
DEVELOPING AN APPROACH FOR SCHEDULING OF IOT

APPLICATION TASKS IN FOG COMPUTING

Project report submitted in partial fulfilment of the requirement for

the degree of Bachelor of Technology

in

Computer Science and Engineering/Information Technology

By

Deepanshu Kumar (191204)

Under the supervision of

Dr. Pradeep Kumar Gupta

to

Department of Computer Science & Engineering and Information

Technology

I

II

III

ACKNOWLEDGEMENT

I would like to thank and express our gratitude to our Project supervisor Dr.

Pradeep Kumar Gupta for the opportunity that he provided us with this project

“Developing an approach for Scheduling of IOT Application Tasks in Fog

Computing”. The outcome would not be possible without his guidance. This

project taught me many new things and helped to strengthen concepts of Cloud

Computing . Next, I would like to express my special thanks to the Lab

Assistant for cordially contacting us and helping us in finishing this project

within the specified time. Lastly, I would like to thank my friends and parents

for their help and support.

IV

TABLE OF CONTENTS

Chapter 1 : INTRODUCTION

 Introduction ... 1

 Problem statement ... 2

 Objective ... 2

 Methodology .. 3

 Organization .. 9

CHAPTER 2 : LITERATURE SURVEY

 Literature review .. 11

 Tabular form of Literature review ... 16

..

CHAPTER 3: SYSTEM DEVELOPMENT 21

CHAPTER 4: PERFORMANCE ANALYSIS

 : Comparisons and Results… ...32

CONCLUSIONS

Conclusion… ... 44

Future Work… ... 44

REFERENCES ... 45

V

LIST OF ABBREVIATIONS

1. PSO: particle swarm optimization

2. LA: learning automata

3. SJF: shortest job first

4. GA: genetic algorithm

5. HGAPSO: hybrid of genetic algorithm and particle

swarm optimization.

VI

LIST OF FIGURES

Figure 1: STRUCTURE OF CLOUD-FOG SYSTEM FOR IOT

APPLICATIONS... 1

Figure 2: FOG COMPUTING ARCHITECTURE 4

Figure 3: VIRTUAL MACHINE .. 5

Figure 4: LEARINING AUTOMATA SCHEDULING 8

Figure 5: PARTICLE SWARM OPTIMIZATION

SCHEDULER .. 23

Figure 6 : GENETIC ALHORITHM ... 25

Figure 7 : OUTPUT ... 40

VII

LIST OF GRAPHS

GRAPH 1: TOTAL EXECUTION TIME OF PSO TASK SCHEDULER

VS EACH VMs ID... 33

GRAPH 2:TOTAL EXECUTION TIME OF GA-PSO TASK

SCHEDULER VS EACH VMs ID ... 34

GRAPH 3:TOTAL EXECUTION TIME OF SJF TASK SCHEDULER

VS EACH VMs ID ... 35

GRAPH 4: COMPARISON LINE GRAPH FOR SJF, PSO AND GA-

PSO

………….………………………………………………………………… 36

GRAPH 5: COMPARISON LINE GRAPH FOR SJF, PSO AND GA-

PSO .. 37

VIII

ABSTRACT

Applications for the Internet of Things are now essential for raising living

standards. However, the resources of conventional cloud data centres are

under strain due to the growing volume of data produced by IoT devices.

The use of cloud computing is growing for large-scale Internet of things (IoT)

applications that need a lot of computational power and storage. Fog

computing brings cloud services to the network's edge. One of the significant

challenges is to satisfy the quality of service requirements while assigning

resources to tasks. In such a case, it is necessary to decide where applications

should be executed in order to meet their quality of service requirements. As a

result, a cloud system requires an efficient task scheduler to determine where

applications should run. In this paper, we propose a hybrid approach for task

scheduling by implementing a Hybrid Particle Swarm Optimization.

1

CHAPTER 1 : INTRODUCTION

Introduction

Numerous facets of our daily lives have been significantly impacted by the Internet of

Things (IoT) and related technologies. It has made a variety of other items—not only

conventional smart devices—able to connect to the internet. Vehicles, retail and logistics

systems, traffic control systems, and health monitors are a few examples of these items that

carry out a variety of tasks. It is vital to process the data generated by these items in order

to acquire the information required for IoT applications.

FIG 1. STRUCTURE OF CLOUD-FOG SYSTEM

IoT devices' ability to handle and store massive amounts of data is restricted. Additionally,

network congestion and data transmission delays have a negative impact on the

performance of time-sensitive IoT applications. Experts have expanded cloud computing

resources to the edge of the network to address these problems.

2

By placing computer resources closer to end users, fog computing makes it easier to

employ time-sensitive applications. In addition to many additional benefits (as shown in

Figure 1), doing this helps preserve network capacity, lowers energy consumption,

improves mobility and wide dispersion of IoT devices, and enables remote monitoring and

low network latency for delay-sensitive IoT applications. [7]

 Problem Statement

Task scheduling is one of several optimization-related problems that the IoT and cloud-fog

networks face. This entails delegating an application's tasks to processing nodes at the

network's edge, where it connects to the cloud. Depending on the resources at hand, a

planner assigns tasks to an application in order to accomplish specified goals. The

scheduler is in charge of deciding how resources should be used by programmes, taking

into consideration variables relating to resource availability as well as application-specific

elements like resource requirements and quality of service.

Enhancing the performance of fog computing requires effective resource management.

Task scheduling is the process of allocating tasks to the appropriate resources in this

context, and it is crucial in IoT systems for efficient resource management. It is crucial to

implement realistic ways for allocating jobs in fog environments since the growing market

for IoT devices places enormous processing demands on fog units.

 Objectives

Large-scale IoT applications that need a lot of compute and storage capacity are

increasingly turning to cloud computing as a solution. However, one of the major

difficulties is making sure that the standards for service quality are met while effectively

allocating resources to various tasks. Fog computing is a method for bringing cloud

services to the edge of the network, however, it creates additional difficulties for resource

allocation optimization. To ensure optimal system performance, a critical issue that must

be solved is figuring out the best time to schedule a group of jobs on a fog node.

