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ABSTRACT 

 
 

Applications for the Internet of Things are now essential for raising living 

standards. However, the resources of conventional cloud data centres are 

under strain due to the growing volume of data produced by IoT devices. 

The use of cloud computing is growing for large-scale Internet of things (IoT) 

applications that need a lot of computational power and storage. Fog 

computing brings cloud services to the network's edge. One of the significant 

challenges is to satisfy the quality of service requirements while assigning 

resources to tasks. In such a case, it is necessary to decide where applications 

should be executed in order to meet their quality of service requirements. As a 

result, a cloud system requires an efficient task scheduler to determine where 

applications should run. In this paper, we propose a hybrid approach for task 

scheduling by implementing a Hybrid Particle Swarm Optimization. 
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CHAPTER 1 : INTRODUCTION 

 
 

Introduction 

 
 

Numerous facets of our daily lives have been significantly impacted by the Internet of 

Things (IoT) and related technologies. It has made a variety of other items—not only 

conventional smart devices—able to connect to the internet. Vehicles, retail and logistics 

systems, traffic control systems, and health monitors are a few examples of these items that 

carry out a variety of tasks. It is vital to process the data generated by these items in order 

to acquire the information required for IoT applications. 

 

 

 
FIG 1. STRUCTURE OF CLOUD-FOG SYSTEM 

 

 

 

IoT devices' ability to handle and store massive amounts of data is restricted. Additionally, 

network congestion and data transmission delays have a negative impact on the 

performance of time-sensitive IoT applications. Experts have expanded cloud computing 

resources to the edge of the network to address these problems. 
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By placing computer resources closer to end users, fog computing makes it easier to 

employ time-sensitive applications. In addition to many additional benefits (as shown in 

Figure 1), doing this helps preserve network capacity, lowers energy consumption, 

improves mobility and wide dispersion of IoT devices, and enables remote monitoring and 

low network latency for delay-sensitive IoT applications. [7] 

 
 Problem Statement 

 
Task scheduling is one of several optimization-related problems that the IoT and cloud-fog 

networks face. This entails delegating an application's tasks to processing nodes at the 

network's edge, where it connects to the cloud. Depending on the resources at hand, a 

planner assigns tasks to an application in order to accomplish specified goals. The 

scheduler is in charge of deciding how resources should be used by programmes, taking 

into consideration variables relating to resource availability as well as application-specific 

elements like resource requirements and quality of service. 

 
Enhancing the performance of fog computing requires effective resource management. 

Task scheduling is the process of allocating tasks to the appropriate resources in this 

context, and it is crucial in IoT systems for efficient resource management. It is crucial to 

implement realistic ways for allocating jobs in fog environments since the growing market 

for IoT devices places enormous processing demands on fog units. 

 

 Objectives 

 
Large-scale IoT applications that need a lot of compute and storage capacity are 

increasingly turning to cloud computing as a solution. However, one of the major 

difficulties is making sure that the standards for service quality are met while effectively 

allocating resources to various tasks. Fog computing is a method for bringing cloud 

services to the edge of the network, however, it creates additional difficulties for resource 

allocation optimization. To ensure optimal system performance, a critical issue that must 

be solved is figuring out the best time to schedule a group of jobs on a fog node. 
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Finding the best moment to schedule a bunch of jobs on fog nodes is the goal of 

scheduling. This includes taking into account the service approach's two groups of 

scheduling parameters: service providers and consumer services. Fog node availability, 

processing power, storage capacity, and network bandwidth are just a few examples of the 

elements that the service provider must consider. Service level agreements (SLAs), quality 

of service (QoS) requirements, and task priority are examples of consumer service 

parameters. Fog computing systems may effectively distribute resources and guarantee that 

work requirements are met while maximising system performance by taking into account 

these scheduling criteria. Finding the best moment to schedule a bunch of jobs on fog 

nodes is the goal of scheduling. This includes taking into account the service approach's 

two groups of scheduling parameters: service providers and consumer services. Fog node 

availability, processing power, storage capacity, and network bandwidth are just a few 

examples of the elements that the service provider must consider. Service level agreements 

(SLAs), quality of service (QoS) requirements, and task priority are examples of consumer 

service parameters. Fog computing systems may effectively distribute resources and 

guarantee that work requirements are met while maximising system performance by taking 

into account these scheduling criteria. 

 

 Methodology 

 
 

Fog Computing 

 

A decentralized architecture known as fog computing is used to distribute data, compute, 

storage, and applications between the cloud and the data source. By locating computing 

resources close to the sites where information is generated and used, this technology, often 

referred to as edge computing, brings the advantages and capabilities of the cloud closer to 

the user. In Figure 2 
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FIG 2. FOG COMPUTING ARCHITECTURE 

 

The two types of task scheduling algorithms—distributed and centrally managed—can be 

applied to both homogeneous and heterogeneous resource systems. A single scheduler 

creates all mappings in centralised scheduling. Centralised scheduling has the benefit of 

being simple to set up, but if the scheduler fails, the entire system breaks down. Centralised 

scheduling also offers little failure tolerance. Distributed scheduling, in contrast, spreads 

jobs among several schedulers, allowing them to collaborate to match resources to task. 

