
0

 CRACKING CAPTCHA

COMPLETELY AUTOMATED PUBLIC TURING TEST TO

TELL COMPUTERS AND HUMANS APART

 BY

 KANIKA SINGH-101443

 JULY (2013) - MAY (2014)

 PROJECT SUPERVISOR- MR. SUMAN SAHA

Submitted in partial fulfillment of Degree of Bachelor of

Technology

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

AND INFORMATION TECHNOLOGY

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY

1

CERTIFICATE

This is to certify that the work entitled-“BREAKING CAPTCHAS-Completely

automated public turing test to tell Computers and Humans Apart” submitted by

Kanika Singh-101443, in fulfillment for award for degree of Bachelor of Technology in

Information Technology of JAYPEE UNIVERSITY OF INFORMATION

TECHNOLOGY has been carried out under my supervision. This work has not been

submitted partially or wholly to any other University for any award of this or any other

degree.

Mr. Suman Saha

Senior Lecturer

Department of Computer Science Engineering and Information Technology

Jaypee University of Information Technology

Waknaghat

2

 Acknowledgement

“It is not possible to prepare a project without the assistance &

encouragement of other people. This one is certainly no exception.”

On the very outset of this report, we would like to extend our sincere & heartfelt obligation

towards all the people who have helped us in this endeavor. Without their active guidance,

help, cooperation & encouragement, we would not have made headway in the project.

We would like to show our greatest appreciation to Mr. Suman Saha. We feel motivated

everytime we get his encouragement. For his coherent guidance throughout the tenure of

the project, we feel fortunate to be taught by Mr. Suman Saha, who gave us his unwavering

support. Besides being our mentor, he taught us that there is no subsitute for hardwork.

We owe our heartiest thanks to Brig. (Retd.) S.P. Ghrera (HOD, CSE/IT Department) and

Dr. Hemraj Saini (BTech Project Coordinator) who has always inspired us to take

initiatives.

In the light of new developments and recent findings, we devote the task that was asked

from us at Jaypee University of Information Technology to BREAKING CAPTCHA-

Completely automated public turing test to tell Computers and Humans Apart”.

Kanika Singh-101443

3

Table of Contents

TOPIC PAGE NO.

CERTIFICATE I

ACKNOWLEGEMENT II

TABLE OF CONTENTS III

LIST OF FIGURES V

LIST OF ABBREVIATIONS VI

ABSTRACT VII

CHAPTER I

 INTRODUCTION 8-11

 What are captchas ? 8

1. History 8

2. Need for CAPTCHA 9

3. ReverseTuringTest 11

CHAPTER II

 PROBLEM STATEMENT AND

 MOTIVATION 12-13

CHAPTER III

 LITERATURE SURVEY 14-26

4

1. A Low Segmentation attack 14-22

 Binarization 16

 Fixingbroken characters 17

 VerticalSegmentation 18

 ColorFilling Segmentation 18

 Thickarcremoval 20

 LocatingConnectedCharacters 21

 SegmenConnected Characters 22

2. CHELLAPILLA ALGORITHM 23-27

 Projection 23

 Proposedalgorithm 25

3. Machine learning in NN and SVM 26

CHAPTER IV

 PROPOSED ALGORITHM AND IMPLEMENTATION 28-61

1. Proposed Algorithm 28

2. Code 34

3. Output 49

4. Results after Testing 50

5. Analysis 51

References 53

5

List of Figures

Figure 1: CAPTCHA Image

Figure 2: Recognition rate for individual characters using different distortions

Figure 3: Samples in MSN scheme

Figure 4: Binarization

Figure 5: Connection one pixel gap

Figure 6: Vertical segmentation

Figure 7: 8-connectivity v/s 4-connectivity

Figure 8: CFS segmentation

Figure 9: Circle detection

Figure 10: Discriminative feature checking

Figure 11: Relative feature checking

Figure 12: “Approximation” for locating connected characters

Figure 13: Problems in Chellapilla‟s algorithm

Figure 14: Examples of clutter and projection

Figure 15: Algorithm proposed

Figure 16: Types of CAPTCHAs

Figure 17: System Architecture

Figure 18: Starting the application

Figure 19: Loading CAPTCHA and saving output

Figure 20: Text file saved

Figure 21: Some of the sample CAPTCHAs

Figure 22: SVM mode

6

List of abbreviations

BMP: Bit map

CAPTCHA: Completely Automated Public Turing Tests to Tell Computers and Humans

Apart

E-Commerce: Electronic Commerce

E-mail: Electronic Mail

GIF: Graphical Interchange File format

IEEE: Institute of Electrical and Electronics Engineers

JPEG: Joint photographic expert group

NN: Neural Networks

OCR: Optical Character Recognition

PNG: Portable network graphics

SVM: Support vector machine

TIFF: Tag image file format

Txt: Text file format

7

Abstract

Completely Automated Public Turing Tests to Tell Computers and Humans Apart

(CAPTCHAs) are the automatic filters that are widely used these days to disallow any

automated script that can perform the work of a human. CAPTCHAs are built in such a

way that it is very difficult for any automated script to break them. The state of the art of

CAPTCHA design suggests that such text-based schemes should rely on segmentation

resistance to provide security guarantee, as individual character recognition after

segmentation can be solved with a high success rate by standard methods such as neural

networks. We analyse the security of a text-based CAPTCHAs and the loopholes in

designing of these captchas. Defeating a CAPTCHA test requires two procedures:

segmentation and recognition. In this project, an approach to break text based

CAPTCHAs has been proposed that first preprocesses the given CAPTCHA, segments its

characters, and then recognizes the characters depending on it‟s features. The breaking of

CAPTCHAs give strength to CAPTCHAs which in turn help to develop more robust

CAPTCHAs.

8

Chapter-I

Introduction

What are CAPTCHAs?

