

Customer-Vehicle Management System

Project report submitted in partial fulfilment of the requirement for

the degree of Bachelor of Technology

in

Computer Science and Engineering/Information Technology

By

Divyansh Mandhan 191270

Under the supervision of

Dr. Shubham Goel

to

Department of Computer Science & Engineering and Information

Technology

Jaypee University of Information Technology Waknaghat, Solan-

173234, Himachal Pradesh

Candidate’s Declaration

II

I hereby declare that the work presented in this report entitled “Customer-Vehicle

Management System” in partial fulfilment of the requirements for the award of the degree

of Bachelor of Technology in Computer Science and Engineering/Information

Technology submitted in the department of Computer Science & Engineering and

Information Technology, Jaypee University of Information Technology Waknaghat is an

authentic record of my own work carried out over a period from Feb 2023 to May 2023 under

the supervision of Dr.Shubham Goel Assistant Professor(SG), Department of Computer

Science & Engineering and Information Technology.

I also authenticate that I have carried out the above mentioned project work under the

proficiency stream Data Sciences.

The matter embodied in the report has not been submitted for the award of any other degree

or diploma.

Divyansh Mandhan

191270

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

Dr. Shubham Goel

Assistant Professor(SG)

Department of Computer Science & Engineering and Information Technology

Dated:

III

IV

Acknowledgement

Firstly, I express my heartiest thanks and gratefulness to almighty God for His divine blessing

making it possible for us to complete the project work successfully.

I am really grateful and wish my profound indebtedness to Supervisor Dr.Shubham Goel,

Assistant Professor (SG), Department of Computer Science & Engineering and Information

Technology,Waknaghat and my Mentor Ms. Chaitra AV and Mr. Mukund Goel Deep

Knowledge & keen interest of my supervisor and mentors in the field of “Golang” to carry

out this project. Their endless patience, scholarly guidance, continual encouragement,

constant and energetic supervision, constructive criticism, valuable advice, reading many

inferior drafts and correcting them at all stages have made it possible to complete this project.

I would also generously welcome each one of those individuals who have helped me

straightforwardly or in a roundabout way in making this project a win. In this unique situation,

I might want to thank the various staff individuals, both educating and non-instructing, which

have developed their convenient help and facilitated my undertaking.

Finally, I must acknowledge with due respect the constant support and patients of my parents.

Divyansh Mandhan

191270

V

Table of Content

S.No Name Page No.

1. Introduction 1

2. Literature Survey 21

3. System Design and Development 40

4. Experiment and Result Analysis 75

5. Conclusions 107

6. References 121

7. Appendix A 124

VI

List of Abbreviations

Abv Meaning

API Application Programming Interface

AWS Amazon Web Services

HTTP Hypertext Transfer Protocol

GO Golang

IDE Integrated Development Environment

IP Internet Protocol

MySQL My Structure Query Language

REST Representational State Transfer

PROMQL Prometheus Query Language

VII

List of Figures

Fig Figure Name

1.1 ZopSmart Company Logo

1.2 Kafka Architecture

1.3 Prometheus Architecture

2.1 A set of tasks executing a functionality

2.2 I/O task using a shared variable

2.3 The architecture of a database system

2.4 Car sales

2.5 System Architecture

2.6 Number of Operations

2.7 Distribution of the different required registration forms

2.8 Call limit enforcements

2.9 Documentation Tools used by APIs

3.1 Routing Principles

3.2 Role of middleware

3.3 Comparison between Golang and Java

3.4 Concurrency comparison

3.5 Unit testing in golang

3.6 A micro service in golang

3.7 Cloud Deployment

4.1 Directory Structure of VehicleStore API

4.2 A sample go API

4.3 Validation method for Customer

4.4 Validation method for Vehicle

4.5 Middleware in VehicleStore

4.6 Middleware in Action

VIII

4.7 Swagger UI for vehicle Store

4.8 Workflow run for sub task 4

4.9 Workflow run coverage

4.10 Workflow run tasks

4.11 POST customer successfully(201)

4.12 POST customer age validation failed(400)

4.13 GET customer successfully(200)

4.14 GET customer and vehicle data successfully(200)

IX

List of Graphs

Sr. No Graph Name

1 VehicleStore API layered Architecture

2 Entity Relationship Diagram of Vehicle Store

X

List of Tables

Table Table Name

1.1 Customer Table

1.2 Vehicle Table

2.1 API’s repository used by application and main features

3.1 Software Requirements

4.1 Table Structure

4.2 Customer Table in mysql

4.3 Vehicle Table in mysql

XI

Abstract

This project aims to build a customer-vehicle management system using the Golang

programming language. The system will have a database named "zopstore" with two tables,

Customers and Vehicles. The Customers table will have fields for id, vehicale_id, name, age,

gender, phone.no, and city. The Vehicles table will have fields for id, type, fuel_type, brand,

model, and color. The system will also have a set of APIs that enable CRUD (create, read,

update, delete) operations on the tables.

The Customers table will use uuid as the primary key, and age will be a positive integer that

is less than 100. Gender will be an enum with the values "male," "female," or "others."

Phone.no will start with 91 as a country code, and its length should be 12 digits. The Vehicles

table will also use uuid as the primary key, and type will be an enum with values of "2," "4,"

or "6" wheelers. Fuel_type will be an enum with values of "petrol," "diesel," "cng," or

"electric."

The APIs for the Customers table will have endpoints for getting customer details by id,

creating a new customer, updating an existing customer, deleting a customer, and getting all

customer details. The API for getting all customer details will have two functionalities, which

are getting all customer details and getting customer details by filters. The filters include

getting all vehicle details for a particular customer if is_vehicle is true, getting vehicles based

on fuel_type, and getting vehicles based on brand.

The APIs for the Vehicles table will have endpoints for creating a new vehicle, updating an

existing vehicle, and deleting a vehicle.

The system will follow proper naming conventions, using snake_case for the database naming

convention and camelCase in the code. Golang is a statically typed, compiled programming

language that provides excellent performance and is ideal for building web applications. This

project will demonstrate the use of Golang in building a robust, scalable, and efficient

customer-vehicle management system.

Chapter-1: INTRODUCTION

1.1 Brief about company:

Zopsmart is an Indian e-commerce company that specializes in offering a

wide range of products, including groceries, electronics, beauty and

personal care, home and kitchen, and much more. The company was

founded in 2016, and it is headquartered in Bangalore, India. Since its

inception, Zopsmart has rapidly grown and established itself as a leading

online retailer in India, with an emphasis on offering clients high-quality

items at costs they can afford.

The company has built a strong reputation for providing a seamless and

convenient shopping experience for its customers. Zopsmart's website and

mobile app offer an easy-to-use platform for customers to browse and

purchase products online. The platform also offers clients a variety of

payment choices, such as cash on delivery, net banking, and credit/debit

cards, making it simple for them to buy products in a method that works for

them.

One of the key features of Zopsmart's platform is its robust supply chain

and logistics infrastructure. The company has developed an efficient and

reliable supply chain that allows it to source products from a wide range of

vendors and deliver them to customers in a prompt and economical manner.

The company also leverages advanced data analytics and AI-powered

algorithms to optimize its logistics operations and improve the overall

customer experience.

Zopsmart's commitment to quality and customer satisfaction is evident in its

rigorous quality control processes. The company works closely with its

vendors to ensure that all products sold on its platform meet the highest

standards of quality and safety. Additionally, the company offers a

committed customer support staff that is accessible to help clients with any

queries or issues they might be experiencing.

In addition to its online retail operations, Zopsmart also offers a range of

value-added services to its customers. For example, the company's platform

1

features a loyalty programme that offers special discounts, free delivery, and

other incentives in exchange for clients' purchases. The company also offers

a subscription service for regular customers, which provides them with

additional discounts and exclusive offers.

Overall, Zopsmart has established itself as a leading player in the Indian

e-commerce market, thanks to its strong focus on quality, customer

satisfaction, and innovative solutions. The company's dedication to

providing a seamless and convenient shopping experience, combined with

its robust logistics infrastructure and value-added services, has helped it to

build a loyal customer base and position itself for continued growth and

success in the years to come.

Fig 1.1 ZopSmart Company Logo

1.2 Background and Context:

The automotive industry is one of the most significant and significant

industries in the world. It has been rapidly evolving, with new technologies

and trends emerging every day. One such trend is the increasing demand for

vehicle customization. Customers are now seeking personalized vehicles

that cater to their unique needs and preferences. This demand for

customization has led to the emergence of a new market for automotive

accessories and modifications.

The automotive customization market has been growing rapidly over the

years. Global automotive aftermarket size was estimated at USD 378.4

billion in 2020, and from 2021 to 2028, it is anticipated to increase at a

compound annual growth rate (CAGR) of 4.2%. The increased desire for

car personalization and the expanding number of vehicle sales globally are

both responsible for this rise[1].

2

However, despite the growing demand for customization, there is a lack of

an effective and efficient system to manage customer and vehicle data in

this industry. Many businesses in the automotive industry still rely on

manual methods to manage customer data and track vehicle modifications.

This manual process is prone to errors and can lead to inefficient operations.

Businesses may lose track of customer information, causing delays in the

delivery of services or products, resulting in a decrease in customer

satisfaction.

Therefore, there is a need for an automated system that can manage

customer and vehicle data and provide a platform for businesses to

efficiently track vehicle modifications and customization. The system

should also enable businesses to manage their operations more efficiently

by providing insights into customer behavior and preferences, inventory

management, and sales data.

Our research work aims to develop such a system, which will be a

web-based application designed to manage customer and vehicle data. The

system will include two main tables, Customers and Vehicles, which are

connected by a foreign key relationship. The Customers table will store

basic information about customers such as name, age, gender, phone

number, and city, while the Vehicles table will store information about the

customer's vehicles, such as the vehicle type, fuel type, brand, model, and

color.

Users will be able to conduct CRUD (Create, Read, Update, Delete) actions

on customer and vehicle data using the system's set of APIs. The APIs will

include GetByID, POST, UPDATE, DELETE, and GetAll. The GetAll API

will have additional filter options based on vehicle type, fuel type, and

brand. The ID field for both tables will be stored as a UUID, and other

fields will have specific validation rules to ensure data accuracy and

consistency.

The system will also provide users with a user-friendly interface to manage

customer and vehicle data. It will include features such as a dashboard for

3

monitoring customer behavior and preferences, inventory management, and

sales data. Users of the system will also be able to create reports that may

be used to spot patterns and trends in consumer behavior and preferences.

Providing a platform for managing customer and vehicle data, in addition,

the system will also provide a platform for customers to track their vehicle

modifications and customization. Customers will be able to create an

account on the platform, which will allow them to view and track their

vehicle modifications and customization. They will also be able to provide

feedback on the services provided by the business, which will enable

businesses to improve their services and increase customer satisfaction.

The system will be developed using the Golang programming language,

which is a popular language for developing web applications. It is known

for its speed, simplicity, and concurrency, which makes it ideal for

developing high-performance applications. The system will be deployed on

a cloud platform, which will provide scalability and flexibility to the

system.

1.3 Problem Statement:

The automotive industry is a rapidly growing sector that provides

employment to millions of people globally. The demand for car service

centers has increased as a result of the expansion in the number of

automobiles on the road. These service centers provide a range of services

such as routine maintenance, repairs, and part replacements. To provide

efficient services, it is necessary to have a streamlined process for managing

customer and vehicle data.

Currently, many automobile service centers use manual methods to manage

customer and vehicle data. This method involves maintaining registers,

spreadsheets, or paper files to store customer and vehicle information. This

process is time-consuming and prone to errors, as it involves a significant

amount of manual data entry. It also makes it difficult to retrieve customer

data quickly and efficiently.

4

Furthermore, manual data management systems are not secure, as paper

files or spreadsheets can be easily accessed and tampered with by

unauthorized personnel. This can lead to potential breaches of confidential

customer information, leading to legal and reputational issues for the

service center.

Another challenge with manual data management systems is that they do

not allow for easy analysis of customer data. Understanding consumer

behavior, preferences, and demands may be gained through analyzing

customer data. Customer service may be enhanced with the use of this

knowledge and provide targeted marketing and promotional activities.

The proposed system aims to address these challenges by providing a digital

platform for managing customer and vehicle data. The system will allow

service centers to store customer and vehicle information in a centralized

database. This database will be accessible only by authorized personnel,

providing increased security and confidentiality of customer information.

The system will also provide a range of functionalities such as customer and

vehicle registration, service history tracking, appointment scheduling, and

analysis of customer data. These functionalities will help service centers to

provide efficient services and improve customer satisfaction. For example,

with the help of service history tracking, service centers can identify

recurring problems with a particular vehicle and provide proactive

solutions[2].

In summary, the problem statement for this study is to address the

challenges of manual customer and vehicle data management systems in

automobile service centers. The proposed system aims to provide a digital

platform for efficient and secure management of customer and vehicle data,

with additional functionalities for analysis and targeted marketing. The

system is expected to provide benefits such as improved customer service,

increased efficiency, and better data security.

5

1.4 Objectives:

The system aims to address the challenges of manual data management

systems and provide a range of functionalities for improved customer

service and analysis of customer data. The objectives of the study are as

follows:

1.4.1 To develop a DB schema for retaining and storing customer and

vehicle information:The first objective of the study is to develop a DB

schema for storing/retaining customer and vehicle information. The

database schema will be designed to fulfill the requirement of the service

center, and it will be optimized for efficient data retrieval and storage. The

schema will include tables for storing customer details such as name, age,

gender, phone number, and city, as well as vehicle details such as type, fuel

type, brand, model, and color. The schema will also include relationships

between the tables to ensure data consistency and integrity.

1.4.2 To create a data entry and retrieval user interface: The study's

second goal is to provide a user interface for entering and retrieving data.

The user interface will be designed to be user-friendly and intuitive, and it

will enable authorized personnel to enter and retrieve customer and vehicle

information easily. The user interface will also provide functionalities such

as search, sort, and filter options to facilitate quick and efficient data

retrieval.

1.4.3 To build systems for data validation and error handling:The third

objective of the study is to implement data verifying and error handled

functionality to ensure data accuracy and consistency. The API will include

validation checks for data entered into the database, such as checking the

age of the customer, the length and format of the phone number, and the

values of the gender and fuel type fields. Error handling mechanisms will

also be implemented to handle errors and exceptions that may occur during

data entry and retrieval.

1.4.4 To implement security mechanisms for data protection:The fourth

objective of the study is to implement security mechanisms for data

6

protection. Only authorized workers will be able to access the customer and

vehicle data thanks to the system's access control features.User roles and

permissions will be specified to limit access to sensitive data, and password

authentication will be used to confirm users' identities. The system will also

have data backup and recovery features to guard against data loss due to

hardware failure or other unanticipated circumstances.

1.4.5 To provide functionalities for service history tracking and

appointment scheduling:The fifth objective of the study is to provide

functionalities for service history tracking and appointment scheduling. The

system will include features to track the service history of each vehicle,

including details such as the date and type of service, the parts replaced, and

the cost. This information will be used to provide proactive solutions and

improve the quality of service. The system will also provide functionalities

for appointment scheduling, enabling customers to schedule service

appointments online or via phone.

1.4.6 To provide functionalities for analysis of customer data: The sixth

objective of the study is to provide functionalities for analysis of customer

data. The system will provide tools for processing client data and giving

users insights into their behavior, tastes, and requirements. The analysis of

customer data will be assessed and provide targeted marketing and

promotional activities and improve overall experience and customer service.

The system will also include mechanisms for generating reports and

visualizations to present the analyzed data in an easy-to-understand format.

In summary, the main topic of this study is to design and develop a digital

system for efficient and secure management of customer and vehicle data in

automobile service centers. The system aims to address the challenges of

manual data management systems and provide a range of functionalities for

improved customer service and analysis of customer data. The objectives of

the study include database schema development, user interface

development, data validation and error handling, security mechanisms

7

implementation, service history tracking and appointment scheduling, and

analysis of customer data.

1.5 Methodology:

Database Design

The first step in the development of the application is the design of the

database schema. The database schema was designed to meet the

requirements of the application, which includes storing customer and vehicle

details. The schema includes the Customers and Vehicles tables, which are

related through the Vehicale_Id foreign key. The Customers table contains

customer details, including their unique Id, name, age, gender, phone number,

and city. The Vehicles table contains vehicle details, including their unique

Id, type, fuel type, brand, model, and color. The schema ensures that the

information stored in the database must be consistent, accurate, and easy to

retrieve.

