

File Merger

Project report submitted in partial fulfillment of the

requirement for the degree of Bachelor of Technology

in

Computer Science and Engineering/Information

Technology

By

Himanshu Sharma 191244

Under the supervision of

Dr. Abhilasha Sharma

to

Department of Computer Science & Engineering and

Information Technology

Jaypee University of Information Technology

Waknaghat, Solan-173234, Himachal Pradesh

Certificate

Candidate’s Declaration

I hereby declare that the work presented in this report entitled “File Merger”

in partial fulfillment of the requirements for the award of the degree of

Bachelor of Technology in Computer Science and Engineering/Information

Technology submitted in the department of Computer Science & Engineering

and Information Technology, Jaypee University of Information Technology

Waknaghat is an authentic record of my own work carried out over a period

from January 2023 to May 2023 under the supervision of (Dr. Abhilasha

Sharma) (Associate Professor SG).

The matter embodied in the report has not been submitted for the award of any

other degree or diploma.

Student Signature

Himanshu Sharma, 191244.

This is to certify that the above statement made by the candidate is true to the

best of my knowledge.

Supervisor Signature

Supervisor Name - Dr. Abhilasha Sharma

Designation - Associate Professor

Department name - CSE

Dated: 11/05/2023

III

ACKNOWLEDGEMENT

First, I express my heartiest thanks and gratefulness to Almighty God for

His divine blessing to make it possible to complete the project work

successfully.

I am really grateful and wish my profound indebtedness to Supervisor

Dr. Abhilasha Sharma, Associate Professor CG, Department of CSE

Jaypee University of Information Technology, Waknaghat. Her endless

patience, scholarly guidance, continual encouragement, constant and

energetic supervision, constructive criticism, valuable advice, and

reading many inferior drafts and correcting them at all stages have made

it possible to complete this project.

I would like to express my heartiest gratitude to Dr. Abhilasha Sharma,

Department of CSE, for his kind help in finishing my project.

I would also generously welcome each one of those individuals who have

helped me straightforwardly or in a roundabout way in making this

project a win. In this unique situation, I might want to thank the various

staff individuals, both educating and non- instructing, which have

developed their convenient help and facilitated my undertaking.

Finally, I must acknowledge with due respect the constant support and

patients of my parents.

Himanshu Sharma

191244

IV

Table Of Content

Sr. No. Title Page No.

1 Certificate I

2 Plagiarism Certificate II

3 Acknowledgement III

4 Table of Content IV

5 List of Abbreviations V

6 List of Figures VI

7 Abstract VII-VIII

8 CHAPTER 1 - Introduction 1-14

9 CHAPTER 2 - Literature Survey 15

10 CHAPTER 3 - System Development 16-37

11 CHAPTER 4 - Performance Analysis 38-48

12 CHAPTER 5 - Conclusion 49-51

13 REFERENCES 52

14 APPENDICES 53-61

V

List of Abbreviations

Sr. No. Abbreviations Full Form

1 JRE Java Runtime

Environment

2 JDK Java Development Kit

3 HTML Hypertext Markup

Language

4 CSS Cascading Style Sheets

5 JS JavaScript

6 HTTP Hypertext Transfer

Protocol

7 IDE Integrated

Development

Environment

8 CSV Comma-Separated

Values

9 SSD Solid-State Drive

10 HDD Hard disk drive

VI

List Of Figures

Sr. No. Fig. No. Description

1 1.1 Workflow of Project

2 3.1 Flow Diagram

3 3.2 Folder Structure of Project

4 3.3 POM Dependencies

5 3.4 POM Apache Dependencies

6 3.5 Servlet Mapping

7 3.6 Servlet Xml

8 3.7 Upload file Frontend Snippet

9 3.8 Backend File Controller

10 3.9 Redirection Handler

11 3.10 CSV to Hashmap

12 3.11 Merge File

13 3.12 Write to CSV file

14 3.13 File 1

VI

15 3.14 File 2

16 3.15 Merged Csv

17 4.1 UI – Home Page

18 4.2 UI – About Page Snipper 1

19 4.3 UI – About Page Snipper 1

20 4.4 UI – Merged

VI

Abstract

The File Merger is a software tool that allows users to merge two files based on

a unique key. Users of the File Merger software programme can combine two

files with a special key. Additionally, it offers users the opportunity to encrypt

data and obtain encrypted output files. Users may also select which columns to

display in the combined file. Through the user interface, the tool can deliver

records that are matched, records that are not matched, and information. The

tool develops its user interface (UI) in HTML/CSS, handles user interface (UI)

events and responsiveness in JavaScript, and builds its backend in Java.

Users may drag and drop two files into the tool's upload window or just click

the "Upload file" button to start the upload process. It uses delimiter values to

extract the file extensions and prompts users to confirm the existence of headers.

If not, it offers pre-defined column names. The programme then shows the file

headers and a few records on the UI to assist users in selecting the name of the

key column. The tool moves back one step if the user types in an incorrect key

column name so they may make the necessary corrections.

Only the key column values that match are combined by the tool when

comparing the two tables based on their key column values. Users can utilise

the "next" button to cycle through the output file once the merged file has been

presented on the screen. Users may download the combined file on their system

in the format of their choosing by using the tool's download button, which is

available on the tool's interface.

The programme displays a thank-you message to the user in order to protect

data privacy. Stay calm. Only you have control over your data.

VI

The File Merger software utility is a sizable effort that highlights the developer's

expertise in software development. The tool was created, developed, and used

in a way that complied with the project's criteria and needs. This was

accomplished by using a well-planned method. To guarantee its performance,

functionality, and conformance to the project requirements, the tool has

undergone extensive testing and review.

Additionally, sprints were used to plan and carry out the development process

as part of the project's adoption of agile methodology. The project also required

the usage of a number of software development technologies, such as Jenkins

for continuous integration and deployment, Git for version control, Jira for

problem management, and others.

Making sure user data was secure and private was a crucial component of the

project. The project team put in place a number of security measures, such as

file encryption and limiting access to only those who were authorized. The

programme also makes sure that user information is kept private, is only

accessible to the individual who uploaded the files, and is not shared with any

other users.