 

VIRTUAL MACHINE ( VM ) 

 

The two types of task scheduling algorithms—distributed and centrally managed—can be 

applied to both homogeneous and heterogeneous resource systems. A single scheduler 

creates all mappings in centralised scheduling. Centralised scheduling has the benefit of 

being simple to set up, but if the scheduler fails, the entire system breaks down. Centralised 

scheduling also offers little failure tolerance. Instead, distributed scheduling divides up the 

workload across several schedulers, allowing them to collaborate on resource assignment. 
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FIG 3. VIRTUAL MACHINE 

 

 

A virtual machine (VM) contains crucial files like a log file, NVRAM setting file, virtual 

disc file, and configuration file. A VM operates as a process on an operating system. VMs 

are more substantial and take longer to boot than containers, but they provide benefits like 

distinct operating system kernels and conceptual separation between instances. They are 

perfect for running legacy software on outdated operating systems, decoupling apps, and 

running monolithic applications. Additionally, VMs and containers can be used together. 

 
HPSOGA 

 
 

Three mechanisms form the foundation of the HPSOGA technique. The discovery and 

utilisation processes are balanced by the first mechanism using Particle Swarm 

Optimisation (PSO). PSO is a population-based approach that was motivated by the 

crowding behaviour of birds, in which particles stand in for individuals and the population 

for a swarm. 
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Dimension reduction and population partitioning are a feature of the second HPSOGA 

mechanism. By dividing the solution into smaller groups, this approach hopes to make the 

solution space easier to search. This is accomplished by employing arithmetic cross 

operations in each group, which widens the algorithm's search space. This process 

contributes to the population's increased diversity, which may improve overall 

optimization. 

 
The second mechanism in the HPSOGA method involves dimension reduction and 

population partitioning. This mechanism aims to break down the solution into smaller 

groups, allowing for a more efficient search of the solution space. This is achieved by 

using arithmetic cross operation in each group, which expands the search space for the 

algorithm. This step helps to increase the diversity of the population, which can lead to 

better global optimization.. 

 
SJF 

 
 

Task scheduling in fog computing settings is frequently done using the scheduling 

algorithm SJF (Shortest Job First). The shortest task is scheduled first in this algorithm, 

which schedules tasks according to their execution times. By minimising the amount of 

time when resources are idle, SJF can also aid in optimising resource utilisation. SJF can 

assist keep resources in use and make sure they are not idle for long periods of time by 

prioritising the quickest jobs. 

 
Because SJF prioritises tasks based on their execution time, which guarantees that the most 

crucial tasks are carried out first, it can be very effective in a fog environment. SJF is 

therefore perfect for fog contexts where activities frequently have different levels of 

urgency and priority. 

 
If there are shorter jobs waiting in the queue, SJF may have the unintended consequence of 

delaying longer tasks. Preemptive SJF scheduling, which enables lengthier jobs to be 

interrupted if a shorter task with a higher priority enters the queue, can help to reduce this,  

though. 
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PSO 

 
 

Popular metaheuristic optimisation algorithm Particle Swarm Optimisation (PSO) has been 

used for task scheduling in a variety of settings, including fog computing. By determining 

the ideal combination of fog nodes and resources to carry out each operation, PSO can be 

used to optimise task allocation and scheduling in fog environments. 

 
PSO mimics the movement of a swarm of particles searching for the best answer as they 

move about in a search space. Each swarm particle in the context of task scheduling 

provides a potential remedy for the scheduling issue. Based on their own positions, the 

locations of the best solutions discovered thus far, and the locations of the best solutions 

discovered by the entire swarm, the particles move across the search space. 

 
PSO has a number of benefits for task planning in foggy conditions. It may operate in 

dynamic contexts where the rate of job completion and the availability of resources can 

fluctuate. PSO is also simple to use and may be used to simultaneously optimise various 

goals, such reducing makepan and energy usage. Premature convergence is a difficulty that 

PSO may encounter where the algorithm becomes stuck in a poor solution. Hybrid PSO 

algorithms, which combine PSO with additional optimisation methods or heuristics, have 

been offered as a solution to this issue. 
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LEARNING AUTOMATA 

 
 

A system called Learning Automata (LA) simulates the way a decision-making agent 

interacts with an unpredictably changing environment in order to improve over time. 

Artificial intelligence, control systems, and computer networks are just a few of the areas 

where LA has seen extensive use. LA offers a strong framework for decision-making 

processes that can be modified to varied scenarios and environments, making it a useful 

tool for resource scheduling. 

 
The process of allocating resources to tasks in order to ensure their effective usage and 

prompt completion is known as resource scheduling. In many real-world applications, such 

as cloud computing, distributed systems, and Internet of Things (IoT) networks, it is a 

crucial problem. The scheduling problem is frequently difficult because it frequently calls 

for the optimisation of many goals, including minimising response time, maximising 

throughput, and reducing energy use. 

 

 

 
 

 
 

FIG 4 learning automata scheduling 

 
 

By offering a framework for adaptive decision-making that can learn from experience and 

adjust to changes in the environment, LA can aid with resource scheduling. An agent in 

LA interacts with the environment and gets information based on what it does. The agent 
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wants to discover a strategy that will improve its long-term success. By modelling the 

environment as a collection of states and actions, LA may be used to solve the scheduling 

problem. The agent then learns to choose the appropriate action based on the state of the 

environment. 

 
One of LA's benefits is that it has the ability to learn in real-time, which is very helpful in 

circumstances that are unexpected and dynamic. LA is able to adjust to environmental 

changes including shifts in workload, variations in resource availability, or changes in user 

expectations. Additionally, LA can be used to optimise multiple goals because it can learn 

to balance various trade-offs based on feedback. 

 
 Organization 

 

 
Chapter 1: Introduction 

 
This section discusses a variety of project-related topics, including a project overview, the 

technique employed, a description of the issue the project aims to solve, and the project's 

goal. 

Chapter 2: Literature Survey 

 
 

This project's literature review section discusses the resources examined as well as the 

concepts discovered through study. 

