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SUMMARY 

 

In computer science, approximation algorithms are algorithms used to find approximate 

solutions to optimization problems. Exact nearest neighbour search algorithms return 

accurate results but with the dimensions the complexity, both time and space increase 

exponentially. 

Thus striking a tradeoff between complexity and accuracy, we shift to approximate nearest 

neighbour search algorithms wherein we cut down on the complexity and in turn compromise 

on the accuracy. In this year long project, various approximate nearest neighbour search 

algorithms were explored, the prominent ones being implemented as well.  

Thereafter, the algorithms so implemented were compared with each other on various 

grounds like time complexity and dependence on dimension by running the algorithms for 

various datasets. 
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CHAPTER 1: INTRODUCTION 

1.1 Abstract: 

 

Over the last few decades, immense amount of data has become available. From collections 

of photos and genetic data, to network traffic statistics, modern technologies and cheap 

storage have made it possible to accumulate huge datasets. The ever growing sizes of the 

datasets make it imperative, very important to design new algorithms capable of parsing 

through this data with extreme efficiency. 

 

 

 

 

Figure 1.1.a: Abundance of Data 

 

The challenges faced due to this plethora of data include capture, curation, storage, search, 

sharing, transfer, analysis, and visualization. The trend towards larger data sets is due to the 

additional information derivable from analysis of a single large set of related data. As of now, 

limits on the size of data sets that are feasible to process in a reasonable amount of time are on 

the order of terabytes of data. 

Scientists regularly encounter a variety of issues due to large size of data sets in many areas, 

including meteorology, complex physics simulations, and biological and environmental 

http://en.wikipedia.org/wiki/Meteorology
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research. The limitations also have an effect on Internet search, finance and business informatics. 

Data sets grow in size in part because they are increasingly being accumulated by ubiquitous 

information-sensing mobile devices, aerial sensory technologies (remote sensing), software logs, 

cameras, microphones, radio-frequency identification readers, and wireless sensor networks. The 

world's technological capacity to store information has roughly doubled every 40 months since 

the 1980s; as of 2012, every day 2.5 terabytes (2.5×10
18

) of data is being created. The challenge 

for large enterprises is that of determining who should own big data initiatives that straddle the 

entire organization. 

Big data is difficult to work with because it requires using most relational database management 

systems and desktop statistics and visualization packages, easily handled if uses instead 

"massively parallel software running on tens, hundreds, or even thousands of servers". 

 

1.2 Algorithm Engineering for searching in Large Data Sets: 

 

1.2.1 Parallelization: 

 

Large sets of data provide a challenge in time consumption while solving the cluster 

identification problem and this becomes the reason why a parallel algorithm is so needed for 

identifying dense clusters in a noisy background. This algorithm works on a graph representation 

of the data set to be analyzed. It identifies clusters by the identification of densely intra 

connected sub graphs. We employ a minimum spanning tree (MST) representation of the graph 

and solve the cluster identification problem using this representation. The computational 

bottleneck of this algorithm of parallelization is the construction of an MST of a graph, for which 

a parallel algorithm is employed. A complex strategy for the parallel MST construction 

algorithm is to first partition the graph, then construct MSTs for the partitioned sub graphs and 

auxiliary bipartite graphs based on the sub graphs, and finally merge these MSTs to derive an 

MST of the original graph. The computational results indicate that when running on 150 to 200 

CPUs, a parallel algorithm can solve a cluster identification problem on a data set with 1,000,000 

data points almost 100 times faster than on single CPU, which is excellent performance, 

indicating that this program is capable of handling very large data clustering problems in an 

efficient manner. 

http://en.wikipedia.org/wiki/Web_search_engine
http://en.wikipedia.org/wiki/Finance
http://en.wikipedia.org/wiki/Business_informatics
http://en.wikipedia.org/wiki/Remote_sensing
http://en.wikipedia.org/wiki/Radio-frequency_identification
http://en.wikipedia.org/wiki/Wireless_sensor_networks
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Figure 1.2.a :Parallelization of Data 

 

 

The key effort in designing the parallel algorithm goes into minimizing the communication 

efforts among processors. 

 

1.2.2 Nearest Neighbour Searches: 

 

 A fundamental computational primitive for dealing with massive datasets is the Nearest 

Neighbour (NN) problem. The nearest-neighbour (NN) problem comes under many names, 

including the best match or the post office problem. This problem is of significant importance to 

several areas of computer science, including pattern recognition, searching in multimedia data, 

vector compression, computational statistics, and data mining. 

 

In the NN problem, the goal is to preprocess a set of data called training data, so that later, given 

a query object, one can find efficiently the data item most similar to the query. To represent the 
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objects and the similarity measures, one often uses geometric notions or Euclidian measures. For 

example, a black-and-white image may be modeled by a high-dimensional vector, with one 

coordinate per pixel, whereas the similarity measure may be the standard Euclidean distance 

between the resulting vectors.  

 

 

Figure 1.2 b: Nearest neighbour search 

 

 

For most of today’s applications, large amounts of data are available. This makes nearest-

neighbour approaches particularly attractive, but it also increases the concern regarding the 

computational complexity of NN search. Thus it is important to design algorithms not only for 

nearest-neighbour search, but also for the related classification, regression, and retrieval tasks, 

which remain efficient even as the number of points or the dimensionality of the data grows 

large. This is a research area on the boundary of a number of disciplines: computational 

geometry, algorithmic theory, and the application fields such as machine learning, it covers a 

wide range. 

 

Hence, in our project we define the exact and approximate nearest-neighbour search problems, 

and briefly survey a number of popular data structures and algorithms developed for these 

problems.  

 

1.3 Problem Statement and motivation: 
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The nearest neighbour problem involves a large amount of data This makes nearest-neighbour 

approaches particularly appealing, but on the other hand it increases the concern regarding the 

computational complexity of NN search. It has become an area of research and people have been 

trying to reduce the complexity.  

 

 

 

   Figure 1.3 a: complexity of NN algorithm v/s the dimension 

 

 

A basic algorithm for this problem is as follows: given a query q, compute the distance from q to 

each point in P, and report the point with the minimum distance. This is the linear scan approach 

which has query time of Θ(dn). This is tolerable for small data sets, but it is too inefficient for 

large ones. The “holy grail” of the research in this area is to design an algorithm for this problem 

that achieves sublinear (or even logarithmic) query time and cuts down on the costs. The 

nearest-neighbour problem is being extensively investigated in the field of computational 

geometry. As a result of this effort, many efficient solutions have been discovered for the case 

when the points lie in a constant dimensional space. For example, if the points lie in the plane, 

the nearest-neighbour problem can be solved with O(log n) time per query, using only O(n) 
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storage, which again is commendable . Similar outcomes can be obtained for other problems as 

well. Unfortunately, as the dimension grows, the algorithms become less and lesser efficient. 

More specifically, their space or time requirements grow exponentially with the dimension. In 

particular, the nearest-neighbour problem has a solution with  O(dO(1) log n) query time, using  

nO(d) space. 

 

The lack of success in removing the exponential dependence on the dimension, the curse of 

dimensionality, led many researchers to the conjecture that no efficient solutions exist for this 

problem when the dimension is sufficiently large. At the same time, it raised the question as to Is 

it possible to remove the exponential dependence on d, if we allow the answers to be 

approximate?  

 

The answer to this very same question led us to the approximate nearest neighbour problem.  