CAPTCHAs are a computer program or system intended to distinguish human from

machine input, typically as a way of thwarting spam and automated extraction of data from

websites. It stands for Completely Automated Public Turing Test to Tell Computers and

Human Apart, and Public means that the code and the data used should be publicly

available. A more technical definition of CAPTCHA is : “CAPTCHA is a cryptographic

protocol whose underlying hardness assumption is based on an AI problem”.

History

Since the early days of the Internet, users have wanted to make text illegible to computers.

The first such people were hackers,posting about sensitive topics to online forums they

thought were being automatically monitored for keywords. To circumvent such filters, they

would replace a word with look-alike characters. HELLO could become |-|3|_|_() or)-

(3££0, as well as numerous other variants, such that a filter could not possibly detect all of

them. This later became known as leetspeak.

The first discussion of automated tests which distinguish humans from computers for the

purpose of controlling access to web services appears in a 1996 manuscript of Moni Naor

from the Weizmann Institute of Science, entitled "Verification of a human in the loop, or

Identification via the Turing Test".

9

Subsequent to that work, two teams of people have claimed to be the first to invent the

CAPTCHAs used throughout the Web today. The first team consists of Mark D.

Lillibridge, Martin Abadi, Krishna Bharat, and Andrei Z. Broder, who used

CAPTCHAs in 1997 at AltaVista to prevent bots from adding URLs to their search engine.

Looking for a way to make their images resistant to OCR attack, the team looked at the

manual of their Brother scanner, which had recommendations for improving OCR's results

(similar typefaces, plain backgrounds, etc.). The team created puzzles by attempting to

simulate what the manual claimed would cause bad OCR.

The second team to claim inventorship of CAPTCHAs consists of Luis von Ahn and

Manuel Blum, who described CAPTCHAs in a 2003 publication and subsequently

received much coverage in the popular press. Their notion of CAPTCHA covers any

program that can distinguish humans from computers, including many different examples

of CAPTCHAs.

The controversy of inventorship has been settled by the existence of a 1998 patent by

Lillibridge, Abadi, Bharat, and Broder, which predates other publications by several

years. Though the patent does not use the term CAPTCHA, it describes the ideas in detail

and precisely depicts the graphical CAPTCHAs used in the Web today.

Need for CAPTCHAs

CAPTCHAs are used to protect many types of websites including free-email providers,

ticket sellers, social networks, wikis and blogs. Free services on the internet may be abused

by automated computer programs (often referred to as scripts or bots – here, we use bot).

Such bots may be intended to broadcast junk emails, post advertisements, or ask the server

to respond at a very high frequency. All of these forms of misuse will decrease the

usefulness of internet services. To prevent such abuse, CAPTCHAs have been designed.

10

(A) Online Polls. In November 1999, slashdot.com released an online poll asking which

was the best graduate school in computer science (a dangerous question to ask over the

web!). As is the case with most online polls, IP addresses of voters were recorded in order

to prevent single users from voting more than once. However, students at Carnegie Mellon

found a way to stuff the ballots by using programs that voted for CMU thousands of times.

CMU's score started growing rapidly. The next day, students at MIT wrote their own

voting program and the poll became a contest between voting bots". MIT finished with

21,156 votes, Carnegie Mellon with 21,032 and every other school with less than 1,000.

Can the result of any online poll be trusted? Not unless the poll requires that only humans

can vote.

(B) Free Email Services. Several companies (Yahoo!, Microsoft, etc.) free email services,

most of which suffer from a specific type of attack: bots that sign up for thousands of email

accounts every minute. This situation can be improved by requiring users to prove they are

human before they can get a free email account. Yahoo!, for instance, uses a CAPTCHA of

our design to prevent bots from registering for accounts. Their CAPTCHA asks user to

read a distorted_ word (current computer programs are not as good as humans at reading

distorted text).

(C) Search Engine Bots. Some web sites don‟t want to be indexed by search

engines.There is an html tag to prevent search engine bots from reading web pages, but the

tag doesn't guarantee that bots would not read the pages; it only serves to say \no bots,

please. However, in order to truly guarantee that bots won't enter a web site, CAPTCHAs

are needed.

(D) Worms and Spam: CAPTCHAs also offer a plausible solution against email.

CAPTCHA guarantees an email acceptance only if you know there is a human behind the

other computer. A few companies, such as www.spamarrest.com are already marketing this

idea.

11

(E) Preventing Dictionary Attacks. Pinkas and Sander have suggested using

CAPTCHAs to prevent dictionary attacks in password systems. The idea is simple: prevent

a computer from being able to iterate through the entire space of passwords by requiring a

human to type the passwords.

 Figure 1 : CAPTCHA Image

Reverse Turing Test

 The process usually involves one computer (a server) asking a user to complete a

simple test which the computer is able to generate and grade.

 Thus, it is described as a Reverse Turing Test because it is administered by a

machine and targeted to a human.

 In contrast to standard Turing test that is typically administered by human and

targeted to a machine.

12

Chapter-II

Problem Statement and Motivation

Considering the recent news that the hotmail and yahoo image CAPTCHAs would be

gamed, it is important to identify the weaknesses in the present day CAPTCHAs and build

more robust CAPTCHAs. A good CAPTCHA must be not only human friendly, but also

robust enough to resist to computer programs that attackers write to automatically pass

CAPTCHA tests (or challenges).

Early research suggested that computers are very good at recognising single characters,

even if these characters are highly distorted. Figure 2 shows characters under typical

distortions, along with success rates that a neural network can achieve to recognise them. It

is established that if the positions of characters are known in challenge images generated

by a CAPTCHA, then breaking this scheme is just a pure recognition problem, which is a

trivial task with standard machine learning techniques such as neural networks and SVM.

 Figure 2. Recognition rate for individual characters under different distortions

13

However, when the location of characters in a CAPTCHA challenge is not known a-priori,

state of the art (including machine learning) methods do not work well in locating the

characters, let alone recognising them.