 
Chapter 3: System Development 

 
 

We will discuss the project analysis and system design implementation in this section. We 

will go over the algorithms employed and give project snapshots. 

 
Chapter 4: Performance Analysis 

 
 

The performance analysis is presented in this area of the project by comparing and 

exhibiting the outcomes in the form of snapshots. The display of numerous outputs is 

another aspect of it. The part also discusses the methodology used to arrive at the outcomes 

and what significance they have for the project's success. 
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Chapter 5: Conclusion & Future work 

 
 

The project's current work is concluded in this section, which also outlines potential 

directions for additional research and development. 
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CHAPTER 2 : LITERATURE REVIEW 

 

It is important to note before we start discussing the literature on our subject that a wide 

range of academic scholars and paper authors have suggested study materials on picture 

reconstruction. These materials use a variety of approaches, filters, transforms, and spatial 

domain and transform-only combinations. We will give a quick overview of the pertinent 

research methodologies used by various scholars in this section. 

 
A job scheduling strategy was suggested by Q. Liu et al.[1] for the fog-enabled Internet of 

Things (IoT) in smart cities. In order to schedule tasks in the fog environment, they 

designed a multi-objective optimisation method after analysing the characteristics and 

difficulties of IoT data processing. Through simulation experiments, they tested their 

suggested algorithm and compared it to two other ones already in use, demonstrating that 

their strategy could produce a better trade-off between task completion time and energy 

consumption. The authors also talked about how their strategy might be used in smart 

cities for things like traffic control and air quality monitoring. 

 
A review of job scheduling strategies for fog computing was presented by Benchikh et al. 

[2]. these examined a number of variables that must be taken into account while job 

scheduling, including latency, energy consumption, and reliability, and how these affect 

the fog computing system's overall performance. They also contrasted the benefits and 

drawbacks of various task scheduling strategies, including heuristic algorithms, game 

theory, and artificial intelligence. The scientists stressed the significance of creating more 

effective and scalable task scheduling algorithms for fog computing as they offered 

potential future avenues for this field of study. 

 
A real-time job scheduling method for Internet of Things (IoT) applications was put forth 

by P. Parimi et al.[3] in a fog-cloud computing environment. The suggested method 

employs a fuzzy logic-based mechanism to choose the best fog node for task offloading 

based on a number of factors, including task processing time, job priority, and resource 

availability. Through simulation experiments, the effectiveness of the suggested approach 

was demonstrated, and the results revealed that it performed better than current scheduling 

algorithms in terms of response time and energy consumption. 
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An overview of contemporary computing paradigms, such as cloud computing, IoT, edge 

computing, and fog computing, is given by K. De Donno et al. [4]. They analyse the 

development of these paradigms and emphasise their traits, benefits, and drawbacks. The 

study also discusses how these computing paradigms are being used in fields including 

healthcare, transportation, and smart cities. The paper's overall goal is to give readers a 

thorough knowledge of contemporary computer paradigms and their potential social 

effects. 

 

 

A cost-aware job scheduling technique for fog-cloud situations is suggested by T.S. Nikoui 

et al. [5]. To ensure effective resource utilisation, the authors stress the significance of 

taking time and budget limits into account when scheduling tasks. They offer a heuristic 

approach that prioritises jobs that demand more resources and take longer to complete, 

while also accounting for the cost of running these jobs on cloud and fog nodes. 

Simulations are used to test the suggested algorithm, and the results show that it performs 

better in terms of cost savings and job completion times than the methods currently used 

for scheduling. In general, the study offers suggestions for improving task scheduling 

methods for fog-cloud situations. 

 

 

For small-cell networks with multi-access edge computing (MEC), fuzzy-based 

collaborative task offloading was suggested by K.D. Hossain et al. [6]. To decide on the 

best offloading strategy, the method takes into account a number of factors, including job 

workload, battery state, channel quality, and the computing capacity of nearby tiny cells. 

The proposed method seeks to reduce energy usage and task offloading latency. To assess 

the scheme's performance in various settings, the authors ran comprehensive simulations. 

The simulation results demonstrated that the proposed strategy performs better in terms of 

energy usage and delay reduction than other cutting-edge alternatives. The proposed plan 

can help small-cell networks with MEC operate more effectively and efficiently overall. 
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A fuzzy logic-based emergency vehicle routing system for smart cities is proposed by R. 

R. Rout et al. [7]. The system uses real-time data gathered from multiple IoT sensors to 

pinpoint the emergency's position, the location of the closest hospital, and the current state 

of the roadways' traffic. The importance of the emergency is determined using a fuzzy 

inference technique, which is also utilized to design the best route for the emergency 

vehicle. Additionally, the system considers the current traffic conditions and modifies the 

route as necessary. The proposed system is put to the test in a mock smart city setting, and 

the findings demonstrate that it is successful in coming up with the best routes for 

emergency vehicles. The authors draw the conclusion that their method can be used in 

practical settings to speed up emergency service response times in smart cities. 

 
A self-adapting work scheduling approach for container clouds was proposed by L. Zhu et 

al. [8] using learning automata. The technique is made to deal with the difficulty of 

effective resource utilisation and job scheduling in container cloud systems, where the 

demand for computational resources is highly dynamic. 

The suggested algorithm decides on job scheduling and resource allocation using a 

learning automata-based method. The algorithm's learning automata component enables it 

to adapt to changing circumstances and gradually improve resource utilisation.They 

conducted simulated experiments utilising various workload scenarios to evaluate the 

suggested algorithm. In comparison to previous scheduling algorithms, the results 

demonstrate that the method is capable of achieving high resource utilisation and quick 

reaction times. The study shows that applying learning automata for work scheduling in 

container cloud systems is beneficial overall. 

