
AMERICAN SIGN LANGUAGE RECOGNITION
USING DEEP LEARNING

Project report submitted in partial fulfillment of the requirement for the degree
of Bachelor of Technology

in

Computer Science and Engineering

by

Manya Malhotra (191427)

Under the supervision of

Dr. Diksha Hooda

to

Department of Computer Science & Engineering and Information Technology

Jaypee University of Information Technology,
Waknaghat, Solan-173234, Himachal Pradesh

I

CERTIFICATE

I hereby declare that the work presented in this report entitled

American Sign Language Recognition using Deep Learning in partial

fulfilment of the requirements for the award of the degree of Bachelor of

Technology in Computer Science and Engineering submitted in the

department of Computer Science & Engineering and Information Technology,

Jaypee University of Information Technology Waknaghat is an authentic

record of my own work carried out over the period from July 2022 to May

2023 under the supervision of Dr. Diksha Hooda (Assistant Professor,

Department of CSE).

I also authenticate that I have carried out the above mentioned project

work under the proficiency stream Artificial Intelligence.

The matter embodied in the report has not been submitted for the

award of any other degree or diploma.

Manya Malhotra

191427

This is to certify that the above statement made by the candidate is true to the

best of my knowledge.

Dr. Diksha Hooda

Assistant Professor

Department of Computer Science and Engineering

Dated:

II

III

ACKNOWLEDGEMENT

Firstly, I express my heartiest thanks and gratefulness to almighty God for his

divine blessing making it possible to complete the project work successfully.

I am really grateful and wish my profound indebtedness to my supervisor Dr.

Diksha Hooda, Assistant Professor (Grade-II), Department of CSE, Jaypee

University of Information Technology, Waknaghat. Her deep knowledge &

keen interest in the field of “Artificial Intelligence” helped me to carry out

this project. Her endless patience, scholarly guidance, continual

encouragement, constant and energetic supervision, constructive criticism,

valuable advice, reading many inferior drafts and correcting them at all stages

have made it possible to complete this project.

I would like to express my heartiest gratitude to Dr. Diksha Hooda,

Department of CSE, for her kind help to finish my project.

I would also generously welcome each one of those individuals who have

helped me straightforwardly or in a roundabout way in making this project a

win. In this unique situation, I might want to thank the various staff

individuals, both educating and non-instructing, which have developed their

convenient help and facilitated my undertaking.

Finally, I must acknowledge with due respect the constant support and

patience of my parents.

Manya Malhotra

191427

Project Group No.: 90

IV

TABLE OF CONTENTS

CERTIFICATE I

PLAGIARISM CERTIFICATE II

ACKNOWLEDGEMENT III

LIST OF ABBREVIATIONS V

LIST OF FIGURES VI

LIST OF GRAPHS VII

LIST OF TABLES VIII

ABSTRACT IX

1. Chapter-1 INTRODUCTION
1.1 Introduction
1.2 Problem Statement
1.3 Objectives
1.4 Methodology
1.5 Organization

1
1
3
4
5
8

2. Chapter-2 LITERATURE SURVEY
2.1 Literature Survey

9
9

3. Chapter-3 SYSTEM DEVELOPMENT
3.1 Background
3.2 Proposed Work
3.3 Experimetal Setup
3.4 Software Design
3.5 Data Preparation and Label Creation
3.6 Workflow

12
12
14
17
17
31
33

4. Chapter-4 PERFORMANCE ANALYSIS
4.1 Testing on validation data
4.2 Testing in Real Time

42
42
43

5. Chapter-5 CONCLUSIONS
5.1 Conclusions
5.2 Future Scope
5.3 Applications Contributions

46
46
46
47

6. REFERENCES 48
7. APPENDICES 50

V

LIST OF ABBREVIATIONS

ASL American Sign Language

SLR Sign Language Recognition

ML Machine Learning

CNN Convolutional Neural Network

RNN Recurrent Neural Network

LSTM Long Short Term Memory

MP MediaPipe

CV Computer Vision

BGR Blue → Green → Red

RGB Red → Green → Blue

ROI Region Of Interest

VI

LIST OF FIGURES

Fig. 1 American Sign Languages

Fig. 2 Methodology

Fig. 3 Detailed Flow of Project

Fig. 4 Model Summary

Fig. 5 High Level System Architecture

Fig. 6 Overview of MediaPipe Holistics

Fig. 7 Architecture of the Hand Gesture Recognition System

Fig. 8 Architectural Diagram of the System

Fig. 9 The pose_landmarks model of MediaPipe

Fig. 10 The hand_landmarks model of MediaPipe

Fig. 11 The face_landmarks model of MediaPipe

Fig. 12 Data Collection in Folders

Fig. 13 Proposed Classifier Model

Fig. 14 The architecture of Recurrent Neural Network

Fig. 15 The architecture of LSTM block

Fig. 16 The repeating module in LSTM

Fig. 17 Import and Install Dependencies

Fig. 18 Collecting Data for the Model

Fig. 19 Testing in Real Time

VII

LIST OF GRAPHS

Graph 1. Epoch Categorical accuracy

Graph 2. Epoch Loss

VIII

LIST OF TABLES

Table 1. List of References

Table 2. Comparison of Existing vs Proposed work

Table 3. The vocabulary of gestures / words chosen

Table 4. List of Libraries

Table 5. Imported Dependencies

IX

ABSTRACT

To interact with one another, we humans require a means of

communication. "Specially abled" persons, those with speech or hearing

disorders, "Mute" and "Deaf" people, are always reliant on some form of

visual communication. People who may not have visual or hearing

impairments may have difficulty communicating with those who do.

In order to achieve two-way communication between people with

disabilities and the general public, a system that can translate hand gestures

into text and speech needs to be developed. Sign language is one of the oldest

and most natural forms of language for communication, but because the

majority of people do not know sign language, it is very difficult to find

interpreters. In light of this, we have developed a real-time approach for

fingerspelling based on American sign language utilising neural networks.

Deep learning approaches can aid in the reduction of communication

barriers. The following are the major steps in system design: tracking,

segmentation, gesture acquisition, feature extraction, gesture recognition and

text to speech conversion. The Sign Language recognition algorithm is trained

on a dynamic dataset of ordinary motions created by the author. The trained

model correctly recognises the gesture, displays it on the screen in the form of

text and converts it into speech.

1

1. INTRODUCTION

A gesture is any movement of a body part, such as the face or the hand.