 

The approximate nearest neighbour problem was first discovered for low dimensional version of 

the Nearest Neighbour search problem. This algorithm provides large speedups with only minor 

loss in accuracy, which of course fetches it a thumbs up. During recent years, several researchers 

have shown that indeed in many cases approximation enables reduction of the dependence on 

dimension from exponential to polynomial with minimal loss in accuracy. In addition, there are 

many approximate nearest-neighbour algorithms that are more efficient than the exact ones, even 

though their query time and/or space usage is still exponential in the dimension, example being 

K Nearest Neigbours Algorithm. 

 

The approximate nearest neighbour algorithm can be best implemented using data structures like 

knn, kD trees and locality sensitive hashing. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Research Paper: Approximation Algorithms for Nearest Neighbour Search by 

Gregory Shakhnarovich, Piotr Indyk, and Trevor Darrell 

Definition 1.1 (Nearest neighbour) Given a set P of points in a d dimensional space R(d), 

construct a data structure which given any query point q finds the point in P with the smallest 

distance to q. 

 

Definition 1.2 (c-Approximate nearest neighbour) Given a set P of points in a d-dimensional 

space R(d), construct a data structure which given any query point q, reports any point within 

distance at most c times the distance from q to p, where p is the point in P closest to q. 

 

 Kd-Trees 

The kd-tree is a data structure invented by Jon Bentley in 1975. Despite the fact that it is fairly 

old , kd-tree and its variants remain probably the most popular data structures used for searching 

in multidimensional spaces, at least in main memory. 

 

 
Figure 2.1. a:KD Trees 
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Given a set of n points in a d-dimensional space, the kd-tree is constructed recursively. Firstly, 

one finds a median of the values of the ith coordinates of the points (initially, i =1). That is, a 

value M is computed, so that at least 50% of the points have their ith coordinate greater-or-equal 

to M, while at least 50% of the points have their ith coordinate smaller than or equal to M. The 

value of x is stored, and the set P is partitioned into P(left) and P(right), where P(left) contains 

only the points with their ith coordinate smaller than or equal to M, and |P(right)| = |P(left)|±1. 

The process is then repeated recursively on both P(left) and P(right), with i replaced by i + 1 (or 

1, if i = d). When the set of points at a node has reached the size 1, the recursion stops. 

 

Locality-Sensitive Hashing (LSH): 

 

LSH is a randomized algorithm. A point p is an R-near neighbour of q if the distance from p to q 

is at most R. 

Definition (Locality-sensitive hashing) A family H is called (r, cr, P1, P2)-sensitive if for any 

p, q ∈  _d 

 if _p − q_ ≤ R then PH[h(q) = h(p)] ≥ P1, 

 if _p − q_ ≥ cR then PH[h(q) = h(p)] ≤ P2. 

In order for a LSH family to be useful, it has to satisfy P1 > P2. Given a family H of hash 

functions with parameters (r, cr, P1, P2) as in the above definition, we can amplify the gap 

between the “high” probability P1 and the “low” probability P2 by concatenating several hash 

functions. 

During the pre processing of the available elements, we store each p ∈  P (input point set) in the 

bucket gj(p), for j = 1, . . ., L. 

 

 

Figure 2.1 b: Locality Sensitive Hashing 
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The unifying theme of the sections in the paper is exploring the ways to make the nearest-

neighbour approach practicable in machine learning application where the dimensionality of the 

data, and the size of the data sets, make the naive methods for nearest-neighbour search 

prohibitively expensive. Also it has been  noticed that in nearest-neighbour classification, what 

matters for the decision is the distribution of labels of the query’s neighbours, rather than the 

neighbours themselves. They use this observation to develop new algorithms, using data 

structures like Kd trees and Locality Sensitive Hash tables, that afford a significant speedup 

while maintaining the accuracy of the exact k-nearest-neighbour classification. 

 

2.2 . Approximate Nearest Neighbour Problem in High Dimensions by Alexandr 

Andoni 

 
 

The nearest neighbour problem is defined as : given a set S of n points in R dimensional space, 

construct a data structure that, given any q € Rm, quickly finds the point p € S that has the 

smallest distance to q. This problem is the central problem in computational geometry. Since the 

exact problem is surprisingly difficult, recent research has focused on designing efficient 

approximation algorithms. Furthermore, the approximate nearest neighbour is reducible to the 

approximate R-near neighbour, and, therefore,  primarily concentrate our attention on the 

problem.  

In the approximate R-near neighbour problem, the data structure needs to report a point within 

distance c*R from q for some constant c > 1, but only if there exists a point at distance R from q.  

 

The approximate near and nearest neighbour problems are being studied for a long time. The 

approximate nearest neighbour algorithms were first discovered for the “low-dimensional” 

version of the problem, where m is constant . Only after a few results were obtained for the 

“high-dimensional” case, where m is a parameter, the approximate nearest neighbour came to 

limelight. In particular, the Locality-Sensitive Hashing (LSH) algorithm solves the (R, c)-near 

neighbour problem using 2* O(mn1+1/c) pre processing time,  O(mn  1+1/c) space and 

O(mn1/c) query time. By using the dimensionality reduction, the query time and the pre 

processing time can be reduced. The LSH algorithm has been successfully used in several 

applied scenarios, including computational biology. 
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Locality-Sensitive Hashing: 

 

Definition: 

The (R, c)-near neighbour problem is defined as follows. Given a set S of n points in the metric 

space (  ,D), construct a data structure that, for a query point q €   , outputs a point v such that 

D(v, q) ≤ cR if there exists a point v* such that D(v*,q) ≤ R. 

 

Generic locality-sensitive hashing scheme 

A family H = {h :     → U} is called (r1, r2, p1, p2)-sensitive, if for any q € S: 

• If v € B(q, r1), then Pr[h(q) = h(v)] ≥ p1; 

• If v does not belong to B(q, r2), then Pr[h(q) = h(v)] ≤ p2. 

 

 

Figure 2.2 a: Implementing LSH 

 

As desired,  r1 < r2 and p1 > p2; that is, if the query point q is close to v, then q and v should 

likely fall in the same bucket. Similarly, if q is far from v, then q and v should be less likely to 

fall in the same bucket. In particular, we choose r1 = R and r2 = cR. 

Since the time for calculating the distance between the query point and the available training data 

is saved as hash functions suitably allot buckets to the query points, performance in terms of time 

for LSH outshines any other algorithm’s performance. 
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2.3 k-Nearest Neighbours: Instance Based Learning by Tom Mitchell, Mississippi 

State University 

K Nearest Neighbours Algorithm is an Instance Based Learning Algorithm which along with 

algorithms like neural networks, Bayesian Classifiers, etc learns and performs: 

• Learning:  store all the data instances 

• Performance:   

– when a new query instance is encountered 

» retrieve a similar set of related instances from memory 

» use to classify the new query 

 

KNN algorithm has several roles to play as a: 

Training algorithm:  

     For each training example <x, f(x), add the example 

         to the list training_examples  

Classification algorithm: 

     Given a query instance xq to be classified 

           Let x1…xk be the k training examples nearest to xq  

                Return 

 

 

Figure 2.3  a: KNN example 
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KNN for classification: 

 

 KNN is specifically used for classification. In this case, we are given some data points for 

training and also a new unlabelled data for testing. Our aim is to find the class label for the new 

point. The algorithm has different behavior based on k. 

 

Case 1: k=1 or nearest neighbour rule 

This is the simplest scenario. Let x be the point to be labeled and classified. We need to find the 

point closest to x . Let it be y. Now nearest neighbor rule asks to assign the label of y to x. This 

seems not just too simplistic but sometimes even counter intuitive. If one feels that this 

procedure will result a huge error , one could be right. 

If the number of data points is very large, then there is a very high chance that label of x and y 

would be the same. An example – Let us say we have a (potentially) biased coin i.e. when we 

toss it for 1 million time and you have got head 900,000 times. Then most likely your next call 

will be head. A similar argument can be used here. 