 
A learning automata-based Quality of Service (QoS) framework for Infrastructure-as-a- 

Service (IaaS) cloud environments was proposed by S. Misra et al. [8]. The framework's 

objective is to raise the quality of service for cloud services by making the best resource 

allocation choices.. 

The suggested framework employs a learning automata method to allocate resources in a 

dynamic manner in response to shifting service demand. Along with service level 

agreements (SLAs), resource availability, and user preferences and priorities, the 

framework is also made to consider these factors. 
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They evaluated the proposed framework through simulation experiments using different 

workload scenarios. The results show that the framework is able to effectively allocate 

resources and improve QoS compared to other resource allocation methods. The authors 

also analyze the scalability and overhead of the framework, and demonstrate its practical 

feasibility. 

 
A learning automata-based scheduling approach for time-sensitive jobs in cloud 

environments was proposed by S. Sahoo et al. [10]. The suggested method aims to 

optimise task scheduling to ensure that all activities are completed by their due dates, while 

utilising the fewest resources possible and maintaining high standards of service. The 

suggested technique employs a learning automata method to dynamically modify the 

scheduling strategy in response to shifting job demands. The algorithm considers elements 

including task size, deadline, and priority, as well as the resources available and how they 

are being used. Through simulation experiments with a range of workload scenarios, the 

authors assess the proposed algorithm. The outcomes demonstrate that the suggested 

algorithm is capable of scheduling tasks efficiently, meeting their deadlines, and ensuring 

optimal resource utilisation and QoS. 

 
Using learning automata, A. Valkanis et al.[11] suggest a reinforcement learning-based 

strategy for traffic prediction in core optical networks. The suggested method aims to 

increase traffic prediction accuracy, which is crucial for optimising resource allocation and 

raising QoS in optical networks. A. Valkanis et al.[11] propose a reinforcement learning- 

based method for traffic prediction in core optical networks using learning automata. The 

proposed approach seeks to improve the accuracy of traffic prediction, which is essential 

for improving resource allocation and enhancing QoS in optical networks. 

 
A learning automata-based technique for load scheduling in power systems was put forth 

by Syed Q. Ali et al. [12]. The suggested method aims to meet the power demand while 

maximising resource allocation for power generation, lowering operational costs, and 

ensuring system stability. 
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The suggested method employs a learning automata algorithm to dynamically modify the 

generation plan in response to the fluctuating power demand and the accessibility of 

generation resources. The algorithm considers a number of variables, including the cost of 

generation, ramp rate, and minimal up/down times, as well as the demand for electricity 

and the accessibility of renewable energy sources. 

 
Through simulation experiments using a realistic power system model, they assessed the 

suggested strategy. In comparison to alternative scheduling techniques, the results 

demonstrate that the suggested strategy may successfully optimise the generation schedule 

and lower operational costs. The impact of several aspects, such as the degree of renewable 

energy source penetration and the cyclicality of the power demand, on the performance of 

the suggested approach is also examined by the authors. 
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Sr.no. Author(s) Advantages Disadvantages 

1. Q.Liu, Y. Wei, 

S. Leng and Y. 

Chen .[1] 

Simulations are used to 

assess the method, enabling 

testing in a controlled 

setting. 

When scheduling tasks, the 

algorithm does not take 

security and privacy concerns 

into account. 

2. K. Benchikh 

and L. 

Louail.[2] 

Improved latency: Tasks 

may be processed closer to 

the edge with fog 

computing, which lowers 

latency and speeds up 

response times. 

Security risks: The likelihood 

of security breaches or 

unauthorised access increases 

as data is processed and stored 

across several nodes. 

3. H.S. Ali, R. R. 

Rout, P. Parimi 

and S. K. Das 

[3] 

The proposed approach can 

be easily integrated with 

existing fog-cloud 

computing frameworks. 

The experimental evaluation is 

restricted to a single use case 

and might not be transferable 

to others. 
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Sr.no. Author(s) Advantages Disadvantages 

4. K. De Donno, K. 

Tange and N. 

Dragoni[4] 

raised awareness of the 

value of fog computing 

as a link between cloud 

and edge computing. 

The challenges and 

constraints of each computer 

paradigm are not thoroughly 

examined in the paper. 

5. T.S. Nikoui, A. 

Balador, A. M. 

Rahmani and Z. 

Bakhshi[5] 

Evaluation of the 

procedure in a simulated 

environment can be used 

to gauge its effectiveness 

and practicality. 

The method may need 

extensive computation and 

data processing, which could 

increase the overall time 

required to complete jobs. 

6. K.D. Hossain, T. 

Sultana, V. 

Nguyen, T. D. 

Nguyen, L. N. 

Huynh, E.-N. Huh 

[6] 

In terms of energy usage 

and delay, the plan 

performs better than 

other existing plans. 

The suggested plan can be 

challenging to put into 

practise and complex. 
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Sr.no. Author(s) Advantages Disadvantages 

7. R. R. Rout, S. 

Vemireddy, S. 

K. Raul and D. 

Somayajulu [7] 

The suggested system has 

the ability to swiftly 

determine the best paths for 

emergency vehicles in real- 

time, which can help save 

crucial time in an 

emergency. 

It is unknown how well the 

suggested method operates in 

use because the publication 

does not include a thorough 

examination of it. 

8. L. Zhu, K. 

Huang, Y. Hu 

and X. Tai[8] 

The algorithm can gain 

knowledge from prior 

experiences and develop 

better decision-making over 

time by using learning 

automata. 