Image processing and computer vision are used here for sign language

recognition and python text to speech is used for speech conversion. Sign

recognition allows computers to understand human actions and serves as a

translator between computers and humans. This could allow humans to engage

naturally with computers without coming into direct contact with the

mechanical equipment. Deaf and dumb people use hand and pose gestures to

communicate in sign language. When transmitting voice is impossible or

typing and writing is problematic, but there is the possibility of seeing, this

community uses sign language to communicate. The sole means of

communication between people at the moment is sign language.

Normally, everyone uses sign language when they don't want to speak,

but for the deaf and dumb community, this is their sole means of

communication. The same meaning is conveyed through sign language as it is

through spoken language. All around the world, the deaf and dumb

community uses this, though in localized forms like ISL and ASL. One or two

hands can be used to make hand gestures when utilizing sign language. There

are two types of it: continuous sign language and isolated sign language.

Continuous ISL, also known as Continuous Sign language, is a series of

movements that produce a coherent sentence as opposed to isolated sign

language, which consists of a single motion with a single word. We used an

independent ASL gesture recognition algorithm in this work.

1.1 Introduction

Humans can communicate with one another in a variety of ways. This

include behaviour such as physical gestures, facial expressions, spoken words,

etc. However, those who have hearing loss are restricted to using hand

gestures to communicate. People with hearing loss and/or speech impairments

2

communicate using a standard sign language that is incomprehensible to non-

users.

Sign language is the communication system for those who are hard of

hearing and deaf. It ranks as the sixth most utilized language worldwide. It is a

type of communication that uses hand movements to communicate ideas. Each

region has its specific sign language like normal language. In 2005 there were

an estimated 62 million deaf people worldwide and about 200 different sign

languages in use around the world, many of which have distinctive features.

ASL is the primary language of many deaf citizens in North America.

Hard-of-hearing and hearing people also use it. Hand gestures and facial

expressions are used to convey this language. The deaf community has access

to ASL as a means of communication with the outside world and inside the

community. But not everyone is familiar with the signs and motions used in

sign language. Understanding sign language and being familiar with its

motions takes a lot of practice. Since there are no reliable, portable tools for

identifying sign language, learning sign language takes a lot of time. However,

since the development of neural networks and deep learning, it is now possible

to create a system that can identify things, or even objects of different

categories.

In this project, our primary focus is on creating a model that can

recognize hand movements and combine each motion to form a whole word &

then convert that predicted text into speech. Few gestures that are practiced are

displayed in the image below.

3

Fig. 1 - American Sign Languages.

1.2 Problem Statement

It's important to interact with everyone in our modern culture, whether

it's for fun or for work. Communication has always had a great impact in every

domain and how it is considered the meaning of the thoughts and expressions

that attract the researchers to bridge this gap for every living being.

Speech impairment is a disability which affects an individuals ability

to communicate using speech and hearing. People who are affected by this use

other media of communication such as sign language. However, learning and

understanding sign language requires a lot of practice, and not everyone will

comprehend what the gestures in sign language indicate. It takes time to learn

sign language because there is no reliable, portable tool for doing so.

Hearing or speech-impaired individuals who are proficient in sign

language need a translator who is equally proficient in sign language to

4

effectively communicate their ideas to others. This technique assists people

with hearing loss or speech impairments in learning and translating their sign

language in order to help them overcome these issues.

1.3 Objectives

● According to statistics, over 80% of specially abled individuals are

illiterate, and the system tries to bridge the gap between a normal, a

hearing-impaired and a visually impaired person by turning a majority

of sign language to text and speech.

● People who are deaf or hard of hearing can communicate their message

using gestures that can be read.

● People who are not visually challenged can use the software to

comprehend sign language and communicate effectively with those

who are. Also, people who are visually impaired can also communicate

when the sign language predicted text is converted to speech.

● This project will bridge the gap of difficulty in understanding sign

language that existed previously.

● To train a model, it will employ cutting-edge deep learning algorithms.

The model will collect frames for gestures using the camera, train the

model, and evaluate the precision for each gesture. The gesture will

then be predicted in real time. The gesture is then translated to text and

speech.

● The objective of this project is to identify the symbolic expression

through images so that the communication gap between a normal and

hearing impaired person can be easily bridged by:

5

i. Creating data with respect to American sign language & pre-

process it.

ii. Training the pre-processed data with Deep Learning based

models to perform sign language recognition & speech

conversion in real time.

iii. Testing the model in the real world scenario.

1.4 Methodology

The system uses a vision-based method. Since all of the signs are

portrayed with bare hands, there is no need for any artificial gadgets for

interaction.

We looked for pre-made datasets for the project but couldn't find any

in the form of raw images that met the software specifications. As a result, we

decided to develop our own data set. To create the dataset, Open Computer

Vision (OpenCV) library of python is used.

To accurately recognize the sign gestures and translate them into text

& then convert the text to speech, our proposed method comprises three stages:

data preprocessing and feature extraction, data cleaning and labelling and

gesture recognition & speech translation. Data preprocessing and feature

extraction are carried over by the MediaPipe framework. Here, features from

the face, hands, and body are extracted as keypoints and landmarks using

built-in data augmentation techniques from sequence of input frames taken

from a web camera. In stage 2, the extracted keypoints from stage 1 are saved

in a file to identify and remove the null entries from the data, after which data

labelling follows. In stage 3, the cleaned and labelled gestures are trained and

classified by our LSTM model for sign language recognition in the form of

text on the screen. The displayed text is then converted to speech. The three

stages of the proposed methodology are elaborately discussed below.

6

Fig. 2 - Methodology

Stage 1: Data preprocessing and feature extraction. For data preprocessing

and feature extraction from the image, we applied a multistage pipeline from

MediaPipe, called MediaPipe Holistic. For each input frame from the web

camera, the MediaPipe Holistic handled individual models for the hands, face,

and pose components using a region- appropriate image resolution. The

workflow of stage 1 is briefly discussed below:

• The human pose and subsequent landmark model were estimated using

BlazePose's pose detector. Then, three ROI crops for the face and hands (2×)

were derived from the inferred pose landmarks, and a re-crop was employed to

improve the ROI.

• Next, the corresponding landmarks were estimated. To achieve this, the full-

resolution input coordinates were cropped to the ROIs for task-specific hand

and face models.

• Finally, all landmarks were combined to yield the full 540+ landmarks.

Stage 2: Data cleaning and labelling. After step 1, the landmark points (21 3

+213 + 33 4 + 468 3 = 1662) are fattened, concatenated, and put in a file to be

7

checked for and any null entries from the data are removed. Data cleaning is

essential because it avoids failed feature detection, which happens when a

blurry image is submitted to the detector and results in a null entry in the

dataset. However, when using this noisy data for training, the prediction

accuracy may suffer and bias may develop. Labels are constructed for each

class and their associated frame sequences are saved in order to suit the

received data for the subsequent stages of training, testing, and validation.