 Like the case above, assume all points are in a D dimensional plane . The number of points is 

reasonably large. This means that the density of the plane at any point is fairly high. Within any 

subspace there is adequate number of points. Consider a point x in the subspace which also has a 

lot of neighbors. Now let y be the nearest neighbor. If x and y are sufficiently close, then we can 

assume that probability that x and y belong to same class is fairly same – Then by decision 

theory, x and y have the same class. 

The book "Pattern Classification" by Duda and Hart has an discussion about the Nearest 

Neighbor rule. One of their striking results is to obtain a fairly tight error bound to the Nearest 

Neighbor rule. The bound is 

 



13 
 

Where  is the Bayes error rate, c is the number of classes and P is the error rate of Nearest 

Neighbor. The result is indeed very striking because it says that if the number of points is fairly 

large then the error rate of Nearest Neighbor is less that twice the Bayes error rate. 

Case 2: k=K or k-nearest neighbour Rule 

This is a straightforward extension of 1NN. Basically what one does is that he tries to find the k 

nearest neighbor and do a majority voting. Typically k is odd when the number of classes is 2. 

Let’s say k = 5 and there are 3 instances of C1 and 2 instances of C2. In this case , KNN says 

that new point has to labeled as C1 as it forms the majority.  

In nutshell, K Nearest Neighbour Algorithm is a lazy learning algorithm which first assumes all 

instances are points in n-dimensional space. Then it requires a distance measure to determine the 

proximity of instances. Thereon, it classifies an instance by finding its nearest neighbors and 

picking the most popular class among the neighbours. 

Curse of Dimensionality: 

 Distance usually relates to all the attributes and assumes all of them have the same effects on 

distance.  The similarity metrics do not consider the relation of attributes which result in 

inaccurate distance and then impact on classification precision. Wrong classification due to 

presence of many irrelevant attributes is often termed as the curse of dimensionality. 

For example: Each instance is described by 20 attributes out of which only 2 are relevant in 

determining the classification of the target function. In this case, instances that have identical 

values for the 2 relevant attributes may nevertheless be distant from one another in the 20 

dimensional instance space. Thus, there is no intelligent calculation, which causes the curse of 

dimensionality to persist. 

 

2.4 . Fast Approximate Nearest Neighbours with Automatic Algorithm 

Configuration by Marius Muja, David G. Lowe: 
 

The most computationally costly part of computer vision algorithms consists of searching for the 

closest matches to high-dimensional vectors. Examples of such problems include finding the best 

matches for local images in large datasets clustering local features into visual words using the 
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similarity algorithms. The nearest neighbor search  problem is also of major importance in many 

other applications, including machine learning, document retrieval, data compression, 

bioinformatics, and data analysis. 

 

We can define the nearest neighbor search problem as follows: 

 given a set of points P = {p1, . . . , pn} in a vector space X, these points must be pre processed 

in such a way that given a new query point q in X, finding the points in P that are nearest to q can 

be performed efficiently. In this paper, they have assumed that X is an Euclidean vector space, 

which is appropriate for most problems in computer vision. 

They have described potential extensions of their approach to general metric spaces, although 

this would come at some cost in efficiency or accuracy. 

 

For high-dimensional spaces, there are no known algorithms for nearest neighbor search that are 

more efficient than simple linear search. As linear search is too costly, this has generated an 

interest in algorithms that perform approximate nearest neighbor search, in which non optimal 

neighbors are sometimes returned. Such approximate algorithms can be orders of magnitude 

faster than exact search, while still providing near optimal accuracy. There have been hundreds 

of papers published on algorithms for approximate nearest neighbor search, but there has been 

little systematic comparison to guide the choice among algorithms and set their internal 

parameters. One reason for this is that the relative performance of the algorithms varies widely 

based on properties of the datasets, such as dimensionality, correlations, clustering 

characteristics, and size.  

 

FINDING FAST APPROXIMATE NEAREST NEIGHBORS 

 

Comparison between many different algorithms for approximate nearest neighbor search on 

Datasets with a wide range of dimensionality were made. The accuracy of the approximation is 

measured in terms of precision, also defined as the percentage of query points for which the 

correct nearest neighbor is found. In the experiments, one algorithm obtained the best 

performance, depending on the dataset and desired precision. This algorithms uses the multiple 

randomized kd-trees. 
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 The randomized kd-tree algorithm 

 

The classical kd-tree algorithm is efficient in low dimensions, but in high dimensions 

the performance rapidly degrades, i.e. it too suffers the curse of dimensionality. To obtain a 

speedup over linear search it becomes necessary to settle for an approximate nearest-neighbor. 

This improves the speed of searching at the cost of the algorithm not always returning the exact 

nearest neighbors. The original kd-tree algorithm splits the data in half at each level of the tree 

on the dimension for which the data exhibits the greatest variance. 

 

 

Figure 2.4 a:Implementation effect of KD tree 

 

By comparison, the randomized trees are built by choosing the split dimension randomly from 

the first D dimensions on which data has the greatest variance. They used the fixed value D = 5 

in their implementation, as this performs well across all our datasets and does not benefit 

significantly from tuning. When searching the trees, a single priority queue is maintained across 

all the randomized trees so that search can be ordered by increasing distance to each boundary. 

The degree of approximation is determined by examining a fixed number of leaf nodes, at which 

point the search is terminated and the best candidates returned. The user specifies only the 

desired search precision, which is used during training to select the number of leaf nodes that 

will be examined in order to achieve this precision.  
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At a high level, a kd-tree is a generalization of a binary search tree that stores points in k-

dimensional space. That is, you could use a kd-tree to store a collection of points in the Cartesian 

plane, in three-dimensional space, etc. One could also use a kd-tree to store biometric data, for 

example, by representing the data as an ordered tuple, perhaps (height, weight, blood pressure, 

cholesterol).  

 

2.5 Research Paper: Locality-Sensitive Hashing for Finding Nearest Neighbor by 

Malcolm Slaney and Michael Casey 

 

By building a hash table, i.e., a data structure that allows us to quickly map between a symbol 

and a value, when given a query we can calculate an arbitrary function of the symbol that maps 

the symbol into an integer that indexes a table. Thus a symbol with dozens of characters, and 

perhaps hundreds of bits of data, is mapped to a relatively small index into the table. A collision 

occurs when two points hash to the same value and there are special provisions to allow more 

than one symbol per hash value. 

 

A well-designed hash table allows a symbol lookup in O(1 ) time with O(N ) memory, where N 

is the number of entries in the table. Also a well designed hash function separates two symbols 

that are close together into different buckets. This makes a hash table a good means of finding 

exact matches. To find approximate (near) matches efficiently we use a locality sensitive hash. 

LSH is based on the simple idea that, if two points are close together, then after a “projection” 

operation these two points will remain close together, i.e in the same bucket. This idea can be 

easily understood using the examples shown in Figure 2.5.a. Two points that are close together 

on the sphere are also close together when the sphere is projected onto the two dimensional page. 

This is true no matter how we rotate the sphere. Two other points on the sphere that are far 

apart will, for some orientations, be close together on the page, but it is more likely that the 

points will remain far apart. 

 

To further expand this basic idea, a random projection operation that maps a data point from a 

high-dimensional point to a low-dimensional subspace is started. First, one notes which points 

are close to our query points. Second, one creates projections from a number of different 
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directions and keeps track of the nearby points. A list of these found points and note the points 

that appear close to each other in more than one projection is kept. Part of the art of solving this 

problem is defining a projection, defining the notion of “nearby” so that we keep track of a 

manageable number of points, finding a good hash implementation, and analyzing the hash 

performance. 

