln17,Col32 Spaces:3 UTF8 LF {} TypeScript Prettier & [)

PAGE "* MERGEFORMAT I

Polka Chain Initialisation:

Here we initialize the polkachain testnet chain with the service.

The values of endpoints have beer derived from the environment file 1.e, .env.
polka.common.ts X

encodeAddress, Keyring } from

L 1
mnemonicT cret,
encodeAddre util crypto encodeAddr
mnemoni
ed25519PairFromSe

mne
util crypto enc
mnemonicValidate,
Api

PAGE "* MERGEFORMAT I

polka.common.ts

polka.common.ts > & polkalntialise

api: any;
exports.polkalntialise (controllNm: string)
wsProvider.on
console.log('disconn ', wWsProvider);
apl = await ApiPromise.create({ provider: wsProvider
endPoint = process.env.SOCKET HOST;
apihttp = process.env.POLKADOT WEB HOST || 'http
api.on('disconnec
api.disconnect();

api.on('connected', console.log('apil’,
Logger.info
Chain initialised for controllNm} controller”,
api.isConnected

setInterval

if (api.isConnected ===) ﬂ
s h (endPoint
e process.env.SOCKET HOST:
wsProvider = WsProvider(process.env.SOCKET HOST2
api = await ApiPromise.create({ provider: wsProvider
endPoint = process.env.SOCKET HOSTZ2;
apihttp = process.env.POLKADOT WEB HOSTZ;
break;
e process.env.SOCKET H :
wsProvider Ws rider (process.env.SOCKET HOST3
apli = awe piPromise.create({ provider: wsProvider
endPoint = process.env.SOCKET HOST3;
apihttp = process.env.POLKADOT WEB HOST3;
break;
ault:
wsProvider = WsProvider
process.env.SOCKET HOST || 'ws://35.162 .217:9944
api = z ApiPromise.create({ provider: wsProvider });
endPoint = process.env.S0CKET HOST || 'ws://35.162.287
apihttp =
process.env.POLKADOT WEB HOST || 'http://54.215.47.54

7 /data/explorer-backend/node_modules/@polkadot/api-contract/node_modules/@polkadot/rpc-core
05-11 :18:52:1852 :

05-11 +19:¢ API/INIT: RPC methods not decorated: childstate getStorageEntries
05-11 :19:00:190 -

05-11 :19: API/INIT: RPC methods not decorated: childstate getStorageEntries
05-11 18583103 :

65-11 19:19: API/INIT: RPC methods not decorated: childstate getStorageEntries
05-11 :19:06:196 -

65-11 19:19: API/INIT: RPC methods not decorated: childstate getStorageEntries
05-11 -

05-11

05-11 :

05-11 +19:¢ API/INIT: RPC methods not decorated: childstate getStorageEntries
05-11 :

iE ' MERGEFORMN

Services:

In Node.js, a worker service is a module that runs in the background and performs a
specific task or set of tasks without blocking the main event loop of the application.
Worker services are typically used for computationally intensive or long-running tasks
that would otherwise block the event loop and make the application unresponsive.

cron.schedule(
updateBlock

fr

PAGE "* MERGEFORMAT I

Workers:
Here are some common characteristics of worker services in Node.js:

Worker services are typically implemented using the Worker API, which allows you to
create and manage background threads in Node.js.

Worker services are often designed to be run as separate processes or clusters, allowing
you to take advantage of multi-core CPUs and distribute the workload across multiple
threads.

c.chain.

PAGE "* MERGEFORMAT I

Interfaces:

In Node.js, an interface is a contract or agreement between two or more modules,
specifying the methods, properties, and behavior that they must implement in order to
work together. Interfaces are often used to define the API or public interface of a module,
allowing other modules to interact with it in a consistent and predictable way.

responses.interface.ts X

interf;

controllerinterfaces.ts X

PAGE "* MERGEFORMAT I

Helpers:

In Node.js, helpers are utility functions or modules that provide common functionality or
assist in specific tasks. Helpers are often used to avoid repeating code, simplify complex
tasks, or provide common functionality across multiple modules or applications.

: any

getDatawithPagination =

getlLatestBlock = Model: any

getTotal = (Model: any)

QueryCommon () ;

PAGE "* MERGEFORMAT I

Contract Initialised:

Here we initialized smart contracts for our query functions to be used on polkachain.

contract.common.ts X

singlecC
batchC

.batchCon =
.af

contractInitialise
api: any

reject)

PAGE "* MERGEFORMAT I

contractInitialise
api:
ontrac

lve, reject)

pe
ontract = i ise(api ' ' ontract add);

error
reject(err

00277017
f7e017f60027 720060

1450440260
76b4118712187
91200241016
141016b2105418€

504402001
20086b41187121

2040
258

PAGE "* MERGEFORMAT I

4. PERFORMANCE ANALYSIS
1. Unit Test Coverage

Performed unit test coverage and found all 44 tests ran successfully i.e PASS
with a total coverage of 94.7%.

main.go

Terminal: Local + v

githu om/zopsmart/GoLang-Interns

githu om/zopsmar oLang-Interns

github.com/ oLang-1Ir

githu r oLang-Inter . P y 5 i rolDiesel

githu /zopsma ng-Ir

github.

github g oLz s o g e.qo 3 checkID

githu 0 0 rt/GoLang-1Ir W G vic] Updat

github r E: ByID
oLang-Interns- ervi z yBrand

github.c oLang-Intern

github.co smart/GoLang-Int

github. / oLang-Int

github. / rt/GoLang-Interns-28

github. / rt/GoLang-Interns

github.co 0 rt/GolLang-Int
oLang-Int

/zopsmart/GoLang-Interns-2022 v i < e

rt/GoLang-Interns i i 69 GetByBrand

github.cc "t/Gola t S S { in face p:78: GetByBrand
= githu
github.

github.

2. Linter Check

Performed a linter check using command golangci-lint run which makes sure
that the program is properly formatted and follows standard code guidelines
such as no gocognit complexity or funlen to be 0 etc. There were no linter

errors found in this project.

PAGE "* MERGEFORMAT I

S. CONCLUSION

5.1 Results Achieved

The main aim of the training was to be able to understand and implement the concepts
of GoLang, MySQL, Unit Testing, being able to create a web application
successfully performing basic CRUD operations and can be tested using postman

using the three layered architecture.

5.2 Applications Contributions

GoLang have been part of a variety of real world/ open source applications, some of

the which are listed below.

Docker, a set of tools for deploying Linux containers, Kubernetes container
management system
1. Dropbox, who migrated some of their critical components from Python to Go
2. Ethereum, The go-ethereum implementation of the Ethereum Virtual Machine,
blockchain for the Ether cryptocurrency
3. Gitlab, a web-based DevOps lifecycle tool that provides a Git-repository, wiki,

issue-tracking, continuous integration, deployment pipeline features etc.

5.3 Limitations

The application implements only the backend part but front end can be done for the
same to make the application more attractive and user friendly.

5.4 Future Work / Scope

1. Front-end for application

2. Make the program more extensive

PAGE "* MERGEFORMAT I

	b9775d304d14c3c1173e768037cb2768e3bde5eb7129d2201532c9f92b66e60f.pdf
	DECLARATION
	CERTIFICATE
	ACKNOWLEDGEMENT
	ACKNOWLEDGEMENT

	Malay major project report for plag check.docx