Stage 3: Gesture recognition & Speech translation. Now that we have an

LSTM model, we can detect action with a limited amount of frames by

training it with the data we have already stored.

The number of epochs for the model is decided upon; as the number of

epochs rises, so does the amount of time needed to run the model, and

overfitting of the model for gesture recognition is a possibility.

As soon as the model is trained, we can use it to recognise sign

language in real time utilising OpenCV module.

The recognised text from the sign language is then converted into

speech using python-text-to speech module. The converted audio file is then

played simultaneously using the default audio output device present in the

system.

Fig. 3 - Detailed Flow of Project.

8

Fig. 4 - Model Summary.

1.5 Organization

The rest of this report is organized as follows:

Chapter 2 gives an overview of the literature study performed.

Chapter 3 discusses the system development and workflow.

Chapter 4 shows the performance analysis..

Chapter 5 highlights the conclusion, future scope and application contribution.

9

2. LITERATURE SURVEY

2.1 Related Work

Previous researchers have emphasised their work on the prediction of sign

language gestures to support people with hearing impairments using advanced

technologies with artificial intelligence algorithms. Although much research

has been conducted for SLR, there are still limitations and improvements that

need to be addressed to improve the hard-of-hearing community. This section

presents a brief literature review of recent studies on SLR using sensor and

vision-based deep learning techniques.

Literature review of the problem shows that there have been several

approaches to address the issue of gesture recognition in video using several

different methods. In [1] the authors used Hidden Markov Models (HMM) to

recognize facial expressions from video sequences combined with Bayesian

Network Classifiers and Gaussian Tree Augmented Naive Bayes Classifiers.

Francois et al. [2] also published a paper on Human Posture Recognition in

a Video Sequence using methods based on 2D and 3D appearance. The work

mentions using PCA to recognize silhouettes from a static camera and then

using 3D to model posture for recognition. This approach has the drawback of

having intermediary gestures which may lead to ambiguity in training and

therefore a lower accuracy in prediction.

Let's approach the analysis of video segments using Neural Networks

which involves extracting visual information in the form of feature vectors.

Neural Networks do face issues such as tracking of hands, segmentation of

subjects from the background and environment, illumination of variation,

occlusion, movements and position. The paper by Nandy et al. [3] splits the

dataset into segments, extracts features and classifies using Euclidean Distance

and K-Nearest Neighbors.

10

Similar work by Kumud et al. [4] defines how to do Continuous Indian

Sign Language Recognition. The paper proposes frame extraction from video

data, pre-processing the data, extracting key frames from the data followed by

extracting other features, recognition and finally optimization. Pre-processing

is done by converting the video to a sequence of RGB frames. Each frame

having the same dimensions. Skin colour segmentation used to extract skin

regions, with the help of HSV. The images obtained were converted to binary

form. The key frames were extracted by calculating a gradient between the

frames. And the features were extracted from the key frames using oriental

histogram. Classification was done by Euclidean Distance, Manhattan

Distance, Chess Board Distance and Mahalanobis Distance.

Table 1. List of References

AUTHOR METHODOLOGY LIMITATIONS

Kshitij Bantupalli

and

Ying Xie

International

Conference,

10-13 December

2018

[11]

Video sequences are fed

into the model, which

then extracts temporal

and spatial information

from them.

The model ends up

learning inaccurate

features from the films

while testing with

varying skin tones and

including diverse faces,

which causes accuracy

to decline over time.

Aju Dennisan

Journal, 2019

[7]

Making a model to

recognize ASL alphabet

from RGB images.

They have done the

recognition only on the

alphabets with 83.29%

accuracy.

K Amrutha

and

P Prabu

Developing aisystem that

can readiand interpretia

sign using a dataset and

The model showed an

accuracy of only 65%

due to less data set.

11

International

Conference,

11-12 February 2021

[5]

theibest algorithm.

A._Mittal,iP. Kumar,

P. P. Roy,

R.iBalasubramanian,

andiB.B._Chaudhuri

[2]

A_Modified_LSTM

ModeliforiContinuous

SigniLanguage

RecognitioniUsing

LeapiMotion

The model showed an

accuracy of only 72.3%

and 89.5% due training

dataset.

M. Wurangian

[6]

Americanisignilanguage

alphabetirecognition

They have done the

recognition only on the

alphabets.

P. Likhar, N. K.

Bhagat and R. G N

[9]

Deep_Learning

Methods_for_Indian

Sign_Language

Recognition

This model was

developed for Indian

Sign Language, our

model is concerned with

American Sign

Language.

Shivashankara,_Ss,

and S. Srinath

[12]

American_sign

language_recognition

system:_an_optimal

approach

Model is restricted to

alphabet recognition

only.

12

3. SYSTEM DEVELOPMENT

3.1 Background

Gesture recognition is a hot topic in Human-Computer Interaction

research. It has a wide range of applications, including virtual environment

control, sign language translation, robot control, and music creation. We will

create a real-time Sign Language Recognizer using the MediaPipe framework

and Tensorflow in OpenCV and Python in this machine learning project on

American Sign Language Recognition.

OpenCV is a real-time computer vision and image processing

framework built on C/C++. However, we will use it in Python via the

OpenCV-python package.

Fig. 5 - High Level System Architecture.

What is MediaPipe?

Creating pipelines for processing perceptual data including photos,

movies, and audio requires making the system compliant with the MediaPipe,

a hybrid open-source architecture. Real-time hand tracking and gesture

detection are accomplished using a thorough approach that makes advantage

of ML. By precisely identifying sign gestures, it provides more hand and

13

finger tracking solutions. Using a MediaPipe Holistic pipeline, we were able

to extract the landmarks from the position of the torso, hands, and face.

MediaPipe holistic pose landmarks:

The MediaPipe Holistic body pose model locates the person/position

areas of interest (ROI) inside the frame using its BlazePose detector to infer

around 33 3D landmarks on the body consisting of x, y, and z coordinates

from the input image or video. The ROI-cropped frame is used as input by the

pose landmark and division masks to progressively detect postures. Thus, it

more precisely localizes critical locations and suits SLR.

MediaPipe holistic hand landmarks:

In a single frame, MediaPipe Holistic hands infers approximately 21

3D hand landmarks consisting of x, y, and z coordinates and produces the

desired output by combining two models:

i. the palm detection model

ii. the hand keypoint localization model.