The usefulness of the 

suggested approach in such 

situations has not yet been 

evaluated in a real-world 

container cloud scenario. 

9. S. Misra, P. V. 

Krishna, K.[9] 

Kalaiselvan 

According to each user's 

QoS requirements, the 

suggested system can 

adaptively alter the 

resources allotted to them. 

The methodology makes the 

assumption that all users' QoS 

requirements can be precisely 

described and assessed, which 

may not always be the case in 

actual use. 
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Sr.no. Author(s) Advantages Disadvantages 

10. S. Sahoo, B. Sahoo 

and A. K. Turuk[10] 

The algorithm is 

adaptive and can 

learn from past 

experiences to 

improve its 

performance over 

time. 

In complicated cloud systems 

with plenty of tasks and 

resources, the proposed 

algorithm might not function as 

well. 

11. A. Valkanis, G. A. 

Beletsioti, P. 

Nicopolitidis, G. 

Papadimitriou and E. 

Varvarigos[11] 

innovative method 

for optical network 

traffic prediction that 

may be of interest to 

academics in the 

area. 

Since the proposed method is 

not thoroughly evaluated in the 

paper, it is challenging to 

compare its effectiveness to that 

of other approaches. 

12. Syed Q. Ali, Imthias 

Ahamed T. 

Parambath & Nazar 

H. Malik[12] 

The suggested LA- 

based approach 

offers a dynamic and 

adaptable way to 

deal with shifting 

power demand. 

In cases where the demand for 

power is particularly unexpected 

or varies quickly, the strategy 

could not be 

effective.unknowable. 
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Sr.no. Author(s) Advantages Disadvantages 

13 N. Rasouli, M. R. 

Meybodi and H. 

Morshedlou[13] 

The suggested 

technique is able to 

dynamically adjust to 

system changes and 

eventually arrive at an 

ideal solution. 

The algorithm relies on 

accurate workload and QoS 

information, which may not 

always be available or may be 

difficult to obtain in practice. 
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CHAPTER 3 :SYSTEM DEVELOPMENT 
 

CloudSim 

 

An open-source programme called CloudSim replicates cloud computing infrastructure and 

services. It is written in Java and was created by the CLOUDS Lab. It is beneficial to 

duplicate tests and results before developing software by modelling and simulating cloud 

computing environments. The system's architecture is built on CloudSim's use of Fog 

Nodes, which has facilitated the creation of cutting-edge applications with great scalability 

and low latency. The process of developing and maintaining applications has been 

revolutionised by CloudSim. 

 

System Design 

 
IoT applications that include several real-time operations frequently use cloud-fog 

computing since IoT devices are unable to process the enormous amounts of data produced 

by these apps. Traditional fog computing techniques, like virtual machines or Docker 

containers, are frequently utilised to overcome this constraint. Based on virtualization, 

which offers independence from hardware resources, these methods. In order to separate 

applications from the operating system, virtual machines are helpful. But they only employ 

one hypervisor, which could lead to a single point of failure. Virtual machines still provide 

benefits including portability, interoperability, quick boot-up times, and low resource 

needs. They also offer greater scalability than virtual machines, which makes them a 

desirable strategy in cloud-fog computing. 

 

Virtual machines are focused on giving users more freedom and security, whereas 

containers are focused on the programme and its dependencies. Virtual machines are better 

suited for building a secure system, while containers are chosen for high availability and 

scalability. Depending on the needs of the user, either virtual machines or containers can 

be utilised for cloud-fog implementation. However, because virtual machines work well in 

constrained environments, this study makes use of them. The method makes use of virtual 

computers to supply computing resources, each with a different level of processing power. 

Although containers have benefits, the study opts for virtual machines because of their 

compatibility with the environment. 
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Scheduling Algorithm 

 

The job scheduling methods covered  in this section each have unique characteristics, 

advantages, and disadvantages. Some of the most significant and relevant algorithms are 

covered in the discussion that follows. 

 
 

PSO - particle swarm optimization 

 

 
This strategy is a population-based method that draws inspiration from the actions of 

flocks of birds, where the population is referred to as a swarm and the individuals inside it 

as particles. In the search space, each particle has a velocity that varies as a result of 

information exchange with other particles. Each particle contains a memory where the best 

individual particle positions and overall particle positions are stored for each iteration. Due 

to its allocation to a very small range, the ideal local position is kept as the ideal particle 

position. The ideal particle position overall is saved as the best global position. Each work 

is assigned to a machine that is available, which causes the partaicles to be instantiated at 

random intervals. The performance of the method can be enhanced by starting the PSO 

search with heuristic scheduling techniques like LJFP and MCT. 
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Particle swarm optimization task scheduler structure 
 

 

 
 

 

 

FIG 5. Particle swarm optimization SCHEDULER 
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Procedure for Particle Swarm Optimization (PSO) (as per the above fig) 

 

The initial step defines the swarm size and the acceleration constant. 

 
 

The initial position and velocity of each particle in the population are then generated at 

random in the second stage. 

 
The final stage involves calculating each population solution's fitness value. The best 

options for the individual and the world are then assigned in step four. 

 
The subsequent steps are continued in step five until the termination requirements are 

satisfied: 

 
Step 5.1: With each repetition, each particle's position and speed are updated. 

 
 

The population is assessed in Step 5.2, and the most effective individual and global 

solutions are updated. 

 
Step 5.3: The process is looped until the termination conditions are met. 