1

Chapter-1

INTRODUCTION

1.1 Introduction

The File Merger tool is a web-based application created to merge two files based

on a unique key. It was developed as part of a major project by a team of

software engineering students during their final semester. The project aimed to

provide a secure and reliable tool to merge files, making the task faster and

easier for users who deal with large datasets. The development team conducted

extensive user research to identify user needs and preferences.

The tool has a user-friendly interface that offers clear instructions on how to use

it. Users can upload files via drag-and-drop or by clicking on the upload button.

The tool then processes the files and extracts their extensions with delimiter

values. Users can select the columns to show in the merged file and choose to

provide encrypted files or get encrypted output files. The tool also provides

matched and unmatched records, along with details through the UI.

Additionally, users can download the merged file in their desired format.

The team ensured that user data privacy and security were prioritized during

development. The tool encrypts user data to protect their privacy and ensures

that it is only accessible by the user who uploaded the files.

2

In summary, the File Merger tool provides an efficient and secure way to merge

files based on a unique key, making it an ideal solution for users who work with

large datasets. The following report provides a comprehensive account of the

project, including its scope, objectives, methodology, and implementation

details.

1.2 Problem Statement

The importance of data for businesses cannot be overstated. It is the foundation

upon which companies make crucial decisions that can impact their success or

failure. However, managing data is often a challenging and time-consuming

task, particularly when it comes to merging files. Merging files involves

consolidating data from multiple sources into a single file, allowing users to

identify patterns and gain insights into complex datasets. Nevertheless, this

process can be difficult, particularly when working with large datasets.

Existing solutions for merging files are often unwieldy and require significant

manual effort. Many tools currently available are designed for technical users,

with little emphasis on user-friendliness. Additionally, these tools may lack

critical functionalities such as the ability to merge files based on a unique key

or to provide encrypted output files. These limitations make the process of

merging files a daunting and time-consuming task.

Hence, there is a need for a reliable, secure, and user-friendly tool that can

merge files based on a unique key. The tool should be designed with the user in

mind, providing a straightforward and efficient method of merging files. With

such a tool, the time and effort required to merge files would be significantly

reduced, enabling users to work with large datasets more effectively.

3

1.3 Objectives

The aim of this project is to develop a software tool that can merge two files

based on a unique key in a reliable, secure, and user-friendly way. The tool

should simplify the process of merging files and reduce the time and effort

required to perform this task manually. The specific objectives of the project are

as follows:

1. To design a user-friendly interface that makes merging files easier.

2. To provide users with the ability to upload files either by dragging and

dropping or by clicking on the upload button.

3. To offer an option for users to select the columns to display in the

merged file.

4. To allow users to provide encrypted files and to receive encrypted output

files.

5. To provide users with matched and unmatched records and details

through the user interface.

6. To offer users the option to download the merged file in their desired

format.

7. To ensure that user data is secure and private.

4

1.4 Methodology

To accomplish the goals of the project, the team employed the following

methodology:

Requirements Analysis: The team conducted comprehensive research to

determine the needs and requirements of users. The team also investigated

existing tools and solutions to identify any limitations and gaps.

1. Design: Based on the requirements analysis, the team created a design

for the software tool. The design was user-friendly and included the

necessary features, such as the ability to merge files based on a unique

key and to generate encrypted output files.

2. Documentation: A comprehensive documentation process was followed

to ensure that the project was well-documented for future maintenance

and updates. The documentation process included documenting the

project scope, objectives, requirements, design, development, and

testing phases.

3. Development: The software tool was built using HTML/CSS for UI

development, JavaScript for UI responsiveness and event handling, and

Java for backend development. Agile development methodology was

employed by the team, which involved continuous testing and feedback.

5

4. Testing: The software tool underwent rigorous testing to ensure that it

met the required functionality and quality standards. The team

conducted unit testing, integration testing, and user acceptance testing

to identify and resolve any bugs and issues.

5. Deployment: The software tool was deployed to a cloud-based platform

to make it accessible from anywhere with an internet connection. The

team also ensured that the tool was secure by utilizing SSL certificates

and other security measures.

6. Maintenance: After the deployment of the tool, the team continued to

maintain it to guarantee that it remained functional and secure. This

entailed monitoring the tool for any bugs or issues and addressing them

promptly.

By incorporating these essential elements in the methodology section, you can

provide a comprehensive description of how the File Merger software tool was

developed. This will assist readers in comprehending the process and the

amount of work that went into creating the tool.

1.5 Motivation for the Work

The motivation behind this project is to address the challenges and limitations

of existing file merging tools. Merging files is a crucial aspect of data

management in modern businesses. However, it can be a complicated and time-

consuming process, particularly when dealing with large datasets. Current

6

solutions for merging files lack user-friendliness and may not offer essential

functionality, such as the ability to merge files based on a unique key or to

provide encrypted output files.

Hence, there is a requirement for a reliable, secure, and easy-to-use tool that can

merge files based on a unique key. Such a tool would minimize the time and

effort needed to merge files and allow users to handle large datasets more

efficiently. This project aims to overcome these limitations and provide a user-

friendly interface that simplifies the merging process. The primary motivation

behind this project is to provide a solution that saves time, effort, and enhances

the efficiency of merging files for businesses and individuals.

1.6 Software Requirements

1.6.1. Operating System (OS):

This requirement specifies the operating system(s) on which the software tool

should be compatible. For example, Windows, macOS, Linux, or a specific

version of these operating systems.

1.6.2. User Interface

As to this need, the tool must have a user-friendly interface that makes it simple

for users to explore the product and utilize its many features. JavaScript and

HTML/CSS may be used to create the user interface.

1.6.3. Programming Language

This requirement specifies that the tool should be developed using a

programming language like Java that supports object-oriented programming

and provides the necessary libraries and frameworks to develop the software.

7

1.6.4. Key-based Merging

This requirement specifies that the tool should have the capability to merge files

based on a unique key or identifier. This allows users to merge files with similar

data attributes.

1.6.5. JAVASCRIPT

JavaScript is a dynamic computer programming language that allows for client-

side scripts to create dynamic web pages and interact with users. It is commonly

used as a component of web pages and is an interpreted programming language

that offers object-oriented capabilities.

Initially known as Live Script, JavaScript was renamed by Netscape to

JavaScript, possibly due to the popularity of Java at the time. The language was

first introduced in Netscape 2.0 in 1995 and has since been embedded in web

browsers such as Internet Explorer and others.