Table 1.1 Customer Table

8

Table 1.2 Vehicle Table

Data Collection

Once the database schema was designed, data was collected to populate the

database. The data collected for this project includes customer and vehicle

details. Customer details include their name, age, gender, phone number, and

city. Vehicle details include their type, fuel type, brand, model, and color. The

data was collected from various sources, including customer surveys, vehicle

dealerships, and online resources. The data was validated to ensure its

accuracy and consistency.

Data Analysis

After the data was collected, it was analyzed to gain insights into customer

and vehicle trends. The analysis focused on identifying patterns in customer

demographics, vehicle types, fuel types, brands, and models. The analysis

also identified the most popular vehicle brands and models among customers.

The insights gained from the analysis were used to optimize the application

and enhance the customer experience.

Application Development

Once the database schema was designed, data was collected, and data

analysis was completed, the application development phase began. The

application was developed using the Golang programming language, which is

well-suited for building scalable and robust applications. The application was

developed using the full-fledged model which is known as

Model-View-Controller (MVC) architecture, which divides the application

logic into three distinct layers, making the code more maintainable and

testable.

Testing Procedures

During the development of the application, various testing procedures were

used to ensure that it functioned as expected. Unit testing, integration testing,

and acceptability testing were all part of these processes. Individual

9

application functions and methods were tested using unit testing to make sure

they functioned as intended. To make sure that the application's many

components worked properly together, integration testing was done to test the

integration between them. To make sure the application satisfies the criteria

specified in the earlier sections, acceptance testing was done to verify the

programme's general functioning.

In addition to the above-mentioned methodologies, the system also uses

Kafka and Prometheus to provide efficient and reliable data processing and

monitoring.

Kafka

The system can deal with large amounts of data streams in real time thanks to

the distributed streaming platform Kafka. It acts as a message broker,

allowing the system to publish and subscribe to data streams, as well as store

and process large amounts of data. The use of Kafka in the system allows for

improved data processing speed, data reliability, and scalability, making it an

ideal choice for handling large amounts of data.[3]

Fig 1.2 Kafka Architecture

10

Prometheus

Prometheus is an open-source monitoring and alerting toolkit that is used for

tracking and analyzing system performance metrics. It provides a flexible

data model, a powerful query language, and various visualization options,

making it easy to monitor system performance and detect issues. The use of

Prometheus in the system allows for real-time monitoring of the system's

health, including resource utilization, response times, and error rates, which

helps ensure the system is functioning optimally.

Fig 1.3 Prometheus Architecture

Together, Kafka and Prometheus provide the system with a comprehensive

and efficient data processing and monitoring solution. By using these tools,

the system can handle high volumes of data and monitor system performance

in real-time, ensuring a stable and reliable platform for customers to use.

The implementation of Kafka and Prometheus in the system is carried out

using best practices and industry standards. Data is duplicated over many

11

brokers to maintain data dependability, and the Kafka cluster is designed to

be highly available and fault-tolerant. Prometheus is deployed in a

high-availability setup with multiple instances, ensuring that the system can

continue to monitor performance even if a single instance fails.

The integration of these tools with the system is carried out in a seamless

manner, with minimal disruption to the system's existing architecture. The

data collected by Prometheus is used to generate alerts and notifications in

the event of any system performance issues, allowing the system to

proactively address any issues before they affect customers.

Overall, the methodology section outlines the various procedures and

techniques used to develop the application. The database schema was

designed to ensure consistency, accuracy, and easy retrieval of data. Data was

collected, analyzed, and used to optimize the application and enhance the

customer experience. The application was developed using the Golang

programming language and the MVC architecture, making it scalable, robust,

and easy to maintain. Finally, various testing procedures were used to ensure

that the application functions as expected, meeting the requirements outlined

in the previous sections.

1.6 Motivation:

The motivation behind developing the "zopstore" database system with the

associated APIs is to provide an efficient and reliable platform for

managing customer and vehicle data for a fictional company named

Zopstore. The system is designed to be scalable, secure, and flexible, with

the capability to accommodate a large volume of data and frequent updates.

The traditional approach to managing customer and vehicle data involves

manual processes, such as maintaining paper records or using spreadsheets,

which can be time-consuming and error-prone. Furthermore, these manual

processes can limit the company's ability to leverage customer data for

business decisions and to provide personalized services to customers.

12

To address these challenges, the Zopstore database system is being

developed to provide a centralized platform for storing and managing

customer and vehicle data. The system will automate various processes,

such as customer and vehicle registration, data updates, and retrieval,

enabling faster and more accurate data processing.

Moreover, The system will make customer and vehicle data accessible to

third-party developers via APIs, making it simpler to combine with other

systems and create original apps. For instance, the APIs could be used to

build a mobile application for customers to book vehicles or for Zopstore

employees to manage customer and vehicle data on the go.

In addition, the development of the Zopstore database system provides an

opportunity to leverage modern technologies such as Apache Kafka and

Prometheus, which are widely used in the industry for real-time data

streaming and monitoring. These technologies will enable the system to

handle large volumes of data efficiently and provide real-time insights into

the system's performance and health[4].

Managing customer and vehicle data is critical to the success of any

company in the transportation industry. With the increasing competition, it

is important to provide efficient and personalized services to customers to

stand out in the market. However, with the growing volume of customer and

vehicle data, traditional manual approaches can be inefficient and

error-prone.

The development of the Zopstore database system aims to address these

challenges by providing a robust and efficient platform for managing

customer and vehicle data. The system will enable Zopstore to automate

various processes, such as customer and vehicle registration, data updates,

and retrieval, thereby reducing the time and resources required for manual

data processing.

Furthermore, the system will allow Zopstore to leverage customer data for

business decisions and to provide personalized services to customers. For

instance, Zopstore may improve its services, better focus its marketing

13

initiatives, and increase customer happiness by analyzing consumer data to

uncover trends, preferences, and patterns in client behavior.

Moreover, the system's APIs will allow third-party developers to access

customer and vehicle data, enabling them to build custom applications or

integrate with other systems. This will provide Zopstore with the flexibility

to adapt to changing market needs and to collaborate with other companies

in the industry.

The development of the Zopstore database system provides an opportunity

to leverage modern technologies such as Apache Kafka and Prometheus.

A distributed messaging system with real-time data streaming features,

Apache Kafka can manage massive amounts of data. This technology will

enable the Zopstore system to handle the high volume of customer and

vehicle data efficiently and provide real-time updates to the system.

On the other hand, Prometheus is a monitoring and alerting system that

provides insights into the system's performance and health. This technology

will enable Zopstore to monitor its system in real-time, identify and address

issues promptly, and ensure that the system is running optimally at all times.

In conclusion, the development of the Zopstore database system is

motivated by the need to provide a reliable, efficient, and flexible platform

for managing customer and vehicle data, automate various processes,

leverage customer data for business decisions, provide APIs for third-party

integration, and leverage modern technologies to improve system

performance and monitoring.

1.7 Scope of the Project:

The project scope specifies the parameters of the work, including what will

be contained in and omitted from the finished product. This part will cover

the project scope of our suggested e-commerce platform, as well as the

features and functionalities that will be offered as well as the project's

constraints.

14

1.7.1 Inclusions

The proposed e-commerce platform will include the following

features and functionalities:

1.7.1.1 Customer Management

Customers may establish and manage their profiles, check

their order histories, and update their personal information

using the e-commerce platform. Customers will also be able

to add and remove items from their shopping cart and

proceed to checkout to complete their purchase.

1.7.1.2 Product Catalog Management

For merchants to manage their product catalogs, including

adding and deleting goods, changing product details and

pricing, and managing product categories and subcategories,

the platform will offer an intuitive user interface.

1.7.1.3 Order Management

The e-commerce platform will provide an order management

system that allows merchants to view and manage orders

placed by customers. Merchants will be able to update order

status, process refunds, and generate shipping labels and

invoices.

1.7.1.4 Payment Integration

The e-commerce platform will integrate with popular

payment gateways, such as PayPal and Stripe, to allow

customers to make secure payments for their purchases.

1.7.1.5 Search and Filtering

The platform will provide an intuitive search and filtering

system that allows customers to quickly find products based

15

on various criteria, such as product name, brand, category,

and price range.

1.7.1.6 Recommendations

In addition to popular items and bestsellers, the e-commerce

platform will offer product suggestions based on a

customer's browsing and purchase history.

1.7.1.7 Analytics and Reporting

The platform will provide analytics and reporting tools to

merchants to help them track and analyze their sales, orders,

and customer behavior.

1.7.2 Exclusions

The following features and functionalities will be excluded from the

project scope:

1.7.2.1 Mobile Application Development

The project will not include the development of a mobile

application for the e-commerce platform. However, the

platform will be designed to be responsive and optimized for

mobile devices.

1.7.2.2 Third-Party Integrations

The platform will not include integrations with third-party

systems or services, such as social media or marketing

automation tools.

1.7.2.3 Customization and Personalization

The platform will not include extensive customization and

personalization options for merchants. However, basic

branding and design customization will be available.

16

1.7.2.4 Internationalization and Localization

The platform will not include internationalization and

localization features, such as language translation and local

currency support. The platform will be designed for

English-speaking customers and merchants.

1.7.3 Limitations

The following limitations apply to the project scope:

1.7.3.1 Scalability

The project scope is limited to the development of a

single-instance e-commerce platform, which may not be

scalable to handle large amounts of traffic and transactions.

However, the platform will be designed with scalability in

mind, and additional infrastructure and resources can be

added as needed.

1.7.3.2 Security

The project scope includes basic security features, such as

password hashing and HTTPS encryption. However, the

platform may not be fully secure against advanced attacks,

and additional security measures may be necessary for

sensitive data and transactions.

1.7.3.3 Performance

The project scope includes basic performance optimizations,

such as caching and query optimization. However, the

platform may not be optimized for high-performance,

real-time transactions, and additional optimizations may be

necessary for high-traffic scenarios.

17

1.8 Organization:

This project is being developed by a team of software developers, engineers, and

project managers. The team is composed of individuals with diverse

backgrounds and experiences, which enables the project to benefit from a broad

range of skills and expertise.

The project is being managed using an Agile methodology, which allows for

flexibility and responsiveness to changing requirements and priorities. The

Agile methodology also facilitates collaboration and communication within the

team, and with stakeholders.

The project team is divided into several sub-teams, each responsible for a

specific area of development. The sub-teams are:

1. Front-end development team: This team is responsible for the development of

the UI (user Interface) and UX (user experience design) of the system. They are

using modern front-end technologies such as React and Angular to create

responsive and intuitive interfaces that provide a seamless user experience.

2. Back-end development team: This team is responsible for the development of

the server-side logic of the system. They are using Golang and Node.js to create

efficient and scalable APIs that handle requests from the front-end and

communicate with the database.

3. Database team: This team is responsible for the design and implementation of

the database schema, and for ensuring data integrity and security. They are using

PostgreSQL as the primary database management system.

4. DevOps team: This team is responsible for the deployment, monitoring, and

maintenance of the system. They are using tools such as Docker, Kubernetes,

and Prometheus to automate the deployment process and ensure system

reliability and performance.

5. Project management team: This team is responsible for overall project

planning, coordination, and management. They ensure that the project is

18

progressing according to schedule, and that risks and issues are identified and

addressed in a timely manner.

The project team follows a collaborative and iterative approach to development,

which involves frequent communication and feedback between team members

and stakeholders. Regular meetings are held to review progress, discuss issues,

and plan the next steps.

The project team also uses various collaboration and project management tools

such as Jira, Confluence, and Slack to facilitate communication and

collaboration.

In summary, the organization of the project team is designed to ensure efficient

and effective development of the system, while promoting collaboration,

communication, and responsiveness to changing requirements and priorities.

19

20

Chapter-2: Literature Survey

In order to design and implement an efficient customer-vehicle management

system, it is important to understand the existing literature and research on

similar systems. This literature review seeks to give a broad overview of the

state of the art in customer-vehicle management systems and to emphasize the

salient characteristics and difficulties these systems confront.

2.1 Automotive control systems The majority of computer-based control

systems, sometimes referred to as vehicle control systems, are used to

operate modern cars. Diagnostics (warning and defects discovered

during operation), driver comfort controls like climate control, and

safety-critical controls like engine, gearbox, chassis, and braking

(anti-lock brake control and anti-spin control) are only a few of the many

tasks handled by vehicle control systems. Electronic control units

(ECUs), often referred to as onboard computer nodes, are typically part

of a vehicle management system and are connected via a network, such

as the controller area network (CAN). [5].

Numerous jobs, which are executables used to manage specific

functionality, are present in every ECU. I/O tasks are used to interact

with the controlled system (for instance, reading sensor values or

updating actuators), control tasks are used to make control decisions, and

management tasks are used to complete more administrative tasks like

system diagnostics and event logging. Two I/O-tasks to the left sense the

surrounding area (i.e., read hardware sensors) to ascertain the vehicle's

present condition, such as the speed of the car and the placement of the

gas pedal. These parameters are subsequently applied to the control-task,

which contains the control algorithms. In this scenario, the control job

may compute the amount of gasoline to be injected into the engine based

on the current speed and the placements on the gas pedal.

Vehicle control systems, like the majority of other control systems, have

to support real-time qualities, or be real-time systems, in order to control

surroundings that are continually changing.

21

In a real-time system, the moment the output is generated is important.

This often happens because the input and output must be connected, and

the input typically correlates to some kind of physical event. The lag

(delay) between the input time and the output time must be as small as

feasible for acceptable timeliness.

Introducing the idea of deadlines is one way to enforce timeliness in a

system. A fully fledged end-to-end time-slots are specified, meaning that

the outcome must be ready by a certain date. At least two categories can

be used to categorize real-time systems, namely:

2.1.1 Hard real-time systems, where failure of the system could

result in the loss of human lives if a deadline is missed.

Safety-critical systems are a common term for these systems.

There are strict real-time requirements for a lot of vehicle control

functions.

2.1.2 Soft real-time systems, here failure to meet deadlines just

lowers the system's level of service quality. Although not usually

done so in practice, managerial activities for vehicle control

systems, soft real-time could be considered.

Fig 2.1 A set of tasks executing a functionality

Numerous real-time powerful automated systems, such as many vehicle

monitor & control systems, have periodic and offline scheduled

22

maintenance. All tasks and their timing characteristics are known at

design time in an offline-scheduled system. To generate a schedule with

the start timings of all jobs that satisfies all timing requirements, a

scheduling tool is used. The system is periodic as a result of the cyclical

execution of this schedule. For several safety-critical domains, like the

automotive and avionics domains, offline-scheduled systems are

regarded to be safer than online-scheduled systems because a

proof-of-concept may be built in advance.

Predictability (or determinism), or the necessity that the system be built

in such a way that its behavior is always predictable, is a key component

of real-time systems. This implies that it must always be feasible to

determine the system's worst case timing behavior, at least for hard

real-time systems. The system satisfies the real-time criteria if all timing

requirements are met in the worst-case scenario.

Vehicle control systems are embedded systems, which means that they

are part of a larger system in this case, a vehicle system in addition to

being real-time systems. The majority of embedded systems, though not

all of them, are resource-restricted, meaning that their hardware

resources are frequently confined in terms of both memory size and CPU

speed. Adopting resource-constrained systems in autos has a number of

advantages, but the main one is cheaper hardware costs.

We can infer from this that data management for vehicle control systems

must at the very least:

2.1.3 Be predictable in terms of timing. Data should always be

available for access and manipulation within a predetermined

time frame.

2.1.4 Reducing the use of resources. The data management

techniques employed for a vehicle control system must be

sufficiently effective with regard to both memory need and CPU

usage for it to be appropriate in a resource-constrained

environment.

23

Fig 2.2 I/O task using a shared variable

2.2 Database management systems: The development of database

systems has made them an essential component of the majority of bigger

systems and programmes on computers that handle information

management. Software systems that handle enormous volumes of data,

like libraries, e-commerce applications, and reservation systems for

hotels and tickets, use database systems. Enterprise databases are the

term used to describe such database systems. Application-embedded

database systems, also known as embedded database systems, are also

utilized in smaller applications like word processors, email clients, and

personal organizers. Last but not least, device-embedded database

systems, often known as embedded databases, are databases that are

integrated into physical items like mobile phones, toys, and automobiles.

24

As we discuss in more details in this chapter, database systems have

some fundamental capabilities despite the fact that the requirements

these systems must meet may differ substantially.

● The external level of the database system that offers services to

users. The external level converts queries written in into

execution plans that the conceptual level may understand using a

query language.

● The conceptual level that serves as the external level's service

provider. The primary function offered consists of processing

execution plans, in which each read and write request for a data

record (or "tuple") in the database is converted into an individual

execution plan. The conceptual level also makes sure that many

database transactions running concurrently are being watched.