Initially, the model was used with a single-shot detector known as the

Blaze Palm. Given a large dataset of hand sizes in the input image, this

detector supports the MediaPipe to reduce the time complexity of palm

detection. Instead of focusing on unnecessary objects, this model works on the

entire image and returns a focused bounding box that highlights the rigid parts,

such as palm and fist, for palm detection. The palm detection output is then

used by the model to perform hand keypoint localization.

This produced three possible outputs as follows:

 21 hand knuckle points in a 2D or 3D space.

 Hand flag showing the probability of hand presence in the input

image.

 Binary classification of left and right hand.

14

MediaPipe holistic face landmarks:

The MediaPipe face mesh is a face geometry solution that computes

468 3D face landmarks in real time using a single input camera rather than a

depth sensor. It operates on the basis of two deep neural network models: a

detector that computes and operates face locations on a full image, and a 3D

face landmark model that operates on the computed locations to predict

approximate surface geometry using regression. Cropping the face accurately

reduces data augmentation processes like rotation, scaling, and translation,

allowing the network to focus more on coordinate prediction accuracy.

Fig. 6 - Overview of Mediapipe Holistic.

3.2 Proposed Work

The proposed work considers the issues faced by prior models and works to

reduce them. We created a system that does not compromise on efficiency or

performance. The non-uniform background and segmentation of hands from

the background was one of the key issues that researchers confronted. We

solved that problem by creating a dataset using Google's Mediapipe solution

and the openCV library to detect landmarks from the hand, which we also

used during the real-time detection part of the hand gesture recognition system,

15

so that regardless of whether one is in their car, at home,or on the street, the

system will detect accurate landmarks from their hands. As illustrated in fig. 6,

the suggested system consists of three primary modules that are linked in

series.

The Dataset module is where the landmarks are extracted and the

dataset construction process is completed, followed by the Preprocessing

module, where the data is processed to input into the final LSTM module,

where the training for detecting gestures takes place. Finally, once the model

is delivering appropriate results after modifying the hyper parameters, a

camera renders the live real-time feed and sends it through the model, and the

name of the gesture is shown as text on the screen. Figure 7 depicts the

architecture of the proposed Hand Gesture Recognition System.

Fig. 7 - Architecture of the Hand Gesture Recognition System. [16]

3.2.1. Comparison of proposed vs existing approach based on technology used,

gesture recognized and accuracy

A couple of metrics were imported from sci-kit learn to evaluate the

performance of the designed model. Using multi_label_confusion_matrix to

16

get the confusion matrix for each one of the different labels. This allowed us

to evaluate what’s being detected as a True Positive and a True Negative &

what’s being detected as a False Positive and a False Negative. Later by using

accuracy_score the model accuracy was found out to be 80%. Table 2 shows

the comparison between the existing approaches and our proposed method.

Reference Technology

Used

Gestures

Recognized

Static / Dynamic

videos/images

Accuracy

[14] Image

Processing,

Squeezenet

model

All 26 English

alphabet

Only static images 83.29%

[3] Hidden Markov

model and

keyframe

Extraction

The number of

persons is 5, and

the sentences are

10

Static/Dynamic

images and videos

94%

[4] Sensors: Leap

Motion &

Microsoft Kinect

Dataset consists

35 isolated sign

words

Videos 72.3%

(sign

sentences),

89.5%

(sign words)

[9] U-net with

ResNet 101,

Microsoft Kinect

The dataset was

gathered from 5

subjects having 10

distinct dynamic

gestures

commonly

exercised in ISL

(Indian Sign

Language)

Static and dynamic

based images and

videos

78.3%

Proposed Work Video

processing,

keypoint

extraction using

The number of

persons are 2 and

the the number of

phrases are 10

Static and dynamic

images and videos

80%

17

mediapipe

holistic

3.3 Experimental Setup

3.3.1. Tools / technologies used

The proposed model is deployed on an Intel Core processor

with 8 GB RAM and Windows 10 operating system. The proposed

model is developed using the Anaconda Navigator platform to set up

the environment for Jupyter Notebook.Python programming language

is used to develop the model in combination with Python libraries

(OpenCV, MediaPipe) and Deep learning model LSTM.

3.4 Software Design

The proposed system follows a vision-driven methodology to perform

gesture-based sign recognition from frames extracted from video inputs. The

sign recognition process consists of three phases, namely data collection, data

pre-processing and feature extraction and gesture recognition. After the data

collected is pre-processed and augmented , the feature extraction process is

initiated. In this, facial features, landmarks of both hands, and bodily postures

are extracted as keypoints from a sequence of input frames captured via a web

camera. Then the extracted essential data points are considered as crucial

features to be fed to the implemented classifier that recognizes the gestures

performed by the user . These recognized gestures and moments are further

converted to the textual form and displayed on the screen in real time. Figure 8

shows the architectural diagram of the proposed system. The three phases of

the system are discussed in detail below:

18

Fig. 8 - Architectural diagram of the system.

Phase 1. Data Collection:

The task of data collection is an important step to initiate the

recognition process. The collected data is segregated into the vocabulary

considered. Subsequently, the data is pre-processed to extract crucial features

which are fed to the deep learning based classifier for sign recognition. The

existing data was not enough in its relevance and size, this provided the

driving force behind creation of new data instances in the form of video

sequences. In order to create such video input, it is necessary to decide on the

19

set of gestures needed for the training and testing algorithm. The gestures are

chosen based on the deaf community jargon and culture. These sets of gestures

formed the fundamental vocabulary for the proposed methodology. Table 3

shows the vocabulary of gestures/words chosen.

Table 3. The vocabulary of gestures / words chosen.

ACTIONS SAMPLE 1 SAMPLE 2

HELLO

I AM

GOOD

I LOVE YOU

20

HOW

ARE YOU

SORRY

THANK YOU

NO

21

GOODBYE

The next step is to create input data portfolios to segregate the data to

be collected according to the gestures considered. Then, the video-based data

is collected from the system’s in-built camera using the OpenCV [8] library. A

total of 30 video sequences are captured for each gesture out of which 30

frames are extracted from each of the videos. The environment for further pre-

processing and analysis of image data. Table 4 shows the list of libraries

necessary to provide an environment for implementation of the sign

recognition process.

Table 4. List of Libraries.

Tensorflow and

Tensorflow-gpu
to run mathematical operations on CPU and GPU.