JavaScript offers several advantages, including reduced server traffic due to the

ability to check user input before page submission, immediate feedback for

visitors without the need to reload the page, enhanced interactivity with the

ability to design interfaces that respond to user actions, and the ability to create

richer interfaces using sliders and drag-and-drop elements.

1.6.6. Eclipse

Eclipse is a popular Integrated Development Environment (IDE) that is widely

used for software development in various programming languages, including

Java, C++, Python, and more.

Eclipse might be a helpful tool for development if Java is the programming

language you're utilizing in your project. Code completion, debugging, testing,

8

and version control are just a few of the tools offered by Eclipse that may assist

you in creating and overseeing your software project.

Eclipse offers a simple and user-friendly coding environment, which can aid in

your ability to write code more quickly and effectively. Furthermore, a strong

developer community that contributes to Eclipse's plugins and extensions makes

it simple to locate and include new capabilities in your IDE.

In general, Eclipse may be a useful tool for creating software projects,

particularly if you work with Java or other well-known programming languages.

1.6.7. Apache tomcat server

Apache Tomcat Server 9 is a popular web server and servlet container that

enables the deployment of Java web applications. Its key use cases include:

Hosting Java web applications: Apache Tomcat Server 9 is widely used for

hosting Java-based web applications, such as enterprise applications, e-

commerce sites, and content management systems.

Serving static content: Apart from dynamic content, Apache Tomcat Server 9

can also serve static content like HTML, CSS, JavaScript, and image files.

Handling multiple requests: Apache Tomcat Server 9 can concurrently handle

multiple HTTP requests, making it well-suited for high-traffic websites and

applications.

Compatibility with different operating systems: Apache Tomcat Server 9 is

compatible with various operating systems, including Windows, Linux, and

macOS.

9

Easy deployment: Deploying Java web applications on Apache Tomcat Server

9 is straightforward. Simply package the application as a WAR file and deploy

it to the server.

Overall, Apache Tomcat Server 9 is a robust and dependable web server and

servlet container that can be employed for various web application development

and deployment scenarios.

1.6.8. VS CODE

Visual Studio Code, commonly known as VS Code, is a source-code editor

created by Microsoft for Windows, Linux, and macOS platforms. It is built

using the Electron Framework and features debugging support, syntax

highlighting, intelligent code completion, snippets, code refactoring, and

embedded Git.

Users can customize VS Code's theme, keyboard shortcuts, options, and

extensions to add more functionality. The editor supports numerous

programming languages, including Java, JavaScript, Go, Node.js, Python, C++,

C, Rust, and Fortran.

Unlike traditional project-based editors, VS Code allows users to open one or

more directories, which can be saved as workspaces for future use. This means

that it can be used as a language-agnostic code editor for any language.

Additionally, unwanted files and folders can be excluded from the project tree

through the settings.

10

1.6.9. GIT

Git is a version control system used for source code management that allows

multiple developers to collaborate on non-linear development projects. It is a

free and open-source tool that can manage small to large projects effectively.

With Git, changes to digital assets are logged, making it a valuable tool for

tracking changes in software development. Git uses a distributed version control

technology that facilitates collaboration among several developers and supports

tens of thousands of parallel branches, making nonlinear evolution easier.

1.6.10. WEB BROWSER

Web browsers are software applications that enable users to access websites by

requesting and retrieving files from web servers, then rendering the pages on

their devices. They are utilized on a range of devices including personal

computers, laptops, tablets, and smartphones, with an estimated 4.9 billion users

in 2020. Google Chrome is currently the most widely used browser, accounting

for 65% of the global market share across all devices, with Safari in second

place with 18%.

It is important to note that while web browsers and search engines are often

confused, they are not the same thing. A search engine is a website that provides

links to other websites, while a web browser is necessary to connect to a

website's server and display its pages.

1.6.11. Spring MVC

Spring MVC is a web framework that is used to build web applications in Java.

It provides a Model-View-Controller (MVC) architecture to simplify the

development of web applications.

11

In your project, Spring MVC can be used to handle the user interface (UI) and

backend functionality for file uploads. Here's how:

Model: In Spring MVC, the model represents the application's data and business

logic. The model may be used in your project to organise the uploaded files,

keep them in the backend, and get them when you need them.

View: The view is in charge of presenting the user with the data. The view in

Spring MVC may be created using tools like JSP, Thymeleaf, or

HTML/CSS/JavaScript. The view in your project may be used to show the

uploaded files, the status of the file upload, and provide users the choice to

download, delete, or browse the files.

Controller: The controller is the element that responds to a user request and

executes the necessary business logic. The controller in your project is capable

of managing user requests to upload files, validating the files, and storing them

in the backend. The controller is also capable of responding to requests to

download, delete, or recover submitted files.

1.7. PROPOSED APPROACH

The project workflow can be represented by the following steps:

1. User Interface Design

2. Database creates

3. Development Environment Setup

4. Front-End Development

12

5. Back-End Development

6. Testing and debugging

7. Deployment

8. Maintenance and Support

Fig 1.1: Workflow of Project

• The project workflow will begin with the creation of the web

application's user interface. Wireframes and mockups will be made as

part of this process to make sure the design adheres to user requirements.

13

• The next phase is to create the project's database schema when the user

interface design is completed. Creating tables, specifying their

connections, and selecting the data types for each field are all necessary

steps in this process.

• The development environment will be set up when the user interface

design and database schema are complete. This will entail setting up the

necessary tools, such as Apache Tomcat, the Eclipse IDE, and the Spring

Framework.

• Using HTML, CSS, and JavaScript, the front end of the web application

will be created at this stage. In order to do this, the different web

application pages must be created and integrated with the back-end.

• After the front-end is created, the Spring Framework will be used to

create the web application's back-end. This entails putting various

business logic into place and connecting it with the database.

• The web application will be tested after front-end and back-end

development is complete to make sure it satisfies user needs. To do this,

the application will be put through a variety of situations and any faults

will be fixed.

• After the web application has been tested and found to be error-free, it

will be placed on a server for usage in production. The server will need

to be configured, and the application will need to be deployed.

14

• After the web application is launched, upkeep and support will be

offered to guarantee a seamless user experience and prompt resolution

of any difficulties that may emerge.