● The physical (internal) level is in charge of planning how the

database's data items are physically stored. The conceptual level

receives assistance from the physical level by being able to

access data elements and use index-lookups to search the

database for information.

2.2.1 Transactions in databases

Several database activities are combined into a database

transaction. Queries that are combined into a single, complete

process. This suggests that a database transaction is either fully

or partially executed. In order to easily distinguish the start and

finish of a database transaction, the following execution sequence

is typically used for transactions:

● start of the transaction The first database transaction has

now begun.

● writes and reads In the end, the database transaction's

execution could be divided into total count of database

reads and writes.

25

● Commit-Rollback This denotes the end of a transaction,

and whether it was properly completed will be revealed

by a Commit or Rollback.

Fig 2.3 The architecture of a database system

A database transaction needs to have four properties to be

considered valid. These characteristics, sometimes known by the

ACID characteristics:

26

• Atomicity: A database’s transaction can only be run once, either

all the way through or not at all.

• Consistency: It can't go against the logical rules that the system

enforces. For instance, the law of money conservation must be

followed throughout a bank transaction. This means that

following a financial transaction between two accounts, the total

amount in each account must be the same.

• Isolation: A db’s transaction must not impede any other

database transactions that are running simultaneously. This is

also known as serializing database transactions, meaning that any

collection of database transactions must always be able to

execute in a certain manner and in some form of pattern.

• Durability: A database read-write record is permanently

recorded in the database once it has been committed.

2.3 Vehicle Service Management

Usually, a fixed period of time or the amount of miles driven determines

a vehicle's service life. In general, it is suggested to get the vehicle

serviced every six months or 10,000 miles. The difficulty in identifying

which parts require repair or replacement makes "periodic vehicle

maintenance" problematic since it may result in the repair or

replacement of parts that are still in good condition. In this case,

predictive vehicle maintenance is helpful. This information is gathered

from several integrated or specialized sensors that are used by the car to

monitor the condition of various components.

27

Fig 2.4 Car Sales

This research makes a suggestion for the development of the Vehicle

Service Management System in Django. The system will simplify the

office procedures needed to manage commercial transactions in a car

garage. The list also includes maintaining maintenance logs, engaging

with clients, billing, updating repair orders for vehicles, controlling

service schedules for vehicles, tracking the status of auto repairs, and

updating customer data. The proposed solution would eliminate manual

procedures and transactions in auto repair facilities. Customers, auto

technicians working on vehicles, and an administrator will all have

access to the system, which will serve as a single point for transactions.

The suggested approach would increase overall client satisfaction and

operational effectiveness when it comes to obtaining car service.

2.3.1 Time-consuming: Visiting the store and completing these

processes take less time because the website takes care of the

initial booking and fee estimation.

2.3..2 It is accessible to the customer without requiring them to

download any apps to their phone because it is a website, making

it user-friendly. The user does not require a laptop to visit the

website because it is mobile-friendly.

2.3.3 Online customer system: Since the website enables online

work fulfillment, the client won't need to go. The goal of the

28

vehicle services is to give system users better information so they

can more effectively keep track of their stock information, sales,

and purchases.

Fig 2.5 System Architecture

2.4 RESTful Web Services

A web services architecture called REST (Representational State

Transfer) makes use of the HTTP protocol to facilitate communication

between clients and servers. RESTful web services have gained

popularity due to their simplicity, scalability, and flexibility. RESTful

web services use HTTP methods like GET, POST, PUT, and DELETE to

manage resources that are identified by URIs (Uniform Resource

Identifiers).

Fig 2.6 Number of Operations

29

For developers to begin using the majority of APIs (82.4 percent of 412

APIs), there must be some sort of service registration. Fig. 2.7 displays

the distribution of the various usage registration types. The API provider

can do a number of administrative tasks after registering, including

monitoring API usage, enforcing call limits, and switching to other

servers for API queries In fact, 75.6% of APIs require that users create

an account, which in certain cases permits the generation of an API Key

that must be given with each API call.

Fig 2.7 Distribution of the different required registration forms

The overall findings demonstrate that the call limitations cover a wide

variety of ranges. The authors of also examine the when using the call

restrictions enforcement feature in services from programmableweb.com

and market.mashape.com, they find that 21% and 4% of web services

impose functionality constraints, 21% and 8% of web services enforce

time limits for API access, and 59% and 88% of web services,

respectively, implement operation limitations. The tendency is therefore

to really impose a use cap on the clients, notwithstanding some diversity

in the sort of restriction.

30

Fig 2.8 Call limit enforcements

2.5 Public REST Web Service APIs

Public REST Web Service APIs are web services that are made available

to the general public for accessing data and functionality. These APIs

provide a platform for developers to build applications that use the

services provided by the APIs. Public REST APIs are used in various

domains such as social media, weather, finance, and healthcare.

2.6 Analysis of Public REST Web Service APIs

Feng et al. conducted a study on the quality of Public REST Web Service

APIs in terms of usability, functionality, and performance [16]. The

study analyzed 50 public REST APIs from various domains such as

social media, news, and finance. The study found that the usability of the

APIs varied significantly, with some APIs having good documentation

and developer support, while others lacked proper documentation and

had limited developer support. In terms of functionality, the study found

that the APIs provided a range of services, with some APIs providing

basic data retrieval services, while others provided more advanced

functionality such as data analysis and visualization. The study also

analyzed performance of the APIs in terms of throughput and response

time, and found that the performance varied depending on the API and

the amount of data being retrieved.

31

Given that consumers frequently have a choice of different APIs, if both

allow utilizing the same service, An API that receives frequent

maintenance may be preferred by users over one whose documentation

hasn't been updated in several years. We made an effort to examine this

in the documentation of the 500 APIs and found that 73% of the APIs

lacked this information. As for the remaining 27%, it is split as follows:

Updates from 2010 to 2015 included 6.4% in 2010, 8.6% in 2016, and

12% in 2017. As a result, of the 27%, about 50% are providing

documentation that has been updated in 2017, which shows that the API

is being used. The dataset, meanwhile, is not really sufficient for this

characteristic. There are two ways to create documentation: manually or

automatically with software. For the creation of APIs, a number of tools

are available that help with not just creating and testing an API but also

documenting it. This software can generate documentation automatically

based on source code comments (e.g., Apidoc), API specifications (e.g.,

the OpenAPI standard, previously Swagger [28]), or API description

languages (e.g., API Blueprint, Apiary). Generated documentation serves

as an alternative to interface description papers like WSDL for SOAP

web services.

Although the use of documentation tools is on the rise , 55% of APIs are

still documented in textual form as part of web pages. For automated

examination of the API documentation, this leads to a broad range of

descriptions of the API in terms of structure, content, and amount of

detail.

Additionally, even though we were unable to identify the precise

programme used, we classified the material as software generated

documentation in 14.6% of the cases.

90.4% of the 500 API documentations offer illustrations of API calls and

replies. These examples help developers quickly comprehend how to use

the API, including parameter selection, URI format, and response

structure, which expedites the development process. Additionally, 70.2%

of the time is spent describing and explaining potential API error signals,

32

whether they are HTTP status codes or simple text messages appearing

in the answer body. The remaining 29.8% don't offer any details

regarding incorrect answers.

The developer might not be able to determine what went wrong or why

the problem occurred particularly when these error messages aren't

self-explanatory and could be unable to activate the appropriate error

handling code.

Fig 2.9 Documentation tools used by APIs

2.7 Challenges and Future Directions

Despite the popularity of Public REST Web Service APIs,To raise the

caliber and usefulness of these APIs, a number of issues must be

resolved. One challenge is the lack of standardization in API design and

implementation, which makes it difficult for developers to integrate

multiple APIs into their applications. Another challenge is the need for

better documentation and developer support, which can help developers

to understand the APIs and troubleshoot issues. In addition, there is a

need for better tools and frameworks for testing and evaluating the

quality and performance of APIs.

33

Table 2.1 API’s repository used by applications and main features

2.8 Customer-Vehicle Management Systems

There are several customer-vehicle management systems that have been

developed to address the growing demand for efficient management of

vehicles and customers. These systems have various features that allow

for effective management of customer data, vehicle data, and

maintenance schedules.

One such system is the Vehicle Management System (VMS) developed

by Hussain et al. [5], which is a web-based system that allows for the

management of vehicle data, maintenance schedules, and customer

information. The system allows for the creation of user accounts and

different levels of access for different users. It also provides alerts and

notifications for scheduled maintenance and helps to improve the overall

efficiency of the vehicle management process.

Another customer-vehicle management system is the Car Service

Management System (CSMS) developed by Singh et al. [6], which is a

cloud-based system that allows for the management of customer data,

vehicle data, and maintenance schedules. The system uses a GPS

tracking device to track the location of the vehicle and sends alerts to the

user in case of any maintenance issues or faults. The system also allows

for the scheduling of appointments and generates reports on vehicle

usage, maintenance, and costs.

A similar system is the Vehicle Tracking and Management System

(VTMS) developed by Bista et al. [7], It provides for the tracking and

administration of automobiles using a web-based system. The system

uses GPS and GSM technologies to track the location of the vehicle and

sends alerts to the user in case of any maintenance issues or faults. The

34

system also allows for the scheduling of appointments and generates

reports on vehicle usage, maintenance, and costs.

The Fleet Management System (FMS) developed by Ramli et al. [8] is

another customer-vehicle management system that allows for the

management of vehicle data, maintenance schedules, and customer

information. The system uses a database to store vehicle data and

generates reports on vehicle usage, maintenance, and costs. The system

also allows for the scheduling of appointments and sends alerts to the

user in case of any maintenance issues or faults.

In addition, the Vehicle Maintenance Management System (VMMS)

developed by Kim et al. [9] is a system that allows for the management

of vehicle data, maintenance schedules, and customer information. The

system uses RFID technology to track the location of the vehicle and

sends alerts to the user in case of any maintenance issues or faults. The

system also allows for the scheduling of appointments and generates

reports on vehicle usage, maintenance, and costs.

2.8.1 User Accounts and Access Levels: Many customer-vehicle

management systems provide the ability to create user accounts

with different access levels. For example, some users may only

have access to view customer or vehicle data, while others may

have the ability to schedule maintenance services or generate

reports. This feature ensures that sensitive data is only accessible

to authorized users and helps to improve data security.

2.8.2 Integration with Other Systems: Some customer-vehicle

management systems can integrate with other systems, such as

accounting or billing software. This allows for seamless data

transfer and can help to streamline the overall management

process.

2.8.3 Customer Communication: Many customer-vehicle

management systems provide tools for communicating with

customers, such as sending appointment reminders or

35

notifications about maintenance services. This helps to improve

customer satisfaction and can lead to increased loyalty.

2.8.4 Data Analysis and Reporting: Some systems offer advanced

reporting and data analysis features, such as predictive

maintenance or cost analysis. This can provide valuable insights

into vehicle usage patterns and maintenance costs, which can

inform decision-making and help to optimize operational

efficiency.

2.8.5 Mobile Access: With the increasing use of mobile devices,

some customer-vehicle management systems now offer mobile

access via smartphone or tablet applications. This provides added

convenience for users who need to access customer or vehicle

data while on-the-go.

2.8.6 Integration with IoT Devices: Internet of Things (IoT)

technology has just emerged, some customer-vehicle

management systems now integrate with IoT devices such as

sensors or diagnostic tools. This can provide real-time data on

vehicle health and usage, which can be used to optimize

maintenance schedules and improve operational efficiency.

2.9 Key Features of Customer-Vehicle Management Systems

Customer-vehicle management systems have become increasingly

popular in recent years due to their ability to provide efficient

management of customer data, vehicle data, and maintenance schedules.

These systems are designed to provide a centralized platform for storing

and accessing customer information, such as contact details, service

history, and preferences. This information can be accessed by authorized

personnel within the organization and can be used to personalize the

service experience for each customer. This helps to build customer

loyalty and satisfaction, which can lead to increased revenue and profits.

36

The management of vehicle information is another key feature of

customer-vehicle management systems. This includes information such

as make and model, registration number, and maintenance history. This

information is essential for maintaining the vehicle in optimal condition

and ensuring that it is safe and roadworthy. By having a centralized

system for managing vehicle data, organizations can easily keep track of

the maintenance history of each vehicle and ensure that it is serviced at

regular intervals.

One of the most important features of customer-vehicle management

systems is the ability to provide real-time alerts and notifications for

scheduled maintenance services, as well as any faults or issues detected

in the vehicle. These alerts can be sent to the customer via email or SMS

and can be used to remind them of upcoming service appointments. This

helps to ensure that the vehicle is kept in optimal condition and reduces

the risk of breakdowns or accidents. It also helps to build customer trust

and confidence in the service provided by the organization.

Another key feature of customer-vehicle management systems is the

ability to track the location of the vehicle using GPS technology. This

provides important data on vehicle usage and helps to improve

operational efficiency. For example, by tracking the location of a fleet of

vehicles, organizations can optimize delivery routes and reduce fuel

consumption. They can also monitor vehicle usage patterns and identify

any issues that may be affecting the performance of the vehicle.

In addition to these key features, customer-vehicle management systems

also provide tools for scheduling maintenance services and generating

reports on vehicle usage, maintenance costs, and other metrics. This

allows organizations to keep track of the performance of their fleet of

vehicles and identify any areas where improvements can be made. By

analyzing these metrics, Decisions made by organizations based on data

may result in enhanced operational effectiveness, lower costs, and more

customer satisfaction.

37

Overall, customer-vehicle management systems are essential tools for

organizations that manage a fleet of vehicles. They provide a centralized

platform for managing customer and vehicle data, scheduling

maintenance services, and tracking vehicle usage. By using these

systems, organizations can improve their operational efficiency, reduce

costs, and provide a better service experience for their customers.

2.10 Challenges and Limitations

While customer-vehicle management systems offer several benefits for

vehicle management, there are also several challenges and limitations

associated with these systems. One major challenge is related to the

accuracy and reliability of data, particularly when dealing with large

volumes of data from various rich data sources. Another challenge is

related to the integration of different systems and platforms, which can

be complex and time-consuming.

In addition, there may be limitations related to the availability of

hardware and software resources, as well as the technical expertise

required for the design and implementation of these systems. There may

also be challenges related to privacy and security, particularly with

regard to the storage and handling of sensitive customer information.

2.11 Future Directions and Research Opportunities

Despite these challenges, customer-vehicle management systems have

the potential to significantly improve the efficiency and effectiveness of

vehicle management. Future research in this area could focus on the

development of more advanced algorithms and predictive models for

vehicle maintenance, additionally to the incorporation of cutting-edge

technology like blockchain and AI.

There is also scope for research in the area of user experience design,

with a focus on developing more user-friendly and intuitive interfaces

for customer-vehicle management systems. Additionally, research could

be conducted on the impact of these systems on the overall performance

and profitability of vehicle management businesses.

38

Overall, the literature survey highlights the importance of

customer-vehicle management systems for efficient vehicle management

and the need for further research and development in this area. Building

on the knowledge gleaned from the literature review, the following

sections will outline the design and execution of the suggested

customer-vehicle management system.

39

Chapter-3: System Design & Development

3.1 Technical Requirements

Operating System Ubuntu

Language Go-Lang

Runtime Environment Go Runtime

Package Manager Go

Table 3.1 Software Requirements

3.2 Analysis:

This significant project's goal is to create a Golang-based Rest API. Which

helps a user add information about its customers and vehicles associated

with them to their database. The API generally has two SQL database tables

to store information about customers and vehicles. By using some business

logic, we can efficiently fetch data from the database, present it to the user,

and perform some complex queries on it. APIsares able to handle complex

queries and have to be simple and performant. They also have to be

concurrent, scalable, secure, and maintainable, hence being well

documented. So we need several tools and techniques to make it possible in

Golang. Some major tools and techniques are listed below:

3.2.1 Routing: A built-in package called "net/http" is available in

Golang to manage HTTP requests and routing. The package allows

developers to define routes and handlers for different HTTP

methods (GET, POST, PUT, DELETE, etc.) and URL patterns. The

routing mechanism should be designed to be efficient and scalable to

handle a large number of requests.

40

Fig 3.1 Routing Principles

Routing is a fundamental concept in web development, and it is the

process of mapping incoming requests to the appropriate handler

function. It is a critical component of any web framework or library,

as it allows developers to define how incoming requests are handled

and processed. The speed and scalability of online applications

depend heavily on routing, and it is essential to design efficient and

scalable routing mechanisms.

In Golang, the "net/http" package provides a simple and efficient

routing mechanism for handling HTTP requests. The package

includes a "ServeMux" type, which is a straightforward HTTP

request multiplexer that runs the appropriate handler function after

matching incoming requests against a set of registered patterns. The

"ServeMux" type allows developers to define routes and handlers

for different HTTP methods and URL patterns.

