Jaypee University of Information Technology, Waknaghat Test-1 Examination, March 2023

B.Tech - II Semester (CSE/IT/ECE/ECM/CE/CEC)

Course Title: Engineering Mathematics 1

Max. Marks: 15

Course Title: Engineering Mathematics-II Course Instructors: RAD, KAS, NKT, SST

Max. Time: 1 hour

Instructions: All questions are compulsory. Marks are indicated against each question.

- 1. (a) Does the sequence whose n^{th} term is $\mathbf{u}_n = \left(\frac{n+1}{n-1}\right)^n$ converge? If yes, find the number to which it converges. (1 Marks) [CO-1]
 - (b) Can the integral test be applied on the series $\sum_{n=1}^{\infty} \frac{-2}{n+1}$? Justify your answer. If yes, determine the convergence/divergence of the series. (2 Marks) [CO-1]
- 2. Test the convergence of the infinite series:

(3 Marks) [CO-1]

$$\left(\frac{1}{3}\right)^2 + \left(\frac{1}{3} \cdot \frac{2}{5}\right)^2 + \left(\frac{1}{3} \cdot \frac{2}{5} \cdot \frac{3}{7}\right)^2 + \cdots$$

3. Test the series for (a) convergence and (b) absolute convergence:

(3 Marks) [CO-1]

$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n(\log n)^2}$$

4. Determine the radius of convergence of the following series:

(2 Marks) [CO-1]

$$\sum_{n=0}^{\infty} \frac{n(x+2)^n}{3^{n+1}}$$

5. Consider the periodic function and its graph as shown:

(4 Marks) [CO-1]

- (a) Obtain Fourier series expansion of the function $f(x) = f(x + 2\pi)$.
- (b) Deduce that $1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \dots = \frac{\pi}{4}$.