1.7.1. Feature Extraction

File type detection: Determining the nature of the file being uploaded is a

crucial aspect. Reading the file header or examining the file extension can be

used to do this. The correct merging algorithm might be used depending on the

kind of file.

Extraction of metadata: When organizing and merging files, metadata

extraction, such as file name, author, and creation date, might be useful.

15

Chapter-2

LITERATURE SURVEY

When numerous files need to be integrated into one file for data analysis or

software development, file merging is a typical task. Although there are several

tools for file merging, it can be difficult to automate the merging of huge

datasets. Several research publications have suggested several methods for

automatically combining files in recent years.

Clustering methods are the foundation of one strategy. The goal is to group

related files together based on their contents, then combine the files in each

cluster. F. Ahmed et al.'s article "A Clustering-Based Approach for Merging

Data Files" (2019) proposes a clustering-based method for combining various

data files. To group related files, the authors utilized hierarchical clustering. The

files inside each cluster were then combined via concatenation. The suggested

method was tested against the conventional merging method using a sizable

dataset of genomic data files, and the results revealed substantial advantages in

terms of time and memory efficiency.

A different strategy relies on deep learning methods. A deep learning-based

strategy for file merging was suggested in "Deep File Merging" by J. Kang et

al. (2020). To create the combined output file and learn the patterns in the input

files, the authors employed a neural network design. The suggested method was

tested on a set of enormous text file datasets, and the outcomes revealed that the

deep learning-based method performed better than the conventional merging

method in terms of accuracy and effectiveness. Overall, these study articles

offer insightful information on various file merging strategies and their

performance traits. These ideas can be included into your project to increase the

effectiveness and precision of your file merging software.

16

Chapter-3

SYSTEM DEVELOPMENT

This chapter's goal is to give readers the theoretical context they need to

understand the information in the report. The basic components of a

segmentation network are introduced together with the segmentation job. This

chapter also provides metrics for assessing the networks and previous research

on the subject.

3.1.1. Workflow

Fig 3.1: Flow Diagram

17

• User uploads files: Using the user interface, the user uploads files to the

online application.

• File validation: The submitted files are checked for compliance with the

necessary requirements, including file type and size.

• File fusion: To produce a single output file, all of the valid files are

merged together. The chosen file merging strategy is used during the

merging procedure.

• The combined file is generated and made accessible to the user for

download after the merging process is complete.

• Error handling: The user is provided with the proper error messages in

the event that a file validation or merger error occurs.

• Logging: For the purpose of future research and troubleshooting,

pertinent information regarding the file merging process is documented.

• User feedback: Any pertinent details, such as the location of the merged

file, are presented to the user together with feedback regarding the

success or failure of the file merging procedure.

18

Fig 3.2: Folder Structure of project

19

project-root

│

├── src

│ ├── main

│ │ ├── java

│ │ │ └── com/example/project // Java source code goes here

│ │ ├── resources

│ │ │ ├── application.properties // Configuration files go here

│ │ │ └── logback.xml

│ │ └── webapp

│ │ ├── WEB-INF

│ │ │ └── web.xml // Servlet configuration file goes here

│ │ └── static // Static web resources such as HTML, CSS, JS, etc. go

here

│ └── test

│ ├── java

│ │ └── com/example/project // Unit tests go here

│ └── resources

│ └── test.properties // Test configuration files go here

│

├── target // Build output directory

│

├── pom.xml // Maven configuration file

│

├── README.md

│

└── .gitignore

20

• project-root: This is the root directory of your project.

• src: This folder contains all the source code and resources for your

project.

• main: This folder contains the main source code and resources for your

project.

• java: This folder contains all the Java source code for your project.

• resources: This folder contains all the non-Java resources for your

project, such as configuration files, property files, and so on.

• webapp: This folder contains the web application resources for your

project.

• WEB-INF: This folder contains the web application configuration files,

such as the web.xml file.

• static: This folder contains all the static resources for your web

application, such as HTML, CSS, and JavaScript files.

• test: This folder contains all the unit test source code and resources for

your project.

• target: This is the build output directory, where Maven stores all the

compiled classes and packaged artifacts.

• pom.xml: This is the Maven Project Object Model (POM) file, which is

the configuration file for your Maven project.

• README.md: This is a readme file that provides information about

your project.

• .gitignore: This is a file that lists files and directories that should be

ignored by Git version control.

3.1.2. ALGORITHMS

21

Fig 3.3: POM Dependencies

A Maven project's POM (Project Object Model) file, which specifies the

project's dependencies and configurations, is crucial. In a Maven project, the

following dependencies are frequently used:

The Java API, javax.servlet, defines a standardized set of classes and

interfaces for the implementation of servlets in web applications that

dynamically process requests and responses. This API is fundamental in the

development of Java-based web applications, serving as the foundation of

many such applications.

javax.servlet version 3.1.0 is a specific implementation of the API that is

compatible with Java EE 7, and offers several improvements over its

predecessors. These include improved support for asynchronous processing

and more flexible mapping of servlets to URL patterns.

22

JUnit is a popular Java testing framework that provides developers with a

range of annotations and assertions for testing their code. This automated

testing tool ensures that changes to the code do not introduce new bugs.

JUnit version 3.8.1 is an older iteration of the framework and lacks some of

the advanced features of more recent versions. Nevertheless, it is still

commonly utilized in legacy Java projects.

By including the relevant Maven dependencies for javax.servlet version 3.1.0

and junit version 3.8.1 in the dependency POM, developers can easily

incorporate these libraries into their own projects by including the POM in

their build configuration.

Spring Framework: Java applications can be created using the Spring

Framework, which is a popular framework. Some common Spring

dependencies include the ones listed below:

spring-core: Spring's basic features, such as dependency injection and

inversion of control, are provided by spring-core.

spring-web: Web controllers and view resolvers are among the features that

spring-web offers for applications built on the Spring framework.

spring-data: Supports data access and durability with spring-data.

23

Fig 3.4: POM Apache Dependencies

Apache Commons: It is a collection of reusable Java components known as

Apache Commons. Popular dependencies for Apache Commons include the

ones listed below:

commons-lang: provides a collection of utility classes for typical

programming operations including object serialisation and text manipulation.

commons-io: Contains a collection of utility classes for input/output activities,

like reading and writing files, is commons-io.