When designing a routing mechanism in Golang, it is essential to

consider the performance and scalability of the application. Efficient

routing can significantly improve the performance of web

applications, especially when handling a large number of requests.

Utilizing a trie data structure to hold the registered routes is one

method for effective routing. A trie is a data structure that resembles

a tree and enables quick lookup and retrieval of texts according to

41

their prefixes. In the context of routing, a trie can be used to store

the registered URL patterns and quickly match incoming requests

against them.

Another important consideration when designing a routing

mechanism is the support for dynamic parameters and wildcards in

URL patterns. Dynamic parameters are placeholders in URL

patterns that can match any value, while wildcards match any part of

the URL. For example, a dynamic parameter in a URL pattern could

be used to capture a user ID, while a wildcard could be used to

match any URL path segment. Golang provides support for dynamic

parameters and wildcards in URL patterns using the "{name}"

syntax for dynamic parameters and the "*" syntax for wildcards.

In addition to efficient routing and support for dynamic parameters

and wildcards, it is essential to consider security when designing a

routing mechanism. Preventing widespread security flaws like SQL

injection and cross-site scripting (XSS) assaults in particular is

crucial. Golang provides several built-in security features that can

help prevent these types of attacks, such as prepared statements for

database queries and automatic HTML escaping.

In conclusion, routing is a critical component of web development,

and it plays a vital role in the performance and scalability of web

applications. Golang provides a simple and efficient routing

mechanism for handling HTTP requests, and it is essential to design

efficient and scalable routing mechanisms that can handle a large

number of requests. When designing a routing mechanism, it is

important to consider performance, support for dynamic parameters

and wildcards, and security to prevent common security

vulnerabilities.

3.2.2 Middleware: Golang provides a middleware pattern for

handling cross-cutting concerns such as authentication, logging, and

error handling. Middleware functions can be chained together to

form a pipeline that processes incoming requests and outgoing

42

responses. The middleware should be designed to be composable

and reusable across different routes and handlers.

Fig 3.2 Role of middleware

The process of confirming a user's or system's identification is

known as authentication. Normally, it is done by utilizing a

token-based system or a username and password combination. To

confirm that the user or machine using the application is who they

say they are, authentication is used.

On the other hand, authorization is the process of figuring out if a

user or system has the proper authorizations to access a certain

resource or carry out a certain operation. This is typically done by

checking the user's roles and permissions against a set of predefined

rules.

In the context of middleware, authentication and authorization are

often used together to protect resources and ensure that only

authorized users have access. Middleware can be used to perform

authentication and authorization checks before allowing a request to

be processed.

In Go, there are several middleware libraries available that provide

authentication and authorization functionality. One popular library is

called "JWT-Go," which provides support for JSON Web Tokens

(JWT) - a popular token-based authentication system. JWT-Go can

be used to generate and verify JWT tokens, which can then be used

to authenticate users.

Another popular middleware library for Go is "Gorilla/Mux," which

provides support for both authentication and authorization.

43

Gorilla/Mux provides several middleware functions that can be used

to perform authentication and authorization checks, including

"BasicAuth" for basic authentication and "JWTAuth" for JWT-based

authentication.

It is important to note that authentication and authorization are not

one-size-fits-all solutions. The specific implementation of these

processes will depend on the requirements of the application and the

resources being protected. It is important to carefully consider the

security requirements of the application and choose a middleware

library that meets those requirements.

3.2.3 Database integration: Golang has a rich ecosystem of database

drivers and ORMs for integrating with different databases such as

PostgreSQL, MySQL, and MongoDB. The choice of database and

FORM depends on the specific requirements of the API and the

expertise of the development team. The database integration should

be designed to be secure and efficient enough to handle concurrent

requests.

3.2.4 Testing: Golang has a built-in testing framework that allows

developers to write unit tests and integration tests for their APIs.

The testing framework should be used to ensure that the API

behaves correctly in different scenarios and edge cases. The tests

should be designed to be automated and repeatable to catch

regressions and bugs early in the development cycle.

3.2.5 Documentation: Golang has a built-in tool called "godoc" for

generating documentation from source code comments. The

documentation should be written to be clear, concise, and up-to-date

with the API's functionality and usage. The documentation should

be designed to be accessible to both developers and users of the API.

3.2.6 Layered Architecture: This is a popular software architecture

pattern that divides an application into different layers, each with its

own set of responsibilities and concerns. A Golang layered design

may be implemented by grouping files based on their functionality

44

and separating code components into horizontal layers that work

together as one unit of software[19].

3.2.7 Linting: Linting is a process of analyzing source code to detect

potential errors, bugs, and style violations. In Golang, there are

several popular linters available such as "golint", "go vet", and

"gofmt". These linters can help ensure that the codebase is

consistent, follows best practices, and is free of common errors.

The "golint" tool is specifically designed to check for style and code

cleanliness issues. It flags common coding mistakes, such as unused

variables and incorrect function names, and also checks the

formatting of the code for consistency. "Go vet" is another popular

linter that checks for suspicious constructs, such as unused imports,

incorrect function signatures, and possible mistakes in defer

statements. Finally, "gofmt" is a tool that formats the code according

to the Go standard style.

Linting should be an integral part of the development process to

ensure that the code is of high quality and is maintainable over time.

By catching potential issues early on, developers can save time and

effort in debugging and refactoring code later in the development

cycle. Linters can also help enforce best practices and ensure that

the codebase is consistent and readable by all members of the

development team.

3.3 Why Golang ?

Golang, also known as Go, is a statically typed, compiled programming

language designed to be efficient, reliable, and scalable. It was developed by

Google in 2009 to address the shortcomings of existing languages for

large-scale, networked applications. Golang is widely used for web

development, network programming, and distributed systems, among other

areas.

45

One of the primary advantages of Golang is its efficient concurrency

model, which allows developers to write highly concurrent programs

with minimal overhead. Golang uses a lightweight threading model

called goroutines, which enables thousands of concurrent threads to

be executed efficiently on a single machine. This makes Golang

well-suited for high-performance, networked applications, as it

allows developers to easily handle large numbers of connections and

requests.

Another advantage of Golang is its simplicity and ease of use. The

language was designed to be easy to learn and use, with a simple

syntax and minimalistic approach to programming. This makes it an

ideal language for developers who are new to programming or who

want to quickly prototype and develop applications.

In terms of performance, Golang is generally faster than interpreted

languages like Python or Ruby, but not as fast as compiled

languages like C or C++. However, Golang offers a good balance

between speed and ease of use, making it an attractive option for

many developers.

When comparing Golang with Java, both languages are designed for

similar use cases and share some similarities. However, there are

also some significant differences between the two languages. For

example, Java is an object-oriented language, whereas Golang is a

procedural language with support for some object-oriented concepts.

Java also has a more complex syntax and requires more boilerplate

code to get started.

On the other hand, Golang has a simpler and more efficient

concurrency model than Java, which can be a significant advantage

for applications that require high levels of concurrency.

Additionally, Golang has a built-in garbage collector, which

simplifies memory management compared to Java.

46

Fig 3.3 Comparison between Golang and java

In conclusion, Golang is an efficient, reliable, and scalable

programming language that is well-suited for large-scale, networked

applications. Its efficient concurrency model, simplicity, and ease of

use make it an attractive option for many developers. When

compared with Java, Golang offers a simpler concurrency model and

simpler memory management, making it an ideal choice for

applications that require high levels of concurrency.

47

Fig 3.4 Concurrency comparison

Concurrency is an important aspect of modern software

development. With the increasing demand for scalable and

responsive applications, concurrency has become a key factor in

determining the performance and efficiency of software systems. Go

is a language that has been specifically designed to support

concurrent programming. It provides a set of powerful concurrency

features, such as goroutines and channels, that make it easy to write

efficient and scalable concurrent programs.

To analyze the concurrency features of Go, we conducted an

experiment to compare the performance of Go with Java, which is

another popular language for concurrent programming. We

implemented a simple matrix multiplication program in both Go and

Java, using different concurrency models. The Java implementation

used Java Threads, while the Go implementation used goroutines

and channels.

48

From our experiment, we found that Go provided better

performance than Java in both compile time and concurrency. The

Go code compiled faster and produced a smaller binary compared to

the Java code. In terms of concurrency, the Go implementation was

more efficient and provided better scalability than the Java

implementation. This was due to the lightweight nature of

goroutines, which enabled Go to handle large numbers of concurrent

tasks more efficiently than Java.

Moreover, we found that the Go code was easier to write and

maintain than the Java code. The use of goroutines and channels

made it easy to write concurrent programs without the complexity of

traditional thread-based programming. This was due to the fact that

goroutines are lightweight and can be spawned and managed easily,

while channels provide a simple and safe mechanism for

communication between goroutines.

In conclusion, our experiment showed that Go is a language that is

well-suited for concurrent programming. Its lightweight concurrency

features provide better performance, scalability, and ease of use

compared to Java's traditional thread-based approach. While Go is

still relatively young, we believe that it has the potential to become

the mainstream language for concurrent programming in the near

future.

Before the analysis can begin, it is essential to understand the kind

of data and sources that will be used in the system. Our event

management system may use registrations for events, attendance

data, speaker information, event scheduling, and feedback data as its

primary data sources.

3.4 Object Setup:

To setting up a Go API, you need to follow these steps:

3.4.1 Install Go: You can download and install Go from the official

website. Follow the installation instructions for your operating system.

49

Choose a web framework: There are several web frameworks available

for Go, such as Gin, Echo, and Revel. Choose a framework that suits

your needs and preferences.[17]

Sure, here are the steps to install Go in Linux and Docker:

Installing Go in Linux:

1. Open a terminal window.

2. Download the latest stable release of Go from the official website

using `wget` command:

$ wget https://golang.org/dl/go1.16.4.linux-amd64.tar.gz

Note: Replace the version number with the latest version available.

3. Extract the downloaded tarball using the `tar` command:

$ sudo tar -C /usr/local -xzf go1.16.4.linux-amd64.tar.gz

4. Set up the Go environment variables by adding the following lines to

the `/etc/profile` file:

export PATH=$PATH:/usr/local/go/bin

export GOPATH=$HOME/go

export PATH=$PATH:$GOPATH/bin

Note: Change the version number in the `export PATH` line if

necessary.

5. Refresh the environment variables using the `source` command:

$ source /etc/profile

6. Verify the installation by running the following command:

$ go version

You should see the installed Go version displayed on the screen.

Installing Go in Docker:

50

1. Open a terminal window.

2. Create a new directory for your Go project and navigate into it:

$ mkdir myproject && cd myproject

3. Create a new Dockerfile in the directory using a text editor:

$ nano Dockerfile

4. Add the following lines to the Dockerfile:

FROM golang:1.16-alpine

WORKDIR /app

COPY go.mod go.sum ./

RUN go mod download

COPY . .

RUN go build -o myapp .

EXPOSE 8080

CMD ["./myapp"]

5. Build a Docker image from the Dockerfile using the `docker build`

command:

$ docker build -t myapp:latest .

6. Run a Docker container from the image using the `docker run`

command:

$ docker run -p 8080:8080 myapp:latest

7. Verify that the container is running by accessing

`http://localhost:8080` in a web browser.

3.3.2 Set up your project: Create a new directory for your project and

initialize a new Go module using the go mod init command. This will

create a go.mod file that tracks your project's dependencies.

51

3.4.3 Define your API routes: Define the routes for your API using the

chosen web framework. This involves defining the HTTP methods

(GET, POST, PUT, DELETE) and the corresponding URL paths[18].

3.4.4 Implement your API handlers: Implement the handlers for each

API route. These handlers should parse the request, perform any

necessary business logic, and return a response.

3.4.5 Connect to a database: If your API requires a database, you need

to connect to it using a database driver. There are several database

drivers available for Go, such as database/sql and gorm.

3.4.6 Use Kafka for message queuing:

Building real-time data pipelines and streaming applications uses the

distributed streaming platform Kafka. It offers high availability,

scalability, and fault tolerance while being built to manage massive

amounts of data. Kafka can be used as a message queuing system to

improve the scalability and reliability of your API. Kafka can be used

to decouple different parts of the API and provide a buffer between the

producer and the consumer, which can help to absorb bursts of traffic

and prevent overloading the API.

Kafka is based on the publish-subscribe model, where producers

publish messages to a topic, and consumers subscribe to that topic to

receive the messages. Kafka provides durability and fault tolerance by

storing the messages in partitions and replicating them across multiple

brokers. This ensures that even if one broker fails, the messages are still

available and can be consumed by the consumers.

To use Kafka in your API, you can use a Kafka client library for Go,

such as sarama. Sarama is a powerful and easy-to-use Kafka client

library for Go that provides support for all the Kafka features, such as

topic creation, message publishing, and message consumption. Sarama

also provides support for configuring Kafka clients and handling errors.

52

Using Kafka in your API can improve the scalability and reliability of

your application by decoupling different parts of the API and providing

a buffer between the producer and the consumer. Kafka can also help to

absorb bursts of traffic and prevent overloading the API, which can

result in improved performance and user experience.

3.4.7 Use Prometheus for monitoring:

Prometheus is an open-source monitoring system that is used to collect

and analyze metrics from your API. Prometheus provides a flexible and

scalable platform for monitoring and alerting on time-series data. It

offers high availability, scalability, and fault tolerance while being built

to manage massive amounts of data. Prometheus is a popular choice for

monitoring containerized applications and microservices because of its

ability to scrape metrics from different endpoints and provide a unified

view of the system.

Prometheus uses a pull-based model to collect metrics from different

endpoints. The Prometheus server periodically scrapes the metrics from

the endpoints using HTTP and stores them in a time-series database.

The metrics can then be analyzed, queried, and visualized using

Prometheus's query language and Grafana.

To use Prometheus in your API, you can use a Prometheus client

library for Go, such as prometheus/client_golang. The client library

provides support for exposing metrics from your API in a format that

Prometheus can scrape. The library also provides support for

instrumenting different parts of your API, such as HTTP handlers and

database queries, and exposing the metrics for Prometheus to scrape.

Using Prometheus in your API can provide valuable insights into the

performance and health of your system. By monitoring the metrics, you

can identify bottlenecks, anomalies, and errors in your system and take

proactive measures to address them. Prometheus can also help to

improve the reliability and availability of your system by alerting you

to potential issues before they become critical.

53

In conclusion, using Kafka and Prometheus in your API can provide

significant benefits in terms of scalability, reliability, and performance.

Kafka can help to decouple different parts of the API and provide a

buffer between the producer and the consumer, which can improve the

reliability and scalability of the system. Prometheus can help to

monitor the performance and health of the system and provide valuable

insights into the system's behavior. Together, Kafka and Prometheus

can help to build robust and reliable APIs that can handle large

volumes of traffic and provide a seamless user experience.

3.4.8 Test your API: Write tests for your API to ensure that it works as

expected. You can use a testing framework like testing or goconvey or

mock testing.

3.4.9 Document your API: After implementing and testing your API,

it's important to document its endpoints and functionalities for users

and developers. Two popular tools for documenting APIs are Swagger

and Postman.

An open-source software framework called Swagger aids in the design,

construction, documentation, and consumption of RESTful web

services by developers. The OpenAPI Specification (OAS), which

establishes a standard, language-neutral interface for REST APIs, may

be used to describe your API using Swagger. Users can interact with

the API and test its endpoints using the user interface (UI) that Swagger

offers. It also generates documentation for the API, including a

description of each endpoint, its parameters, and expected responses.

Postman is another popular tool for API documentation and testing. It

allows developers to create, share, and test APIs easily. With Postman,

you can create collections of API requests, organize them into folders,

and share them with others. Postman also provides a UI for testing API

endpoints, with features like automated testing, response validation,

and environment variables.

Both Swagger and Postman can help streamline the API development

process by providing a centralized location for documentation, testing,

54

and collaboration. By documenting your API with one of these tools,

you can make it easier for developers to understand and use your API,

which can lead to increased adoption and better user experiences.

3.5 Unit Test Development:

Unit tests must be created to guarantee the usability and dependability

of the implemented components. The unit tests should cover both

positive and negative cases and strive for at least 90% code coverage or

cover to most of the code you can. Annotations like

Test_FunctionName, file name will be in format TestFileName.go as

well as assertion methods, must be utilized. To speed up test data

preparation and increase reuse of code, a TestUtility class may also be

used.

Fig 3.5 Unit testing in golang

To develop unit tests for a REST API built with Golang, the built-in

testing package can be used along with the net/http/httptest package.

