Jaypee University of Information Technology, Waknaghat Test-2 Examination, May 2023

$B. Tech - II \ Semester \ (CSE/IT/ECE/ECM/CE/CEC)$

Course Code/Credits: 18B11MA211/4 Course Title: Engineering Mathematics-II

Max. Marks: 25

Course Instructors: RAD, KAS, NKT, SST

Max. Time: 1.30 hour

Instructions: All questions are compulsory. Marks are indicated against each question.

- 1. Discuss the convergence of the series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{n^2+1}$. (3 Marks) [CO-1]
- 2. Find the radius of convergence of the series $\sum_{n=0}^{\infty} \frac{(x-5)^n}{n^2}$.
- 3. Answer the following questions:

(4 Marks) [CO-1]

- (a) Consider the Fourier series $f(x) = 1 \frac{1}{2}\cos x 2\left\{\frac{\cos 2x}{1 \cdot 3} \frac{\cos 3x}{3 \cdot 5} + \frac{\cos 4x}{5 \cdot 7} \cdots\right\}$ of $f(x) = x \sin x$ in $(0, \pi)$. Deduce that $\frac{\pi 2}{4} = \frac{1}{1 \cdot 3} \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} \cdots$
- (b) Find the coefficient a_5 of $\cos(5x)$ in the Fourier cosine series of the function f(x) = $\sin(5x)$ in the interval $(0, 2\pi)$.
- 4. Find complementary solution of $(\mathbf{D}-2)^3(\mathbf{D}^2+9)y=x^2e^{2x}+x\sin(3x)$. (2 Marks) [CO-2]
- 5. Consider $x^3 \frac{d^3y}{dx^3} + 3x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + y = x + \ln x$. (4 Marks) [CO-2]
 - (a) Convert the given equation in to a differential equation with constant coefficients.
 - (b) Determine the particular integral.
- 6. Consider $(\mathbf{D}^2 3\mathbf{D} + 2)y = \cos(e^{-x})$. Let $y_h(x) = c_1 e^x + c_2 e^{2x}$ be the homogeneous solution.
 - (a) Determine the Wronskian of $f(x) = e^x$ and $g(x) = e^{2x}$.
 - (b) Find the non-homogeneous solution y_p by the method of variation of parameter.

(3 Marks) [CO-2]

- 7. Find power series solution of $\frac{d^2y}{dx^2} x^2 \frac{dy}{dx} y = 0$ about x = 0. (4 Marks) [CO-3]
- 8. Consider the following questions: (3 Marks) [CO-3]
 - (a) Express $\mathcal{J}_5(x)$ in terms of $\mathcal{J}_1(x)$ and $\mathcal{J}_2(x)$, where $\mathcal{J}_n(x)$ is the Bessel's function.
 - (b) Express $4x^3 + 6x^2 + 7x + 2$ in terms of Legendre polynomials.