The state of the art of CAPTCHA design suggests that the robustness of text-based

schemes

should rely on the difficulty of finding where the character is (segmentation), rather than

which character it is (recognition) . That is, such CAPTCHAs should be segmentation-

resistant. In other words, if breaking a (text-based) CAPTCHA can be successfully

reduced to a problem of individual character recognition, then this scheme is effectively

broken.

So, we have divided our project into two parts:

I. Segmentation- In this, we use different techniques to find the location of the

characters.

II. Recognition - In this section, we train our machine to recognize various characters

even with distortion using machine learning like NN, SVM.

Hence, by recognizing the loopholes in the present day CAPTCHAs, we can suggest

methods to develop more robust CAPTCHAs and hence, improve security and prevent bots

from various malicious activities.

14

Chapter-III

Literature Survey

A low cost segmentation attack

A simple, low-cost segmentation attack that has achieved a success rate of higher than 90%

on the latest version of this Microsoft CAPTCHA. With the aid of this segmentation attack,

we estimate that the MSN scheme can be broken with an overall (segmentation and then

recognition) success rate of about 60%. In contrast, its design goal was that “automatic

scripts should not be more successful than 1 in 10,000” attempts (i.e., a success rate of

0.01%) [4]. In fact, although the MSN scheme was believed to be “extremely difficult and

expensive for computers to solve” because of the difficulty of segmentation that its

designers introduced , it takes only slightly more than 80ms in average for our attack to

completely segment a challenge on a desktop computer. It shows that a CAPTCHA that

was carefully designed by serious professionals to be segmentation-resistant is nevertheless

vulnerable to novel but simple attacks.

The attack achieves the following:

• Identify and remove random arcs

• Identify all character locations in the right order. Specifically, divide each

challenge into 8 ordered segments, each containing a single character.

Some of the sample challenges in this scheme were:

15

 Figure 3. Samples used in MSN scheme

Eight characters are used in each challenge;

• Only upper case letters and digits are used.

• Foreground (i.e. challenge text) is dark blue and background light gray.

• Warping (both local and global) is used for character distortion.

Local warp produces “small ripples, waves and elastic deformations along the pixels of the

character”, and it foils “feature-based algorithms which may use character thickness or

serif features to detect and recognise characters” .

Global warp generates character-level, elastic deformations to foil template matching

algorithms for character detection and recognition.

 The following random arcs of different thicknesses are used as the main anti-segmentation

measure.

 Thick foreground arcs: These arcs are of foreground color. Their thickness can be

the

same as the thick portions of characters. They do not directly intersect with any

characters, so they are also called “non-intersecting arcs”.

 Thin foreground arcs: These arcs are of foreground color. Although they are

typically

not as thick as the above type of arcs, their thickness can be the same as the thin

portions of characters. They intersect with thick arcs, characters or both, and thus

also called “intersecting thin arcs”.

16

 Thin background arcs: These arcs are thin and of background color. They cut

through

characters and remove some character content (pixels).

Both local and global warping is commonly used for distortion in text-based CAPTCHAs.

What is special in the design of the MSN scheme is the following: in contrast to many

other schemes that use background textures and meshes in foreground and background

colors as clutter to increase robustness, random arcs of different thicknesses are used as

clutter in this scheme. The idea is that these arcs are themselves good candidates for false

characters , and therefore such a design was expected to provide strong segmentation

resistance. That is, current computer programs would fail to segment the distorted text into

individual characters due to the introduction of random arcs.

 Step1. Binarization

 We first convert a color challenge to a two-color image using a threshold method: pixels

with

 intensity higher than a certain threshold value are converted to white, and those with a

lower

 intensity to black.

 Figure 4. a) Original Image b) Binarized Image

17

 Step 2. Fixing broken characters

Thin background arcs remove some character content, and sometimes they also create a

cracking characters. For example, the second character („T‟) in Fig 5 is broken due to this

reason.

The current step attempts to fix broken characters for two purposes: i) to keep a character

as a single entity and consequently enhance our follow-up segmentation methods, and ii)

to prevent small portions of characters from being removed as an arc later on.

We observed that thin background arcs are typically 1-2 pixels wide after binarization,

and

the following simple method works well to identify and fix broken characters caused

by such arcs.

 Find pixels that are of background color and have left and right neighbours

with foreground color .

 Find pixels that are of background color and have top and bottom neighbours

with

foreground color .

 Convert pixels identified above to foreground color.

 Figure 5. Connecting one pixel gap

18

Step 3.Vertical segmentation

A vertical segmentation method is applied to segment a challenge vertically into

several no. of chunks, each of which might contain one or more characters. The

process of vertical segmentation starts by mapping the image to a histogram that

represents the number of foreground pixels per column in the image. Then, vertical

segmentation lines separate the

image into chunks by cutting through columns that have no foreground pixels at all. Fig

6

shows that such vertical histogram segmentation cuts challenge (a) into two chunks,

and the

other (b) into five.

 Figure 6. Vertical Segmentation

Step4. Color filling segmentation

In this step, a “color filling segmentation (CFS)” algorithm is applied to each chunk

segmented in the previous step. The basic idea of this algorithm is to detect every

connected

19

component, which we call an object, in a chunk. An object can be an arc, character,

connected arcs, or connected characters. The algorithm works as follows. First, detect a

foreground pixel, and then trace all its foreground neighbours until all pixels in this

connected component are traversed – that is, an object is detected. Next, the algorithm

locates a foreground pixel outside of the area of the detected object(s), and starts

another traversal process to identify a next object. This process continues until all

objects in the chunk are located. This method is effectively like using a distinct color to

flood each connected component, so we call it the “color filling” segmentation. In the

end, the number of colours used to fill a chunk is the number of objects in the chunk.

 Figure 7. 8-connectivity v/s 4-connectivity

a) 4-connected b) 8-connected c) 8-connected but not 4-connected d) both 8-

connected and 4-connected

With our CFS method, as shown in Fig 8, we determine that there are six objects in the

first

 chunk and five in the second.