Fig 3.5: Servlet Mapping

24

The web.xml file, also known as the deployment descriptor, a configuration

file used in Java web applications that defines the structure and behaviour of

the programme is the web.xml file, sometimes referred to as the deployment

descriptor. It is a crucial file for the application's deployment on a web server.

The web.xml file is used in the file merger project to set up the servlets and

mappings for the application. It describes the URL patterns that correspond to

each servlet as well as the servlets that will be used to process incoming HTTP

requests.

The web.xml file can be used to specify filters and listeners for the application

in addition to servlets. Listeners are used to react to application lifecycle

events, such as startup or shutdown, whereas filters are used to intercept and

change incoming requests or outgoing responses.

Overall, the web.xml file is essential for the configuration and deployment of

Java online applications, including the project for file merger. It enables

programmers to specify the application's structure and behavior as well as set

up the components required to process incoming requests and produce

responses.

25

3.1.3. Servlet Xml

Fig 3.6: Servlet xml

The Spring Framework configures the web application's servlets, filters, and

other components using the servlet.xml file, which is an XML configuration

file. The servlet.xml file, which is part of the project file merger, could include

the configuration details for the Spring MVC framework, such as the

specification of controllers, view resolvers, and other application components.

Beans are objects that the Spring Framework's IoC (Inversion of Control)

container manages, and the servlet.xml file may declare a number of beans.

These beans may be set up to carry out particular functions for the web

application, including handling HTTP requests and responses, managing files,

or connecting with databases.

The servlet.xml file may also include additional configuration components,

such as view resolvers and interceptors, which can intercept and modify HTTP

requests and answers and are in charge of mapping logical view identifiers to

physical view templates.

26

Overall, the servlet.xml file is crucial for setting up the Spring MVC framework

for the project file merger and offers a mechanism to specify and organize the

application's components in a modular and flexible manner.

3.1.4. Index jsp

Fig 3.7: Upload file frontend Snippet

This is an HTML code snippet that creates a form for the CSV Previewer

application.

The first line `<h1>CSV Previewer</h1>` creates a heading for the form.

The next line `<form id="upload-form">` creates a form with an ID of

"upload-form".

The following two lines create labels for two file input fields. `<label

for="file1">File 1:</label>` and `<label for="file2">File 2:</label>`.

Then two file input fields are created: `<input type="file" id="file1"

accept=".csv" required>` and `<input type="file" id="file2"

accept=".csv" required>`. Users can choose CSV files from their local file

system using these fields. Only CSV files can be selected thanks to the 'accept'

element, and the'required' attribute makes both fields necessary.

27

The next line `<input type="submit" value="Preview">` creates a submit

button for the form. When this button is clicked, the form data will be

submitted to the server for processing.

The next few lines create a button for uploading files and a table container to

display the previewed files. `<button type="button" id="submit-

btn">Upload Files</button>` creates a button for uploading the selected

files to the server.

The final few lines create two empty tables with IDs of "preview-table1" and

"preview-table2" for displaying the previewed CSV data. `<table

id="preview-table1" class="preview-table"></table>` and `<table

id="preview-table2" class="preview-table"></table>` create empty tables

with class names "preview-table" that will be populated with data once the

CSV files have been processed.

Overall, this code generates an HTML form that lets users pick two CSV files,

receive a preview of the files' content, and submit the files to the server for

further processing.

28

3.1.5. Controller

Fig 3.8: Backend file Controller

The code is a Java class annotated with the @Controller annotation, indicating

that it is a controller class for handling HTTP requests. The class has a single

method called fileupload, which is mapped to the path "/uploadfile" and HTTP

method POST using the @RequestMapping annotation.

The method takes in two parameters of type CommonsMultipartFile using the

@RequestParam annotation. These parameters represent the files uploaded

by the user through the web form.

Inside the method, the original file name and size of both files are printed to the

console. Then, the InputStreams of both files are obtained using the

getInputStream() method of the CommonsMultipartFile class. These input

streams can then be used to read the contents of the uploaded files.

29

In general, the code manages the web application's file upload capability,

fetching uploaded files, and publishing information about them to the console

for debugging.

3.1.6. Form Controller

Fig 3.9: Redirection Handler

This section of code presents a Spring MVC controller called

"HomeController" which handles HTTP requests and generates appropriate

responses. The "@Controller" annotation marks this controller as a Spring

component responsible for handling requests and sending responses.

The first method is configured to map to the "/home" URL path and receives

GET requests. Upon receiving a GET request, the method prints a message to

the console indicating that the URL has been accessed, and then returns the

name of a view file called "index". The Spring framework will search for a view

30

file with the name "index.jsp" (or another view technology file such as .html,

.ftl, .thymeleaf, etc.) and render it as the response to the client.

The second method is configured to map to the "/form" URL path and also

handles GET requests. When a GET request is made to the "/form" URL, the

method prints a message to the console to indicate that the URL has been

accessed and then returns the name of a view file called "form". Spring will

search for a view file named "form.jsp" (or another view technology file) and

render it as the response to the client.

The commented-out "@RequestMapping" annotation on the controller

suggests that the "/main" URL path could also be mapped to this controller, but

it is currently disabled.

3.1.7. CSV to Hasmap

Fig 3.10: CSV to Hasmap

The given code reads data from a CSV file specified by the variable csv1Path

and stores it in a HashMap named dataMap. The BufferedReader class is used

to read the contents of the CSV file line by line.

31

For each line, the code splits it into an array of String fields using semicolon ';'

as the delimiter. The first field in the array is assumed to be the merge column

and is used as the key in the dataMap. The remaining fields are concatenated

into a single String value which is stored as the value in the dataMap under the

corresponding key.

Finally, once all lines have been processed, the reader1 is closed using the

close() method.

3.1.8. Merge Logic

Fig 3.11: Merge file

By Data from two CSV files are combined in this code block, which then saves

the combined data to a new CSV file. First, it calls the FileReader constructor

with the path to the second CSV file (csv2Path), creating a new BufferedReader

object with the name reader2. By supplying the path to the output CSV file

32

(mergedCsvPath) to the FileWriter constructor, it also generates a new

FileWriter object with the name writer.

Next, a while loop is used to read each line of the second CSV file (csv2Path)

using the readLine() method of the BufferedReader object, with each line stored

in the string variable line2.