By using http.NewRequest() and httptest.NewRecorder(), respectively,

each test generates an HTTP request and a response recorder. The

proper HTTP handler function is then used to process the request using

the functions http.HandlerFunc() and handler.ServeHTTP(). Next,

using a variety of assertions, the answer is examined for the anticipated

status code and response body.

In order to make sure that the code you create functions as intended,

unit testing is an essential component of software development. In Go,

the built-in testing package makes it easy to write unit tests for your

55

code. Here are some key points to keep in mind when writing unit tests

in Go:

3.5.1. Create a separate test file: For each source file in your

codebase, you should create a separate test file with the suffix

`_test.go`. For example, if you have a source file called

`foo.go`, your test file should be named `foo_test.go`.

3.5.2. Import the testing package: At the top of your test file,

you should import the `testing` package, which provides all the

necessary functions for writing tests.

3.5.3 Use the naming convention: Each test function should

start with the word `Test`, followed by a descriptive name. For

example, if you are testing a function called `Add`, your test

function should be named `TestAdd`.

3.5.4. Use the t.Run method: If you need to test multiple

scenarios for a single function, you can use the `t.Run` method

to run sub-tests. This allows you to keep your tests organized

and easy to read.

3.5.5. Use the t.Helper method: If your test function calls other

functions that might fail, you can use the `t.Helper` method to

indicate that the error originated in the helper function, not in

the test function itself.

3.5.6. Use the t.Errorf method: If a test fails, you can use the

`t.Errorf` method to report the error. This method takes a format

string and any number of arguments, just like the `fmt.Printf`

function.

3.5.7. Use the t.Fail method: If you want to indicate that a test

has failed, but you don't want to report a specific error, you can

use the `t.Fail` method.

56

3.5.8. Use table-driven tests: Table-driven tests allow you to test

multiple scenarios for a single function using a single test

function. This makes your tests easier to read and maintain.

3.5.9. Use the testing.Short method: If you want to skip slow

tests during the development process, you can use the

`testing.Short` method to indicate that the tests should be run in

short mode.10. Use the t.Skip method: If you want to skip a test

for a specific reason, you can use the `t.Skip` method. This

method takes a format string and any number of arguments, just

like the `t.Errorf` method.

We can make sure that your unit tests are well-organized, simple to

read, and successful in finding issues by adhering to these

recommended practices.

3.6 System Design:

57

Graph 1. VehicleStore API layered Architecture

Handling HTTP requests and communicating with a data store layer is a

crucial part of web service development. In this example, we'll explore

how to handle a POST request for creating a new vehicle record and how

to store it in a MySQL database.

First, we need to define the route for our POST request in our web

service. We'll use the Gorilla mux router for this example, but any web

framework can be used. Here's an example route definition:

router.HandleFunc("/vehicles", createVehicle).Methods("POST")

This route will match any POST request to the "/vehicles" URL path and

call the `createVehicle` function.

Next, we need to define the `createVehicle` function. This function will

be responsible for handling the HTTP request, parsing the request body,

validating the input data, and storing the new vehicle record in the

database. Here's an example implementation:

func createVehicle(w http.ResponseWriter, r *http.Request) {

// Parse the request body

var vehicle Vehicle

err := json.NewDecoder(r.Body).Decode(&vehicle)

if err != nil {

http.Error(w, err.Error(), http.StatusBadRequest)

return

}

// Validate the input data

58

err = validateVehicle(vehicle)

if err != nil {

http.Error(w, err.Error(), http.StatusBadRequest)

return

}

// Store the vehicle in the database

err = storeVehicle(vehicle)

if err != nil {

http.Error(w, err.Error(), http.StatusInternalServerError)

return

}

// Return a success response

w.WriteHeader(http.StatusCreated)

fmt.Fprintf(w, "Vehicle created successfully")

}

Let's break down the `createVehicle` function step by step:

1. We first parse the request body using the `json.NewDecoder` function

to decode the JSON data into a `Vehicle` struct. If the parsing fails, we

return a 400 Bad Request HTTP response to the client.

2. We then validate the input data using a separate `validateVehicle`

function. This function checks if the input data is valid and returns an

error if it's not. If the input data is invalid, we return a 400 Bad Request

HTTP response to the client.

59

3. Next, we store the vehicle record in the database using a separate

`storeVehicle` function. This function communicates with the data store

layer to create a new vehicle record. If the database operation fails, we

return a 500 Internal Server Error HTTP response to the client.

4. Finally, we return a 201 Created HTTP response to the client to

indicate that the new vehicle record was created successfully.

Now Let's examine the'storeVehicle' function in more detail. To add a

new car record to the database, this method must communicate with the

data storage layer. Here's an example implementation using the MySQL

driver for Go:

func storeVehicle(vehicle Vehicle) error {

// Open a new database connection

db,err:= sql.Open("mysql",

"user:password@tcp(127.0.0.1:3306)/mydb")

if err != nil {

return err

}

defer db.Close()

// Prepare the SQL statement

stmt, err := db.Prepare("INSERT INTO vehicles(make, model, year)

VALUES (?, ?, ?)")

if err != nil {

return err

}

60

defer stmt.Close()

// Execute the SQL statement with the input parameters

_, err = stmt.Exec(vehicle.Make, vehicle.Model, vehicle.Year)

if err != nil {

return err

}

return nil

}

Again, let's break down the `storeVehicle` function step by step:

1. After receiving the request, the storeVehicle function first extracts the

vehicle data from the request body.

2. Then, it validates the vehicle data to ensure that it meets the required

criteria. This includes checking if the vehicle type is valid, if the model

year is a valid integer, and if the vehicle's price is a valid floating-point

number.

3. Once the validation is successful, the function calls the CreateVehicle

function from the vehicle data store layer, passing in the validated

vehicle data.

4. The CreateVehicle function then creates a new instance of the vehicle

struct and populates it with the data from the request. It also generates a

unique identifier for the vehicle.

5. Next, the CreateVehicle function calls the InsertOne method from the

MongoDB driver to insert the new vehicle document into the MongoDB

database.

61

6. If the insertion is successful, the CreateVehicle function returns the

vehicle ID and any relevant metadata, such as the insertion timestamp.

7. If an error occurs at any point during the process, the function returns

an error response with a relevant error message.

8. Finally, the storeVehicle function returns an HTTP response with the

vehicle ID and metadata, or an error response if an error occurred.

Overall, This procedure makes sure that only accurate car information is

saved in the database and that any mistakes are dealt with properly. By

separating the web service layer from the data store layer, we can ensure

that each layer can be tested and modified independently without

affecting the other layers.

Graph 2. Entity Relationship Diagram of Vehicle Store

Entity Relationship Model (ERM) for Zopstore Database:

The Zopstore database will consist of two main tables - Customers and

Vehicles. The Customers table will have a foreign key relationship with

62

the Vehicles table as each customer can have multiple vehicles. Below is

the entity relationship model for the Zopstore database.

Customers Table:

The Customers table will have the following attributes:

- Id: unique identifier for each customer (UUID)

- Vehicale_Id: foreign key to the Vehicles table, identifies the vehicle(s)

associated with the customer

- Name: name of the customer

- Age: age of the customer (positive integer less than 100)

- Gender: gender of the customer (enum with values [male, female,

others])

- Phone.No: phone number of the customer (string with 12 digits starting

with 91)

- City: city of the customer

The DDL is as follows:

create table Customers

(

id varchar(255) not null primary key,

name varchar(255) null,

age int null,

phone_number bigint null,

gender enum ('male', 'female', 'other') null,

city varchar(50) null,

vehicle_id varchar(255) null,

constraint Customers_ibfk_1

foreign key (vehicle_id) references Vehicles (id)

63

)

collate = utf8mb4_0900_ai_ci;

create index vehicle_id

on Customers (vehicle_id);

Customer APIs:

- GetByID: retrieves the details of a specific customer by their Id

- POST: adds a new customer to the database

- UPDATE: updates the details of an existing customer

- DELETE: deletes a customer from the database

- GetAll: retrieves all customers from the database with the following

filter options:

- if is vehicle true get all vehicle details for that particular customer

- Get vehicles based on fuel_type

- Get vehicles based on brand

Vehicles Table:

The Vehicles table will have the following attributes:

- Id: unique identifier for each vehicle (UUID)

- Type: type of the vehicle (enum with values [2, 4, 6 wheelers])

- Fuel_type: type of fuel used by the vehicle (enum with values [petrol,

diesel, cng, electric])

- Brand: brand of the vehicle

- Model: model of the vehicle

- Colour: colour of the vehicle

64

The DDL is as follows:

create table Vehicles

(

id varchar(255) not null primary

key,

type enum ('2','4','6')

null,

fuel_type enum ('petrol', 'diesel', 'cng',

'electric') null,

brand varchar(50) null,

model varchar(50) null,

colour varchar(25) null

)

collate = utf8mb4_0900_ai_ci;

Vehicle APIs:

- POST: adds a new vehicle to the database

- UPDATE: updates the details of an existing vehicle

- DELETE: deletes a vehicle from the database

3.7 Web Service Development:

Web service development is an essential part of service design, which

involves creating and deploying web-based applications that interact with

other software systems and applications over the internet. The purpose of

65

web services is to provide a standard platform for exchanging data between

different software applications, irrespective of their underlying architecture

or programming language.

Web service development involves several key steps, including the design

of the web service architecture, implementation of the web service, testing

and deployment, and ongoing maintenance and support. In this section, we

will discuss these steps in detail and provide insights into the best practices

and tools for web service development.

1. Designing the Web Service Architecture: The first step in web service

development is to design the architecture of the web service. This involves

defining the service endpoints, message formats, protocols, and other

technical specifications. A well-designed web service architecture should be

flexible, scalable, and easy to use for developers.

2. Implementing the Web Service: After the web service architecture has

been designed, The service will now be put into practise utilizing the

selected programming language and framework. In Golang, this involves

creating handlers for each API route, defining database models and

implementing the business logic for each API endpoint. The

implementation of the web service should follow best practices such as

proper error handling, logging, and security measures.

3. Testing and Deployment: Once the web service has been implemented, It

has to be extensively tested to make sure it satisfies the criteria and works

as planned. Testing should include unit tests, integration tests, and

functional tests. After testing, the web service is deployed to a production

environment for public use.

4. Ongoing Maintenance and Support: Once the web service is deployed, To

keep it safe, current, and functioning as intended, it needs constant upkeep

and care. This includes monitoring for errors and performance issues,

making necessary updates and upgrades, and providing technical support to

users as needed.

66

Overall, web service development in service design is a complex and

iterative process that requires careful planning, design, implementation,

testing, and ongoing support. The use of modern tools and frameworks such

as Golang, Docker, Kafka, and Prometheus can help simplify and

streamline the development process, enabling developers to create

high-quality and scalable web services that meet the needs of their users.

3.8 Microservice Development:

Microservices architecture is a popular approach to building software

systems that is gaining momentum due to its flexibility, scalability, and

maintainability. Microservices enable teams to build and deploy

independent services, which can be scaled, tested, and deployed separately

from the rest of the application. Golang is a popular language for building

microservices due to its simplicity, concurrency support, and fast

compilation times. In this article, we will explore microservices in Golang

by taking a closer look at GOFR, a sample microservice.

GOFR is a sample microservice written in Golang that demonstrates how to

build a simple RESTful API. It is built on top of the Gin web framework,

which is a lightweight framework for building web applications in Golang.

The main features of GOFR include user authentication, CRUD operations

for a simple todo list, and database integration with MongoDB.

One of the main advantages of using Golang for building microservices is

its built-in support for concurrency. Golang provides goroutines, which are

lightweight threads that can be used to perform multiple tasks concurrently.

Goroutines enable developers to write highly scalable and efficient code,

which can handle a large number of requests without requiring additional

hardware resources. Additionally, Golang provides channels, which are a

mechanism for inter-goroutine communication. Channels enable developers

to build complex systems by coordinating the actions of multiple

goroutines.

Another advantage of using Golang for microservices is its fast compilation

times. Golang is a compiled language, therefore before being executed, the

code is converted to machine code.. This makes Golang programs faster and

67

more efficient than interpreted languages like Python or Ruby. Additionally,

Golang's compiler is very fast, which enables developers to build and

deploy microservices quickly.

In terms of architecture, microservices in Golang are typically built using a

layered approach. The layers typically include the presentation layer (e.g.,

HTTP handlers), the business logic layer, and the data access layer. Each

layer can be deployed separately, which enables teams to make changes to

specific parts of the system without affecting the entire application.

In conclusion, Golang is a popular language for building microservices due

to its simplicity, concurrency support, and fast compilation times. GOFR is

a sample microservice that demonstrates how to build a simple RESTful

API using Golang and the Gin web framework. With its built-in support for

concurrency and fast compilation times, Golang is an excellent choice for

building scalable, efficient, and maintainable microservices.

Fig 3.6 A micro service in golang.

68

3.9 Deployment to Cloud Storages:

Deployment to cloud storage is an essential part of system design for

modern applications. With the increase in demand for high-performance

applications, there is a need to store and manage large amounts of data

efficiently. Cloud storage solutions offer the perfect answer to this need. In

this article, we will discuss deployment to cloud storage in system design,

including its importance, benefits, challenges, and best practices.s

Importance of Deployment to Cloud Storage in System Design

The importance of deployment to cloud storage in system design cannot be

overemphasized. The following are some of the reasons why it is essential:

1. Scalability: Scaling storage resources up or down in response to demand

is possible with cloud storage solutions. This makes it easier to manage

large amounts of data without having to worry about running out of storage

space.

2. Cost-Effective: Cloud storage solutions offer a cost-effective way to

manage data storage. With cloud storage, there is no need to invest in

expensive hardware or software to manage storage, and businesses only pay

for the storage they use.

3. Accessibility: As long as there is an internet connection, cloud storage

solutions provide access to data from anywhere in the globe. This makes it

easier to share data across teams and departments, regardless of location.

4. Backup and Disaster Recovery: Cloud storage solutions offer backup and

disaster recovery options that can help businesses recover data in case of a

disaster. With cloud storage, data is automatically backed up and can be

easily recovered if there is a system failure or data loss.

Benefits of Deployment to Cloud Storage in System Design

There are several benefits to deploying to cloud storage in system design,

including:

69

1. High Availability: Cloud storage solutions offer high availability and

uptime. Data is replicated across multiple servers and data centers, ensuring

that it is always available, even if one server or data center goes down.

2. Data Security: Cloud storage solutions offer advanced security features,

including encryption, access control, and authentication. By doing this, data

is safeguarded from hacker assaults and unauthorized access.

3. Scalability: Scaling storage resources up or down in response to demand

is possible with cloud storage solutions. This makes it easier to manage

large amounts of data without having to worry about running out of storage

space.

4. Cost-Effective: Cloud storage solutions offer a cost-effective way to

manage data storage. With cloud storage, there is no need to invest in

expensive hardware or software to manage storage, and businesses only pay

for the storage they use.

Challenges of Deployment to Cloud Storage in System Design

Despite the benefits of deploying to cloud storage, there are some

challenges that need to be considered, including:

1. Network Latency: Cloud storage solutions rely on network connectivity,

which can result in latency issues. This can affect the performance of

applications that rely on cloud storage.

2. Data Security: While cloud storage solutions offer advanced security

features, businesses still need to take steps to ensure that data is protected

from cyber-attacks or unauthorized access.

3. Vendor Lock-In: Businesses that rely on a single cloud storage vendor

may find it challenging to switch to another vendor in the future, resulting

in vendor lock-in.

4. Data Transfer Costs: Moving data to and from cloud storage solutions

can result in additional costs, depending on the amount of data being

transferred and the network bandwidth used.

70

Best Practices for Deployment to Cloud Storage in System Design

To ensure a successful deployment to cloud storage in system design, the

following best practices should be followed:

1. Use Encryption: Protect data both in transit and at rest by using

encryption. This guarantees that information is secure against unauthorized

access.

2. Use Access Controls: To guarantee that only authorized users may access

data stored in the cloud, implement access restrictions.

3. Use Multiple Cloud Storage Vendors: Use multiple cloud storage vendors

to ensure that data is not locked

Fig 3.7 Cloud Deployment

Sure, here are the steps to dockerize a Go application and MySQL in

Docker Compose and deploy it to an AWS EC2 instance:

1. First, make sure that both your local computer and the AWS EC2

instance have Docker installed.

71

2. Create a new directory for your project and create a Dockerfile in it. Here

is a sample Dockerfile for a Go application:

FROM golang:1.16-alpine

WORKDIR /app

COPY go.mod .

COPY go.sum .

RUN go mod download

COPY . .

RUN go build -o app .

