JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TERM 2 EXAMINATIONS-2023

M.Tech.-II Semester (Structural Engineering)

COURSE CODE (CREDITS): 12M1WCE213 (3)

MAX. MARKS: 25

COURSE NAME: Earthquake Resistant Design of Structures

COURSE INSTRUCTORS: Sugandha Singh

MAX. TIME: 1 Hour 30 Minutes

Note: There are two pages in the question paper, carefully check beforehand.

- All questions are compulsory. Marks are indicated against each question in square brackets.
- Print outs of IS 1893:2002 code is available with the invigilators.

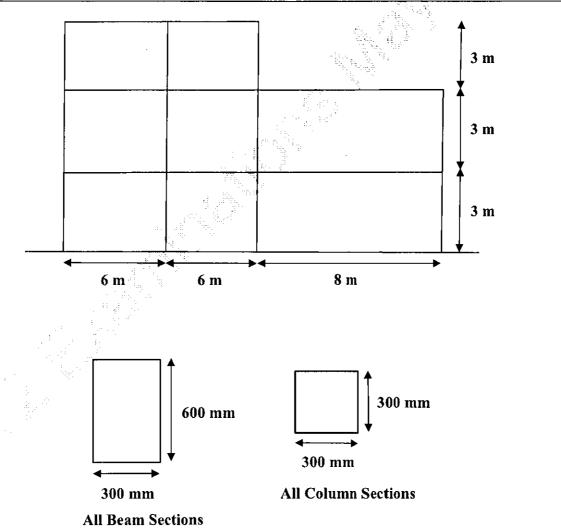


Fig. 1. RC Moment Resisting Frame

Page 1 | 2

1.	For the RC structure to be designed with ductile detailing, find the modal periods in sec	onds
	and mode shapes. Assume a live load of 4 KN/m ² on 1 st and 2 nd floors and 2 KN/m ² on th	e 3 rd
	floor.	[6]
2.	Using IS 1893:2002, find the following for the structure in fig.1. Make approp	riate
	assumptions and mention them in your answers. Also mention proper clauses.	
	a. Fundamental Time Period (s). Compare it with the fundamental period calculate	d in
	the question 1.	[1]
	b. Assuming that the structure is constructed on a soft soil, find the pseudo-spe	ctral
	acceleration in 'g' units.	[1]
	c. Assuming that the structure is a hospital which is being built in Dehradun, find	the
	design horizontal seismic coefficient for the structure.	[2]
	d. Find the design base shear on the building.	[1]
	e. Lateral force on every floor.	[2]
	f. Calculate the modal masses of all modes. How many modes should be considered for	
	proper analysis of the building?	[2]
	g. List the type of irregularities in the RC frame.	[1]
3.	Answer the following the questions in brief:	
	a. What is the need to define Damping Scaling Factors?	[2]
	b. What is storey drift? What is the allowable limit of storey drift as per IS 1893?	[2]
	c. What is a RotDNN Spectrum? What is the need of such a spectrum?	[2]
4.	What is Ductility? Derive the Newmark Hall R- μ -T relationship, $R = \sqrt{2\mu - 1}$ using	g the
	Equal Energy Concept.	[3]
		. ,