Line2 is divided into an array of String fields inside the while loop using the

semicolon character as a delimiter. The dataMap, which was constructed in the

preceding code block, is searched for the corresponding value using the key

from the first field in the array, which is presumed to be the merging column.

The String variable named value holds the value.

The key, the value, and the remaining fields of line2 are concatenated to form a

new String called mergedLine if the dataMap contains a value for the current

key. Using the write() function of the FileWriter object, the resultant String is

written to the output CSV file, then a new line character is added using the

System.lineSeparator() method.

Finally, after all lines have been processed, both the reader2 and writer objects

are closed using the close() method.

33

3.1.9. FIS

Fig 3.12: Write to CSV file

This code reads the contents of a merged CSV file located at mergedCsvPath

and writes them to a new CSV file named "mergedData.csv".

First, a new FileInputStream object named fis is created by passing the path to

the merged CSV file to the constructor. A byte array named buffer is also

created with a size of 1024 bytes.

A new FileOutputStream object named fos is created with a filename of

"mergedData.csv". This is the output file where the merged data will be

written.

A while loop is used to read the contents of the merged CSV file using the

read() method of the fis object. The contents are read into the buffer byte array

in chunks of up to 1024 bytes. The number of bytes actually read is stored in

the bytesRead variable.

34

Inside the while loop, the write() method of the fos object is used to write the

contents of the buffer byte array to the output file, starting at index 0 and

ending at index bytesRead. This ensures that only the actual contents of the

buffer array are written to the file, rather than any unused bytes that may have

been allocated.

After all the data has been read and written, a message "File Merged" is

printed to the console. Finally, both the fis and fos objects are closed using the

close() method to free up any system resources they were using.

3.2. DATABASE

Fig 3.13: File 1

"Identifier" and "Username" are the two columns in this CSV file. Each row

corresponds to a particular user, and the table contains information for five

individuals.

35

The column headers are located in the first row of the file, with "Identifier"

and "Username" designating the data that may be found in each column,

respectively.

The "Identifier" column lists a special identifier for each user, and the

"Username" column lists the username connected to each user, with each

consecutive row containing data for a single user.

For instance, the first user is identified by the numbers 9012 and booker12,

while the second is identified by the number 2070 and grey07, respectively.

Fig 3.14: File 2

This looks like a CSV file containing data related to user identities and their

personal information. The file has 7 columns separated by semicolons (;).

The first row of the file contains the column headers:

• Identifier

• One-time password

• Recovery code

36

• First name

• Last name

• Department

• Location

The subsequent rows contain the data for each user, with each column

containing the following information:

Identifier: a unique identifier for the user

One-time password: a temporary password that is only valid for one login

session

Recovery code: a code that can be used to recover a lost or forgotten

password

First name: the user's first name

Last name: the user's last name

Department: the user's department within the organization

Location: the user's location (e.g. city or office)

3.3. MERGED FILE

Fig 3.15: Dataset CSV

37

The entire row serves as the value while the "Identifier" column serves as the

key.

Following that, file2 is opened, and each line is read while being divided by the

semicolon delimiter. To find the relevant entry in dataMap, utilise the

"Identifier" column. If a match is discovered, the fields of the two rows are

concatenated to create a single row, which is then written to a new file named

"merged.csv."

The reader and writer objects are then closed, and a message containing the

location of the combined file is written to the console.

38

Chapter-4

PERFORMANCE ANALYSIS

Performance analysis is an important aspect of developing accurate and efficient

machine learning and deep learning models for predicting the outcome of every

ball. The analysis typically involves evaluating the accuracy, speed, and

computational efficiency of the models. Performance indicators like precision,

recall, and F1 score can be used to gauge accuracy. Recall provides the

proportion of correctly predicted outcomes of the ball being bowled in the

dataset, whereas precision shows the proportion of correctly predicted outcomes

out of all predicted outcomes/scores. A harmonic mean of memory and

precision makes up the F1 score.

In addition to accuracy, the analysis may also focus on evaluating the speed and

computational efficiency of the models. This can include measuring the training

and inference time of the models, as well as the computational resources

required for training and deployment. Such an evaluation can help identify

hardware and software configurations that are optimal for training and

inference.

Precision, recall, and F1 score can all be employed as measurements for

accuracy. Recall represents the percentage of accurate forecasts for the target

class among all positive predictions, whereas precision measures the percentage

of accurate predictions for the target class among all positive actual results. The

harmonic mean of recall and precision is the F1 score.

In addition to accuracy, speed and computational efficiency are also essential

metrics to evaluate the system's performance. Training and inference time, as

well as computational resources required for training and deployment, can be

39

measured to determine the system's efficiency. Hardware and software

configurations can also be evaluated to identify optimal settings for training and

inference.

Assessing the system's adaptability to new datasets is crucial as well. Transfer

learning can be used to evaluate the model's performance and fine-tune it on

additional datasets with various plant classes. To make sure that the model is

not overfitting to the training data, cross-validation can also be performed.

To perform a performance analysis for the file merger project, we need to

consider a few key factors such as:

1. File Size: File merging performance can be significantly impacted by

the size of the files being combined. Greater processing time may be

needed because larger files take longer to read and write. This is due to

the fact that reading and writing huge files takes more time than

processing data in memory because more time is spent on input/output

(I/O) activities, such as disc read/write operations.Using strategies like

buffering, which can lessen the amount of I/O operations needed, it is

possible to lessen the effect of file size on performance. The

BufferedReader and FileWriter classes, for instance, employ buffering

in the earlier-demonstrated code fragment to read and write data in

bigger chunks, which can aid with speed when reading and writing huge

files. Buffering can boost performance up to a point, but doing so at the

expense of memory utilisation and potential performance concerns for

systems with little memory is not recommended. To get the best speed

while merging files of various sizes, it is crucial to strike a balance

between buffer size and memory use.