 

 

    Figure 2.5 a: Projection Method instead of Hashing 

 

APPLICATIONS 

The LSH algorithm has been applied successfully to quickly find nearest neighbors in databases 

with very large size. Instead of finding exact matches as conventional hashes would, LSH takes 

into account the locality of the points so that nearby points remain nearby. Examples of such 

applications include finding duplicate pages on the Web, image retrieval, and music retrieval. 

 

FINDING DUPLICATE PAGES ON THE WEB 

The Web contains many duplicate pages, partly because content is duplicated across sites and 

partly because there is more than one URL that points to the same file on a disk. Yet search 
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engines should not return several copies of the same page. A solution to identify Web page 

duplicates makes use of shingles. Each shingle represents a portion of a Web page and is 

computed by forming a histogram of the words found within that portion of the page. One can 

test to see if a portion of the page is duplicated elsewhere on the Web by looking for other 

shingles with the same histogram. Given that there are billions of pages on the Web and any 

portion of any page might be a duplicate, there are an enormous number of shingles to test 

. 

AltaVista, the first large-scale Web search engine, used random selections (similarly to LSH) to 

test the similarity of pages. If the shingles of the new page match shingles from the database, 

then it is likely that the new page bears a strong resemblance to an existing page. An 

approximate solution to this problem is desired, especially when balanced with the 

computational savings of a solution like LSH. 

 

RETRIEVING IMAGE AND MUSIC 

LSH can be used as an image retrieval as an object recognition tool. One can compute a detailed 

metric for many different orientations and configurations of an object one wishes to recognize. 

Then, given a new image one simply checks the database to see if a pre computed object’s 

metrics are close to our query. This database contains millions of poses and LSH allows us to 

quickly check if the query object is known. 

In music retrieval typically we use conventional hashes and robust features to find musical 

matches. The features can be fingerprints, i.e., representations of the audio signal that are robust 

to common types of abuse that are performed to audio before it reaches our ears. Fingerprints can 

be computed, for instance, by noting the peaks in the spectrum (because they are robust to noise) 

and encoding their position in time and space. One then just has to query the database for the 

same fingerprint. 

However, to find similar songs we cannot use fingerprints because these are different when a 

song is remixed for a new audience or when a different artist performs the same song. Instead, 

we can use several seconds of the song— a snippet—as a shingle. To determine if two songs are 

similar, we need to query the database and see if a large enough number of the query shingles are 

close to one song in the database. Although closeness depends on the feature vector, we know 

that long shingles provide specificity. This is particularly important because we can eliminate 
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duplicates to improve search results and to link recommendation data between similar songs. As 

discussed earlier, LSH proves useful to identify nearest neighbors quickly even when the 

database is very large. 

 

Unlike conventional computer hashes that are designed to return exact matches in O(1) time, an 

LSH algorithm uses dot products with random vectors to quickly find nearest neighbors. LSH 

provides a probabilistic guarantee that it will return the correct answer. In systems that have 

other sources of error (perhaps due to mislabelled data) one can reduce the LSH error below the 

error due to other sources, while significantly improving the computational performance. This 

makes LSH in particular, and randomized algorithms in general, important in today’s world of 

Internet-sized databases. 
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CHAPTER 3: ALGORITHMS AND CODES 

 

The algorithms were studied and the best implementation for the same was done. Code Blocks ( 

Release 12.11, gcc 4.7.1, Windows/Unicode -32bit) has been used as the platform for developing 

all of the codes for the basic implementation to the codes required for analysis.  Nevertheless, the 

codes are in C language and hence can be run in any other simulation environment, with 

compiler supporting C ( example DOSBox or Turbo C).  

 

3.1 K Nearest Neighbours Search: 

 

The training phase for kNN consists of storing all known data items and their class labels. The 

testing phase for a new instance 'q', given a known set 'R' is as follows: 

1. Compute the distance between 'q' and each instance in 'R' 

2. Sort the distances in increasing numerical order and pick the first 'k' elements 

3. Compute and return the most frequent class in the 'k' nearest neighbours, optionally 

weighting each instance's class by the inverse of its distance to 't'. 

 

 The main benefits of using kNN algorithm for classification are: 

 Very simple implementation. 

 Robust with regard to the search space; for instance, classes don't have to be linearly 

separable. 

 Few parameters to tune: distance metric and k. 

 

The main disadvantages of the algorithm are: 

 Expensive testing of each instance, as we need to compute its distance to all known 

instances. 
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  Sensitiveness to noisy or irrelevant attributes, which can result in less meaningful distance 

numbers. Scaling and/or feature selection should be used in combination with kNN to 

mitigate this agenda. 

 Sensitiveness to very unbalanced datasets, where most entities belong to one or a few 

classes, and infrequent classes are therefore often dominated in most neighborhoods.  

 

CODE: 

Main functions:  

(i) Caldistance: This function calculates the distance of the query point from all 

the points in the training data. The distances so calculated are stored into a 2 

dimensional distance array, in which the first dimension holds the distance 

and the second dimension holds the class number of the point from which 

the distance of the query point is calculated. 

 

int caldistance(float x[4]) 

 { 

  int i; 

  int l=0; 

  for(i=0;i<m;i++) 

  { 

   dist[l][0]=sqrt(pow((x[0]-arrm[i][0]),2) + pow((x[1]-arrm[i][1]),2)+ pow((x[2]-

arrm[i][2]),2)+ pow((x[3]-arrm[i][3]),2)); 

   dist[l][1]=0; 

   l++; 

 

  } 

  for(i=0;i<f;i++) 

  { 

   dist[l][0]=sqrt(pow((x[0]-arrf[i][0]),2) + pow((x[1]-arrf[i][1]),2)+ pow((x[2]-

arrf[i][2]),2)+ pow((x[3]-arrf[i][3]),2)); 

   dist[l][1]=1; 

   l++; 

  } 

  for(i=0;i<n;i++) 

  { 
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   dist[l][0]=sqrt(pow((x[0]-arrn[i][0]),2) + pow((x[1]-arrn[i][1]),2)+ pow((x[2]-

arrn[i][2]),2)+ pow((x[3]-arrm[i][3]),2)); 

   dist[l][1]=2; 

   l++; 

  } 

 

  return l; 

 } 

 
 

 
 

(ii) Sort function: This function sorts the distances calculated in the function 

above. 

 
void sort1(int l) 

 { 
  int y,z,temp,temp1; 
  for(y=0;y<l;y++) 
  { 
   for(z=0;z<l-1;z++) 
   { 
    if(dist[z][0]>=dist[z+1][0]) 
    { 
     temp=dist[z][0]; 
     temp1=dist[z][1]; 
     dist[z][0]=dist[z+1][0]; 
     dist[z][1]=dist[z+1][1]; 
     dist[z+1][0]=temp; 
     dist[z+1][1]=temp1; 
    } 
   } 
  } 
 } 
 
 
 