Finally, in step six, the results obtained so far are delivered. 
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Genetic Algorithm 

 
The idea behind GA was to emulate natural system processes. By mixing genes and 

genetic operators, it employs a crossover function to produce new offspring, increasing 

variety by randomly altering the contents of people. GAs employ the selection operation, a 

probabilistic selection technique. Each solution in the population is evaluated by the 

algorithm, which then selects the top local and global solutions as the new best 

personalised and global solutions. 

 
 

 
FIG 6. GENETIC ALGORITHM 
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Algo of Genetic Algorithm ( GA ) (As mentioned in Figure 6) 

 

In order to put a genetic algorithm into practise, the following actions must be taken: 

 

 Set the generation count to 0 at the beginning.

 Create a sample population at random.

 Assess each person's fitness function within the randomly created population.

. 

 Repeat the following steps until the termination criteria are met:

a. Increase the number of generations (t=t+1). 

b. Use the selection operator to select a pivot point within the population. 

c. Give each row a value (r) that was created at random. 

d. Apply the crossover function to the chosen pairings if r is less than the 

pivot point. 

e. Refresh the population. 

f. Assign a random value (r1) to each gene in each individual. 

g. Create a new random value for the selected gene within its domain to 

mutate the point. 

h. Reassign the population. 

i. Evaluate the fitness value of each individual. 

 Until the termination requirements were satisfied, return the findings that were 

acquired.
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Shortest Job First (SJF) 

 
The process with the shortest execution time is chosen for execution next using the 

scheduling method known as "shortest task first". This tactic has two different preemptive 

and non-preemptive options. Due to its ease of use and capacity to shorten the time that 

other processes must wait for execution, it is regarded as ideal. "Shortest Job Next" (SJN) 

or "Shortest Process Next" (SPN), another comparable scheduling technique, chooses the 

process in the waiting queue with the least execution time for execution. SJN is a reactive 

algorithm rather than a predictive one. The preemptive SJN with the smallest remaining 

time is an enhanced variant of SJN. SJN is useful because it is straightforward and cuts 

down on the usual wait time for process execution. But it might result in process starvation 

for longer processes\ 

 

 

Algorithm for Shortest Job First (SJF) 

 

 Add each process to the ready queue at the beginning.

 

 While the ready queue is not empty:

 

a. From the ready queue, choose the process with the quickest execution 

time. 

b. Run the chosen process until it completes or is overridden by a quicker- 

running process. 

c. If the process completes, remove it from the system. 

 

d. If the process is preempted, put it back into the ready queue. 

 

 End of algorithm.
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Particle swarm optimization combined with a genetic algorithm. 

 

 

The proposed Hybrid GA-PSO algorithm combines the strengths of both genetic 

algorithms (GA) and particle swarm optimization (PSO). GA is used for generating new 

solutions and maintaining diversity in the population, while PSO is used for exploiting the 

best solutions and searching in the local space. The algorithm starts by randomly 

initializing the population and evaluating their fitness values. Then, GA and PSO operators 

are applied iteratively to create new solutions and update the best personal and global 

positions. The algorithm terminates when the stopping criteria are met, and the best 

solution found so far is returned as the optimal task allocation. The hybrid approach of 

GA-PSO helps to overcome the limitations of each individual algorithm and achieve better 

performance in task scheduling problems. 

 
The HPSOGA Algorithm 

 
 

  The proposed HPSOGA method has a number of different parameters, including 

sample size, accelerator parameters, crossing rate, mutation chance, split number, 

split variables, split solutions, and iterations. These variables are essential to the 

optimisation process and can be changed to enhance the algorithm's performance.

 The counter variable t is initialised to 0 at the beginning of the procedure. Next, a 

population is created at random, and each response in the population is assessed.

1. The algorithm employs the PSO technique to generate new solutions for the 

entire population. 

2. An intermediate population is selected from the present population in step 2 

of the HPSOGA algorithm for task scheduling using the genetic algorithm 

(GA) selection operator. In order to provide better solutions in the following 

iteration, this stage assists in identifying the fittest members of the present 

population. 

3. In step three, the present population is divided into subpopulations, each of 

which consists of ideas for fixing each division. This is done to increase the 

search's variety and address the dimension problem .In this step of the 

HPSOGA algorithm applies an arithmetic crossover operator to each 



29 
 

subpopulation. This operator helps to combine the solutions from different 

subpopulations and create new solutions that inherit the characteristics of 

their parent solutions. The resulting offspring solutions are added to the 

overall population. 

4. To avoid premature convergence, the HPSOGA algorithm now applies the 

genetic mutation operator to the entire population. This helps the population 

spread new genetic material and prevents it from stagnating in local optima. 

 

 

 

 
 • In step four of the HPSOGA algorithm, each solution in the population is assessed 

for fitness by calculating its raw fitness value. The method then moves on to the 

following iteration after incrementing the counter t. Until the termination 

condition—typically a predetermined number of iterations or a satisfactory level of 

convergence—is satisfied, this process is repeated.

 
 The optimal solution is presented.
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Learning Automata for resource scheduling 

 

A probabilistic computational model that can learn and adjust to environmental changes is 

called Learning Automata (LA). In cloud computing systems, where resource availability 

and utilisation are continually changing, LA is a viable strategy for resource allocation. It 

has been discovered that using LA for resource scheduling works well for reducing task 

response times while ensuring resource efficiency. 

 

A group of learning agents that interact with the environment and make decisions in 

response to feedback make up the LA-based resource allocation method. Based on the 

task's qualities and its current state, each agent, which represents a resource, decides 

whether to accept or refuse a task. The agents are given a set of parameters that can help 

them make better decisions as they gain experience. 