 Figure 8. CFS segmentation

20

Step 5. Arc Removal

1) Circle detection, which detects if an object contains a circle. If an object contains

a circle, we know it is definitely not an arc, and all other arc removal methods can

be skipped.

The circle detection method works as follows.

• Draw a bounding box around an object, so that this bounding box does not touch

any part of the object.

• Apply the color filling algorithm to the top-left pixel, i.e., flood all background

pixels that are connected to the top-left pixel, with a color that is different from

foreground and background .

• Scan the bounding box for pixels of the background color. If such a pixel is found,

then a circle is detected. Otherwise, no circle is detected.

 Figure 9. a) No circle detected b) Circle detected

2) Scan all objects that contain no circles for discriminative features (other objects

are ignored).

Such discrimination is largely about pixel count checking.

 If an object has a pixel count smaller than or equal to 50, it is removed as an arc.

21

3) Relative position checking. This step examines the relative position of objects in a

chunk, and is applied to all chucks that contain more than one object.

The basic idea behind this step is that the relative positions of objects can tell arcs and

real

characters apart.

Step 6. Locating Connected Components

After removing arcs, an immediate step is to locate, if any, connected characters, which

either vertical or color filling segmentation has failed to segment. Among n objects

output by the previous step, if n < 8, then at least one of the objects contains two or

more characters and these characters are connected (typically by thin intersecting arcs).

This step estimates how many characters are connected and locates them.

22

 Figure 12.”Approximation” for locating connected characters

Step 7. Segment Connected Components

 The previous step has identified any object(s) containing connected characters, as well

as the

number of these characters, denoted by c, contained in each object. We observed that

often, a

simple method works to segment the connected characters in an object as follows.

1) Work out the width of the object by identifying its left-most and right-most pixels;

2) Vertically divide the object into c parts of the same width, each part being a proper

segment.

Analysis

Usability of this MSN scheme is reasonably good. For example, characters are not so

distorted as to damage their recognisability by most human users. One particular good

usability feature is that this scheme does not significantly disadvantage people whose

mother

tongue does not use the Latin alphabet. In some schemes, characters are distorted to be

similar to handwriting - native speakers might find it easy to recognise them, but just

imagine how difficult it would be for a user to recognise handwriting in a language that

she knows nothing about.

23

CHELLAPILLA’s ALGORITHM

The algorithm design includes preprocessing, image opening and labeling (three phases) to

defeat Yahoo‟s CAPTCHA system. The preprocessing phase includes thresholding and up-

sampling – first, converting the original image into a two colored image, and then

enlarging it. Image opening is the key step allowing segmentation of the characters from

CAPTCHA images. In this phase, the preprocessed image will go through an erosion

process several times and will then be dilated several times. Erosion will erase the

character borders one pixel per time, whereas dilation will mend the borders one pixel per

time. Once the thin clutter items have been deleted by the erosion process, they no longer

appear following the dilation process, resulting in some items of clutter being deleted. The

labeling phase then finds all of the connected components in the image, and considers the

larger ones as characters. Since this phase only outputs the larger items as its result, small

connected components will be considered to be clutter and will be eliminated in this phase.

This algorithm is useful when the clutter is of thinner width than the characters. But, this

algorithm produces errors because it can not recognize the difference between characters

and clutters of similar width. The algorithm may categorize the clutter as character data, so

the clutters will not be deleted. An example is shown in Fig. 13(a) and Fig. 13(b), where

“S” and “8” are still connected and “G” and “H” have the same problem.

 Figure 13. Some problems in Chellapilla‟s algorithm

III. PROPOSED SEGMENTATION ALGORITHM

Chellapilla et al. gave the research community an effective way to address the recognition

problem, but their segmentation algorithm does not represent a complete solution. This

paper will therefore now propose a novel techniques - projection - that is intended to

improve the success rate of segmentation, and which yield a more effective segmentation

algorithm.

A. Projection

24

The projection technique in this paper is based upon the idea of projecting the image data

onto the X-axis. In practice, this is implemented by summing the number of non-white

pixels in each column of the image parallel to the Y-axis. Fig. 14 shows some example of

clutter and their corresponding projections. It‟s easily seen that the projections of these

clutter items onto the X-axis appear smaller and flatter than a normal character‟s projection

onto the X-axis. The projection in the X-axis will tend to appear large and unstable, when a

component represents a character rather than an item of clutter.

 Figure 14. Examples of Clutter and its projection Image

Therefore, by computing a component‟s projection value and its variance value it is

possible to differentiate between components that are clutter and components that are

characters. Fig. 15(a) gives another type of clutter which is intersected by other characters

and forms a part of a larger component. This type of clutter also has a smooth and small

appearance when projected into the X-axis, as shown in Fig. 15(b). Therefore, it is possible

to use the projection technique to find out the position of the clutter within a component,

making it more straightforward to clean up the component.

When two or more characters are connected by this form of clutter, they can be effectively

split up by deleting these clutter items. It uses a sliding window to this type of clutter,

because it has a smaller projection size than a normal character for a small part of the

image. In other words, the X-axis projection value of these clutter items will be smaller

than some threshold for a part of the image, so it is possible to use the sliding window to

check the projection value continually. When the projection values in the sliding window

are smaller than the threshold, the algorithm marks the position as containing a clutter

25

item, so that it may be erased. Fig. 15(b) gives an example of the operation of the sliding

window approach with the above clutter. Suppose the width of the sliding window, and the

threshold, are both 5. When the sliding window moves to the edge of the “E” and the “5”,

the projection values in the sliding window are not all smaller than the threshold, so no

action will be taken at this position. When the sliding window moves to the edge of the “5”

and the “K”, all of the X-axis projection values are smaller than the threshold, so the

algorithm will mark this place as containing a clutter, and clean it from the image. After

the cleaning process, the connection between the “5” and the “K” characters is removed,

and these characters are split into separate components. Note that the projection values of

some characters, suchas “0”, “O”, “D”, “8”, or “B”, can also be smaller than the threshold

continually over a region of the image, resulting in this character being damaged by the

decisions made by the projection method. Fortunately, these characters have closed regions

within them, containing the background color. This property can be utilized to avoid

damaging the character by mistake.