3

Finding the best moment to schedule a bunch of jobs on fog nodes is the goal of

scheduling. This includes taking into account the service approach's two groups of

scheduling parameters: service providers and consumer services. Fog node availability,

processing power, storage capacity, and network bandwidth are just a few examples of the

elements that the service provider must consider. Service level agreements (SLAs), quality

of service (QoS) requirements, and task priority are examples of consumer service

parameters. Fog computing systems may effectively distribute resources and guarantee that

work requirements are met while maximising system performance by taking into account

these scheduling criteria. Finding the best moment to schedule a bunch of jobs on fog

nodes is the goal of scheduling. This includes taking into account the service approach's

two groups of scheduling parameters: service providers and consumer services. Fog node

availability, processing power, storage capacity, and network bandwidth are just a few

examples of the elements that the service provider must consider. Service level agreements

(SLAs), quality of service (QoS) requirements, and task priority are examples of consumer

service parameters. Fog computing systems may effectively distribute resources and

guarantee that work requirements are met while maximising system performance by taking

into account these scheduling criteria.

 Methodology

Fog Computing

A decentralized architecture known as fog computing is used to distribute data, compute,

storage, and applications between the cloud and the data source. By locating computing

resources close to the sites where information is generated and used, this technology, often

referred to as edge computing, brings the advantages and capabilities of the cloud closer to

the user. In Figure 2

4

FIG 2. FOG COMPUTING ARCHITECTURE

The two types of task scheduling algorithms—distributed and centrally managed—can be

applied to both homogeneous and heterogeneous resource systems. A single scheduler

creates all mappings in centralised scheduling. Centralised scheduling has the benefit of

being simple to set up, but if the scheduler fails, the entire system breaks down. Centralised

scheduling also offers little failure tolerance. Distributed scheduling, in contrast, spreads

jobs among several schedulers, allowing them to collaborate to match resources to task.

VIRTUAL MACHINE (VM)

The two types of task scheduling algorithms—distributed and centrally managed—can be

applied to both homogeneous and heterogeneous resource systems. A single scheduler

creates all mappings in centralised scheduling. Centralised scheduling has the benefit of

being simple to set up, but if the scheduler fails, the entire system breaks down. Centralised

scheduling also offers little failure tolerance. Instead, distributed scheduling divides up the

workload across several schedulers, allowing them to collaborate on resource assignment.

5

FIG 3. VIRTUAL MACHINE

A virtual machine (VM) contains crucial files like a log file, NVRAM setting file, virtual

disc file, and configuration file. A VM operates as a process on an operating system. VMs

are more substantial and take longer to boot than containers, but they provide benefits like

distinct operating system kernels and conceptual separation between instances. They are

perfect for running legacy software on outdated operating systems, decoupling apps, and

running monolithic applications. Additionally, VMs and containers can be used together.

HPSOGA

Three mechanisms form the foundation of the HPSOGA technique. The discovery and

utilisation processes are balanced by the first mechanism using Particle Swarm

Optimisation (PSO). PSO is a population-based approach that was motivated by the

crowding behaviour of birds, in which particles stand in for individuals and the population

for a swarm.

6

Dimension reduction and population partitioning are a feature of the second HPSOGA

mechanism. By dividing the solution into smaller groups, this approach hopes to make the

solution space easier to search. This is accomplished by employing arithmetic cross

operations in each group, which widens the algorithm's search space. This process

contributes to the population's increased diversity, which may improve overall

optimization.

The second mechanism in the HPSOGA method involves dimension reduction and

population partitioning. This mechanism aims to break down the solution into smaller

groups, allowing for a more efficient search of the solution space. This is achieved by

using arithmetic cross operation in each group, which expands the search space for the

algorithm. This step helps to increase the diversity of the population, which can lead to

better global optimization..

SJF

Task scheduling in fog computing settings is frequently done using the scheduling

algorithm SJF (Shortest Job First). The shortest task is scheduled first in this algorithm,

which schedules tasks according to their execution times. By minimising the amount of

time when resources are idle, SJF can also aid in optimising resource utilisation. SJF can

assist keep resources in use and make sure they are not idle for long periods of time by

prioritising the quickest jobs.

Because SJF prioritises tasks based on their execution time, which guarantees that the most

crucial tasks are carried out first, it can be very effective in a fog environment. SJF is

therefore perfect for fog contexts where activities frequently have different levels of

urgency and priority.

If there are shorter jobs waiting in the queue, SJF may have the unintended consequence of

delaying longer tasks. Preemptive SJF scheduling, which enables lengthier jobs to be

interrupted if a shorter task with a higher priority enters the queue, can help to reduce this,

though.

7

PSO

Popular metaheuristic optimisation algorithm Particle Swarm Optimisation (PSO) has been

used for task scheduling in a variety of settings, including fog computing. By determining

the ideal combination of fog nodes and resources to carry out each operation, PSO can be

used to optimise task allocation and scheduling in fog environments.

PSO mimics the movement of a swarm of particles searching for the best answer as they

move about in a search space. Each swarm particle in the context of task scheduling

provides a potential remedy for the scheduling issue. Based on their own positions, the

locations of the best solutions discovered thus far, and the locations of the best solutions

discovered by the entire swarm, the particles move across the search space.

PSO has a number of benefits for task planning in foggy conditions. It may operate in

dynamic contexts where the rate of job completion and the availability of resources can

fluctuate. PSO is also simple to use and may be used to simultaneously optimise various

goals, such reducing makepan and energy usage. Premature convergence is a difficulty that

PSO may encounter where the algorithm becomes stuck in a poor solution. Hybrid PSO

algorithms, which combine PSO with additional optimisation methods or heuristics, have

been offered as a solution to this issue.

8

LEARNING AUTOMATA

A system called Learning Automata (LA) simulates the way a decision-making agent

interacts with an unpredictably changing environment in order to improve over time.

Artificial intelligence, control systems, and computer networks are just a few of the areas

where LA has seen extensive use. LA offers a strong framework for decision-making

processes that can be modified to varied scenarios and environments, making it a useful

tool for resource scheduling.

The process of allocating resources to tasks in order to ensure their effective usage and

prompt completion is known as resource scheduling. In many real-world applications, such

as cloud computing, distributed systems, and Internet of Things (IoT) networks, it is a

crucial problem. The scheduling problem is frequently difficult because it frequently calls

for the optimisation of many goals, including minimising response time, maximising

throughput, and reducing energy use.