Opencv-python to access webcam keypoints

Mediapipe
to extract hand, face, pose landmarks

Scikit-learn
for evaluation matrix as well as to leverage a training

and testing split

Matplotlib to visualize images easily

numpy
to work with different arrays & structure different

datasets

os to work with file handling to store dataset

22

pyplot to visualize images easily

time
to take a sleep between each frame that we collect, so as

to get enough time to get into position.

pyttsx3

It provides a cross-platform Text-to-Speech (TTS) engine.

It allows developers to synthesize natural-sounding

speech from text using different voices and languages.

Phase 2. Feature Extraction:

i. Keypoint Extraction:

After the video data is collected for each gesture, by deployment of

Mediapipe holistic pipeline, keypoints are extracted with respect to face, hands

and pose, detailed as below:

1. Pose landmarks:

In this step, around 33 3D landmarks of the body consisting of

coordinates x, y, and z from the input frame or image are extracted as a result

of these areas of interest corresponding to a person or position are identified.

The pose landmark and division masks within the ROI detect poses

sequentially using the ROI-cropped frame as input. This accurately localizes

more keypoints to make the gesture recognition process more efficient. Figure

9 shows the pose landmarks detected in one instance of the input frame.

23

Fig. 9 - The pose_landmarks model of MediaPipe.

2. Hand landmarks:

Here around 21 3-dimensional hand landmarks in the form of (x,y,z)

coordinates are extracted.Hand landmarks consist of two types, namely the

palm keypoints and finger based keypoints as shown in Figure 10.This task of

hand landmark extraction is achieved by combined implementation of two

supervised based learning models. One focuses on the palm landmarks and the

other localizes keypoints with respect to hand fingers. This is achieved by the

Blaze Palm detector which is a part of the Mediapipe model. This

environmental setup reduces the time complexity of detecting the palm by

taking the focus off on unnecessary objects in the image. The result of this is

a bounding box that focuses and segments the rigid parts such as palm, fist

relevant for detection of palm from the other lesser important areas. Then hand

keypoint localization is performed through the palm detection output.

As a result of this, following three possible outputs are produced:

24

 21 hand-knuckle-points in a 2-dimensional or 3-dimensional space.

 Hand flag signifying the chances of hand presence in the input frame

or image.

 Binary classification of the left hand and the right hand.

Fig. 10 - The hand_landmarks model of MediaPipe.

3. Face landmarks:

Further approximately 468 3D face landmarks are extracted

instantaneously to assist in the gesture or sign recognition process as shown in

Figure 11.

25

Fig. 11 - The face_landmarks model of MediaPipe.

Finally, all of the landmarks are combined to give the full 540+

landmarks. The result of the keypoint extraction task is in the form of arrays

for each input frame. Each frame will contain 1662 landmark values i.e. 10*30

sequences, 30 frames, 1662 landmarks.

Number of sequences = 30 (number of videos)

Sequence length = 30 (30 frames per video)

The aggregated landmark points [21*3 (left hand) + 21*3 (right hand)

+ 33*4 (pose) + 468*3 (face) = 1662) are flattened and then concatenated, and

put in a file to be checked for any null value entries from the data if any.

ii. Data pre-processing:

As part of data pre-processing, captured images or frames are

transformed from BGR (Blue-Green-Red) to RGB (Red-Green-Blue). Then

the converted images or frames are set to un-writeable file mode to save

memory and reduce complexity. Data cleaning is an essential step of data pre-

processing in the proposed methodology because it avoids failed feature

26

detection in case of blurry or hazy image frames. In this step, the null entries

in the arrays are removed for amplifying the model performance and ruling out

the possibility of bias. Further, the labels are constructed for every gesture or

class and their associated sequences of frames are saved in order to suit the

received data for subsequent stages of training phase, testing phase, and

validation phase.

Phase 3. Gesture Recognition:

Real-time gesture recognition requires a learned model. To achieve this,

in this phase the video data samples are taken as input to train the model. So,

the data collection performed in the previous phase commences the model

training. The recognition process is featured by the positional keypoints of the

palm and fingers and the relative angles. The featured keypoints with respect

to the palm and finger data are considered to be vital for this task. In total, 543

features(33 pose, 468 face and 21 hand landmarks) are extracted for each input

word. This gives us a total of 9000 data instances, which includes 900 samples

for every word in the input vocabulary. Each sample constitutes a total of 30

videos and each video consists of 30 frames. This extracted data is integrated

into a npy format file. Additionally, a set of labels are created which

correspond to the classes of the data samples. For the training of the collected

data, deep learning based LSTM model is used.

Figure 12 shows how the data is collected and stored in different folders.

27

Fig. 12 - Data collection in folders.

First, The LSTM layer is chosen because of its ability to handle data

over an extended period of time. LSTM units, number of epochs, and Batch

size are the three variables that need to be estimated.

● Batch Size: The quantity of input data used for training each time is

referred to as the batch size. Larger batch size appears to result in a

machine learning model with lesser accuracy, whereas smaller batch

size needs considerably more amount of training time, which is

inefficient.

● Number of epochs: It denotes the total number of runs through the

dataset. An evaluation is performed after each epoch and the neural

network's weights are adjusted. The model should become more

accurate as additional epochs are trained. Models with too many

epochs trained, on the other hand, appear to be overfitting. Overfitting

occurs when the model predicts data in an overly complicated manner.

● For LSTM units: It refers to the dimensionality of the LSTM output

space. It also represents the number of neurons present in the layer.

28

To maximise performance of the model, the loss function should be

chosen once the aforementioned parameters are selected. Categorical cross-

entropy, a multiclass logarithmic loss, is used. The training data was used to

create the suggested model. When building the model, another parameter that

must be selected is the optimiser. Adam, the selected optimizer, uses gradient-

based stochastic objective function optimization. Lower order moment

estimates are used during operation. It differs from conventional ones in that it

keeps a constant learning rate throughout the training session for all weight

adjustments. However, the approach adapts different learning rates for various

parameter selections by calculating the first and second moments of gradient.

Adam combines the advantages of the Root Mean and Adaptive Gradient

Algorithm. While Root Mean Square Propagation excels at handling non-

stationary conditions, the Adaptive Gradient Algorithm excels at solving

sparse gradient problems. Adam provides the benefits of both.

Adam is the best optimiser choice for the suggested model for the

reasons mentioned below:

● It is computationally efficient and so requires less memory.

● It is well-suited to dealing with challenges involving massive amounts

of data.

● Finally, it can handle dynamic targets as well as situations with a lot of

noise.