B. Proposed Algorithm .

This algorithm is based on Chellapillas et al.‟s algorithm and has five phases, which are

preprocessing, opening, labeling, projection and character extracting. The behavior is

shown in Fig. 16. The first three phases have a similar process for these of Chellapilla‟s

algorithm except the preprocessing phase.

 Figure 15

 To prevent the mistake generated by the projection technique, the algorithm will detect

closed regions in the preprocessing phase. It begins by computing all of the background-

colored connected components first.The background-colored connected components which

do not belong to a closed region will combine together, and become the largest connected

component in the picture. The algorithm marks the connected components that are smaller

than the largest component, as closed regions, which will not be considered by the sliding

26

window technique later. The proposed projection technique is employed in the fourth

phase. After operations of this phases, the original image has separated into many different

connected components. The final phase, the character extracting phase,deletes the

redundant components, and outputs the location of the characters. It is known that the

characters have thebiggest and most unsmooth projection values in the X-axis, so the

algorithm erases the components which have small and smooth projection values. The

remaining components are sorted by their size; and the algorithm outputs the largest 8

components (for MSN CAPTCHAs), or the largest 6 components (for Yahoo CAPTCHAs,

which typically have 5-6 components).

Neural Networks

Artificial neural networks are computational models inspired by animal central nervous

systems (in particular the brain) that are capable of machine learning and pattern

recognition. They are usually presented as systems of interconnected "neurons" that can

compute values from inputs by feeding information through the network.

The neural net approach utilized three separate steps. The first step simply translated the

binary character data into a friendlier form. The second step took the output of the first and

trained a backpropagation network on it, outputting all the resulting weights and general

network information. The third step took the output of the second and created a network. It

then ran a full character set through the network and output identification information for

all the characters the set contained. The reasons for implementing the neural net OCR as

three programs were all practical. By keeping the first step separate, the preprocessing code

from the feature extraction OCR program could be used, eliminating this one area of

difference between the two algorithms. The second step was separated just because

27

learning was such a slow process. Several machines could thus be dedicated to nothing but

learning while a different machine was used to analyze the results.

SVM

Support Vector Machines (SVMs) are a set of related supervised learning methods which

can be used for both classification and regression. In simple words, given a set of training

examples, each marked as belonging to one of two categories, an SVM classification

training algorithm tries to build a decision model capable of predicting whether a new

example falls into one category or the other. If the examples are represented as points in

space, a linear SVM model can be interpreted as a division of this space so that the

examples belonging to separate categories are divided by a clear gap that is as wide as

possible. New examples are then predicted to belong to a category based on which side of

the gap they fall on.

A linear support vector machine is composed of a set of given support vectors z and a set

of weights w. The computation for the output of a given SVM with N support vectors z1,

z2, ... , zN and weights w1, w2, ... , wN is then given by:

A decision function is then applied to transform this output in a binary decision. Usually,

sign(.) is used, so that outputs greater than zero are taken as a class and outputs lesser than

zero are taken as the other.

28

Chapter-IV

Proposed Solution

CAPTCHAs can be divided into four categories namely

1. Simple (No mesh) Background,

2. Black Mesh Background,

3. White Mesh Background

4. Loosely Connected Characters.

In Simple (No Mesh) , the characters are written on a simple background whereas in

Black and White Mesh ,the characters are written on black and white mesh respectively.

In Loosely Connected Characters type, the pixels of the characters are loosely connected.

Algorithm developed uses feature extraction technique to recognize the characters and

thus analyses security of all types of CAPTCHAs mentioned here.

 Figure 16. Types of CAPTCHAs

As mentioned earlier an algorithm has different phases such as preprocessing,

segmentation, feature extraction and character recognition which are explained in detail as

mentioned below:

29

SYSTEM ARCHITECTURE

 Figure 17. System Architecture

1. Preprocessing

Preprocessing will convert input CAPTCHA image into cleared image by first converting

into gray scale, then carry out binarization , then removes line, & dots (if any present on

image) Since there are four types of CAPTCHA, each one has different preprocessing

operations which are as follows:

1.1. Simple (No Mesh) Background

(a) The given CAPTCHA is first converted to gray scale.

(b) Binarization of an image can lead to an image whose pixels have only two possible

intensity values

30

1.1.1 Color To Gray

The CAPTCHA image is given as an input to the program. The CAPTCHA image is then

converted into gray scale image. It is converted into gray scale because CAPTCHA image

contains many colors and to work on each of them is very difficult so converting it into

gray scale helps only to work on 256 intensity values.

Algorithm to Convert 24 bit to 8 bit Gray Scale Image

• Get Image File As Input File

• Extract Header Information

• If input is 24 bit , Create Output Header & Palette.

• Read three pixels from input file & calculate average.

• Write Average in Output File.

• Repeat steps 4 & 5 till end of file.

1.1.1. Binarization

Binary images are images whose pixels have only two possible intensity values. They are

normally displayed as black and white. Numerically, the two values are often 0 for black,

and either 1 or 255 for white. Binary images are often produced by thresholding a

grayscale or color image, in order to separate an object in the image from the background.

The color of the object (usually white) is referred to as the foreground color. The rest

(usually black) is referred to as the background color.

31

3.1.2. Black Mesh Background

(a) The given CAPTCHA is first converted to gray scale and binarized as mentioned

above.

(b) Binarization of an image can lead to an image whose pixels have only two possible

intensity values.

(c) CAPTCHA image has noise such as horizontal lines, vertical lines and dots that needs

to remove so as to get clear image.