 

Algorithm for Learning Automata 

START 

1. Set up the probability matrix to have a uniform distribution throughout the resources 

available. 

2. Randomise the reward values in the reward matrix to start with each resource-task 

combination. 

3. Clarify learning rate 

4. For each task to be scheduled: 

a. Determine the resource with the highest reward value for the task 

b. Update probability matrix based on the chosen resource 

5. Return final probabilities for scheduling 

STOP 

As a result, the algorithm's fundamental steps—choosing the best resource for each task 

based on the rewards from the reward matrix and updating the probability matrix to 

account for the best decisions over time—are summed up, these are some example in 

which we can use the LA algorithm 
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Resource Allocation in a Dynamic Way: Learning automata can be used to distribute 

resources in a dynamic way based on how the system's demands are changing. Learning 

automata, for instance, can be utilised in a cloud computing environment to allocate 

resources based on the workload and priority of various applications. 

 
Load balancing: Learning automata can be used to distribute the system's workload across 

its various resources. For instance, learning automata can be used in a data centre to evenly 

distribute the load across many servers to guarantee optimum performance. 

 
Using learning automata, it is possible to foresee when a resource will require maintenance 

or replacement. For instance, learning automata can be used in a production facility to 

anticipate when a machine needs maintenance based on usage trends. 
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CHAPTER 4 :PERFORMACE ANALYSIS 

 

 
The purpose of this study is to assess the effectiveness of scheduling algorithm heuristics 

in a fog computing setting. The strategies are applied in a heterogeneous fog environment. 

The examination of the model's performance is based on the makespan time of the 

scheduling method.. 

 

The following are the parameter constraints we took for the performance analysis of our 

model : 

 

 
● Burst time is the length of time required for a process to finish under typical 

circumstances. 

● Process arrival time is the moment a task is given to a processor to be completed. 

● Makespan is the amount of time that passes between the beginning and end of a 

series of operations in a collection of machines. 

● The completion time is the time when the process execution is complete. 

● Turnaround time- This is the total amount of time spent at the processor, which is 

equivalent to the change between completion and arrival time. 

● Waiting time is the interval between the time a process spends at the processor and 

the time it would normally take to finish. that is, the burst time minus the 

turnaround time. 

 
Before using this type of scheduling approach, a processor must be informed of the burst 

time of the processes. This is also beneficial in batch processing, where waiting time is 

unimportant. 
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PSO Scheduler 

 

 
The start time, end time, and makespan time of the jobs were the three primary parameters 

used to analyse the PSO scheduler's performance. In a manner similar to the HPSOGA 

scheduler, the start time denotes the time at which a task is assigned to a resource, the end 

time denotes the time at which the task is finished, and the makespan time denotes the 

entire amount of time required to complete all tasks. The researchers were able to assess 

the PSO scheduler's efficiency and efficacy in terms of job scheduling and resource 

utilisation by looking at these metrics. 

 

 

 

 
GRAPH 1. PSO VS VM ID 
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HPSOGA Scheduler 

 
The start time, end time, and makespan time of the jobs were used as the basis for the 

performance analysis of the HPSOGA scheduler. The start time designates the moment at 

which a job is assigned to a resource, and the end time designates the moment at which the 

task is finished. The total amount of time needed to execute all jobs is called the makespan 

time. The researchers were able to assess the HPSOGA scheduler's efficiency and efficacy 

in terms of job scheduling and resource utilisation by looking at these characteristics. 

 

 

 

 

 
 

 
 

GRAPH 2. VMs VS HPSOGA 
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SJF Scheduler 

 

 
The start time, end time, and makespan time of the jobs were the three main parameters 

used to evaluate the SJF scheduler's performance. The start time designates the moment at 

which a job is assigned to a resource, and the end time designates the moment at which the 

task is finished. The makespan time is the entire amount of time needed to finish all tasks, 

as well as the amount of time needed to finish the last job or task in an operation or 

process. The researchers were able to evaluate the SJF scheduler's efficiency and efficacy 

in terms of job scheduling and resource utilisation by looking at these criteria. 

 

 

 
 

 

 
 

GRAPH 3. SJF VS VMs ID 
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Performance Analysis 

  

 

 

GRAPH 4. CHART FOR COMPARISION BETWEEN SJF, PSO AND GA-PSO 

 
 

The graph shows that the performance of HGAPSO initially lags behind that of SJF and 

PSO algorithms, but as the number of tasks rises, it outperforms them.  



37 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

COMPARISON OF MAKESPAN TIME OF SJF, PSO AND GA-PSO 
 

 

GRAPH 5. CHART FOR COMPARISION BETWEEN SJF, PSO AND GA-PSO 
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Learning automata for resource scheduling analysis 

 
 

Pseudo code of the implementation: 

1. Start the probability matrix prob with a uniform distribution over the resources 

available. 

2. Randomise the reward values in the reward matrix for each resource-task combination. 

 
 

3. Explain learning rate alpha. 

class CloudResourceScheduler: 

def  init   (num_resources, num_tasks, alpha): 

# Initialize class variables 

self.num_resources = num_resources 

self.num_tasks = num_tasks 

self.alpha = alpha 

self.prob = initialise the probability matrix prob with a uniform 

distribution using the resources that are available. 

self.reward = # From the reward matrix, return the reward value for 

the provided resource-task pair. 

def reward(resource, task): 

# Return reward value for a given resource-task pair from reward matrix 

return reward[resource][task] 

 
def learning_automaton(task): 

# Create a new one-dimensional array to record the probability values for each resource in 

the system and update the probability matrix prob in accordance with the rewards each 

resource has earned for job p: 

r = reward(resource, task) 

if r is highest reward value for task: 

p[resource] = prob[resource] + alpha 

else: 

p[resource] = prob[resource] - alpha / (num_resources - 1) 

refresh prob matrix with values in p array 
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def schedule(): 

# Execute the learning automaton algorithm for every task and return the final 

probability matrix for every task in tasks: 

learning_automaton(task) 

return prob 

 
4. Construct a CloudResourceScheduler object and fill it with the desired amount of 

resources, tasks, and learning rate. 