The sequential notion is used to create the LSTM network. The first

five layers are activated using the "Sigmoid" activation function. A Dense

layer, which is a regular completely linked layer, would be the final layer

before the output of the result. As the network's output function, a Softmax

function, which is logistic regression, is frequently utilised. In multiclass

classification, the log odd ratios calculated would be the probabilities of each

class. As the last layer, the Dense layer is chosen to turn group predictions into

class probabilities for output. After each epoch of model training, the accuracy

29

and loss for both training and validation are recorded. Table 5 displays the

dependencies imported.

Table 5. Imported Dependencies.

Sequential

Module

allow us to build a sequential neural network

LSTM Layer provides with a temporal component to build the neural

network & allows to perform action detection

Dense Layer a normal fully connected layer

Tensorboard allows to perform some logging inside of tensorboard if we

want to go and trace and monitor our model as its training

The next step will be to train and fit the model, make predictions based

on the model, save the weights, and then compare the model in real-time with

the ground truth labels.

The proposed model, as shown in Figure 13, consists of 6 layers after

the input layer.

30

Fig. 13 - Proposed Classifier Model.

31

3.5 Data Preparation and Label Creation

So after the completion of the data collection process, the key points

extracted from the data are then structured using data preprocessing. The data

is structured in such a way that all the arrays of key points of each gesture are

saved as one numpy array (X), which is then mapped to another numpy array

of labels (Y). We then use the to_categorical function to convert Y into a

binary class matrix, such as [1,0,0....] for hello, [0,1,0,0....] for thanks, and

[0,0,1,0,0,.....] for "I love you," and so on. Following the completion of the

preprocessing, the data is split into training and testing data using the train test

split function.

Implementation of LSTM Long short term memory

LSTM is an RNN variant that is primarily used for data sequences or

data in time-series. The LSTM unit is more complex than the RNN unit. It has

gates that control the flow of data from a single unit. The loop is an essential

component of the LSTM architecture because it can store previous history of

information in the internal state memory. This is done to extract both spatial

and temporal information from data.

Fig. 14 - The Architecture of Recurrent Neural Network.

32

Fig. 15 - The Architecture of the LSTM block. [16]

There are 3 gates and a module called as a memory cell in a single

LSTM model's architecture (see Figure 15 & Figure 16).

i. Forget Gate - Information that is no longer helpful is removed from

the cell state by the forget gate. When knowledge is no longer pertinent

to the context, it can be forgotten according to it.

ii. Input Gate - The purpose of the input gate is to enrich the cell state

with crucial information. It is concerned with what new details can be

added to or updated in our working storage state.

iii. Output Gate - It is in charge of extracting useful information from

the current cell state and presenting it as output.

What section of the total data contained in the current state should be

provided as the output in a particular instance? Long-term memory, which is a

self-state, and short-term memory are the two states that memory cells can be

in. A value between 0 and 1 is applied to each gate's operation. Any value

between 0 and 1, as well as the values in between, results in no information

being transmitted.

33

Fig. 16 - The Repeating module in an LSTM. [16]

Our information is organized as a collection of frames, each of which

contains details on the locations of different landmarks that were collected.

Every one of these frames is recorded as a NumPy array. With the sequential

notion, the LSTM network is created. Three thick layers are the first of four

layers in the LSTM. "sigmoid" activation function is applied to the first six

levels. For the last dense layer, "softmax" is employed. For stochastic gradient

descent, an optimizer called ADAM is employed. Throughout model training,

accuracy and loss for both training and validation are recorded after each

epoch.

3.6 Workflow

I. Import and Install Dependencies

Firstly, we needed to install and import some dependencies.

We have installed 6 different dependencies:

i. tensorflow (which includes keras)

ii. tensorflow-gpu

iii. OpenCV-Python (to access our webcam keypoints)

iv. mediapipe (to extract hand, face, pose landmarks)

v. scikit-learn (for our evaluation matrix as well as to

leverage a training and testing split)

34

vi. matplotlib (to visualize images easily)

Then we have imported certain libraries:

i. cv2 for OpenCV

ii. NumPy (to work with different arrays & how we

structure our different datasets)

iii. os (to work with file handling to store our dataset)

iv. pyplot (to visualize images easily)

v. time (to take a sleep between each frame that we collect,

so that we get enough time to get into position)

vi. mediapipe

Fig. 17 - Import & Install Dependencies.

II. Detect Face, Hand and Pose Landmarks (using MP Holistic)

First we are going to make sure if we can access our webcam

using OpenCV properly. All we are doing is basically setting

up a video capture, then we are going to loop through every

single frame and render that to the screen. So, even though we

are looping through a frame, it’s going to look like a video

because we are just effectively stacking multiple frames

together.

● cap = cv2.VideoCapture(0)

Using this function of the OpenCV module we can

access our webcam with device value = 0.

● cap.isOpen()

Check if we are accessing our webcam to initiate a loop.

35

● cap.read()

To get the current frame from the webcam. It returns 2

values: return value & the current frame.

● cv2.imshow()

To show the output frame on to the screen

● cv2.waitKey()

Wait for the key to be pressed from the keyboard.

● cap.release()

To release the webcam.

● cv2.destroyAllWindows() This is going to close down

our frame.

Next, we will start setting up mediapipe holistic.

In order to make detection with mediapipe, first we need to

grab the image we converted from BGR to RGB. We then set it

to un-writeable so that it saves a little bit of memory, then we

make our detection and then set it back to writable, then

convert it from RGB to BGR. This is done by defining the

function:

def mediapipe_detection(image, model)

By default when we get a feed from OpenCV, it reads

that feed in the channel format of BGR. But when we actually

want to make a detection using mediapipe, we need it to be in

the format of RGB. So, we are going to make that

transformation using OpenCV.

● cv2.cvtColor()

Converts an image from one color space to another.

The function converts an input image from one color

space to another. In case of a transformation to-from

RGB color space, the order of the channels should be

specified explicitly (RGB or BGR).

36

We are now able to make our detection using mediapipe.

Next we will render these detected keypoints onto the image.

As of now we are not actually visualizing the landmarks to the

frame. We will do so by defining the function:

def draw_landmarks(image, results)

● mp.drawing.draw_landmarks()

III. Extract Keypoint Values

Till now we have obtained left hand landmarks, right

hand landmarks, face landmarks and body-pose landmarks.

What we need to do is to extract these in a way that will be a

little bit more resilient particularly if we don’t get any value. So,

we will concatenate these into a NumPy array and if we don’t

have values at a point in time we are just going to create a

NumPy zeros array so that we get an array with the same shape

but with zero value.

The input data used for this action detection model is a series of

30 arrays each of which contains 1662 values (30, 1662).

Each of the 30 arrays represents the landmark values (1662

values) from a single frame.