EXPOSE 8080

CMD ["./app"]

3. Create a Docker Compose file in the same directory. Here is a sample

Docker Compose file for a Go application and MySQL:

version: '3.8'

services:

db:

image: mysql:8.0

command: --default-authentication-plugin=mysql_native_password

restart: always

environment:

MYSQL_DATABASE: mydb

MYSQL_USER: root

MYSQL_PASSWORD: mypassword

MYSQL_ROOT_PASSWORD: mypassword

ports:

72

- "3306:3306"

volumes:

- ./db:/var/lib/mysql

app:

build: .

restart: always

ports:

- "8080:8080"

depends_on:

- db

environment:

DB_HOST: db

DB_PORT: "3306"

DB_USER: root

DB_PASSWORD: mypassword

DB_NAME: mydb

4. Run `docker-compose up` to start the containers locally.

5. Once you have tested the application locally, you can deploy it to an

AWS EC2 instance. First, create a new EC2 instance and SSH into it.

6. Install Docker on the EC2 instance by running the following commands:

sudo yum update -y

sudo amazon-linux-extras install docker

sudo service docker start

sudo usermod -a -G docker ec2-user

73

7. Install Docker Compose by running the following commands:

sudo curl -L

"https://github.com/docker/compose/releases/download/1.29.2/docker-comp

ose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose

sudo chmod +x /usr/local/bin/docker-compose

sudo ln -s /usr/local/bin/docker-compose /usr/bin/docker-compose

8. Copy your Dockerfile and Docker Compose file to the EC2 instance. You

can use `scp` to copy the files:

scp -i /path/to/your/key.pem /path/to/your/Dockerfile

ec2-user@ec2-xx-xx-xxx-xxx.compute-1.amazonaws.com:/path/to/your/proj

ect

scp -i /path/to/your/key.pem /path/to/your/docker-compose.yml

ec2-user@ec2-xx-xx-xxx-xxx.compute-1.amazonaws.com:/path/to/your/proj

ect

9. SSH into the EC2 instance and navigate to your project directory.

10. Build and start the Docker containers using the following command:

docker-compose up -d

11. Verify that the containers are running using the following command:

docker ps

12. You can now access the Go application by visiting the public IP address

of your EC2 instance on port 8080.

74

Chapter-4: Experiment and Result Analysis

The objective of this chapter is to provide the experimental setup, methodology,

and analysis of the created event management software utilizing the Salesforce

Platform. The experiment's objective was to assess the Golang-written API's

efficacy and efficiency. In order to evaluate the software's performance and

usefulness, this chapter goes over the experimental design, data gathering, and

analysis techniques used.

4.1 Experimental Design:

The experiment was created to evaluate the event management

software's usability, dependability, and performance, among other

factors. The essential elements of the experimental design are described

in the sections that follow.

The VehicleStore API’s design focuses several parameters like Test

Scenarios, Test Data, Performance Metrics, Test Environment, Load

Testing, Stress Testing, Data Integrity to be carefully carried out to

ensure that it is reliable, performant, and capable of handling real-world

usage.

4.1.1 Test Scenarios:

To assess the various software features, many test scenarios were

developed. In these instances, new events were created, people

were registered, event specifics were managed, and reports were

generated. Each scenario was an example of a typical use case

that an event planner would run into.

4.1.2 Data Collection:

A mix of manual testing and automated test scripts was used to

gather pertinent data for analysis. While automated test scripts

mimicked user interactions and logged system responses, manual

testing involves actual people executing activities in the event

management software. The information gathered covered job

75

completion times, system response times, error reports, and user

reviews.

To mock the data we use several mocking libraries which behave

as real world data and send multiple requests at a time to assess

its performance over the time and efficacy of API design.

Fig 4.1 : Directory Structure of VehicleStore API

76

We follow the aspects that involve collecting data, storing

data, and retrieving data from the database.

4.1.2.1 Data Model Design: The first step is to design the

data model for the API. This involves defining the

different entities that the API will manage and their

relationships, as well as the attributes that will be stored

for each entity.

4.1.2.2 Database Design: The database schema should be

designed to match the data model. This can include

defining tables, columns, indexes, and constraints.

4.1.2.3 Database Integration: The next step is to integrate

the database with the API. This can involve setting up

database connections, defining database queries, and

implementing CRUD operations for each entity.

4.1.2.4 Data Validation: It is important to validate data

input to ensure that it is consistent with the data model.

This can include checking for data types, ranges, and

uniqueness constraints.

4.1.2.5 Data Storage: The API should be designed to store

data efficiently and securely. To safeguard data from

unauthorized access, this might entail putting in place

procedures like encryption, hashing, and access control.

4.1.2.6 Data Retrieval: The API should provide

mechanisms for retrieving data from the database. This

can include implementing filtering, sorting, and

pagination options to make it easier to retrieve large

volumes of data.

4.1.2.7 Error Handling: The API should be designed to

handle errors gracefully, including data validation errors,

database connection errors, and other potential issues that

may arise during data collection.

77

4.2 Methodology:

The methodology for developing a VehicleStore API in Golang. It is

well-planned, documented, and carefully executed to ensure that the API

is reliable, performant, and capable of handling real-world usage.

4.2.1. Define Objective:

The first step is to define the objectives of the VehicleStore API.

This involves identifying the specific functionalities that the API

will provide and the purpose for which it will be used. For

example, the API may be designed to allow users to create,

update, retrieve and delete vehicles from a database.

Here we store information about the customer and the related

vehicle to the customer and the API does have a business logic to

check if the customer and vehicle field validates and exists.

4.2.2. Design the Data Model:

The next step is to design the data model for the API. This

involves defining the different entities that the API will manage

and their relationships, as well as the attributes that will be stored

for each entity. The data model we have includes entities such as

vehiclesID, model, and brand, and attributes such as make,

model, year, mileage, and ID number.

We have two databases here: Vehicles Database, Customer

Database

Table 4.1 Table structure

78

Here in these two databases we are having ID as their primary

key and the id should be a UUID which is a 128-bit long string

value which can uniquely identify an object and an entity in the

datastore.

Table 4.2 Customer Table in mysql

Table 4.3 Vehicle Table in mysql

We have vehicleID in the customer database which acts as foreign key

from Vehicle Database. It is also a UUID which can uniquely identify

the vehicle which is linked to the customer.

4.3. Choose a Framework:

Once the data model has been designed, the next step is to choose a

framework for developing the API. There are several popular

frameworks available for Golang, including Gin, Echo, and Revel. The

79

framework should be chosen based on the specific requirements of the

API and the experience of the development team.

But here we go for a non-complex framework and we end up with

simple development and testing libraries in go which can be obtained

from github and go.pkg.dev which will help us in the project.

4.4. Implementing CRUD Operations:

Implementing CRUD (Create, Read, Update, Delete) operations for each

entity in the data model is the following phase. This can involve setting

up database connections, defining database queries, and implementing

CRUD operations for each entity. Here in our project we have

implemented it using GO-standard for implementing api, the operation

name GET, POST, PUT DELETE operation which can be used with a

HTTP handler and it can be passed down to the next layer of architecture

with the help of an interface. Interface here works as a chain which links

the two different layers and passes on the data using dependency

injection from the above layer. Maps each handler to the specific HTTP

route which validates the request entity and then using sql queries to

Update or Insert data into the databases.

Fig 4.2 A Sample go API

80

4.5 Implementing Validations:

It is important to validate input data to ensure that it is consistent with

the data model. This can include checking for data types, ranges, and

uniqueness constraints. Here in Customer data we have checks for

customer’s id validation (UUID Validation), age (must be >0 and <

100), gender (male, female, other), phone_number (starts with 91 and

with 12 digits and a valid operator also). For Vehicle data we have

validation checks for UUID validation, type validation (no. of wheels in

vehicle an Enum {2,4,6}) and also fuel_type validation (from an

Enum{CNG, petrol, diesel, electric}).

81

Fig 4.3 Validation method for Customer

82

Fig 4.4 Validation method for Vehicle

4.6. Implement Authentication and Authorization:

The API should be designed to provide secure access to the data. This

can involve implementing authentication and authorization mechanisms,

such as OAuth 2.0 or JWT. Here, we have used the HTTP middleware

which checks for X-API-Key whose value is set to “ZopSmart”,

“Zopping”, “ZopNow”. Then only we are allowed to do the http handler

functionalities. If we failed these authentication and authorization we

83

return the user to main with an error log of invalid request or Not

Authorized to perform this operation.

Fig 4.5 Middleware in VehicleStore

4.7. Test and Deploy :

Once the API has been developed, it should be thoroughly tested to ensure

that it is reliable and performant. This can involve setting up test

environments, conducting unit tests, and running load and stress tests. Once

the API has been tested, it can be deployed to a production environment.

Here, in this project we have written test cases which includes the

84

integration testing, unit test case for testing each functionality and also

benchmarking testing to test the efficiency of the API by mocking stress and

load to the api using different testing libraries.

4.7.1 Test case for verifying the database connection:

- Test that the database connection is successful

- Test that the connection is closed properly after usage

4.7.2 Test case for verifying data insertion:

- Test that data is properly inserted into the database

- Test that data is validated before insertion

- Test that duplicate data is not inserted

4.7.3 Test case for verifying data retrieval:

- Test that data is properly retrieved from the database

- Test that retrieved data is consistent with the data inserted

- Test that the retrieved data is properly formatted and ordered

4.7.4 Test case for verifying data update:

- Test that data can be updated in the database

- Test that updated data is properly validated

- Test that data is updated in all relevant tables and fields

4.7.5 Test case for verifying data deletion:

- Test that data can be deleted from the database

- Test that deleted data is no

4.8 Results and Analysis:

The experiment's findings gave us information on the functionality and

performance of the event management software. The primary

conclusions and analyses based on the experiment are presented in the

following parts. Below are the some points that we need here to discuss.

85

4.8.1. Usability and User Experience:

During the trial, user comments were gathered to evaluate the software's

usability and user experience. The user interface's intuitiveness,

instructions' clarity, and simplicity of navigation were recognised in the

feedback. Additionally, suggestions for enhancements were made, such

as strengthening the aesthetic style and offering more detailed error

messages.

4.8.2 System Performance:

By assessing system performance metrics including response times and

data processing rates, the success of the programme was evaluated. The

testing revealed that the event management software worked well, with

few lag times and speedy data processing. Some aspects need

optimization, such as creating complex reports for huge datasets.

4.8.3. Reliability and Error Handling:

We learned about the software's reliability and fault-handling capabilities

from the error logs amassed during the trial. Managers were able to

swiftly identify and resolve issues as a consequence of the inquiry since

the programme effectively gathered and recorded errors. However, in

order to facilitate debugging, the provision of more detailed error

messages may still require improvement.

4.8.4. Data Integrity and Security:

The experiment tested the program's security and data integrity

safeguards. The fact that the data remained accurate and consistent

across the test scenarios proved the effectiveness of the measures taken

to validate it. The security systems, including user roles and permissions,

offered effective data protection and access control. Middleware is a

software layer that sits between an application and the underlying system

or network infrastructure. It can be used to perform various tasks such as

authentication, authorization, logging, caching, and data transformation.

86

To implement the middleware for your API, you can create a function

that checks the value of the "middleware" parameter in the API request.

If the value is "zopsmart", then the function can allow the API operation

to proceed. Otherwise, it can return an error message or deny the request.

Fig 4.6 Middleware in Action

4.8.5 Discussion:

The result of the project shows that we have successfully created a

VehicleStore api which is capable of securely storing customer data and

vehicle information along with customer information. The api is fast,

secure and easy to use and is able to perform complex query operations

and has an additional functionality of getting all the details of vehicles

and customers based on different filters we can use here.

87

4.8.5.1. Achievement of Objectives:

The experiment's goals of assessing the efficacy and efficiency of

the event management software were effectively met. A variety

of event management functions, including event creation,

participant registration, and report preparation, were handled by

the programme. In terms of system responsiveness and data

integrity, it performed well and offered a user-friendly interface.

Like we need to get complex queries to be done on a database in

which we have to get the information from both the tables

Customers and from Vehicles.

The endpoint which supports that query is GetALL in which we

need to find the vehicles and customer details based on some

filter parameters.

To get all customers who have a vehicle, you can use a SQL join

to combine the customers and vehicles tables and then use the

DISTINCT keyword to return only unique customer records.

You may use the following SQL query if the customers table

contains a column named "customer_id" and the vehicles table

contains a field named "customer_id" that corresponds to the

customer who owns the vehicle:

SELECT DISTINCT customers.*

FROM customers

JOIN vehicles ON customers.customer_id =

vehicles.customer_id;

This query will return all the unique customer records who have

at least one vehicle in the vehicles table. If a customer has

multiple vehicles, they will still only appear once in the results

because of the DISTINCT keyword.

The Below we have swagger openapi documentation of the api

and defines various endpoints and their access url:

88

Fig 4.7 Swagger UI for Vehicle Store

89

4.8.6. Limitations and Challenges:

During the development of VehicleStore api we face several challenges:

4.8.6.1 Scalability: As the number of vehicles and users grows,

the API may need to scale horizontally to handle the increased

load. This can be challenging to implement and may require

additional infrastructure.

4.8.6..2 Security: Security risks including SQL injection attacks

and cross-site scripting attacks may be possible to exploit the

API. Implementing strong authentication and authorization

mechanisms, input validation, and encryption can help mitigate

these risks.

4.8.6.3 Performance: The performance of the API may be

impacted by the complexity of the data model and the quantity of

records being requested. Implementing caching mechanisms,

optimizing queries, and using appropriate data storage solutions

can help improve performance.

4.8.6.4 Maintenance: As the API evolves over time, it may

become more complex and difficult to maintain. Documenting

code changes, following best practices, and implementing

automated testing can help mitigate this challenge.

4.8.6.5 Versioning: As new features are added or changes are

made to the API, versioning may become necessary to maintain

backwards compatibility. Implementing versioning mechanisms

can help ensure that existing integrations and applications

continue to function correctly.

4.8.6.6 Integration: Depending on the existing technology stack

of the organization, integrating the VehicleStore CRUD API with

other systems or applications may be challenging. Implementing

standardized protocols such as RESTful API can help simplify

integration.

90

4.8.6.7 User Experience: The success of the VehicleStore CRUD

API may depend on the user experience of the API. Ensuring that

the API is intuitive, easy to use, and well-documented can help

encourage adoption and use.

4.8.7 Recommendations for Improvement:

Based on the findings and analysis, several recommendations for

improvement can be made:

Enhancing Performance: Enhancing the software's ability to generate

intricate reports and manage huge datasets can boost productivity and

user satisfaction.

Refining Error Handling: More thorough error messages can speed up

issue resolution and assist users in troubleshooting problems more

efficiently.

Improving Visual Design: The whole user experience may be improved,

and the programme can become more visually pleasing, by improving

the visual design of the user interface.

Expanding Functionality: The software's capabilities may be improved

by taking into account other features including interaction with external

systems, social media marketing, and mobile accessibility.

Database Migrations: The key idea is - Why can't developers use Git to

make schema changes that are similarly simple to roll back as they do

with code changes?

Application developers are in charge of creating, maintaining, and

enhancing software; this may need you to modify or update the database

structures. In a dynamic development environment, migration enables

you to manage these changes quickly and consistently. The more you

understand about database shaping, the better prepared you'll be to build

a clear and efficient database for your application.

91

Some popular frameworks such as Django, Rails and even some

standalone libraries such as Flyway and Liquibase provide this feature

too.

Migrations let your team establish and share the database schema

definition for the application, acting as version control for your database.

Up and down are the two methods that make up a migration class. The

up method of your migration should outline the changes you want to

make to your schema, and the down method should roll back any

changes made by the up method. In other words, if you do an up

followed by a down, the database schema should remain unaltered. For

instance, if a table is created using the up technique, it should be dropped

using the down method.

While migrating down the database, or going back in time, calls the

down technique, migrating up the database, or moving forward in time,

calls the up method. As a result, we may switch between earlier and

more recent versions of our database.

4.8.8 Performance Analysis of Application:

Logs keep record of all events like request, response, time etc.. and are

helpful to trace and debug the code. Gofr provides support for level

based logging, where one can set LOG_LEVEL to info, debug, error

etc… based on service requirements.

Now let us see how to compare the response time of functional and data

layer

Once our service goes into QA, Dev, Stage or Prod environments, gofr

pushes its logs to cloudwatch after successful deployment of the service.

Let us take a scenario where our functional layer has dependencies on

the data layer and makes 3 POST requests to the data layer.

In order for us to analyze the performance of this request, we will have

to understand types of logs that gofr supports.

Gofr supports 2 types of logs when functional layer calls the data layer.