3.1.2.1 Line Removal

The CAPTCHA images sometimes contain horizontal lines and vertical lines. To remove

lines the number of continuous black pixels in row or columns is counted. If the count is

more than 80% of total width or height of the image, then detected as a line and thus

removed it by making it white.

3.1.2.2 Discontinuity Removal

After the lines are removed, characters become discontinuous. To remove this

discontinuity, the original image (image before line removal) is compared with the newer

one and fills the gaps in between so that characters remain continuous. This will help in

recognizing the characters.

1.2.3 Dot Removal

After Binarization sometimes CAPTCHA images may contain unnecessary set of black

pixels i.e. dot. To remove them, the image is scanned. Then after getting first black pixel

check its neighboring 8 pixels. If all of them are white, then make the black pixel white. If

32

these dots are bigger (greater than one pixel) then count the pixels in it, if the count is less

than 40 then make it white. This is because, 40 pixels can‟t make a character, so it is an

unnecessary dot.

1.3. White Mesh Background

(a) The given CAPTCHA is first converted to gray scale and binarized.

(b) The image is now inverted. Now the same black mesh background as stated above is

applied

(c) The image is now inverted to get back the original image.

1.4. Loosely Connected Characters

(a) The given CAPTCHA is first converted to gray scale and binarized.

(b) The noise is removed and get the clear image as stated above.

2. Segmentation

After the image passes the preprocessing stage, characters need to be segmented because if

characters are joined then it is very difficult to recognize them. In CAPTCHA all the

characters are distant so it is not very difficult to segment them. Checking continuous black

pixels separates characters. Once the program checks black pixels it is made red so that

program can understand that the specific character is already separated.

33

3. Feature Extraction and Character Recognition

Each character has some unique set of features. The features, which were used, are as

follows:

(i)Number of Holes - Each character is checked whether it has a hole or not. Characters a,

b, d, e, g, o, p, q each have 1hole and rest of the characters do not have a hole.

(ii) Height of Character - Each character is categorized into small or big on the basis of its

height. A threshold is taken which categorizes the given character.

(iii) Maximum Number of White-Black Transitions (Vertical intersection) - A line cutting

the character is drawn and the maximum numbers of white-black transitions that are

possible are noted. Example: - When a line is drawn through character „a‟, maximum 3

transitions are possible. Similarly transitions for other characters were also noted.

(iv)Nature of Vertical Stroke: - A vertical stroke (Blue in color) is drawn for character with

„big‟ height along the vertical stroke of the character. If the character is of „small‟ height

„*‟ is noted. If there is no hole in character „1‟ is noted. And if there is a hole in character

then the position of

vertical stroke relative to the hole i.e. either left or right is noted. According to the features

of the characters, characters are recognized. This module can also be useful in recognizing

handwritten characters.

Work Done

Technology used: ASP.NET and C# as the programming languages.

The Integrated Development Platform used is Visual Studio 2010.

34

We have applied the above algorithm for Image with Simple Background. The algorithm

removes the noise from the image. After this , it performs segmentation and does character

recognition. It is working for all the standard fonts defined by Microsoft.

Input: CAPTCHA in .png,. jpeg, tiff or bmp format.

Output: A text file with the characters in the CAPTCHA

CODE :-

Start,cs

EXPLANATION :-

Start.cs gives us the initial display i.e. the start button which begins the output of the

program. In the given code we have used the using directive. Using directives helps us

to access namespaces that the application will be using frequently and save the

programmer from specifying a fully qualified name every time that a method that is

contained within is used .Namespace keyword is used which is used to declare a scope.

Here ImageTextReader is a fully qualified namespace. Partial keyword is used to split

the class definition over seperate files. The start button has been assigned as the name

button 1.There is a function named button1_click which creates an object f1 of class

form1 and calls the funtion show and hide.

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

35

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

namespace ImageTextReader

{

 public partial class Start : Form

 {

 public Start()

 {

 InitializeComponent();

 }

 private void button1_Click(object sender, EventArgs e)

 {

 Form1 f1 = new Form1();

 f1.Show();

 this.Hide();

 }

 }

}

36

Layout.cs

EXPLANATION :-

Using directive is used to access various namespaces. The System namespace contains

fundamental classes and base classes that define commonly used values and reference

data types ,events and event handlers, intefaces , attributes and processing exceptions.

This code describes the layout of the entire application..There is a class layout which

contains all the functions describing the dimensions and colour of the various

rectangular boxes ,dialog boxes and drawing objects used in the application.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Drawing;

using System.Drawing.Drawing2D;

using System.Drawing.Imaging;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

using System.Data;

namespace ImageTextReader

{

 class Layout

 {

 #region Class Local Variables

37

 private Bitmap WholeBMP;

 private Bitmap SaveBMP;

 private Bitmap TLBMP;

 private Bitmap TRBMP;

 private Bitmap BLBMP;

 private Bitmap BRBMP;

 private Rectangle DrawRect;

 private Point TLpt;

 private Point TRpt;

 private Point BLpt;

 private Point BRpt;

 private int Counter = 0;

 private ImageAttributes Ia;

 #endregion

 private System.ComponentModel.IContainer components;

 private System.Windows.Forms.Timer T1;

 private System.Windows.Forms.Button cmdGo;

 protected void Dispose(bool disposing)

 {

 if(disposing)

 {

 if (components != null)

 {

 components.Dispose();

 }

38

 }

 if (WholeBMP != null)

 WholeBMP.Dispose();

 if (SaveBMP != null)

 SaveBMP.Dispose();

 if (TLBMP != null)

 TLBMP.Dispose();

 if (TRBMP != null)

 TRBMP.Dispose();

 if (BLBMP != null)

 BLBMP.Dispose();

 if (BRBMP != null)

 BRBMP.Dispose();

 if (Ia != null)

 Ia.Dispose();

 }

 #region Windows Form Designer generated code

 /// <summary>

 /// Required method for Designer support - do not modify

 /// the contents of this method with the code editor.