FIG 4 learning automata scheduling

By offering a framework for adaptive decision-making that can learn from experience and

adjust to changes in the environment, LA can aid with resource scheduling. An agent in

LA interacts with the environment and gets information based on what it does. The agent

9

wants to discover a strategy that will improve its long-term success. By modelling the

environment as a collection of states and actions, LA may be used to solve the scheduling

problem. The agent then learns to choose the appropriate action based on the state of the

environment.

One of LA's benefits is that it has the ability to learn in real-time, which is very helpful in

circumstances that are unexpected and dynamic. LA is able to adjust to environmental

changes including shifts in workload, variations in resource availability, or changes in user

expectations. Additionally, LA can be used to optimise multiple goals because it can learn

to balance various trade-offs based on feedback.

 Organization

Chapter 1: Introduction

This section discusses a variety of project-related topics, including a project overview, the

technique employed, a description of the issue the project aims to solve, and the project's

goal.

Chapter 2: Literature Survey

This project's literature review section discusses the resources examined as well as the

concepts discovered through study.

Chapter 3: System Development

We will discuss the project analysis and system design implementation in this section. We

will go over the algorithms employed and give project snapshots.

Chapter 4: Performance Analysis

The performance analysis is presented in this area of the project by comparing and

exhibiting the outcomes in the form of snapshots. The display of numerous outputs is

another aspect of it. The part also discusses the methodology used to arrive at the outcomes

and what significance they have for the project's success.

10

Chapter 5: Conclusion & Future work

The project's current work is concluded in this section, which also outlines potential

directions for additional research and development.

11

CHAPTER 2 : LITERATURE REVIEW

It is important to note before we start discussing the literature on our subject that a wide

range of academic scholars and paper authors have suggested study materials on picture

reconstruction. These materials use a variety of approaches, filters, transforms, and spatial

domain and transform-only combinations. We will give a quick overview of the pertinent

research methodologies used by various scholars in this section.

A job scheduling strategy was suggested by Q. Liu et al.[1] for the fog-enabled Internet of

Things (IoT) in smart cities. In order to schedule tasks in the fog environment, they

designed a multi-objective optimisation method after analysing the characteristics and

difficulties of IoT data processing. Through simulation experiments, they tested their

suggested algorithm and compared it to two other ones already in use, demonstrating that

their strategy could produce a better trade-off between task completion time and energy

consumption. The authors also talked about how their strategy might be used in smart

cities for things like traffic control and air quality monitoring.

A review of job scheduling strategies for fog computing was presented by Benchikh et al.

[2]. these examined a number of variables that must be taken into account while job

scheduling, including latency, energy consumption, and reliability, and how these affect

the fog computing system's overall performance. They also contrasted the benefits and

drawbacks of various task scheduling strategies, including heuristic algorithms, game

theory, and artificial intelligence. The scientists stressed the significance of creating more

effective and scalable task scheduling algorithms for fog computing as they offered

potential future avenues for this field of study.

A real-time job scheduling method for Internet of Things (IoT) applications was put forth

by P. Parimi et al.[3] in a fog-cloud computing environment. The suggested method

employs a fuzzy logic-based mechanism to choose the best fog node for task offloading

based on a number of factors, including task processing time, job priority, and resource

availability. Through simulation experiments, the effectiveness of the suggested approach

was demonstrated, and the results revealed that it performed better than current scheduling

algorithms in terms of response time and energy consumption.

12

An overview of contemporary computing paradigms, such as cloud computing, IoT, edge

computing, and fog computing, is given by K. De Donno et al. [4]. They analyse the

development of these paradigms and emphasise their traits, benefits, and drawbacks. The

study also discusses how these computing paradigms are being used in fields including

healthcare, transportation, and smart cities. The paper's overall goal is to give readers a

thorough knowledge of contemporary computer paradigms and their potential social

effects.

A cost-aware job scheduling technique for fog-cloud situations is suggested by T.S. Nikoui

et al. [5]. To ensure effective resource utilisation, the authors stress the significance of

taking time and budget limits into account when scheduling tasks. They offer a heuristic

approach that prioritises jobs that demand more resources and take longer to complete,

while also accounting for the cost of running these jobs on cloud and fog nodes.

Simulations are used to test the suggested algorithm, and the results show that it performs

better in terms of cost savings and job completion times than the methods currently used

for scheduling. In general, the study offers suggestions for improving task scheduling

methods for fog-cloud situations.

For small-cell networks with multi-access edge computing (MEC), fuzzy-based

collaborative task offloading was suggested by K.D. Hossain et al. [6]. To decide on the

best offloading strategy, the method takes into account a number of factors, including job

workload, battery state, channel quality, and the computing capacity of nearby tiny cells.

The proposed method seeks to reduce energy usage and task offloading latency. To assess

the scheme's performance in various settings, the authors ran comprehensive simulations.

The simulation results demonstrated that the proposed strategy performs better in terms of

energy usage and delay reduction than other cutting-edge alternatives. The proposed plan

can help small-cell networks with MEC operate more effectively and efficiently overall.

13

A fuzzy logic-based emergency vehicle routing system for smart cities is proposed by R.

R. Rout et al. [7]. The system uses real-time data gathered from multiple IoT sensors to

pinpoint the emergency's position, the location of the closest hospital, and the current state

of the roadways' traffic. The importance of the emergency is determined using a fuzzy

inference technique, which is also utilized to design the best route for the emergency

vehicle. Additionally, the system considers the current traffic conditions and modifies the

route as necessary. The proposed system is put to the test in a mock smart city setting, and

the findings demonstrate that it is successful in coming up with the best routes for

emergency vehicles. The authors draw the conclusion that their method can be used in

practical settings to speed up emergency service response times in smart cities.

A self-adapting work scheduling approach for container clouds was proposed by L. Zhu et

al. [8] using learning automata. The technique is made to deal with the difficulty of

effective resource utilisation and job scheduling in container cloud systems, where the

demand for computational resources is highly dynamic.

The suggested algorithm decides on job scheduling and resource allocation using a

learning automata-based method. The algorithm's learning automata component enables it

to adapt to changing circumstances and gradually improve resource utilisation.They

conducted simulated experiments utilising various workload scenarios to evaluate the

suggested algorithm. In comparison to previous scheduling algorithms, the results

demonstrate that the method is capable of achieving high resource utilisation and quick

reaction times. The study shows that applying learning automata for work scheduling in

container cloud systems is beneficial overall.

A learning automata-based Quality of Service (QoS) framework for Infrastructure-as-a-

Service (IaaS) cloud environments was proposed by S. Misra et al. [8]. The framework's

objective is to raise the quality of service for cloud services by making the best resource

allocation choices..