5. Use the scheduling technique to get the final probability matrix for the object. 

6. Print to the console the final probability for each resource. 



40 
 

Learning automaton method explanation: 
 

 

 

 

 

 

 
The learning automaton algorithm is used for each task in the learning_automata approach. 

Here is a step-by-step breakdown of how this method works: 

 
1. The method accepts a task parameter that denotes the action to be taken. 

 
 

2. Based on the current state of the prob matrix, a new one-dimensional array p is made to 

contain the probability values for each resource. 

 
3. A loop that iterates across all of the system's resources is begun. The reward method is 

used to retrieve the reward value from the reward_matrix for the current resource-task pair 

for each resource. 

 
4. The resource with the highest reward value is then chosen by the algorithm as the most 

promising resource for carrying out the task. 

 
5. To make sure that the probabilities add up to 1, the probability value for the resource 

with the highest likelihood is increased by alpha (the learning rate), while the probability 

value for all other resources is decreased by alpha / (num_resources - 1). 

 
6. The p array contains the revised probability values. 
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7.Based on the state of the p array, the prob matrix is finally updated with the current 

probabilities for each resource. 

 
Results and analysis of the implementation 

OUTPUT: 

 

 

 

 
FIG.7: OUTPUT 

 
 

The probability matrix that shows the likelihood of each resource being assigned to each 

task is the output of the learning automaton resource scheduling method. The likelihood 

that the relevant resource will be selected for the corresponding task is specifically 

represented by the value in each cell of the matrix. 

 
The algorithm's particular use will determine the importance of the output. The probability 

matrix can be used to assign resources to activities in the context of cloud computing 

resource scheduling based on the most probable and effective combinations. The method is 

able to optimise system performance and guarantee that each task is carried out effectively 

by allocating resources based on the highest probability values. 

 
The algorithm may also provide metrics like total resource utilisation, total execution time, 

and other performance indicators in addition to the probability matrix. These metrics can 

be used to assess an algorithm's performance and contrast various iterations or runs of the 

method. 
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Why random initialization of the reward matrix?! 
 

 

 

The reward matrix must be randomly initialised in order for the algorithm to explore a 

variety of potential outcomes and avoid being trapped at a local optimum. The method is 

able to explore various resource-task pairings and converge to a solution that maximises 

the overall system performance by initialising the reward matrix with random values. 

 
If the starting values of the reward matrix are inappropriate for the task and resource 

requirements, the algorithm may converge to a suboptimal solution if the matrix was 

initialised with fixed or predetermined values. The algorithm can explore various mixtures 

of resources and tasks and converge to a superior solution by randomly initialising the 

reward matrix. 

 
It is crucial to remember that while the reward matrix's random initialization might lead to 

variations in the algorithm's outcomes, it is not the only factor that influences the 

algorithm's convergence behaviour and final solution. The performance of the algorithm 

can also be influenced by the learning rate parameter, task specifications, resource 

availability, and other variables. To guarantee the algorithm performs at its best, it is 

crucial to carefully select the beginning values and other algorithmic parameters. 

 
ANALYSIS 

 
 

The idea of a learning automaton, a mathematical representation of a decision-making 

agent that can learn from experience, serves as the foundation for the algorithm. The 

learning automaton depicts a scheduler in the context of resource scheduling for cloud 

computing that must choose which resource to allocate to each task based on previous 

performance and present task requirements. 

 
Advantages: 

Dynamic response to shifting circumstances: By revising the probability matrix in 
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accordance with the algorithm may adapt dynamically to changes in the system, including 

the addition of new jobs or the removal of resources, by using the most recent reward 

values. 

 
Scalability: The technique may be scaled to handle a huge volume of jobs and resources 

because it only needs to update the probability matrix for each task. 

 
Flexibility: The algorithm is easily adaptable to various reward functions or decision 

criteria, making it appropriate for a range of application scenarios. 

 
Disadvantages: 

 
 

Initialization: The performance of the algorithm is significantly influenced by the initial 

values chosen for the probability and reward matrices. If the starting values are not 

selected carefully, the procedure could produce disappointing results. 

 
Convergence rate: There is a chance that the algorithm's convergence rate will occasionally 

be delayed because it relies on making small-step modifications to the probability matrix in 

response to incentives. 

 
Complexity: The method may be challenging to build and may require a lot of computing 

power to manage large systems with many jobs and resources.. 
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CHAPTER 5: CONCLUSIONS 

 

Fog and cloud resource integration has arisen as a critical component to meet the demands 

of IoT applications, generating profound changes in many parts of modern life. This paper 

introduces a meta-heuristic scheduling technique to efficiently plan jobs for IoT 

applications in a fog computing environment. By utilising complex algorithms, this 

technique can plan work in a dynamic and uncertain environment. 

 

FUTURE SCOPE 
 

1) Instead of using VMs, the algorithm can be improved by using containers which are 

expected to yield better results. 

2) Containers are a more concrete option and have faster boot times compared to VMs. 

3) The primary drawback of the algorithm is that it relies on static optimization 

techniques. 

4) To make the algorithm more suitable for industrial applications, dynamic 

optimization techniques can be utilized. 
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