 /// </summary>

 private void InitializeComponent()

 {

 this.components = new System.ComponentModel.Container();

 this.cmdGo = new System.Windows.Forms.Button();

 this.T1 = new System.Windows.Forms.Timer(this.components);

 //

39

 // cmdGo

 //

 this.cmdGo.Location = new System.Drawing.Point(328, 336);

 this.cmdGo.Name = "cmdGo";

 this.cmdGo.Size = new System.Drawing.Size(48, 24);

 this.cmdGo.TabIndex = 0;

 this.cmdGo.Text = "GO";

 this.cmdGo.Click += new System.EventHandler(this.Explode);

 //

 // T1

 //

 this.T1.Tick += new System.EventHandler(this.T1_Tick);

 //

 // Form1

 //

 }

 #endregion

 private void Form1_Load(object sender, System.EventArgs e)

 {

 }

 protected void OnPaint(PaintEventArgs e)

 {

 Graphics G = e.Graphics;

 if (WholeBMP != null)

 {

 G.DrawImage(WholeBMP, DrawRect);

40

 return;

 }

 if (TLBMP != null)

 G.DrawImage(TLBMP, new Rectangle(TLpt, TLBMP.Size),

 0, 0,

 TLBMP.Width, TLBMP.Height,

 GraphicsUnit.Pixel,

 Ia);

 if (TRBMP != null)

 G.DrawImage(TRBMP, new Rectangle(TRpt, TRBMP.Size),

 0, 0,

 TRBMP.Width, TRBMP.Height,

 GraphicsUnit.Pixel,

 Ia);

 if (BLBMP != null)

 G.DrawImage(BLBMP, new Rectangle(BLpt, BLBMP.Size),

 0, 0,

 BLBMP.Width, BLBMP.Height,

 GraphicsUnit.Pixel,

 Ia);

 if (BRBMP != null)

 G.DrawImage(BRBMP, new Rectangle(BRpt, BRBMP.Size),

 0, 0,

 BRBMP.Width, BRBMP.Height,

 GraphicsUnit.Pixel,

 Ia);

 }

41

 private void Explode(object sender, System.EventArgs e)

 {

 if (WholeBMP != null)

 {

 cmdGo.Enabled = false;

 int L = 0;

 int T = 0;

 int Cx = (int)(WholeBMP.Width/2);

 int Cy = (int)(WholeBMP.Height/2);

 Rectangle R1 = new Rectangle(L, T, Cx, Cy);

 Rectangle R2 = new Rectangle(Cx, T, Cx, Cy);

 Rectangle R3 = new Rectangle(L, Cy, Cx, Cy);

 Rectangle R4 = new Rectangle(Cx, Cy, Cx, Cy);

 SaveBMP = WholeBMP;

 TLBMP = WholeBMP.Clone(new Rectangle(L, T, Cx, Cy),

 WholeBMP.PixelFormat);

 TRBMP = WholeBMP.Clone(new Rectangle(Cx, T, Cx, Cy),

 WholeBMP.PixelFormat);

 BLBMP = WholeBMP.Clone(new Rectangle(L, Cy, Cx, Cy),

 WholeBMP.PixelFormat);

 BRBMP = WholeBMP.Clone(new Rectangle(Cx, Cy, Cx, Cy),

 WholeBMP.PixelFormat);

 WholeBMP = null;

 int Gap = 10;

 TLpt = new Point(DrawRect.Left-Gap, DrawRect.Top-Gap);

 TRpt = new Point(DrawRect.Left+Cx+Gap, DrawRect.Top-Gap);

 BLpt = new Point(DrawRect.Left-Gap, DrawRect.Top+Cy+Gap);

42

 BRpt = new Point(DrawRect.Left+Cx+Gap, DrawRect.Top+Cy+Gap);

 T1.Enabled = true;

 }

 }

 private void T1_Tick(object sender, System.EventArgs e)

 {

 Counter += 1;

 if (Counter == 62)

 {

 Counter = 0;

 cmdGo.Enabled = true;

 T1.Enabled = false;

 WholeBMP = SaveBMP;

 }

 TLpt.X-=1;

 TLpt.Y-=1;

 TRpt.X+=1;

 TRpt.Y-=1;

 BLpt.X-=1;

 BLpt.Y+=1;

 BRpt.X+=1;

 BRpt.Y+=1;

43

 float[][] m ={new float[] {1, 0, 0, 0, 0},

 new float[] {0, 1, 0, 0, 0},

 new float[] {0, 0, 1, 0, 0},

 new float[] {0, 0, 0, (1-(float)Counter/62), 0},

 new float[] {0, 0, 0, 0, 1}};

 ColorMatrix cm = new ColorMatrix(m);

 Ia = new ImageAttributes();

 Ia.SetColorMatrix(cm, ColorMatrixFlag.Default,

 ColorAdjustType.Bitmap);

 TLBMP.RotateFlip(RotateFlipType.Rotate90FlipNone);

 TRBMP.RotateFlip(RotateFlipType.Rotate90FlipNone);

 BLBMP.RotateFlip(RotateFlipType.Rotate90FlipNone);

 BRBMP.RotateFlip(RotateFlipType.Rotate90FlipNone);

 }

 }

}

44

Form1.cs

Explanation :-

Using directive is used with various namespaces. Different functions are declared like

button1_click,button2_click,button3_click and button4_click.This code describes the

procedure for loading the captcha image, checking for various file formats and

performing OCR operations.