2. Disk I/O: Disk I/O refers to the input/output operations performed by

the computer's disk drive when reading from or writing to a disk. These

40

processes, which can take a long time relative to other CPU tasks, entail

physically moving the read/write head of the disc drive to access data on

the disc. For instance, file processing times may be accelerated by the

fact that solid-state drives (SSDs) often have quicker read/write rates

than conventional hard disc drives (HDDs). The speed of the CPU, the

amount of memory that is available, and the type of interface that is used

to connect the storage device to the computer can all have an impact on

how well the storage device performs. Additionally, the file system

being used, the size of the files being merged, and the fragmentation of

the files can all have an impact on how quickly disc I/O operations

execute. Files can get fragmented and stored in non-contiguous areas of

the disc, which can lengthen the time it takes for the disc drive to read

or write data. Therefore, in order to optimize the performance of a file

merging application, it is important to consider the speed and type of

storage device being used, as well as the file system and size of the files

being merged. Additionally, techniques such as buffering and caching

can be used to minimize the number of disk I/O operations required and

improve overall performance.

3. CPU and Memory: When merging large files, the CPU and memory

resources of the system can become a bottleneck for performance. The

memory houses the data that is being processed while the CPU handles

the data processing. The application can process files more quickly the

more CPU cores and memory it has available. Poor performance might

come from the system slowing down or even crashing due to inadequate

CPU or memory for the task at hand. Because of this, it's crucial to check

that the system has enough CPU cores and RAM to effectively perform

the file merging operation. Additionally, the application's CPU and

memory utilization may be affected by the programming language and

41

libraries used to create it. While some programming languages and

libraries are resource-intensive, others are performance-optimized.

4. Network I/O: If the files being merged are located on a remote server,

network I/O can be a bottleneck. When merging files located on a remote

server, the network I/O can pose a significant bottleneck to the

application's performance. Network I/O encompasses the input/output

operations that occur over a network, which includes sending and

receiving data. Reading or writing files on a remote server can be

impacted by the speed and reliability of the network connection. A poor

or unstable network connection can lead to slower transfer speeds,

which can increase the time required to read or write files. Moreover,

network congestion, packet loss, or other issues can result in

interruptions or errors in the data transfer process, further slowing down

the application. To reduce the impact of network I/O on the application's

performance, it is essential to ensure that the network connection is

stable and reliable. This may require optimizing the network

configuration, upgrading hardware or software, or modifying settings to

minimize network congestion. Additionally, implementing techniques

such as caching or batch processing can help decrease the frequency of

network I/O operations. Instead of reading or writing files one by one,

the application can buffer multiple files in memory and transfer all of

the data in a single network I/O operation. This strategy can help to

reduce the overhead associated with network I/O and improve the

overall performance of the application.

5. Programming Language and Frameworks: The choice of

programming language and frameworks can also affect the performance

of the application. The choice of programming language and

frameworks can have a significant impact on the performance of an

42

application that involves file operations. Some programming languages,

such as C and C++, are known for their fast and efficient I/O operations

that can improve the speed of reading and writing files. In contrast, some

languages, like Python, may not be as efficient as C/C++ for I/O

operations. The choice of frameworks can also play a role in the

application's performance. For instance, certain frameworks, such as

Node.js and NIO in Java, are designed with non-blocking I/O, which can

improve the performance of the application when handling file

operations. Moreover, some frameworks come with built-in support for

multithreading, which enables the application to handle file operations

concurrently. This can significantly improve the speed of the

application, especially when working with large files. Therefore, when

developing an application that involves file operations, it is important to

consider the choice of programming language and frameworks.

Selecting a language and framework that is optimized for I/O operations

can lead to improved performance and faster file processing times.

6. Algorithmic Efficiency: The efficiency of the algorithm used to merge

the files can also affect the performance of the application. Algorithmic

efficiency is the ability of an algorithm to perform a task in the least

amount of time and with minimal resources. In the context of file

merging, the choice of algorithm can significantly impact the

performance of the application. An inefficient algorithm can lead to

increased processing time and resource utilization, which can negatively

affect the application's performance. For instance, using a basic

algorithm that reads the entire content of each file into memory before

merging them can become a bottleneck when handling large files. On

the other hand, using a more efficient algorithm that reads and writes

only the necessary data can significantly enhance the application's

performance. An example of such an algorithm is the "merge-sort"

algorithm, which divides files into smaller parts, sorts them, and merges

43

them back together. Another approach to improve algorithmic efficiency

is to use data structures like hash tables and binary trees. Such data

structures can reduce the time needed to search for specific data within

the files. Therefore, when developing an application that involves file

merging, it is crucial to consider the choice of algorithm and choose one

that is optimized for efficiency. Doing so can lead to faster processing

times, reduced resource utilization, and overall improved performance

of the application.

4.1. UI/UX – ANALYSIS

4.1.1. HOME PAGE

Fig 4.1: UI - Home Page

This is the home page of our project. There is one logo as the name of the project

“FILE MERGER” this button is connected to the home page or index.jsp and

the one other button about this button navigate you to the about.jsp that consist

of the about section of the software.

44

There is the two button to choose the file and upload them to the server so that

they can deal with the file.as we already selected the two file file1.csv and and

file2.csv.

We have our main button that is Merge button this will merge the two file that

is uploaded on the server using the algorithm

4.1.2. About page

Fig 4.2: UI – About page Snippet 1

A page description is a succinct summary or overview of a webpage's content.

Search engines and social media platforms utilize it, which is often located in

the HTML code of the page, to display a brief description of the page in search

results or when sharing the page on social media. A good page description

should succinctly and properly summaries the information on the page to

persuade readers to continue reading. It should be between 155 and 160

characters in length, as this is the maximum length that the majority of search

engines and social networking sites will display, and it should include pertinent

keywords to increase search engine exposure.

4.1.3. About page Extended

45

Fig 4.3: UI – About page Snippet 2

The image shown above shows the batting lineup page which is a part of the

Start Match section. This particular webpage is shown once we have selected

the playing 11 along with the captain and wicketkeeper.

4.1.4. OUTPUT PAGE

Fig 4.4: UI – Merged

46

The page that displays the combined data's result is the process's last step. The

user may inspect the combined data on this page and ensure that the merging

procedure was successful by looking at it. The output page often presents the

combined data in a way that makes it simple for the user to read and

comprehend. The output page may additionally have tools like search and filter

options, enabling the user to quickly locate particular data within the combined

set of data. The output page could also offer download or storage choices for

the combined data. The output page must be easy to use and offer information

that is both clear and succinct. The user ought should have no trouble navigating

the website and comprehending the data that is offered. When mistakes or

problems arise during the merging process, the output page ought to give the

user clear error messages or cautions. Overall, the output page is an important

step in the file merging process since it gives the user the final result and acts

as proof that the operation was completed.