The suggested framework employs a learning automata method to allocate resources in a

dynamic manner in response to shifting service demand. Along with service level

agreements (SLAs), resource availability, and user preferences and priorities, the

framework is also made to consider these factors.

14

They evaluated the proposed framework through simulation experiments using different

workload scenarios. The results show that the framework is able to effectively allocate

resources and improve QoS compared to other resource allocation methods. The authors

also analyze the scalability and overhead of the framework, and demonstrate its practical

feasibility.

A learning automata-based scheduling approach for time-sensitive jobs in cloud

environments was proposed by S. Sahoo et al. [10]. The suggested method aims to

optimise task scheduling to ensure that all activities are completed by their due dates, while

utilising the fewest resources possible and maintaining high standards of service. The

suggested technique employs a learning automata method to dynamically modify the

scheduling strategy in response to shifting job demands. The algorithm considers elements

including task size, deadline, and priority, as well as the resources available and how they

are being used. Through simulation experiments with a range of workload scenarios, the

authors assess the proposed algorithm. The outcomes demonstrate that the suggested

algorithm is capable of scheduling tasks efficiently, meeting their deadlines, and ensuring

optimal resource utilisation and QoS.

Using learning automata, A. Valkanis et al.[11] suggest a reinforcement learning-based

strategy for traffic prediction in core optical networks. The suggested method aims to

increase traffic prediction accuracy, which is crucial for optimising resource allocation and

raising QoS in optical networks. A. Valkanis et al.[11] propose a reinforcement learning-

based method for traffic prediction in core optical networks using learning automata. The

proposed approach seeks to improve the accuracy of traffic prediction, which is essential

for improving resource allocation and enhancing QoS in optical networks.

A learning automata-based technique for load scheduling in power systems was put forth

by Syed Q. Ali et al. [12]. The suggested method aims to meet the power demand while

maximising resource allocation for power generation, lowering operational costs, and

ensuring system stability.

15

The suggested method employs a learning automata algorithm to dynamically modify the

generation plan in response to the fluctuating power demand and the accessibility of

generation resources. The algorithm considers a number of variables, including the cost of

generation, ramp rate, and minimal up/down times, as well as the demand for electricity

and the accessibility of renewable energy sources.

Through simulation experiments using a realistic power system model, they assessed the

suggested strategy. In comparison to alternative scheduling techniques, the results

demonstrate that the suggested strategy may successfully optimise the generation schedule

and lower operational costs. The impact of several aspects, such as the degree of renewable

energy source penetration and the cyclicality of the power demand, on the performance of

the suggested approach is also examined by the authors.

16

Sr.no. Author(s) Advantages Disadvantages

1. Q.Liu, Y. Wei,

S. Leng and Y.

Chen .[1]

Simulations are used to

assess the method, enabling

testing in a controlled

setting.

When scheduling tasks, the

algorithm does not take

security and privacy concerns

into account.

2. K. Benchikh

and L.

Louail.[2]

Improved latency: Tasks

may be processed closer to

the edge with fog

computing, which lowers

latency and speeds up

response times.

Security risks: The likelihood

of security breaches or

unauthorised access increases

as data is processed and stored

across several nodes.

3. H.S. Ali, R. R.

Rout, P. Parimi

and S. K. Das

[3]

The proposed approach can

be easily integrated with

existing fog-cloud

computing frameworks.

The experimental evaluation is

restricted to a single use case

and might not be transferable

to others.

17

Sr.no. Author(s) Advantages Disadvantages

4. K. De Donno, K.

Tange and N.

Dragoni[4]

raised awareness of the

value of fog computing

as a link between cloud

and edge computing.

The challenges and

constraints of each computer

paradigm are not thoroughly

examined in the paper.

5. T.S. Nikoui, A.

Balador, A. M.

Rahmani and Z.

Bakhshi[5]

Evaluation of the

procedure in a simulated

environment can be used

to gauge its effectiveness

and practicality.

The method may need

extensive computation and

data processing, which could

increase the overall time

required to complete jobs.

6. K.D. Hossain, T.

Sultana, V.

Nguyen, T. D.

Nguyen, L. N.

Huynh, E.-N. Huh

[6]

In terms of energy usage

and delay, the plan

performs better than

other existing plans.

The suggested plan can be

challenging to put into

practise and complex.

18

Sr.no. Author(s) Advantages Disadvantages

7. R. R. Rout, S.

Vemireddy, S.

K. Raul and D.

Somayajulu [7]

The suggested system has

the ability to swiftly

determine the best paths for

emergency vehicles in real-

time, which can help save

crucial time in an

emergency.

It is unknown how well the

suggested method operates in

use because the publication

does not include a thorough

examination of it.

8. L. Zhu, K.

Huang, Y. Hu

and X. Tai[8]

The algorithm can gain

knowledge from prior

experiences and develop

better decision-making over

time by using learning

automata.

The usefulness of the

suggested approach in such

situations has not yet been

evaluated in a real-world

container cloud scenario.

9. S. Misra, P. V.

Krishna, K.[9]

Kalaiselvan

According to each user's

QoS requirements, the

suggested system can

adaptively alter the

resources allotted to them.

The methodology makes the

assumption that all users' QoS

requirements can be precisely

described and assessed, which

may not always be the case in

actual use.

19

Sr.no. Author(s) Advantages Disadvantages

10. S. Sahoo, B. Sahoo

and A. K. Turuk[10]

The algorithm is

adaptive and can

learn from past

experiences to

improve its

performance over

time.

In complicated cloud systems

with plenty of tasks and

resources, the proposed

algorithm might not function as

well.

11. A. Valkanis, G. A.

Beletsioti, P.

Nicopolitidis, G.

Papadimitriou and E.

Varvarigos[11]

innovative method

for optical network

traffic prediction that

may be of interest to

academics in the

area.

Since the proposed method is

not thoroughly evaluated in the

paper, it is challenging to

compare its effectiveness to that

of other approaches.

12. Syed Q. Ali, Imthias

Ahamed T.

Parambath & Nazar

H. Malik[12]

The suggested LA-

based approach

offers a dynamic and

adaptable way to

deal with shifting

power demand.

In cases where the demand for

power is particularly unexpected

or varies quickly, the strategy

could not be

effective.unknowable.