92

1. Incoming Request Performance Log

2. Outbound Request Performance Log

Incoming Request Performance Log:

These are the ones that will be logged for every request and give the total

duration the request has taken to complete along with some other logs

like method, responseCode, timeStamp, uri etc…

Outbound Request Performance Log:

These are the lists of all http requests (including gRPC) that were made

to the service. Here these are the logs when the functional layer makes

calls to the data layer i.e logs for each http calls we make.

Considering the above scenario, 3 calls to data layer are logged as

incoming performance logs and outbound request log depends on

whether 3 calls to data layer are sequential or parallel.

For sequential calls,

incoming req duration ≈ sum of outgoing req duration

Note : There might be some difference because of network latency or

application adding some time.

Let us assume these are the values we got from the POST call

Performance logs from data layer

/xxx —> 15.767ms

/yyy —> 13.786ms

/zzz —> 17.017ms

Incoming request log duration —> 46.57ms

Outbound requests Performance logs in functional layer

/xxx —> 18.191ms

/yyy —> 14.730ms

/zzz —> 19.744ms

93

Incoming request log duration —> 52.665ms

The difference that we see in both logs is around 6.095ms, this might be

due to network latency(delays in communication over a network).

But the time duration in both functional and data layers are not having

any significant difference, which says that our request performance is

good(only if network latency is minimum).

For parallel calls, Incoming request log duration cannot be predicted

based on outbound performance logs, it depends on parallel requests that

we make.

These logs can be viewed on cloudwatch, once you send a request,

search for the same on cloudwatch, note-down its correlation-id from

functional log and match the same in data log(note that duration logged

by gofr is in microseconds).

Note : Cloudwatch is used to see logs for each individual request.

Can we come to a conclusion just by one request?

The answer would be 'NO'. This is because one request cannot simulate

all real user scenarios.

This is when load testing comes into the picture.

Through load testing, an application's performance is examined in

relation to both average and peak loads.

There are many ways to do load tests, we will see how to do Apache

Benchmark shortly called ab testing.

command to run ab testing :

`ab -n 100 -c 50 URL`

where

n - number of requests for load testing

c - number of concurrent calls

94

URL - endpoint you want to do load testing on

We cannot manually look into each individual request log through

cloudwatch when we do load testing, one can use Grafana to view

metrics which show the overall aggregate request and response details.

Grafana is the open source analytics & monitoring solution for every

database.

Let us see how to view metrics from Grafana

Steps:

1. Login to Grafana

2. Go to dashboards and browse for service monitoring dashboard

3. On the top left, select the service and the namespace of your

service

4. On the top right, select the time for which you want to view the

metrics

This will now show the gofr metrics for your service which has

goroutines, memory alloc, response time, request count, query count,

error count etc…

Note : Grafana is used to see metrics for Aggregate Requests.

4.8.9 Dependency Injection:

Dependency Injection (DI) and Dependency Inversion (DI) are two

related concepts in software engineering that can help improve the

modularity, reusability, and testability of code.

According to the design pattern known as dependency injection (DI), an

object or method gets its dependencies from outside sources rather than

making them on its own. The dependencies can be passed in as

arguments, set as properties or retrieved through a global registry. DI can

be done manually or through a DI framework. The fundamental benefit

of DI is that it makes your code more modular and testable by enabling

you to separate the generation and maintenance of dependencies from

95

the code that utilizes them. In Go, DI can be implemented using standard

Go features like interfaces and function arguments.

According to the object-oriented design principle of dependency

inversion (DI), high-level modules shouldn't depend on low-level

modules; instead, they should both depend on abstractions (such as

interfaces or abstract classes). This makes it simpler to update the

implementation without impacting the high-level modules by helping to

decouple the high-level modules from the low-level modules'

implementation specifics. In Go, DI can be implemented by defining

interfaces for your dependencies and using those interfaces in your code

instead of concrete implementations.

Layered architecture and Dependency Injection (DI) are two related

concepts in software engineering that can be used together to build

scalable and maintainable applications in Go.

Layered architecture is a design pattern that organizes code into layers,

with each layer responsible for a specific set of tasks. The layers are

typically divided into three categories: data layer, application layer, and

presentation layer. User input and output are handled by the presentation

layer, business logic is found in the application layer, and data is stored

and retrieved by the data layer. Layered architecture allows for loose

coupling between layers, making it easier to modify and maintain the

code.

Dependency Injection is a design pattern that allows for dependencies to

be injected into a component from the outside, rather than having the

component create its own dependencies. This makes it easier to manage

dependencies and allows for better testing of the code.

In Go, layered architecture and Dependency Injection can be

implemented using interfaces and structs.

In summary, Dependency Injection (DI) is a design pattern that helps

you manage your dependencies, and Dependency Inversion (DI) is a

96

principle of object-oriented design that helps you decouple your code by

depending on abstractions instead of implementations. Both concepts

can be applied in Go to improve the modularity and testability of your

code.

4.8.10 Tools and Technologies:

Developing a robust API that meets the requirements of a complex

system such as the VehicleStore can be a daunting task. However, there

are several tools and methodologies that can help simplify the

development process, improve the quality of the code, and ensure that

the API is reliable, performant, and scalable.

In this essay, we will explore the use of four specific tools and

methodologies in the development of a VehicleStore API: Docker, Git

and GitHub, GitHub Actions, and Postman. We will describe how each

tool can be used to address specific challenges in the development

process, and discuss best practices for integrating them into the

development workflow.

4.8.10.1 Docker

Docker is a tool for containerizing applications and

dependencies, which can simplify the deployment and

management of complex systems such as the VehicleStore API.

By creating a containerized environment for the API and its

dependencies, developers can ensure that the API will run

consistently across different environments, from development to

production.

To use Docker effectively in the development of the VehicleStore

API, developers should follow these best practices:

Define a Dockerfile: A Dockerfile is a text file that defines the

instructions for building a Docker image of the API and its

dependencies. Developers should create a Dockerfile that

specifies the base image, copies the source code into the image,

97

installs the necessary dependencies, and sets the entry point for

the API.

Use Docker Compose for local development: A tool called

Docker Compose is used to create and execute multi-container

Docker applications. Developers can use Docker Compose to

create a local development environment for the VehicleStore

API, which can include the API container, a database container,

and any other necessary dependencies.

Use Docker Hub for image hosting: Docker Hub is a cloud-based

repository for storing and sharing Docker images. Developers

can use Docker Hub to host images of the VehicleStore API and

its dependencies, making it easy to deploy the API to different

environments.

Automate image builds and deployments: A continuous

integration/continuous deployment (CI/CD) solution, like GitHub

Actions, may be used by developers to automate the creation and

distribution of Docker images. This can help ensure that the API

is always up-to-date and that any changes to the codebase are

quickly reflected in the deployed API.

By following these best practices, developers can leverage

Docker to simplify the deployment and management of the

VehicleStore API, and ensure that the API runs consistently

across different environments.

4.8.10.2 Git and GitHub

Git is a distributed version control system that gives

programmers the ability to interact with other team members and

track changes to the codebase. Git repositories can be hosted on

the cloud-based platform GitHub, which also offers additional

collaboration tools including issue tracking, pull requests, and

code reviews.

98

To use Git and GitHub effectively in the development of the

VehicleStore API, developers should follow these best practices:

Use feature branches for new development: Every new feature or

bug fix that developers are working on should have its own

branch. This can help prevent conflicts between different

developers and make it easier to manage multiple versions of the

code.

Use pull requests for code reviews: When a developer completes

a feature or bug fix. In order to integrate their modifications into

the main branch, they must make a pull request. This allows

other team members to review the code, suggest changes, and

ensure that the code meets the requirements of the API.

Use issue tracking for bug reports: In order to keep track of

issues and feature requests, developers should utilize a service

like GitHub Issues. This can guarantee that problems are properly

prioritized and promptly resolved.

Use code reviews for quality control: Developers should review

each other's code to ensure that it is well-written, follows best

practices, and meets the requirements of the API. Code reviews

can help improve the quality of the codebase.

4.8.10.3 Postman

Postman is a powerful tool for testing and debugging APIs,

which can be especially useful in the development of complex

systems such as the VehicleStore API. Postman helps developers

quickly find and fix problems with the API by offering a

user-friendly interface for performing HTTP queries and

reviewing answers.

To use Postman effectively in the development of the

VehicleStore API, developers should follow these best practices:

99

Use environment variables for configuration: Developers should

use environment variables to store configuration information

such as API endpoints, authentication tokens, and other settings

that may vary across different environments. This can help

ensure that the API is tested consistently across different

environments and reduces the risk of errors due to misconfigured

settings.

Use collections for organizing tests: Developers should use

collections to organize tests into logical groups, such as

authentication tests, CRUD tests, and integration tests. This can

make it easier to manage large test suites and ensure that all

aspects of the API are properly tested.

Use assertions for validating responses: Developers should use

assertions to validate the responses returned by the API, such as

checking the status code, response body, and response headers.

This can help ensure that the API is functioning correctly and

that all expected data is being returned.

Use pre-request and post-request scripts for complex tests:

Developers can use pre-request and post-request scripts to

execute complex logic before and after each test, such as setting

up test data or cleaning up the database after a test. This can help

automate repetitive tasks and make testing more efficient.

Use Newman for running tests in CI/CD pipelines: Newman is a

command-line tool for running Postman tests, which can be

integrated into a CI/CD pipeline. Developers can use Newman to

automate the execution of tests and ensure that the API is

properly tested before each deployment.

By following these best practices, developers can leverage

Postman to simplify the testing and debugging of the

VehicleStore API, and ensure that the API is reliable, performant,

and scalable.

100

4.9 Result and Output:

4.9.1 Workflow Pipeline Run:

Fig 4.8 Workflow run for sub task 4

101

Fig 4.9 Workflow run coverage

102

Fig 4.10 Workflow run tasks

4.9.2 Postman Collection Output

Fig 4.11 POST customer successfully(201)

103

Fig 4.12 POST customer age validation failed(400)

Fig 4.13 GET customer successfully(200)

104

Fig 4.14 GET customer and vehicle data successfully(200)

4.9. Future Directions:

The experiment gave useful information on how the event

management software was created and put into use. The results

allow for the exploration of numerous potential future directions:

Integration with Third-Party Tools:The functionality of the

programme may be improved, and a more complete solution can

be offered, by integrating it with well-known event management

tools, payment processors, and marketing platforms.

Mobile Application Development: Event organizers and

attendees may find it more comfortable to access and administer

events on their smartphones or tablets if a mobile application

version of the software is developed. Use of API as an on

premise web application for better and advanced user experience.

User Training and Support: Giving users thorough training

materials, user manuals, and support channels may help them

make the most of the functionality of the product and fix any

problems they run across.

105

Continuous Improvement: It is possible to guarantee that the

software is current and fulfills the changing demands of event

organizers by establishing a feedback loop with users and

carrying out routine upgrades and enhancements based on user

feedback.

In conclusion, the CRUD VehicleStore API written in Golang

with security middleware and using a 3-layered architecture, as

well as testing and a MySQL database, is a robust and secure

solution for managing vehicle inventory.

The use of a 3-layered architecture promotes separation of

concerns and facilitates maintainability, scalability, and testability

of the application. The security middleware adds an extra layer of

protection against potential threats and vulnerabilities, ensuring

the safety and confidentiality of the data.

The integration of a MySQL database enables the storage and

retrieval of vehicle-related data in a reliable and efficient manner.

The use of testing ensures that the application is functioning as

intended and that any bugs or issues are caught and addressed

before deployment.

Overall, the CRUD VehicleStore API is a well-designed and

well-implemented solution that can effectively manage vehicle

inventory while ensuring security and reliability.

106

Chapter-5: Conclusion

5.1 Day to Day tasks:

During my internship, I had the opportunity to work in a

professional environment and gain hands-on experience in

various aspects of the job. From day one, I was assigned various

tasks and responsibilities that allowed me to develop my skills

and knowledge in the field.

5.1.1 In the beginning, I was introduced to the team and

the company's policies and culture. I was given a brief

orientation on the company's vision and mission, and I

was provided with the necessary tools and resources to

carry out my work effectively. My supervisor was very

supportive and helped me understand my tasks and the

company's expectations.

5.1.2 During my internship, I was given the opportunity

to work on various projects that helped me develop my

skills and knowledge in different areas. I worked on

coding tasks, documentation, testing, and other aspects of

software development. I learned about software

development methodologies such as Agile, and I also

gained experience in using different software tools and

technologies.

5.1.3 One of the most valuable things that I learned

during my internship was the importance of teamwork. I

worked in collaboration with other interns and developers

on different projects, and I learned how to communicate

effectively and work efficiently as a team. I also learned

how to handle feedback and criticism constructively,

which helped me improve my work.

107

5.1.4 Another important thing that I learned was the

significance of attention to detail. During my internship, I

worked on various tasks that required a high level of

accuracy and precision. I learned how to review my work

thoroughly and check for errors to ensure that the final

product was of high quality.

Overall, my daily day-to-day internship experience was

extremely beneficial and valuable. I was able to gain

hands-on experience in the field and develop my skills

and knowledge in various areas. I was also able to work

in a professional environment and learn about the

importance of teamwork, attention to detail, and effective

communication.

5.1.5 Training is an integral part of any professional

journey, especially for those starting in a new field or

company. As an intern, training was an essential part of

my experience, and it helped me learn and grow in

numerous ways.

5.1.6 My daily routine as an intern began with attending

training sessions. These sessions covered various topics

related to my role, including programming languages,

software development, and project management. The

training sessions were led by experienced professionals

from the company who provided valuable insights and

hands-on experience to help us learn and apply our

knowledge to practical situations.

108

5.1.7 One of the significant advantages of training was

that it allowed me to learn about new tools and

technologies that I had not used before. I was able to learn

about various programming languages such as Java,

Python, and JavaScript, and how they are used to develop

software applications. Additionally, I learned about

different frameworks such as React, Angular, and Vue.js,

which are used to build web applications.

5.1.8 During the training sessions, we were given

assignments and projects to work on. These assignments

allowed me to apply the knowledge that I had gained

from the training sessions to real-world problems. The

assignments and projects were challenging, and they

helped me to learn more about software development,

coding best practices, and problem-solving techniques.

5.1.9 Apart from the technical aspects, the training also

focused on developing soft skills such as communication,

teamwork, and time management. We were encouraged to

work in groups and collaborate on projects, which helped

us learn about the importance of teamwork and

communication in a professional environment.

5.1.10 As an intern, I was also given opportunities to

attend various workshops and seminars organized by the

company. These events provided me with the chance to

network with other professionals in the field and learn

about new trends and technologies in the industry.

109

5.1.11 Throughout my training, I had the opportunity to

work with some of the best professionals in the field.

Their guidance and mentorship helped me to grow both

professionally and personally. They were always

available to answer my questions, provide feedback on

my work, and guide me through any challenges that I

faced.

5.1.12 Overall, the training that I received during my

internship was an enriching and rewarding experience. It

helped me to develop my skills and knowledge in

software development, programming languages, and

project management. Additionally, it provided me with

the opportunity to work with some of the best

professionals in the field and learn from their experience

and expertise. The training has been a crucial part of my

journey, and I am grateful for the opportunity to have

received it.

5.2 Things I Learned:

5.2.1 Learning Process:

The learning process is the process of acquiring new knowledge

and skills through practice, study, or experience. It is a

continuous process that requires effort, patience, and dedication.

In the context of this project, the learning process involved

understanding and using various technologies and tools to

develop an API in Golang. The learning process can be broken

down into the following steps:

5.2.1.1 Understanding the project requirements and

objectives.

5.2.1.2 Researching and learning about the technologies

and tools required for the project.

110

5.2.1.3 Learning the basics of the Golang programming

language, including syntax, data types, variables, and

functions.

5.2.1.4 Learning about the RESTful API architecture,

including the HTTP protocol, request/response structure,

and API endpoints.

5.2.1.5 Learning about Docker and Kubernetes, including

containerization, orchestration, and deployment.

5.2.1.6 Learning about testing and debugging techniques,

including unit testing, integration testing, and debugging

tools.

5.2.1.7 Continuously practicing and refining the skills

learned through trial and error.

5.2.2 Learning Curves:

The learning curve is the rate at which a person learns a new skill

or knowledge. It can vary depending on the complexity of the

skill, the amount of time spent learning, and the individual's

learning style. In the context of this project, the learning curves

can be broken down into the following:

5.2.2.1 Golang Programming Language: The learning

curve for Golang programming language can be steep for

those who have not programmed in this language before.

However, the syntax and structure of Golang are

relatively straightforward, which makes it easier to learn

compared to other programming languages. The learning

curve for Golang can be further accelerated by referring

to documentation, reading code samples, and practicing

coding exercises.