We will create a placeholder array each for left hand, right hand,

face and pose. We will extract each one of different landmarks

for each keypoint and update it in one flattened array, using the

function:

def extract_keypoints(results)

IV. Setup Folders for Data Collection

37

The next thing that we are going to do is to start setting

up folders for our array collection. We will be using the

extracted keypoints to decode our sign language.

We have used 30 different frames of data, that is 30*1662

keypoints to be able to detect a particular action.

The key difference between action detection and other

computer vision tasks is that a sequence of data rather than a

single frame is used for detection.

Effectively, we have collected data for 10 different actions. We

are going to collect 30 videos per action i.e. hello, thanks, I

love you, etc.

Then each one of those video sequences are going to contain 30

frames of data. Each frame will contain 1662 landmark values

i.e. 10*30 sequences, 30 frames, 1662 landmarks.

Number of sequences = 30 (number of videos)

Sequence length = 30 (30 frames per video)

First we created our data path, where the data is stored. Then

we created our actions variable which represents each one of

the different actions that we will be trying to detect.

We created a loop through the number of actions and number

of sequences, and then created the folders respectively.

V. Collect Keypoint Sequences

We are going to take a break between each video that is

collected.

38

Having breaks between each sequence collection allows us to

reset and reposition our-self to collect the action from start to

finish.

After taking the data input, the frames are stored as NumPy

arrays at the data path location.

Fig. 18 - Collecting Data for the Model.

39

VI. Pre-process Data and Create Labels

To pre-process our data and create labels, first we are

going to import 2 more dependencies:

i. train_test_split from sklearn (allows us to partition out

data into a training and a testing partition so as to train

on one partition and test it out on a different segment of

out data)

ii. to_categorical functions from keras utilities (to create

labels, useful when we have to convert our data to one

hot encoded data)

Next we will create a label map to represent each one of our

different actions.

Now we will start bringing all of our data together and structure

it. That is, creating one big array that will contain all of our

data.

So, effectively we are going to end up having 10*30 arrays

with 30 frames in each one of those arrays with 1662 values

which represent our keypoints.

First we will create 2 blank arrays:

i. sequences - represents our feature data or our X data

ii. labels - represent our labels or Y data

So, we are going to use the features to train a model to

represent the relationship between the labels.

We are looping through each of our actions, then each of

sequences and then we are creating a blank array called

window which represents all of the different frames that we

have got for that particular sequence.

40

Then we loop through each one of our frames, using

numpy.load() to load up that frame.

The sequences array is going to have 10*30 different videos

represented in it each one of those is going to be 30 frames

each.

Now we start pre-processing the collected data.

We will store our sequences inside of a numpy array because

that will make it easier to work with.

Next we will perform training and testing partitions using

train_test_split() with test_size=0.05 i.e. 5% of our data.

VII. Build and Train LSTM Deep Learning Model

For training our LSTM neural network, we will use

tensorflow and specifically keras.

First import some dependencies:

i. sequential module (allow us to build a sequential neural

network)

ii. lstm layer (provides us with a temporal component to

build our neural network & allow us to perform action

detection)

iii. dense layer (a normal fully connected layer)

iv. tensorboard (allow us to perform some logging inside of

tensorboard if we want to go and trace and monitor our

model as its training)

Next we will create a log directory and set up our tensorboard

callbacks.

Build the neural network architecture, compile the model and

then fit it. We have used adam optimizer,

categorical_crossentropy loss function as we have multi class

classification model to compile the model.

41

Next we will fit and train our model.

VIII. Make Model Predictions on Training & Testing data

Using function:

model.predict(X_test)

XI. Save Model Weights

Using function:

model.save()

X. Evaluation using a Confusion Matrix and Accuracy

For this we will import a couple of metrics from sci-kit learn to

evaluate the performance of our model:

● accuracy_score (to evaluate accuracy)

XI. Test in Real Time

The saved model is loaded and executed in real time.

The input video is taken in the form of frames using the

OpenCV python module & then the sign language prediction is

performed with the help of the trained model after keypoint

detection & extraction using mediaPipe holistic.

Next we will perform text to speech conversion on the the text

that is predicted from the sign language input in the last step

using python pyttsx3 module, using function:

engine.say(text)

42

4.PERFORMANCE ANALYSIS

4.1 Testing on validation data

The dataset used for testing was taken from the original dataset where it was

divided between training and testing data. The evaluation metrics we use is

Accuracy. The LSTM model is working successfully(see figure).

Accuracy of 80% was achieved with the test dataset.

Graph 1. Epoch Categorical accuracy

Graph 2. Epoch Loss

43

4.2 Testing in Real Time

Using live feed, the recognition in the form of text was shown for gestures.

Real time testing was done on each gesture with promising results. As our

model is trained to perform the prediction on 30 frames worth of key points,

thus in order to enable it in real-time the video feed is processed in the

following manner: An empty array: sequence = [] is defined. The real-time

feed is captured using open CV, and various methods that have been explained

earlier in this paper such as: mediapipe_detection and extract_keypoints are

called upon to perform the detection and collect the key points in real time.

The collected key points are appended to the empty array we defined in the

beginning. The array is then assigned as: sequence = [-30:].

Thus, it saves the last 30 frames worth of key points appended, When the

length of the sequence array is determined as 30, then the model is called upon

to predict the output.

Figure 19 shows the output screens after testing in real time.

44

45

Fig 19. Testing in Real Time.

46

CONCLUSION

5.1 Conclusion

Using the popular MediaPipe and LSTM, this comprehensive study

proposed and developed a system for American Sign Language recognition.

Initially, a folder was created for gestures, and for each gesture, 30 subfolders

were created; these subfolders can be thought of as video folders, and each

subfolder contains 30 frames, each of which is in the form of a numpy array

containing landmark values detected and extracted using Mediapipe Holistic

Solution. The data was used to train the LSTM network, which yielded an

accuracy of 80% on testing data. Finally, the system was tested using real-time

data that was directly fed into the model, and the results for each gesture were

displayed on the screen and the text is translated into speech. There was some

lag when recognising gestures in real time. We learned about how sometimes

basic approaches work better than complicated approaches. We also realised

the time constraints and difficulties of creating a dataset from scratch.

5.2 Future Scope

 We can develop a complete product that will help speech and hearing-

impaired people, and thereby reducing the communication gap. By putting

the entire system online, allowing any user to utilize their camera to

quickly recognize the gesture.

 Add a lot more dynamic gestures that are used frequently, as well as more

data for each of those motions. The model is currently trained on a small

number of words, but it may be expanded to train on full sentences,

alphabets, and integers. Training with various skin tones, hand postures,

lighting, and environmental factors for best results.