(iii) Neighbour search function: This function primarily considers the top n 

distances, where n>=number of attributes of the items in dataset, and checks 

for the second dimension of these top values. The class to which the 

maximum number of the sorted values belongs is then allotted to the query 

point. 
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void neigh(float x[4],int k) 
 { 
  int i; 
 
  if((dist[0][1]==0 && dist[1][1]==0 && dist[2][1]==0) || (dist[0][1]==0 && dist[1][1]==0) 
|| (dist[0][1]==0 && dist[2][1]==0) || (dist[1][1]==0 && dist[2][1]==0)) 
  { 
   arrm[++m][0]=x[0]; 
   arrm[m][1]=x[1]; 
   arrm[m][2]=x[2]; 
   arrm[m][3]=x[3]; 
   printf("(%f,%f,%f,%f) point lies in class m\n",x[0],x[1],x[2],x[3]); 
   //printf("\n\nThe nearest neighbours are : "); 
   for(i=0;i<k;i++) 
    printf("\n(%f,%f,%f,%f) ",arrm[i][0],arrm[i][1],arrm[i][2],arrm[i][3]); 
  } 
  else if((dist[0][1]==1 && dist[1][1]==1 && dist[2][1]==1) || (dist[0][1]==1 && 
dist[2][1]==1) || (dist[0][1]==1 && dist[1][1]==1) || (dist[1][1]==1 && dist[2][1]==1) ) 
  { 
 
   arrf[++f][0]=x[0]; 
   arrf[f][1]=x[1]; 
   arrf[f][2]=x[2]; 
   arrf[f][3]=x[3]; 
   printf("(%f,%f,%f,%f) point lies in class f\n",x[0],x[1],x[2],x[3]); 
   //printf("\n\nThe nearest neighbours are : "); 
   for(i=0;i<k;i++) 
    printf("\n(%f,%f,%f,%f) ",arrf[i][0],arrf[i][1],arrf[i][2],arrf[i][3]); 
  } 
  else if((dist[0][1]==2 && dist[1][1]==2 && dist[2][1]==2) || (dist[1][1]==2 && 
dist[2][1]==2)|| (dist[0][1]==2 && dist[2][1]==2)|| (dist[0][1]==2 && dist[1][1]==2) ) 
  { 
   arrn[++n][0]=x[0]; 
   arrn[n][1]=x[1]; 
   arrn[n][2]=x[2]; 
   arrn[n][3]=x[3]; 
   printf("(%f,%f,%f,%f) point lies in class n\n",x[0],x[1],x[2],x[3]); 
   //printf("\n\nThe nearest neighbours are : "); 
   //for(i=0;i<k;i++) 
    //printf("\n(%f,%f,%f,%f) ",arrn[i][0],arrn[i][1],arrn[i][2]),arrn[i][3]); 
  } 
 } 
 

(iv) Main function:  In the main function, training data is read and the query point is 
scanned in by the user. Thereafter the functions above are called in the same order 
as they are explained above. 
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OUTPUT SCREENSHOT: 

 

 

 

3.2 KNN using KD trees: 

The nearest neighbour search (NN) algorithm aims at finding the point in the tree that is nearest 

to a given input point. This search can be done efficiently by using the tree properties to quickly 

eliminate large portions of the search space, just like the Binary Search Trees. 

Searching for a nearest neighbour in a k-d tree proceeds as in the steps following: 

1. Starting with the root node, the algorithm moves down the tree recursively, in the same 

way that it would if the search point were being inserted (i.e. it goes left or right 

depending on whether the point is less than or greater than the current node in the split 

dimension). 

2. Once the algorithm reaches a leaf node, it saves that node point as the "current best" 

3. The algorithm unwinds the recursion of the tree, performing the following steps at each 

node: 

1. If the current node is closer than the current best, then it becomes the current best. 

http://en.wikipedia.org/wiki/Nearest_neighbour_search
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2. The algorithm checks whether there could be any points on the other side of the 

splitting plane that are closer to the search point than the current best. In concept, 

this is done by intersecting the splitting hyperplane with a hypersphere around 

the search point that has a radius equal to the current nearest distance. Since the 

hyperplanes are all axis-aligned this is implemented as a simple comparison to 

see whether the difference between the splitting coordinate of the search point 

and current node is less than the distance (overall coordinates) from the search 

point to the current best. 

4. When the algorithm finishes this process for the root node, then the search is complete. 

 

 

Generally the algorithm uses squared distances for comparison to avoid computing square roots. 

Additionally, it can save computation by holding the squared current best distance in a variable 

for comparison. 

CODE: 

 Data Structure: 

 A typical node structure with three components, one holding the data, one holding the address of 

the left child, one holding the address of the right child is defined in the name of Kdnode. 

typedef struct KdNode 

{ 

    float Data[4]; 

http://en.wikipedia.org/wiki/Hyperplane
http://en.wikipedia.org/wiki/Hypersphere


26 
 

    struct KdNode *Left; 

    struct KdNode *Right; 

}; 

 

Main functions: 

(i) Insertion function: This function is used for the insertion into the kD tree. In 

this function a count is used to compare different coordinates of the node data 

item, each time. If the tree is empty, a root node is created otherwise the value 

of the new node’s data item is checked for and compared with the root’s 0
th

 

coordinate. If less, the left address of the node is checked. If empty, new node 

is inserted there, else the count is incremented by 1 and the second coordinate 

of the left child and the new node are compared to find a valid position for 

insertion. The process continues until a position is found vacant. At each level 

different coordinates are compared depending on the count. 

 

void insertion(struct KdNode **node, float Val[4]) 

 { int count=0; 

 if (*node == NULL) { 

 *node = createNode(Val); 

} 

else{ 

 up: if (Val[count] <= (*node)->Data[count]) { 

  if((*node)->Left == NULL) 

  {    (*node)->Left= createNode(Val); } 

        else 

        {  count++; 

            (*node)= (*node)->Left; 

            if(count>=4) 

                count=0; 

            goto up; }} 

 else if(Val[count] > (*node)->Data[count]) 

 { if((*node)->Right == NULL) 

     { (*node)->Right= createNode(Val); } 

        else 

        {    count++; 

            *node = (*node)->Right; 

            if(count>=4) 

                count=0; 

            goto up;} 

} 

}} 
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(ii) Inorder function: This function is used for the inorder traversal of the given 

Kd tree and printing its elements in left->root->right order. 

void inorder(struct KdNode *root) 

{ 

   struct KdNode *temp; 

   temp=root; 

   if(temp!=NULL) 

    { 

       inorder(temp->Left); 

    inor[a][0]=temp->Data[0]; 

    inor[a][1]=temp->Data[1]; 

    inor[a][2]=temp->Data[2]; 

    inor[a][3]=temp->Data[3]; 

    a++; 

    inorder((temp->Right)); 

    }} 

(iii) Search function: This function is the primary function of the code, as it 

searches for the approximate nearest neighbours of a given element. User is 

asked to input a query point in the main code. That point is searched for in the 

tree, if found its inorder traversal is done, in the process elements being stored 

in an array. And k/2 points before the point and the same lying after the query 

point in the in order are printed. 

Otherwise, the point is first inserted into the tree and then the same process is 

followed. 

void search(float Item[4], int k, struct KdNode *root) 

{ flag=1; 

 while(temp!=NULL) 

    { if((temp->Data[0]==Item[0] )&& (temp->Data[1]==Item[1]) && (temp->Data[2]==Item[2]) && 

(temp->Data[3]==Item[3])) 

  { 

    here: flag=0; 

    for(i=0;i<a;) 

      {   if(Item[0]==inor[i][0]  &&  Item[1]==inor[i][1] && Item[2]==inor[i][2] && Item[3]==inor[i][3]) 

    { goto here2;   } 

          else 

            i++;  } 

        here2: printf("\nThe nearest neighbours for the entered element are: "); 

    for(j=i-1;j>=(i-k/2);j--) 

        printf("(%f,%f,%f,%f)  ", inor[j][0],inor[j][1],inor[j][2],inor[j][3]); 

    for(j=i+1;j<=(i+1+k/2);j++) 

        printf("(%f,%f,%f,%f)  ", inor[j][0],inor[j][1],inor[j][2],inor[j][3]); 

          goto end1; } 

  if(flag==1) 
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  {      search(Item,k,temp->Left); 

      search(Item,k,temp->Right); 

  } 

  else 

    break; } 

 if(flag==1) 

 {  insertion(&root,Item); 

    a=0; 

    inorder(root); 

 goto here; } 

 end1: printf("\n Searching done"); } 

 

(iv) Main function: In the main function, tree is created based on the training data. 