20

Sr.no. Author(s) Advantages Disadvantages

13 N. Rasouli, M. R.

Meybodi and H.

Morshedlou[13]

The suggested

technique is able to

dynamically adjust to

system changes and

eventually arrive at an

ideal solution.

The algorithm relies on

accurate workload and QoS

information, which may not

always be available or may be

difficult to obtain in practice.

21

CHAPTER 3 :SYSTEM DEVELOPMENT

CloudSim

An open-source programme called CloudSim replicates cloud computing infrastructure and

services. It is written in Java and was created by the CLOUDS Lab. It is beneficial to

duplicate tests and results before developing software by modelling and simulating cloud

computing environments. The system's architecture is built on CloudSim's use of Fog

Nodes, which has facilitated the creation of cutting-edge applications with great scalability

and low latency. The process of developing and maintaining applications has been

revolutionised by CloudSim.

System Design

IoT applications that include several real-time operations frequently use cloud-fog

computing since IoT devices are unable to process the enormous amounts of data produced

by these apps. Traditional fog computing techniques, like virtual machines or Docker

containers, are frequently utilised to overcome this constraint. Based on virtualization,

which offers independence from hardware resources, these methods. In order to separate

applications from the operating system, virtual machines are helpful. But they only employ

one hypervisor, which could lead to a single point of failure. Virtual machines still provide

benefits including portability, interoperability, quick boot-up times, and low resource

needs. They also offer greater scalability than virtual machines, which makes them a

desirable strategy in cloud-fog computing.

Virtual machines are focused on giving users more freedom and security, whereas

containers are focused on the programme and its dependencies. Virtual machines are better

suited for building a secure system, while containers are chosen for high availability and

scalability. Depending on the needs of the user, either virtual machines or containers can

be utilised for cloud-fog implementation. However, because virtual machines work well in

constrained environments, this study makes use of them. The method makes use of virtual

computers to supply computing resources, each with a different level of processing power.

Although containers have benefits, the study opts for virtual machines because of their

compatibility with the environment.

22

Scheduling Algorithm

The job scheduling methods covered in this section each have unique characteristics,

advantages, and disadvantages. Some of the most significant and relevant algorithms are

covered in the discussion that follows.

PSO - particle swarm optimization

This strategy is a population-based method that draws inspiration from the actions of

flocks of birds, where the population is referred to as a swarm and the individuals inside it

as particles. In the search space, each particle has a velocity that varies as a result of

information exchange with other particles. Each particle contains a memory where the best

individual particle positions and overall particle positions are stored for each iteration. Due

to its allocation to a very small range, the ideal local position is kept as the ideal particle

position. The ideal particle position overall is saved as the best global position. Each work

is assigned to a machine that is available, which causes the partaicles to be instantiated at

random intervals. The performance of the method can be enhanced by starting the PSO

search with heuristic scheduling techniques like LJFP and MCT.

23

Particle swarm optimization task scheduler structure

FIG 5. Particle swarm optimization SCHEDULER

24

Procedure for Particle Swarm Optimization (PSO) (as per the above fig)

The initial step defines the swarm size and the acceleration constant.

The initial position and velocity of each particle in the population are then generated at

random in the second stage.

The final stage involves calculating each population solution's fitness value. The best

options for the individual and the world are then assigned in step four.

The subsequent steps are continued in step five until the termination requirements are

satisfied:

Step 5.1: With each repetition, each particle's position and speed are updated.

The population is assessed in Step 5.2, and the most effective individual and global

solutions are updated.

Step 5.3: The process is looped until the termination conditions are met.

Finally, in step six, the results obtained so far are delivered.

25

Genetic Algorithm

The idea behind GA was to emulate natural system processes. By mixing genes and

genetic operators, it employs a crossover function to produce new offspring, increasing

variety by randomly altering the contents of people. GAs employ the selection operation, a

probabilistic selection technique. Each solution in the population is evaluated by the

algorithm, which then selects the top local and global solutions as the new best

personalised and global solutions.

FIG 6. GENETIC ALGORITHM

26

Algo of Genetic Algorithm (GA) (As mentioned in Figure 6)

In order to put a genetic algorithm into practise, the following actions must be taken:

 Set the generation count to 0 at the beginning.

 Create a sample population at random.

 Assess each person's fitness function within the randomly created population.

.

 Repeat the following steps until the termination criteria are met:

a. Increase the number of generations (t=t+1).

b. Use the selection operator to select a pivot point within the population.

c. Give each row a value (r) that was created at random.

d. Apply the crossover function to the chosen pairings if r is less than the

pivot point.

e. Refresh the population.

f. Assign a random value (r1) to each gene in each individual.

g. Create a new random value for the selected gene within its domain to

mutate the point.

h. Reassign the population.

i. Evaluate the fitness value of each individual.

 Until the termination requirements were satisfied, return the findings that were

acquired.

27

Shortest Job First (SJF)

The process with the shortest execution time is chosen for execution next using the

scheduling method known as "shortest task first". This tactic has two different preemptive

and non-preemptive options. Due to its ease of use and capacity to shorten the time that

other processes must wait for execution, it is regarded as ideal. "Shortest Job Next" (SJN)

or "Shortest Process Next" (SPN), another comparable scheduling technique, chooses the

process in the waiting queue with the least execution time for execution. SJN is a reactive

algorithm rather than a predictive one. The preemptive SJN with the smallest remaining

time is an enhanced variant of SJN. SJN is useful because it is straightforward and cuts

down on the usual wait time for process execution. But it might result in process starvation

for longer processes\

Algorithm for Shortest Job First (SJF)

 Add each process to the ready queue at the beginning.

 While the ready queue is not empty:

a. From the ready queue, choose the process with the quickest execution

time.

b. Run the chosen process until it completes or is overridden by a quicker-

running process.

c. If the process completes, remove it from the system.

d. If the process is preempted, put it back into the ready queue.

 End of algorithm.

28

Particle swarm optimization combined with a genetic algorithm.

The proposed Hybrid GA-PSO algorithm combines the strengths of both genetic

algorithms (GA) and particle swarm optimization (PSO). GA is used for generating new

solutions and maintaining diversity in the population, while PSO is used for exploiting the

best solutions and searching in the local space. The algorithm starts by randomly

initializing the population and evaluating their fitness values. Then, GA and PSO operators

are applied iteratively to create new solutions and update the best personal and global

positions. The algorithm terminates when the stopping criteria are met, and the best

solution found so far is returned as the optimal task allocation. The hybrid approach of

GA-PSO helps to overcome the limitations of each individual algorithm and achieve better

performance in task scheduling problems.