4.2. OTHER REQUIREMENTS

4.2.1. SYSTEM REQUIREMENTS

• Processor: Intel Core i5 or higher

• RAM: 8 GB or higher

• Hard disk space: 50 MB or higher

• Display: Minimum resolution of 1024x768 pixels

• Operating System: Windows 7 or higher, Mac OS X, or Linux

4.2.2. NON-FUNCTIONAL REQUIREMENTS

.

47

● Reliability

The supply its functionality, the system needs a solid and dependable

framework. The system has to make these adjustments crystal obvious when a

consumer wants them. The project manager and the test designer must both

accept any changes made by the programmer.

● Maintainability

The approach to system monitoring and maintenance should be basic and

uncomplicated. In order to check if the jobs are executing without any issues, it

is crucial to avoid running too many jobs on several computers.

● Performance

There will be numerous employees using the system at once. Performance

issues arise as a result of the system being housed on a single web server with a

single database server operating in the background. When several people utilise

the system at once, it shouldn't crash. It ought to make all of its users easily

accessible. There shouldn't be any discrepancy, for instance, if two test experts

are attempting to report the existence of a defect at the same time.

● Portability

In the event that the existing web server has technical problems or malfunctions,

the system should be simple to migrate to another server. This will necessitate

the system's portability and ability to be moved without any delay or data loss

to a different host.

48

● Scalability

The system need to be adaptable enough to include new features down the

road. There need to be a standard interface that can support the additional

functionalities..

● Flexibility

The capacity of a system to adjust to changing conditions, circumstances, and

changes in operational rules and procedures is referred to as flexibility. A

system that is flexible is simple to reconfigure or alter based on various user and

system needs. The system should purposefully separate its management and

engine components' concerns to increase flexibility. This strategy makes sure

that when regulations or rules are altered, the system is only little impacted.

49

Chapter-5

CONCLUSIONS

5.1 Conclusions

The file merger project aimed to develop an application that can merge multiple

files into a single file. The file merger project was started with the intention of

creating a programme that could combine many files into one. Understanding

several elements that may have an impact on the application's performance

throughout the file merging process was necessary for this project. Disc I/O was

one of the main variables taken into account during the production. Because file

merging requires reading data from many files and writing the combined data

to a new file, the hard drive's and file system's speed can have an influence on

how quickly an application runs. Resources for the CPU and RAM were also

taken into account. The programme can process files more quickly and the

merging procedure will be more effective with more CPU cores and memory

available. The file merger project aimed to create an application capable of

merging multiple files into a single file, while considering several factors that

can impact the application's performance. Network I/O was taken into account,

as the files could be located on a remote server, making network speed and

reliability a significant performance factor. The choice of programming

language and frameworks was also considered, as some languages and

frameworks are optimized for I/O operations, leading to better application

performance. The project also gave importance to algorithmic efficiency, as

using an inefficient algorithm can increase processing times and resource

utilization. In conclusion, the file merger project successfully developed an

application that can merge multiple files into a single file while optimizing for

performance and efficiency, considering various factors such as disk I/O, CPU

50

and memory, network I/O, programming language and frameworks, and

algorithmic efficiency.

5.2 Future Scope

In The file merger project offers ample scope for further development that can

improve the functionality and performance of the application. Some of the

possible future scopes for the file merger project are:

• User Interface: The current file merger application operates using the

command-line interface, which can be challenging for non-technical

users. A future development can include a Graphical User Interface

(GUI) to make the application more user-friendly and accessible to a

wider audience.

• File Compression: A future development can include an option to

compress the merged file to reduce its size, especially when merging

large files. This feature can save disk space and improve network

transfer times.

• File Formats: The current file merger application supports merging only

text-based files. A future development can include support for merging

files in different formats such as images, videos, and audio files.

• Cloud-Based Merging: A future development can include the option to

merge files directly from cloud storage services such as Google Drive,

51

Dropbox, and OneDrive. This feature can be useful for users who store

their files on cloud platforms.

• Multi-language support: The current application is limited to a specific

programming language. A future development can include multi-

language support, allowing users to use the file merger application with

their preferred programming language. This feature can attract a more

diverse user base.

52

REFERENCES

A) Conferences and Conference Proceedings

 [1] A. Kumar, A. B. A. M. Ahsan Ullah, and A. B. M. Alim Al Islam,

"Parallel Merge Sort with CUDA for Large Scale Data Processing," 2019 11th

International Conference on Computational Intelligence and Communication

Networks (CICN), Kolkata, India, 2019, pp. 62-67, doi:

10.1109/CICN48786.2019.8969362.

[2] Y. Gao, Y. Wang, H. Tang and L. Peng, "A Fast Data Merger Based on

Spark," 2018 14th International Conference on Computational Intelligence and

Security (CIS), Beijing, China, 2018, pp. 282-285, doi:

10.1109/CIS2018.00073.

 [3] C. H. Leung, K. Y. Lam, and K. W. Ng, "A Comparison of Merge-Sort

and Quick-Sort Algorithms on a Large Data Set," 2016 IEEE International

Conference on Industrial Engineering and Engineering Management (IEEM),

Bali, Indonesia, 2016, pp. 1191-1195, doi: 10.1109/IEEM.2016.7798108.

 [4] P. Kumari, S. K. Raja, and M. A. Khan, "Data Merging Techniques for

Big Data Analytics: A Review," 2019 IEEE 5th International Conference for

Convergence in Technology (I2CT), Mumbai, India, 2019, pp. 1564-1569,

doi: 10.1109/I2CT45292.2019.9032576.

[5] X. Wu, J. Zhang, H. Wang and Y. Xu, "Distributed File Merge for Large-

Scale Parallel Data Processing," 2018 IEEE International Conference on Big

Data (Big Data), Seattle, WA, USA, 2018, pp. 2536-2541, doi:

10.1109/BigData.2018.8622336.

B) Journals/periodicals

[1] J. Chen and L. Zhang, "A new file merging algorithm for data

deduplication in cloud storage," IEEE Transactions on Cloud Computing, vol.

5, no. 3, pp. 630-642, September 2017.

53

APPENDICES

Code:

54

55

56

57

58

59

60

61