Thereafter the code for searching is called for the query point. 

OUTPUT SCREENSHOT: 

 

 
 

 

3.3 KNN using Locality Sensitive Hashing: 
 

An LSH family  is defined for a metric space , a threshold  and an 

approximation factor . This family  is a family of functions  which map 

elements from the metric space to a bucket . The LSH family satisfies the following 

http://en.wikipedia.org/wiki/Metric_space
http://en.wikipedia.org/wiki/Metric_space
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conditions for any two points , using a function  which is chosen uniformly 

at random: 

 if , then  (i.e.,  and  collide) with probability at least , 

 if , then  with probability at most . 

A family is working right when . 

One of the main applications of LSH is to provide a method for efficient approximate nearest 

neighbor search algorithms. Consider an LSH family . The algorithm has two main 

parameters: the width parameter  and the number of hash tables . 

In the first step, we define a new family  of hash functions , where each function  is 

obtained by concatenating  functions  from , i.e., . 

In other words, a random hash function  is obtained by concatenating  randomly chosen hash 

functions from . The algorithm then constructs  hash tables, each corresponding to hash 

function . 

Given a query point , the algorithm iterates over the  hash functions . For each 

 considered, it retrieves the data points that are hashed into the same bucket as . The process is 

stopped as soon as a point within distance  from  is found. 

 

CODE: 

 

Main functions: 
 

(i) Read_hash: In this function the training data is read from the file and based on a hash 

function ( which in our case is Euclidian Distance Measure) the data items are 

allocated a class with respect to the bucket’s initial holding and a radius. Near 

distance is half the radius and is used as a measure by us here, because we want all 

points in a bucket to be within the range of the radius from each other, as demanded 

by the user. So if a point is at  near distance  from a central point of the bucket, it’s 

maximum distance from the other point in the bucket will be less than equal to r, 

hence sufficing the requirement. 

 

http://en.wikipedia.org/wiki/Nearest_neighbor_search
http://en.wikipedia.org/wiki/Nearest_neighbor_search
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void read_hash() 

{ 

int i=0; 

float val[4]; 

char ch; 

FILE *fp; 

fp=fopen("testing_20.txt","r"); 

if(fp==NULL) 

    printf("File does not exist"); 

else{ 

        while (!feof (fp)) 

    { 

 

 

      fscanf (fp, "%f", &val[0]); 

      fscanf (fp, "%f", &val[1]); 

      fscanf (fp, "%f", &val[2]); 

      fscanf (fp, "%f", &val[3]); 

 

 

  dist1=sqrt(pow((b1[0][0]-val[0]),2)+pow((b1[0][1]-val[1]),2)+pow((b1[0][2]-val[2]),2)+pow((b1[0][3]-

val[3]),2)); 

  dist2=sqrt(pow((b2[0][0]-val[0]),2)+pow((b2[0][1]-val[1]),2)+pow((b2[0][2]-val[2]),2)+pow((b2[0][3]-

val[3]),2)); 

  dist3=sqrt(pow((b3[0][0]-val[0]),2)+pow((b3[0][1]-val[1]),2)+pow((b3[0][2]-val[2]),2)+pow((b3[0][3]-

val[3]),2)); 

 

 

  if(dist1<dist2 && dist1<dist3 && dist1<near_dist) 

   { 

    b1[++k][0]=val[0]; 

    b1[k][1]=val[1]; 

    b1[k][2]=val[2]; 

    b1[k][3]=val[3]; 

    printf("\n(%1f,%1f,%1f,%1f) allocated to bucket 1\n",val[0],val[1],val[2],val[3]); 

   } 

  else if(dist2<dist1 && dist2<dist3  && dist2<near_dist) 

   { 

   b2[++l][0]=val[0]; 

   b2[l][1]=val[1]; 

   b2[l][2]=val[2]; 

   b2[l][3]=val[3]; 

   printf("\n(%1f,%1f,%1f,%1f) allocated to bucket 2\n",val[0],val[1],val[2],val[3]); 

   } 

  else if(dist3<dist1 && dist3<dist2 && dist3<near_dist ) 

   { 

   b3[++m][0]=val[0]; 

   b3[m][1]=val[1]; 

   b3[m][2]=val[2]; 

   b3[m][3]=val[3]; 
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   printf("\n(%1f,%1f,%1f,%1f)allocated to bucket 3\n",val[0],val[1],val[2],val[3]); 

   } 

  } 

 } 

 

fclose(fp); 

} 

 

(ii) Hash2 function: The hash_2 function is similar to the read hash function, except for 

the fact that it reads from the file containg the data to be tested, i.e. containing the 

query points. 

 

 

  

void hash2() 

{ 

int i,s; 

float val[3]; 

FILE *ft; 

double time_taken; 

clock_t t; 

ft=fopen("testing_30.txt","r"); 

s=0; 

while(!feof(ft)) 

{ 

    fscanf(ft,"%f",&val[0]); 

    fscanf(ft,"%f",&val[1]); 

    fscanf(ft,"%f",&val[2]); 

    fscanf(ft,"%f",&val[3]); 

  dist1=sqrt(pow((b1[0][0]-val[0]),2)+pow((b1[0][1]-val[1]),2)+pow((b1[0][2]-val[2]),2)+pow((b1[0][3]-

val[3]),2)); 

  dist2=sqrt(pow((b2[0][0]-val[0]),2)+pow((b2[0][1]-val[1]),2)+pow((b2[0][2]-val[2]),2)+pow((b2[0][3]-

val[3]),2)); 

  dist3=sqrt(pow((b3[0][0]-val[0]),2)+pow((b3[0][1]-val[1]),2)+pow((b3[0][2]-val[2]),2)+pow((b3[0][3]-

val[3]),2)); 

 

t=clock(); 

check: printf("\n%d. ",++s); 

   if(dist1<dist2 && dist1<dist3 && dist1<=near_dist) 

   { 

   b1[++k][0]=val[0]; 

   b1[k][1]=val[1]; 

   b1[k][2]=val[2]; 

   b1[k][3]=val[3]; 

   printf("It is nearest to the elements of bucket 1"); 

    } 

   else if…….. 

   t=clock()-t; 

time_taken=(double)(t)/CLOCKS_PER_SEC; 
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printf("\nTime taken for the search function: %lf",time_taken); 

//printf("\n\n\n\nFinding the actual nearest neighbours of the query point"); 

//actual_nearest_neighbours(val,s); 

} 

 

(iii)Main function: In the main function, the buckets are initialised and the query point is asked 

for by the user. Also the user is asked to set the value of the radius. 

 

OUTPUT SCREENSHOT: 

 

 
 

 

 

CODE FOR LSH FOR STRINGS: 
 

It is a primitive sample code developed only to check the working for Locality Sensitive Hashing 

with the strings. In this code 26 arrays are created and based on the first few characters the 

matching for the strings is done and bucket allocation follows. 