47

 Integrating the system with the mobile device. Building an application for

mobile which will make it possible to use in real-time. Allowing the user

to choose the language to be recognized at any time whenever needed.

5.3 Applications Contributions

ASL is a language that is used primarily by people with disabilities. This

language uses hand gestures and facial expressions to convey information.

Because of this, it is sometimes difficult for people who are not deaf to

understand ASL. In the paper “ASL Recognition Using Deep Learning” by B.

Li et al, the authors discuss the work of using deep learning to recognize and

analyse ASL data. The paper also presents an implementation of this technique

in a real application scenario using Google Glass.

They developed a system that can recognize signs from videos recorded by

the Glass and translate the signs into English text in real-time. This allows the

user to identify the sign and then obtain a translation via a voice message.

48

REFERENCES

[1] K. Cheng, “Top 10 & 25 American sign language signs for beginners – the
most know top 10 & 25 ASL signs to learn first: Start ASL,” Start ASL Learn
American Sign Language with our Complete 3-Level Course!, 29-Sep-2021.
[Online]. Available:
Top 10 & 25 American Sign Language Signs for Beginners – The Most Know
Top 10 & 25 ASL Signs to Learn First.

[2] A. Mittal, P. Kumar, P. P. Roy, R. Balasubramanian, and B.B. Chaudhuri,
"A Modified LSTM Model for Continuous Sign Language Recognition Using
Leap Motion," in IEEE Sensors Journal, vol. 19, no. 16, pp. 7056-7063, 15
Aug.15, 2019.

[3] “Real time sign language detection with tensorflow object detection and
Python | Deep Learning SSD,” YouTube, 05-Nov-2020. [Online]. Available:
https://www.youtube.com/watch?v=pDXdlXlaCco&t=1035s.

[4] V. Sharma, M. Jaiswal, A. Sharma, S. Saini and R. Tomar, "Dynamic Two
Hand Gesture Recognition using CNN-LSTM based networks," 2021 IEEE
International Symposium on Smart Electronic Systems (iSES), 2021,pp. 224-
229, doi: 10.11.09.

[5] K. Amrutha and P. Prabu, "ML Based Sign Language Recognition
System," 2021 International Conference on Innovative Trends in Information
Technology (ICITIIT), 2021, pp. 1-6, doi:
10.1109/ICITIIT51526.2021.9399594. Available:
ML Based Sign Language Recognition System | IEEE Conference Publication

[6] M. Wurangian, “American sign language alphabet recognition,” Medium,
15-Mar-2021. [Online]. Available:
American Sign Language Alphabet Recognition | by Marshall Wurangian |
MLearning.ai | Medium.

[7] A. Dennisan, “American sign language alphabet recognition using Deep
Learning,” ArXiv, 10-Feb-2022. [Online]. Available:
American Sign Language Alphabet Recognition using Deep Learning.

[8] OpenCV (2022) Wikipedia. Wikimedia Foundation. Available at:
https://en.wikipedia.org/wiki/OpenCV.

49

[9] P. Likhar, N. K. Bhagat and R. G N, "Deep Learning Methods for Indian
Sign Language Recognition," 2020 IEEE 10th International Conference on
Consumer Electronics (ICCE-Berlin), 2020, pp. 1-6.

[10] Scikit Learn - Documentation
Scikit-learn

[11] K. Bantupalli and Y. Xie, "American Sign Language Recognition using
Deep Learning and Computer Vision," 2018 IEEE International Conference
on Big Data (Big Data), 2018, pp. 4896-4899, doi:
10.1109/BigData.2018.8622141. Available:
American Sign Language Recognition using Deep Learning and Computer
Vision.

[12] Shivashankara, Ss, and S. Srinath. “American sign language recognition
system: an optimal approach.” International Journal of Image, Graphics and
Signal Processing 11, no. 8 (2018): 18.

[13] N. K. Bhagat, Y. Vishnusai and G. N. Rathna, ”Indian Sign Language
Gesture Recognition using Image Processing and Deep Learning,” 2019
Digital Image Computing: Techniques and Applications (DICTA), Perth,
Australia, 2019, pp. 1-8, doi: 10.1109/DICTA47822.2019.8945850.

[14] Q. Wu, Y. Liu, Q. Li, S. Jin and F. Li, “The application of deep learning
in computer vision,” 2017 Chinese Automation Congress (CAC),Jinan, 2017,
pp. 6522-6527

[15] D. G. Lowe, Distinctive Image Features from Scale-Invariant Keypoints,
International Journal of Computer Vision, vol. 13, no. 2, pp. 111122, 1981.

[16] S. Agrawal, A. Chakraborty, and C.M. Rajalakshmi, “ Real-Time Hand
Gesture Recognition System Using MediaPipe and LSTM”,
https://ijrpr.com/uploads/V3ISSUE4/IJRPR3693.pdf.

50

APPENDICES

1. OpenCV
OpenCV (Open-Source Computer Vision Library) is released under a BSD
license and hence it's free for both academic and commercial use. It has C++,
Python and Java interfaces and supports Windows, Linux, Mac OS, iOS and
Android. OpenCV was designed for computational efficiency and with a
strong focus on real-time applications. Written in optimized C/C++, the library
can take advantage of multi-core processing. Enabled with OpenCL, it can
take advantage of the hardware acceleration of the underlying heterogeneous
compute platform. Adopted all around the world, OpenCV has more than 47
thousand people of user community and estimated number of downloads
exceeding 14 million. Usage ranges from interactive art, to mines inspection,
stitching maps on the web or through advanced robotics.

2. TensorFlow
TensorFlow is an open-source software library for dataflow programming
across a range of tasks. It is a symbolic math library, and is also used for
machine learning applications such as neural networks. It is used for both
research and production at Google. TensorFlow was developed by the Google
brain team for internal Google use. It was released under the Apache 2.0 open
source library on November 9, 2015. TensorFlow is Google Brain's second-
generation system. Version 1.0.0 was released on February 11, 2017. While
the reference implementation runs on single devices, TensorFlow can run on
multiple CPUs and GPUs (with optional CUDA and SYCL extensions for
general-purpose computing on graphics processing units). TensorFlow is
available on 64-bit Linux, macOS, Windows, and mobile computing platforms
including Android and iOS. Its flexible architecture allows for the easy
deployment of computation across a variety of platforms (CPUs, GPUs, TPUs),
and from desktops to clusters of servers to mobile and edge devices.

	1.INTRODUCTION