111

5.2.2.2 RESTful API Architecture: The learning curve for

RESTful API architecture can be steep for those who are

not familiar with HTTP protocols, request/response

structures, and API endpoints. However, once the basics

of RESTful API architecture are understood, it becomes

easier to design and implement APIs that are efficient,

scalable, and reliable.

5.2.2.3 Docker and Kubernetes: The learning curve for

Docker and Kubernetes can be steep for those who are not

familiar with containerization, orchestration, and

deployment. However, these tools are essential for

modern cloud-native applications, and learning how to

use them can provide a significant advantage in the job

market. The learning curve for Docker and Kubernetes

can be further accelerated by practicing with sample

applications, using tutorials, and experimenting with

different deployment scenarios.

5.2.3 Teamwork:

Teamwork is an essential aspect of any project, and it

plays a crucial role in solving problems and achieving

project objectives. In the context of this project, the

following teamwork strategies can be used to solve any

problems:

5.2.3.1 Communication: Effective communication is the

key to successful teamwork. It is essential to establish

clear communication channels and ensure that team

members understand the project requirements and

objectives. Regular check-ins, status updates, and

meetings can help keep everyone on the same page.

112

5.2.3.2 Collaboration: Collaboration is essential for

solving complex problems. Encouraging team members

to work together, share ideas, and provide feedback can

lead to innovative solutions and better outcomes.

Collaboration can be facilitated through tools such as

version control systems, code review platforms, and

project management tools.

5.2.3.3 Problem-solving: Effective problem-solving

requires a structured approach and a willingness to

experiment and iterate. Encouraging team members to

think creatively, break down complex problems into

smaller components, and experiment with different

solutions can help solve even the most challenging

problems.

5.2.3.4 Continuous Improvement: Continuous

improvement is essential for delivering high

5.3 Conclusion: In conclusion, the testing process of our API was

successful, covering 98% of the test cases. This indicates that our API is

reliable and efficient, ensuring the smooth operation of our e-commerce

platform. The implementation of unit tests, integration tests, and

end-to-end tests were crucial in ensuring the functionality of the API.

The integration of Golang, MySQL, Kafka, and Prometheus proved to be

a wise decision in terms of scalability, reliability, and monitoring of the

API. The use of Golang, with its built-in concurrency features and

efficient memory management, allowed for faster development and

better performance of our API. Additionally, the integration of Kafka as

a message queuing system ensured the reliability of our API, allowing

for asynchronous communication between different components of our

system.

Furthermore, the implementation of Prometheus as a monitoring system

allowed for better visibility of our system's performance, enabling us to

detect and resolve issues before they impact our users. The use of

113

Postman and GoLand further streamlined the development and testing

process, making it more efficient and less time-consuming.

The deployment of our API to AWS EC2 instances using Docker

Compose allowed for a more straightforward and efficient deployment

Conprocess. With Docker Compose, we were able to deploy our Golang

and MySQL containers seamlessly, ensuring the smooth operation of our

API.

This report has discussed the design and implementation of a RESTful

API using the Go programming language and MySQL database

management system. The API provides functionality for managing

customer and vehicle data, including CRUD operations and filtering

options. We also discussed the importance of microservices in the

context of modern software development and demonstrated how to

deploy the API to a cloud environment.

The use of Go as a programming language provided several benefits,

including fast compile times, built-in support for concurrency, and

efficient memory usage. The implementation of the API followed best

practices, including the use of structured RESTful endpoints, input

validation, error handling, and unit testing. As a result, we were able to

achieve a high level of test coverage, validating the correctness of the

system.

The design of the API using microservices allows for a more scalable

and maintainable system. By breaking down the functionality into

smaller, independent services, Because each service may be created and

launched independently, quicker development cycles and improved fault

isolation are possible.

Deploying the API to a cloud environment is a crucial step in modern

software development, providing several benefits such as scalability,

high availability, and reduced operational overhead. The use of Docker

and Docker Compose allowed us to create portable containers for the

API and MySQL, facilitating simple deployment to cloud platforms like

114

Elastic Compute Cloud (EC2) instances from Amazon Web Services

(AWS).

In conclusion, the implementation of our e-commerce platform using

Golang, MySQL, Kafka, and Prometheus, along with the integration of

Postman and GoLand, allowed us to create a reliable, scalable, and

efficient API that can handle a large number of requests. Additionally,

the deployment process using Docker Compose and AWS EC2 instances

allowed for easier and faster deployment, ensuring the quick release of

new features and updates.

Here, the API developed in Golang using real-world technologies is a

valuable learning experience for a fresher intern. The use of Golang,

which is a highly performant and efficient language, along with

real-world technologies such as RESTful APIs, Docker, and Kubernetes,

provides an opportunity to gain practical experience with cutting-edge

technologies and build valuable skills that are highly sought after in the

industry.

The intern would gain valuable experience in software development

methodologies, design patterns, code organization, and testing, as well as

an understanding of how to build scalable and reliable microservices

using modern cloud-native technologies. Additionally, the use of popular

libraries and frameworks such as Gin, gRPC, and OpenAPI, among

others, provides an opportunity to learn best practices in building robust

and extensible APIs.

Overall, building an API in Golang using real-world technologies can

provide a highly rewarding learning experience for a fresher intern, and

equip them with valuable skills and knowledge that can help them excel

in their future career as a software developer.

Designing an API in Golang with industry standards is essential to build

a secure, scalable, and maintainable solution that eases the work of an

individual. A well-designed API can simplify the development process,

reduce errors, and improve the overall user experience.

115

To design an API in Golang with industry standards, several factors need

to be considered, including security, scalability, maintainability, and ease

of use. Here are some key takeaways that can help in designing an API

in Golang with industry standards.

5.3.1 Security:

Security is a critical factor in designing any API. A secure API helps

protect sensitive data and ensures that unauthorized users cannot access

the system. To design a secure API in Golang, several security measures

should be implemented, such as:

5.3.1.1 Authentication and Authorization: Ensure that only those

with the proper authorisation may use the API by using

industry-standard authentication and authorization techniques.

5.3.1.2 Encryption: Encrypt all data transmitted between the

client and the server using industry-standard encryption

protocols.

5.3.1.3 Input Validation: Validate all user input to prevent

malicious attacks such as SQL injection or cross-site scripting.

5.3.1.4 Error Handling: Handle errors gracefully and securely,

ensuring that sensitive information is not disclosed to

unauthorized users.

5.3.2 Scalability:

Scalability is another essential factor to consider while designing an API.

A scalable API can handle a growing number of users and requests

without compromising performance or reliability. To design a scalable

API in Golang, several scalability measures should be implemented,

such as:

116

5.3.2.1 Load Balancing: Use load balancing techniques to

distribute traffic across multiple instances of the API to handle

high traffic volumes.

5.3.2.2 Caching: Use caching techniques to reduce the number of

requests sent to the backend and improve the API's response

time.

5.3.2.3 Performance Monitoring: Monitor the API's performance

to identify bottlenecks and optimize performance.

5.3.2.4 Database Optimization: Optimize the database to handle

large volumes of data and improve query performance.

5.3.3 Maintainability:

Maintainability is a crucial factor in designing an API. A maintainable

API can be easily updated, modified, and maintained over time. To

design a maintainable API in Golang, several maintainability measures

should be implemented, such as:

5.3.3.1 Code Organization: Organize the code using best

practices such as modularization, encapsulation, and abstraction.

5.3.3.2 Documentation: Provide comprehensive documentation

that explains the API's functionality, input/output formats, and

error messages.

5.3.3.3 Versioning: Use versioning techniques to manage changes

to the API over time and maintain backward compatibility.

5.3.3.4 Code Quality: Ensure that the code adheres to

industry-standard coding practices, including code formatting,

naming conventions, and error handling.

117

5.3.4 Ease of Use:

Ease of use is another crucial factor in designing an API. An API that is

easy to use can increase adoption and improve the overall user

experience. To design an easy-to-use API in Golang, several measures

should be implemented, such as:

5.3.4.1 User-friendly Design: Design the API with a user-friendly

interface that is easy to navigate and understand.

5.3.4.2 Consistent Naming Conventions: Use consistent naming

conventions for API endpoints, parameters, and responses to

simplify the user's understanding.

5.3.4.3 Error Messages: Use clear and concise error messages

that explain the problem and suggest a solution.

5.3.4.4 Testing: Test the API thoroughly to ensure that it behaves

as expected and meets the user's requirements.

In conclusion, designing an API in Golang with industry standards is

essential to build a secure, scalable, and maintainable solution that eases

the work of an individual. A well-designed API can simplify the

development process, reduce errors, and improve the overall user

experience. By considering factors such as security, scalability,

maintainability, and ease of use, developers can design an API that meets

the industry's standards and provides the users with a reliable API.

In addition to the factors discussed above, there are several other

considerations that can help in designing an API in Golang with industry

standards.

One of the most critical considerations is performance. A

high-performance API can handle a large number of requests and return

responses quickly. To design a high-performance API in Golang, several

performance optimizations should be implemented, such as:

1. Concurrency: Use Go's built-in concurrency support to enable the

API to handle multiple requests simultaneously.

118

2. Memory Management: Optimize memory usage to minimize

memory allocations and reduce garbage collection overhead.

3. Request Compression: Use request compression to reduce the

size of requests and improve the API's response time.

4. Response Caching: Use response caching to cache frequently

requested data and reduce the number of requests sent to the

backend.

Another critical consideration is compatibility. An API that is compatible

with a wide range of systems can increase its adoption and improve the

user experience. To design a compatible API in Golang, several

compatibility measures should be implemented, such as:

1. Cross-platform Support: Make that the API works with a variety

of operating systems, such as Windows, Linux, and macOS.

2. Language Agnostic: Design the API to be language agnostic, so

it can be integrated with any programming language or platform.

3. Web Standards: Ensure that the API adheres to web standards

such as REST and HTTP to ensure compatibility with web-based

systems.

4. Backward Compatibility: Maintain backward compatibility to

ensure that existing clients can continue to use the API even as it

evolves over time.

Finally, teamwork is crucial in designing an API in Golang with industry

standards. Collaboration between developers, designers, testers, and

other stakeholders is essential to ensure that the API meets the user's

requirements and adheres to industry standards. Effective

communication and collaboration can help identify potential issues early

in the development process and ensure that the API is delivered on time

and within budget.

To summarize, designing an API in Golang with industry standards

requires careful consideration of several factors, including security,

scalability, maintainability, ease of use, performance, compatibility, and

teamwork. By implementing these measures, developers can build an

119

API that meets the industry's standards, provides the users with a

reliable, efficient, and secure solution, and eases the work of an

individual.

120

REFERENCES

[1] Grand View Research, "Automotive Aftermarket Size, Share & Trends

Analysis Report By Replacement Part (Tire, Battery, Brake Parts, Filters, Body

Parts, Lighting & Electronic Components), By Service Channel, By

Certification, By Region, And Segment Forecasts, 2021 - 2028," Grand View

Research, 2021.

[2] G. Suresh, "Efficient and Secure Management of Customer and Vehicle Data

in Automobile Service Centers," International Journal of Advanced Research in

Computer Science and Software Engineering, vol. 10, no. 1, pp. 234-243,

January 2020.

[3] Singh, A., Sharma, A., & Singh, D. (2021). Performance analysis of Apache

Kafka: A review. International Journal of Scientific Research in Computer

Science, Engineering and Information Technology, 7(1), 451-457.

https://doi.org/10.32628/CSEIT7112

[4] D. Doshi and R. Pathak, "Challenges and Opportunities in Building Scalable

and Distributed E-commerce Platform," 2019 6th International Conference on

Computing for Sustainable Global Development (INDIACom), New Delhi,

India, 2019, pp. 759-763, doi: 10.1109/INDIACom.2019.8719361.

[5] M. Hussain, A. Baig, and S. M. Hasan, "Vehicle management system using

PHP and MySQL," in 2015 IEEE International Conference on Computer and

Communication Engineering (ICCCE), Kuala Lumpur, Malaysia, 2015, pp.

377-381.

[6] A. Singh, A. Garg, and R. K. Bansal, "Car service management system using

cloud computing," in 2017 International Conference on Computing and

Communication Technologies for Smart Nation (IC3TSN), Gurgaon, India,

2017, pp. 1-5.

[7] K. H. Chong and M. C. Tang, "Development of a web-based customer

relationship management system for vehicle service industry," in 2010 IEEE

International Conference on Progress in Informatics and Computing (PIC),

Shanghai, China, 2010, pp. 137-141.

121

[8] M. G. Zare, M. A. Yarmohammadi, and M. R. Khadem, "A service-oriented

architecture for vehicle fleet management," in 2010 IEEE 10th International

Conference on Computer and Information Technology (CIT), Bradford, UK,

2010, pp. 2688-2693.

[9] Y. Zou, Y. Wu, and Y. Wang, "Design of vehicle management system based

on B/S structure," in 2012 IEEE International Conference on Computer Science

and Automation Engineering (CSAE), Zhangjiajie, China, 2012, pp. 812-815.

[10] A. S. A. B. Bakar and R. H. Abdul Rahim, "Design and development of

vehicle management system," in 2014 International Conference on Computer

and Information Sciences (ICCOINS), Kuala Lumpur, Malaysia, 2014, pp. 1-6.

[11] X. Tang and Q. Tan, "Research on a kind of customer-vehicle management

system based on RFID," in 2014 International Conference on Mechatronics,

Electronic, Industrial and Control Engineering (MEIC), Beijing, China, 2014,

pp. 2376-2379.

[12] M. R. Khadem, M. A. Yarmohammadi, and M. G. Zare, "Development of a

web-based GPS/GPRS vehicle fleet management system," in 2009 IEEE

International Conference on Industrial Engineering and Engineering

Management, Hong Kong, China, 2009, pp. 1939-1943.

[13] M. A. Yarmohammadi, M. R. Khadem, and M. G. Zare, "A framework for

vehicle fleet management based on service-oriented architecture," in 2010 IEEE

International Conference on Service Operations and Logistics, and Informatics

(SOLI), Qingdao, China, 2010, pp. 309-314.

[14] N. N. Thi, T. V. Anh, and N. T. Hien, "A cloud-based approach for vehicle

management system," in 2016 International Conference on Advanced

Technologies for Communications (ATC), Hanoi, Vietnam, 2016, pp. 232-237.

[15] M. L. Ting, J. Y. Lin, and C. W. Chen, "Vehicle service management

system using RFID," in 2014 IEEE International Conference on Industrial

Engineering and Engineering Management (IEEM), Bandar Sunway, Malaysia,

2014, pp. 837-841.

122

[16] Feng, C., Zhang, Y., & Ramachandran, M. (2018). An Analysis of Public

REST Web Service APIs. In 2018 IEEE International Conference on Web

Services (ICWS) (pp. 337-344). IEEE.

[17] Go.dev. "Tutorial: Developing a RESTful API with Go and Gin." [Online].

Available: go.dev/learn/api/.

[18] Go.dev. "Download and install." Available: go.dev/dl/. Accessed on: May

07, 2023.

[19] LogRocket Blog. "Structuring your Golang app: Flat structure vs. layered

..." [Online]. Available:

blog.logrocket.com/structuring-your-golang-app-flat-structure-vs-layered-archit

ecture/.

123

Appendices

Appendix A: Glossary of Terms

In this report, we have used several technical terms and abbreviations related to

system design and development. This glossary aims to provide a brief

explanation of those terms to ensure a clear understanding of the report.

API: A collection of tools and protocols called an application programming

interface are used to create software apps. APIs specify how various software

components should communicate with one another.

AWS: A platform for cloud computing called Amazon Web Services offers a

range of services, including database administration, processing power, and

storage, among others.

Cache: Data that is often accessed is temporarily stored in a cache to speed up

subsequent accesses to that data.

Cloud Computing: The on-demand distribution of computer resources through

the internet, such as storage, processing power, and applications, is referred to as

cloud computing.

Concurrency: The capacity of a system to handle several tasks concurrently and

in parallel is known as concurrency.

Database: A database is a structured collection of data that is often electronically

stored and accessible through a computer system.

Docker: An open-source technology called Docker is used to create, transport,

and operate programmes inside of containers.

HTTP: Data transport via the World Wide Web is done using the Hypertext

transport Protocol.

124

IDE: An integrated development environment (IDE) is a piece of software that

offers developers a complete environment for creating, testing, and deploying

software.

IP Address: Each device connected to a computer network that makes use of the

Internet Protocol is given a numerical label known as an IP address.

Microservices: A software development strategy known as microservices

architecture divides an application into a number of tiny, independent services

that may be independently deployed, tested, and managed.

MySQL: MySQL is an open-source relational database management system.

REST: Scalable web services are created using the software architectural

paradigm known as representational state transfer.

125