Main function: 
 

 

void search_neigh() 

{ 

char ch; 

int num,len=0,len1; 

int num2,num3,num4; 
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printf("\nString search is conducted for %s",sstr); 

ch=sstr[0]; 

printf("\nFirst character:%c",ch); 

num=(int)ch; 

num4=num-65; 

printf("\n\nThe string has been allocated to bucket %d", (num-64)); 

printf("\nEnter the number of nearest neighbours you would like to print: "); 

scanf("%d",&num2); 

num3=num2; 

if(ch=='A') 

{ 

while(num2!=0) 

{ 

 

 printf("\n%s",alph1[num3-num2]); 

 num2--; 

} 

} 

else if(ch=='B') 

{ 

while(num2!=0) 

{ 

 

 printf("\n%s",alph2[num3-num2]); 

 num2--; 

} 

} 

else if(ch=='C') 

{ 

 

while(num2!=0) 

{ 

 

 printf("\n%s",alph3[num3-num2]); 

 num2--; 

} 

}else if(ch=='D') 

{ 

 

while(num2!=0) 

{ 

 

 printf("\n%s",alph4[num3-num2]); 

 num2--; 

} 

}…. 

 

…. 

}else if(ch=='Y') 

{ 
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while(num2!=0) 

{ 

 

 printf("\n%s",alph25[num3-num2]); 

 num2--; 

} 

}else if(ch=='Z') 

{ 

 

while(num2!=0) 

{ 

 

 printf("\n%s",alph26[num3-num2]); 

 num2--; 

} 

} 

} 

void divide_input() 

{ 

  int len,len1=0; 

  char choice; 

  for(k=0;k<i;k++) 

   { 

    printf("\n %s ",strings[k]); 

    choice= strings[k][0]; 

    switch(choice) 

     { 

     case 'A': 

         strcpy(alph1[a1],strings[k]); 

         a1++; 

         break; 

 

     case 'B': 

         strcpy(alph2[b1],strings[k]); 

         b1++; 

         break;….. 

 

    ….. case 'Y': 

         strcpy(alph25[y2],strings[k]); 

         y2++; 

         break; 

 

     case 'Z': 

         strcpy(alph26[z1],strings[k]); 

         z1++; 

         break; 

 

}} 

printf("\n\nDivision of the input strings has been done.\n\n"); 

 

} 



35 
 

 

OUTPUT SCREENSHOT:  

 

 

 

 
CODE FOR LSH WITH MULTIPLE HASH FUNCTIONS: 
 

Main Functions: 
 

 

(i) Hash1 function:  This function reads the query point and selects one random point 

from each bucket and calculates the Euclidian distance between the two. It then sorts 

the distance array in ascending order and calls the hash 2 function. 

 

int hash1(float x[9]) 

    { 

        int i=0, j=0; 

        float tem,tem2; 

            dist[0][0]= sqrt (pow(x[0]-arr1[i][0],2)+pow(x[1]-arr1[i][1],2)+pow(x[2]-arr1[i][2],2)+ pow(x[3]-

arr1[i][3],2)+ pow(x[4]-arr1[i][4],2)+ pow(x[5]-arr1[i][5],2)+ pow(x[6]-arr1[i][6],2)+ pow(x[7]-

arr1[i][7],2)+ pow(x[8]-arr1[i][8],2)); 

            dist[0][1]=0.00; 

            dist[1][0]=sqrt (pow(x[0]-arr2[i][0],2) + pow(x[1]-arr2[i][1],2)+ pow(x[2]-arr2[i][2],2)+ 

pow(x[3]-arr2[i][3],2)+ pow(x[4]-arr2[i][4],2)+ pow(x[5]-arr2[i][5],2)+ pow(x[6]-arr2[i][6],2)+ 

pow(x[7]-arr2[i][7],2)+ pow(x[8]-arr2[i][8],2)); 

            dist[1][1]=1.00; 
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            dist[2][0]=sqrt( pow(x[0]-arr3[i][0],2) + pow(x[1]-arr3[i][1],2)+ pow(x[2]-arr3[i][2],2)+ 

pow(x[3]-arr3[i][3],2)+ pow(x[4]-arr3[i][4],2)+ pow(x[5]-arr3[i][5],2)+ pow(x[6]-arr3[i][6],2)+ 

pow(x[7]-arr3[i][7],2)+ pow(x[8]-arr3[i][8],2)); 

            dist[2][1]=2.00; 

            dist[3][0]=sqrt (pow(x[0]-arr4[i][0],2) + pow(x[1]-arr4[i][1],2)+ pow(x[2]-arr4[i][2],2)+ 

pow(x[3]-arr4[i][3],2)+ pow(x[4]-arr4[i][4],2)+ pow(x[5]-arr4[i][5],2)+ pow(x[6]-arr4[i][6],2)+ 

pow(x[7]-arr4[i][7],2)+ pow(x[8]-arr4[i][8],2)); 

   dist[3][1]=3.00; 

   dist[4][0]=sqrt (pow(x[0]-arr5[i][0],2) + pow(x[1]-arr5[i][1],2)+ pow(x[2]-

arr5[i][2],2)+ pow(x[3]-arr5[i][3],2)+ pow(x[4]-arr5[i][4],2)+ pow(x[5]-arr5[i][5],2)+ pow(x[6]-

arr5[i][6],2)+ pow(x[7]-arr5[i][7],2)+ pow(x[8]-arr5[i][8],2)); 

   dist[4][1]=4.00; 

   dist[5][0]=sqrt (pow(x[0]-arr6[i][0],2) + pow(x[1]-arr6[i][1],2)+ pow(x[2]-

arr6[i][2],2)+ pow(x[3]-arr6[i][3],2)+ pow(x[4]-arr6[i][4],2)+ pow(x[5]-arr6[i][5],2)+ pow(x[6]-

arr6[i][6],2)+ pow(x[7]-arr6[i][7],2)+ pow(x[8]-arr6[i][8],2)); 

   dist[5][1]=5.00; 

    tem=100.00; 

    for(j=0;j<6;j++) 

    { 

        for(mini=0;mini<5-j;mini++) 

        { 

            if(dist[mini][0]>dist[mini+1][0]) 

                { 

                tem=dist[mini][0]; 

                tem2=dist[mini][1]; 

                dist[mini][0]=dist[mini+1][0]; 

                dist[mini][1]=dist[mini+1][1]; 

 

                dist[mini+1][0]=tem; 

                dist[mini+1][1]=tem2; 

 

                } 

        } 

    } 

    hash2(x); 

  } 

 

(ii) Hash 2 function: This function computes the linear distance between the query point 

and a point each from the buckets. This is to ensure that the query point goes to right 

bucket.The distances so computed are sent to the neighbour function. 

 

int hash2(float x[9]) 

{ 

    int i=0,j=0; 

    float dist1[6]; 

    dist1[0]= (x[0]-arr1[i][0])+(x[1]-arr1[i][1])+(x[2]-arr1[i][2])+(x[3]-arr1[i][3])+(x[4]-arr1[i][4])+(x[5]-

arr1[i][5])+(x[6]-arr1[i][6])+(x[7]-arr1[i][7])+(x[8]-arr1[i][8]); 
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    dist1[1]= (x[0]-arr2[i][0])+(x[1]-arr2[i][1])+(x[2]-arr2[i][2])+(x[3]-arr2[i][3])+(x[4]-arr2[i][4])+(x[5]-

arr2[i][5])+(x[6]-arr2[i][6])+(x[7]-arr2[i][7])+(x[8]-arr2[i][8]); 

    dist1[2]= (x[0]-arr3[i][0])+(x[1]-arr3[i][1])+(x[2]-arr3[i][2])+(x[3]-arr3[i][3])+(x[4]-arr3[i][4])+(x[5]-

arr3[i][5])+(x[6]-arr3[i][6])+(x[7]-arr3[i][7])+(x[8]-arr3[i][8]); 

    dist1[3]= (x[0]-arr4[i][0])+(x[1]-arr4[i][1])+(x[2]-arr4[i][2])+(x[3]-arr4[i][3])+(x[4]-arr4[i][4])+(x[5]-

arr4[i][5])+(x[6]-arr4[i][6])+(x[7]-arr4[i][7])+(x[8]-arr4[i][8]); 

    dist1[4]= (x[0]-arr5[i][0])+(x[1]-arr5[i][1])+(x[2]-arr5[i][2])+(x[3]-arr5[i][3])+(x[4]-arr5[i][4])+(x[5]-

arr5[i][5])+(x[6]-arr5[i][6])+(x[7]-arr5[i][7])+(x[8]-arr5[i][8]); 

    dist1[5]= (x[0]-arr6[i][0])+(x[1]-arr6[i][1])+(x[2]-arr6[i][2])+(x[3]-arr6[i][3])+(x[4]-arr6[i][4])+(x[5]-

arr6[i][5])+(x[6]-arr6[i][6])+(x[7]-arr6[i][7])+(x[8]-arr6[i][8]); 