The HPSOGA Algorithm

 The proposed HPSOGA method has a number of different parameters, including

sample size, accelerator parameters, crossing rate, mutation chance, split number,

split variables, split solutions, and iterations. These variables are essential to the

optimisation process and can be changed to enhance the algorithm's performance.

 The counter variable t is initialised to 0 at the beginning of the procedure. Next, a

population is created at random, and each response in the population is assessed.

1. The algorithm employs the PSO technique to generate new solutions for the

entire population.

2. An intermediate population is selected from the present population in step 2

of the HPSOGA algorithm for task scheduling using the genetic algorithm

(GA) selection operator. In order to provide better solutions in the following

iteration, this stage assists in identifying the fittest members of the present

population.

3. In step three, the present population is divided into subpopulations, each of

which consists of ideas for fixing each division. This is done to increase the

search's variety and address the dimension problem .In this step of the

HPSOGA algorithm applies an arithmetic crossover operator to each

29

subpopulation. This operator helps to combine the solutions from different

subpopulations and create new solutions that inherit the characteristics of

their parent solutions. The resulting offspring solutions are added to the

overall population.

4. To avoid premature convergence, the HPSOGA algorithm now applies the

genetic mutation operator to the entire population. This helps the population

spread new genetic material and prevents it from stagnating in local optima.

 • In step four of the HPSOGA algorithm, each solution in the population is assessed

for fitness by calculating its raw fitness value. The method then moves on to the

following iteration after incrementing the counter t. Until the termination

condition—typically a predetermined number of iterations or a satisfactory level of

convergence—is satisfied, this process is repeated.

 The optimal solution is presented.

30

Learning Automata for resource scheduling

A probabilistic computational model that can learn and adjust to environmental changes is

called Learning Automata (LA). In cloud computing systems, where resource availability

and utilisation are continually changing, LA is a viable strategy for resource allocation. It

has been discovered that using LA for resource scheduling works well for reducing task

response times while ensuring resource efficiency.

A group of learning agents that interact with the environment and make decisions in

response to feedback make up the LA-based resource allocation method. Based on the

task's qualities and its current state, each agent, which represents a resource, decides

whether to accept or refuse a task. The agents are given a set of parameters that can help

them make better decisions as they gain experience.

Algorithm for Learning Automata

START

1. Set up the probability matrix to have a uniform distribution throughout the resources

available.

2. Randomise the reward values in the reward matrix to start with each resource-task

combination.

3. Clarify learning rate

4. For each task to be scheduled:

a. Determine the resource with the highest reward value for the task

b. Update probability matrix based on the chosen resource

5. Return final probabilities for scheduling

STOP

As a result, the algorithm's fundamental steps—choosing the best resource for each task

based on the rewards from the reward matrix and updating the probability matrix to

account for the best decisions over time—are summed up, these are some example in

which we can use the LA algorithm

31

Resource Allocation in a Dynamic Way: Learning automata can be used to distribute

resources in a dynamic way based on how the system's demands are changing. Learning

automata, for instance, can be utilised in a cloud computing environment to allocate

resources based on the workload and priority of various applications.

Load balancing: Learning automata can be used to distribute the system's workload across

its various resources. For instance, learning automata can be used in a data centre to evenly

distribute the load across many servers to guarantee optimum performance.

Using learning automata, it is possible to foresee when a resource will require maintenance

or replacement. For instance, learning automata can be used in a production facility to

anticipate when a machine needs maintenance based on usage trends.

32

CHAPTER 4 :PERFORMACE ANALYSIS

The purpose of this study is to assess the effectiveness of scheduling algorithm heuristics

in a fog computing setting. The strategies are applied in a heterogeneous fog environment.

The examination of the model's performance is based on the makespan time of the

scheduling method..

The following are the parameter constraints we took for the performance analysis of our

model :

● Burst time is the length of time required for a process to finish under typical

circumstances.

● Process arrival time is the moment a task is given to a processor to be completed.

● Makespan is the amount of time that passes between the beginning and end of a

series of operations in a collection of machines.

● The completion time is the time when the process execution is complete.

● Turnaround time- This is the total amount of time spent at the processor, which is

equivalent to the change between completion and arrival time.

● Waiting time is the interval between the time a process spends at the processor and

the time it would normally take to finish. that is, the burst time minus the

turnaround time.

Before using this type of scheduling approach, a processor must be informed of the burst

time of the processes. This is also beneficial in batch processing, where waiting time is

unimportant.

33

PSO Scheduler

The start time, end time, and makespan time of the jobs were the three primary parameters

used to analyse the PSO scheduler's performance. In a manner similar to the HPSOGA

scheduler, the start time denotes the time at which a task is assigned to a resource, the end

time denotes the time at which the task is finished, and the makespan time denotes the

entire amount of time required to complete all tasks. The researchers were able to assess

the PSO scheduler's efficiency and efficacy in terms of job scheduling and resource

utilisation by looking at these metrics.

GRAPH 1. PSO VS VM ID

34

HPSOGA Scheduler

The start time, end time, and makespan time of the jobs were used as the basis for the

performance analysis of the HPSOGA scheduler. The start time designates the moment at

which a job is assigned to a resource, and the end time designates the moment at which the

task is finished. The total amount of time needed to execute all jobs is called the makespan

time. The researchers were able to assess the HPSOGA scheduler's efficiency and efficacy

in terms of job scheduling and resource utilisation by looking at these characteristics.

GRAPH 2. VMs VS HPSOGA

35

SJF Scheduler

The start time, end time, and makespan time of the jobs were the three main parameters

used to evaluate the SJF scheduler's performance. The start time designates the moment at

which a job is assigned to a resource, and the end time designates the moment at which the

task is finished. The makespan time is the entire amount of time needed to finish all tasks,

as well as the amount of time needed to finish the last job or task in an operation or

process. The researchers were able to evaluate the SJF scheduler's efficiency and efficacy

in terms of job scheduling and resource utilisation by looking at these criteria.

GRAPH 3. SJF VS VMs ID

36

Performance Analysis

GRAPH 4. CHART FOR COMPARISION BETWEEN SJF, PSO AND GA-PSO

The graph shows that the performance of HGAPSO initially lags behind that of SJF and

PSO algorithms, but as the number of tasks rises, it outperforms them.