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Threading;

using System.Linq;

using System.Text;

using System.Windows.Forms;

using System.IO;

namespace ImageTextReader

{

 public partial class Form1 : Form

 {

 public Form1()

 {

 InitializeComponent();

 }

 string choosefile = "";

 string fileName = "";

45

 string text = "";

 private void button1_Click(object sender, EventArgs e)

 {

 if (openFileDialog1.ShowDialog() == DialogResult.Cancel)

 {

 MessageBox.Show("Operation cancelled");

 }

 else

 {

 choosefile = "";

 choosefile = openFileDialog1.FileName;

 pictureBox1.ImageLocation = openFileDialog1.FileName;

 }

 }

 private void button2_Click(object sender, EventArgs e)

 {

 try

 {

 string fileExtension = Path.GetExtension(Convert.ToString(choosefile));

 //get file name without extenstion

 fileName = Convert.ToString(choosefile).Replace(fileExtension, string.Empty);

 //Check for JPG File Format

 if (fileExtension == ".jpg" || fileExtension == ".JPG" || fileExtension.ToLower()

== ".png" || fileExtension.ToLower() == ".gif" || fileExtension.ToLower() == ".tif") // or //

ImageFormat.Jpeg.ToString()

46

 {

 try

 {

 //OCR Operations ...

 MODI.Document md = new MODI.Document();

 md.Create(Convert.ToString(choosefile));

 md.OCR(MODI.MiLANGUAGES.miLANG_ENGLISH, true, true);

 MODI.Image image = (MODI.Image)md.Images[0];

 text = image.Layout.Text;

 textBox2.Text = image.Layout.Text;

 lip();

 }

 catch (Exception)

 {

 MessageBox.Show("This Image hasn't a text or has a problem",

 "OCR Notifications",

 MessageBoxButtons.OK, MessageBoxIcon.Information);

 }

 }

 }

 catch(Exception ex)

 {

 MessageBox.Show("Please Select Image. Error Message :" +

ex.Message.ToString());

 }

 }

 private void button3_Click(object sender, EventArgs e)

47

 {

 try

 {

 //create text file with the same Image file name

 FileStream createFile = new FileStream(fileName + "." + comboBox1.Text,

FileMode.OpenOrCreate);

 //save the image text in the text file

 StreamWriter writeFile = new StreamWriter(createFile);

 writeFile.Write(text);

 // Console.WriteLine(image.Layout.Text);

 writeFile.Close();

 MessageBox.Show("Your output is saved in the same folder where the image

exist.");

 }

 catch (Exception ex)

 {

 MessageBox.Show("Error while saving the file. May your system have a

virus.");

 }

 }

 private void button4_Click(object sender, EventArgs e)

 {

 Application.Exit();

 }

 private void lip()

 {

 try

48

 {

 FileStream s = new FileStream("t.txt", FileMode.Open);

 //StreamWriter w = new StreamWriter(s);

 //w.Write("Hello World");

 //w.Close();

 //s = new FileStream("Bar.txt", FileMode.Open);

 StreamReader r = new StreamReader(s);

 string t;

 while ((t = r.ReadLine()) != null)

 {

 // Console.WriteLine(t);

 textBox3.Text = textBox3.Text + t+"\n";

 }

 // w.Close();

 }

 catch

 {

 }

 }

 }

}

49

OUTPUT

Snapshot 1. Starting application

 Figure 18. Starting the application

Snapshot 2. Loading Image

 Figure 19. Loading and saving the output

50

Snapshot 3. Saved in a text file

 Figure 20. Text

file saved

Results after testing

We applied our algorithm to about 60 CAPTCHAs and the program passed 39 of them.

Some of the sample captchas used are below:

 Figure 21. Some of the sample CAPTCHAs

51

Accuracy rate= No. of captchas cracked x 100 = (39/60) x 100 = 65%

 Total captchas

Error rate= 100- accuracy rate= 35%

Analysis of the Result

 It supported almost all the fonts like Algerian, Arial, Verdana etc.

 The noise in the background was removed efficiently 80% of the times.

 It worked for any length of CAPTCHAs.

 If the arcs in the background intersect the character, then it fails sometimes.

 Most of the CAPTCHAs failed when there is overlapping between characters.

 Hence, when the CAPTCHAs are designed following points should be taken in

consideration:

 Letting characters touch or overlap with each other can provide extra segmentation

resistance.

52

 Making it harder to tell characters and arcs apart (e.g. by juxtaposing characters in

any direction).

 By removing some of the pixels in the characters may result in failure of attacks.

53

References

 S. Huang,, Y. Lee, G. Bell, Z. Ou. A projection-based Segmentation Algorithm for

Breaking MSN and Yahoo captchas.

 J. Yan, A.S. El Ahmad. A low cost attack on a Microsoft Catpcha.

 Mike O'Neill. Neural network for Recognition of Handwritten Digits.

 D. You, G. Kim. An approach for locating segmentation points of handwritten digit

strings using a neural network.

 K Chellapilla, K Larson, P Simard and M Czerwinski, “Designing human friendly

human interaction proofs”, ACM CHI‟05, 2005.

 Microsoft Corporation. “Human Interaction Proof (HIP) -- Technical and Market

view" 2006.

 G Mori and J Malik. “Recognising objects in adversarial clutter: breaking a visual

"captcha" IEEE Conference on Computer Vision & Pattern Recognition (CVPR),

2003.

 G Moy, N Jones, C Harkless and R Potter. “Distortion estimation techniques in

solving CAPTCHAS" 2004.

 P Simard, R Szeliski, J Benaloh, J Couvreur and I Calinov, “Using character

recognition segmentation to tell computers from humans”, International

Conference on Document Analysis and Recognition (ICDAR), 2003.

54

 P Simard, D Steinkraus, J Platt. “Best Practice for Convolutional Neural Networks

Visual Document Analysis”, International Conference on the Document Analysis

and Recognition (ICDAR), IEEE Computer Society, Los Alamitos,2007.

 C Pope and K Kaur. “Is It Human or Computer? Defending E-Commerce with

CAPTCHA" IT Professional, March 2005.

 J Yan and A S El Ahmad. “Breaking Visual CAPTCHAs with Naïve Pattern

Recognition

Algorithms”, in Proc. of the 23rd Annual Computer Security Applications

Conference

FL, USA, Dec 2007. IEEE computer society.

55