37

COMPARISON OF MAKESPAN TIME OF SJF, PSO AND GA-PSO

GRAPH 5. CHART FOR COMPARISION BETWEEN SJF, PSO AND GA-PSO

38

Learning automata for resource scheduling analysis

Pseudo code of the implementation:

1. Start the probability matrix prob with a uniform distribution over the resources

available.

2. Randomise the reward values in the reward matrix for each resource-task combination.

3. Explain learning rate alpha.

class CloudResourceScheduler:

def init (num_resources, num_tasks, alpha):

Initialize class variables

self.num_resources = num_resources

self.num_tasks = num_tasks

self.alpha = alpha

self.prob = initialise the probability matrix prob with a uniform

distribution using the resources that are available.

self.reward = # From the reward matrix, return the reward value for

the provided resource-task pair.

def reward(resource, task):

Return reward value for a given resource-task pair from reward matrix

return reward[resource][task]

def learning_automaton(task):

Create a new one-dimensional array to record the probability values for each resource in

the system and update the probability matrix prob in accordance with the rewards each

resource has earned for job p:

r = reward(resource, task)

if r is highest reward value for task:

p[resource] = prob[resource] + alpha

else:

p[resource] = prob[resource] - alpha / (num_resources - 1)

refresh prob matrix with values in p array

39

def schedule():

Execute the learning automaton algorithm for every task and return the final

probability matrix for every task in tasks:

learning_automaton(task)

return prob

4. Construct a CloudResourceScheduler object and fill it with the desired amount of

resources, tasks, and learning rate.

5. Use the scheduling technique to get the final probability matrix for the object.

6. Print to the console the final probability for each resource.

40

Learning automaton method explanation:

The learning automaton algorithm is used for each task in the learning_automata approach.

Here is a step-by-step breakdown of how this method works:

1. The method accepts a task parameter that denotes the action to be taken.

2. Based on the current state of the prob matrix, a new one-dimensional array p is made to

contain the probability values for each resource.

3. A loop that iterates across all of the system's resources is begun. The reward method is

used to retrieve the reward value from the reward_matrix for the current resource-task pair

for each resource.

4. The resource with the highest reward value is then chosen by the algorithm as the most

promising resource for carrying out the task.

5. To make sure that the probabilities add up to 1, the probability value for the resource

with the highest likelihood is increased by alpha (the learning rate), while the probability

value for all other resources is decreased by alpha / (num_resources - 1).

6. The p array contains the revised probability values.

41

7.Based on the state of the p array, the prob matrix is finally updated with the current

probabilities for each resource.

Results and analysis of the implementation

OUTPUT:

FIG.7: OUTPUT

The probability matrix that shows the likelihood of each resource being assigned to each

task is the output of the learning automaton resource scheduling method. The likelihood

that the relevant resource will be selected for the corresponding task is specifically

represented by the value in each cell of the matrix.

The algorithm's particular use will determine the importance of the output. The probability

matrix can be used to assign resources to activities in the context of cloud computing

resource scheduling based on the most probable and effective combinations. The method is

able to optimise system performance and guarantee that each task is carried out effectively

by allocating resources based on the highest probability values.

The algorithm may also provide metrics like total resource utilisation, total execution time,

and other performance indicators in addition to the probability matrix. These metrics can

be used to assess an algorithm's performance and contrast various iterations or runs of the

method.

42

Why random initialization of the reward matrix?!

The reward matrix must be randomly initialised in order for the algorithm to explore a

variety of potential outcomes and avoid being trapped at a local optimum. The method is

able to explore various resource-task pairings and converge to a solution that maximises

the overall system performance by initialising the reward matrix with random values.

If the starting values of the reward matrix are inappropriate for the task and resource

requirements, the algorithm may converge to a suboptimal solution if the matrix was

initialised with fixed or predetermined values. The algorithm can explore various mixtures

of resources and tasks and converge to a superior solution by randomly initialising the

reward matrix.

It is crucial to remember that while the reward matrix's random initialization might lead to

variations in the algorithm's outcomes, it is not the only factor that influences the

algorithm's convergence behaviour and final solution. The performance of the algorithm

can also be influenced by the learning rate parameter, task specifications, resource

availability, and other variables. To guarantee the algorithm performs at its best, it is

crucial to carefully select the beginning values and other algorithmic parameters.

ANALYSIS

The idea of a learning automaton, a mathematical representation of a decision-making

agent that can learn from experience, serves as the foundation for the algorithm. The

learning automaton depicts a scheduler in the context of resource scheduling for cloud

computing that must choose which resource to allocate to each task based on previous

performance and present task requirements.

Advantages:

Dynamic response to shifting circumstances: By revising the probability matrix in

43

accordance with the algorithm may adapt dynamically to changes in the system, including

the addition of new jobs or the removal of resources, by using the most recent reward

values.

Scalability: The technique may be scaled to handle a huge volume of jobs and resources

because it only needs to update the probability matrix for each task.

Flexibility: The algorithm is easily adaptable to various reward functions or decision

criteria, making it appropriate for a range of application scenarios.

Disadvantages:

Initialization: The performance of the algorithm is significantly influenced by the initial

values chosen for the probability and reward matrices. If the starting values are not

selected carefully, the procedure could produce disappointing results.

Convergence rate: There is a chance that the algorithm's convergence rate will occasionally

be delayed because it relies on making small-step modifications to the probability matrix in

response to incentives.

Complexity: The method may be challenging to build and may require a lot of computing

power to manage large systems with many jobs and resources..

44

CHAPTER 5: CONCLUSIONS

Fog and cloud resource integration has arisen as a critical component to meet the demands

of IoT applications, generating profound changes in many parts of modern life. This paper

introduces a meta-heuristic scheduling technique to efficiently plan jobs for IoT

applications in a fog computing environment. By utilising complex algorithms, this

technique can plan work in a dynamic and uncertain environment.

FUTURE SCOPE

1) Instead of using VMs, the algorithm can be improved by using containers which are

expected to yield better results.

2) Containers are a more concrete option and have faster boot times compared to VMs.

3) The primary drawback of the algorithm is that it relies on static optimization

techniques.

4) To make the algorithm more suitable for industrial applications, dynamic

optimization techniques can be utilized.

45

REFERENCES

[1] Q.Liu, Y. Wei, S. Leng and Y. Chen, "Task scheduling in fog enabled

Internet of Things for smart cities," 2017 IEEE 17th International Conference

on Communication Technology (ICCT), 2017

[2] K. Benchikh and L. Louail, "Task scheduling approaches for fog

computing," 2021 30th Wireless and Optical Communications Conference

(WOCC), 2021

[3] H.S. Ali, R. R. Rout, P. Parimi and S. K. Das, "Real-Time Task

Scheduling in Fog-Cloud Computing Framework for IoT Applications: A

Fuzzy Logic based Approach," 2021 International Conference on

COMmunication Systems & NETworkS (COMSNETS), 2021

[4] K. De Donno, K. Tange and N. Dragoni, "Foundations and evolution of

modern computing paradigms: Cloud iot edge and fog", IEEE Access, vol. 7,

pp. 150 936-150 948, 2019.

[5] T.S. Nikoui, A. Balador, A. M. Rahmani and Z. Bakhshi, "Cost-aware

task scheduling in fog-cloud environment", 2020

[6] K.D. Hossain, T. Sultana, V. Nguyen, T. D. Nguyen, L. N. Huynh, E.-

N. Huh et al., "Fuzzy based collaborative task offloading scheme in the

densely deployed small-cell networks with multi-access edge

computing", Applied Sciences, vol. 10, no. 9, pp. 3115, 2020.

46

[7] R. R. Rout, S. Vemireddy, S. K. Raul and D. Somayajulu, "Fuzzy

logic-based emergency vehicle routing: An iot system development for smart

city applications", Computers & Electrical Engineering, kvol. 88, pp. 106839,

2020.

[8] L. Zhu, K. Huang, Y. Hu and X. Tai, "A Self-Adapting Task

Scheduling Algorithm for Container Cloud Using Learning Automata," in

IEEE Access, vol. 9, pp. 81236-81252, 2021, doi:

10.1109/ACCESS.2021.3078773.

[9] S. Misra, P. V. Krishna, K. Kalaiselvan, V. Saritha and M. S. Obaidat,

"Learning Automata-Based QoS Framework for Cloud IaaS," in IEEE

Transactions on Network and Service Management, vol. 11, no. 1, pp. 15-24,

March 2014, doi: 10.1109/TNSM.2014.011614.130429.

[10] S. Sahoo, B. Sahoo and A. K. Turuk, "A Learning Automata-Based

Scheduling for Deadline Sensitive Task in The Cloud," in IEEE Transactions

on Services Computing, vol. 14, no. 6, pp. 1662-1674, 1 Nov.-Dec. 2021, doi:

10.1109/TSC.2019.2906870.

[11] A. Valkanis, G. A. Beletsioti, P. Nicopolitidis, G. Papadimitriou and E. Varvarigos,

"Reinforcement Learning in Traffic Prediction of Core Optical Networks using Learning

Automata," 2020 International Conference on Communications, Computing,

Cybersecurity, and Informatics (CCCI), Sharjah, United Arab Emirates, 2020, pp. 1-6, doi:

10.1109/CCCI49893.2020.9256655

47

[12] Syed Q. Ali, Imthias Ahamed T. Parambath & Nazar H. Malik (2013) Learning

Automata Algorithms for Load Scheduling, Electric Power Components and

Systems, 41:3, 286-303, DOI: 10.1080/15325008.2012.742943.

[13] N. Rasouli, M. R. Meybodi and H. Morshedlou, "Virtual machine placement in

cloud systems using Learning Automata," 2013 13th Iranian Conference on Fuzzy Systems

(IFSC), Qazvin, Iran, 2013, pp. 1-5, doi: 10.1109/IFSC.2013.6675616.

https://doi.org/10.1080/15325008.2012.742943

	Computer Science and Engineering/Information Technology
	TABLE OF CONTENTS
	LIST OF ABBREVIATIONS
	2. LA: learning automata
	4. GA: genetic algorithm
	LIST OF FIGURES
	APPLICATIONS 1
	Figure 2: FOG COMPUTING ARCHITECTURE 4
	Figure 3: VIRTUAL MACHINE 5
	Figure 4: LEARINING AUTOMATA SCHEDULING 8
	Figure 5: PARTICLE SWARM OPTIMIZATION
	SCHEDULER 23
	Figure 6 : GENETIC ALHORITHM 25
	Figure 7 : OUTPUT 40

	LIST OF GRAPHS
	GRAPH 1: TOTAL EXECUTION TIME OF PSO TASK SCHEDULER
	GRAPH 2:TOTAL EXECUTION TIME OF GA-PSO TASK
	GRAPH 3:TOTAL EXECUTION TIME OF SJF TASK SCHEDULER
	GRAPH 4: COMPARISON LINE GRAPH FOR SJF, PSO AND GA- PSO
	GRAPH 5: COMPARISON LINE GRAPH FOR SJF, PSO AND GA-

	ABSTRACT
	CHAPTER 1 : INTRODUCTION
	Introduction
	Problem Statement
	Objectives
	Methodology
	Fog Computing
	VIRTUAL MACHINE (VM)
	HPSOGA
	SJF
	PSO
	LEARNING AUTOMATA
	FIG 4 learning automata scheduling

	Organization
	Chapter 1: Introduction
	Chapter 2: Literature Survey
	Chapter 3: System Development
	Chapter 4: Performance Analysis
	Chapter 5: Conclusion & Future work

	CHAPTER 2 : LITERATURE REVIEW
	CHAPTER 3 :SYSTEM DEVELOPMENT
	CloudSim
	System Design

	Scheduling Algorithm
	PSO - particle swarm optimization
	Particle swarm optimization task scheduler structure
	Genetic Algorithm
	Shortest Job First (SJF)
	Particle swarm optimization combined with a genetic algorithm.

	CHAPTER 4 :PERFORMACE ANALYSIS
	PSO Scheduler
	HPSOGA Scheduler
	SJF Scheduler
	Performance Analysis
	COMPARISON OF MAKESPAN TIME OF SJF, PSO AND GA-PSO

	Learning automata for resource scheduling analysis
	Learning automaton method explanation:
	Results and analysis of the implementation OUTPUT:

	Why random initialization of the reward matrix?!
	ANALYSIS

	CHAPTER 5: CONCLUSIONS
	FUTURE SCOPE
	REFERENCES