    //printf("\n"); 

    for(j=0;j<6;j++) 

    { 

        if(dist1[j]<0) 

            dist1[j]=0-dist1[j]; 

    } 

    for(j=0;j<6;j++) 

    { 

    printf(" %f",dist1[j]); 

    } 

 

    neigh(x,dist1); 

} 

 
(iii) Neighbour function: This function takes the minimum distance from the hash1 

function and the the distances computed by the hash2 function and after applying the 

conditions on the two finds the nearest neighbour with accuracy. 

 
void neigh(float x[9],float k[6]) 

 { 

  int i; 

  int d,h; 

            if(dist[0][1]==0.00 && k[0]<=0.4) 

      {    m1++; 

   arr1[m1][0]=x[0];arr1[m1][1]=x[1];arr1[m1][2]=x[2]; 

   arr1[m1][3]=x[3];arr1[m1][4]=x[4];arr1[m1][5]=x[5]; 

   arr1[m1][6]=x[6];arr1[m1][7]=x[7];arr1[m1][8]=x[8]; 

   printf(" CLASS 1"); 

   if(t1>0){ 

                printf("It's %d nearest neighbours are: ",t1); 

                for(h=0;h<t1;h++) 

                { printf("\n("); 

                   for(d=0;d<6;d++) 

                        printf("%f",arr1[h][d]); 

                    printf(")"); 

              }  } 

   } 

  else if(dist[0][1]==1.00 && k[1]<=0.4) 
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            { 

    m2++; 

   arr2[m2][0]=x[0];arr2[m2][1]=x[1];arr2[m2][2]=x[2]; 

   arr2[m2][3]=x[3];arr2[m2][4]=x[4];arr2[m2][5]=x[5]; 

   arr2[m2][6]=x[6];arr2[m2][7]=x[7];arr2[m2][8]=x[8]; 

   printf(" CLASS 2"); 

   if(t1>0){ 

                printf("It's %d nearest neighbours are: ",t1); 

                for(h=0;h<t1;h++) 

                { printf("\n("); 

                   for(d=0;d<6;d++) 

                        printf("%f",arr2[h][d]); 

                    printf(")"); 

              }  } 

   } 

  else if(dist[0][1]==2.00 && k[2]<=0.4) 

   { 

 

   m3++; 

   arr3[m3][0]=x[0];arr3[m3][1]=x[1];arr3[m3][2]=x[2]; 

   arr3[m3][3]=x[3];arr3[m3][4]=x[4];arr3[m3][5]=x[5]; 

   arr3[m3][6]=x[6];arr3[m3][7]=x[7];arr3[m3][8]=x[8]; 

            printf(" CLASS 3"); 

            if(t1>0){ 

                printf("It's %d nearest neighbours are: ",t1); 

                for(h=0;h<t1;h++) 

                { printf("\n("); 

                   for(d=0;d<6;d++) 

                        printf("%f",arr3[h][d]); 

                    printf(")"); 

              }  }…. 

  …..else if(dist[0][1]==5.00 && k[5]<=0.4) 

        { 

       m6++; 

   arr6[m6][0]=x[0];arr6[m6][1]=x[1];arr6[m6][2]=x[2]; 

   arr6[m6][3]=x[3];arr6[m6][4]=x[4];arr6[m6][5]=x[5]; 

   arr6[m6][6]=x[6];arr6[m6][7]=x[7];arr6[m6][8]=x[8]; 

   printf(" CLASS 7"); 

   if(t1>0){ 

                printf("It's %d nearest neighbours are: ",t1); 

                for(h=0;h<t1;h++) 

                { printf("\n("); 

                   for(d=0;d<6;d++) 

                        printf("%f",arr6[h][d]); 

                    printf(")"); 

              }  } 

           } 

        else 

        { 

            printf("  CLASS 9"); 

        } 
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 } 

 

OUTPUT SCREENSHOT: 
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CHAPTER 4: GRAPHS AND RESULTS 

 
Through this chapter, mainly the differences in performances of the two Approximation 

Algorithms namely: K Nearest Neighbour Search Algorithms and KNN using Locality Sensitive 

Hashing will be analysed on the basis of time and accuracy. 

 

4.1 WHEN CODES WERE RUN ON IRIS DATASET: 
 

4.1.1 About the dataset: 

 

Size of Dataset: 150 

Number of Classes data is divided in: 3 classes of 50 data items each 

Number of Attributes: 4 

Data Type of Attributes: Integer 

 

4.1.2 Analysis: 
 

(i) Comparison based on time: 

 

 
 
As can be seen above, for evaluating the ‘k’ nearest neighbours of a given query point, KNN 

takes substantially more time than the KNN using Locality Sensitive Hashing code. The time 
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taken by the kNN using LSH code is almost always less than 60 milliseconds, where the time by 

the kNN code is almost above 100 milliseconds. 

The difference in the time taken is huge despite of the fact that the size of dataset is merely 150 

and the values of k range between 10 and 100 only. In actual data mining processes, both the size 

of the dataset and the value of ‘k’ is a lot more and hence the time difference is bound to rise 

then. 

 

(ii) Comparison based on Accuracy: 

 

 

 

The accuracy for the algorithms in this case was determined by varying the sizes of the training 

and the testing datasets. When 20 percent of the training data was used for the purpose of 

training, the remaining 80 percent was tested for using the code. As we already knew the classes 

of the data in training, we could determine the accuracy of the code efficiently. 

 

The accuracy of kNN when 30 of 150 elements were used for training and remaining 120 were 

tested was around 45 percent. Its accuracy, when all the training data was used for training 

purposes, shot up to 74 percent. The accuracy, thus, is average and not very promising. 

The accuracy for kNN using locality sensitive hashing, as shown in the next graph, ranges from 

89 percent to 92.5 percent as the size of training data varies from 20% to 100%. The reason for 
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this trend in LSH is that the classes into which the dataset is already divided does not have much 

of an effect on the distribution of elements. All the elements, be it in training data or testing data 

are redistributed into the three buckets using the Euclidian Hash function. The noise in the point 

to bucket mapping is thus reduced and accuracy increases. 

 

 

 
As can be seen from the graph below, the Locality sensitive Hashing algorithm outperforms the 

kNN algorithm in terms of accuracy as well. 
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But since no conclusion can be drawn from a single dataset analysis, three more datasets have 

been analysed next. 

(iii) Dependence on Dimension:  

Also, a small effort to look into the dependence on dimension was made by running 

the LSH code for Iris Dataset, by considering only two, then three and then all four 

attributes while finding neighbours.  

-  

 

 
As can be seen above there is minimal dependence on the dimension and hence LSH is the code 

to work on. 

 

4.2 WHEN CODES WERE RUN ON LETTER DATASET: 

 
4.2.1 About the Dataset: 

 

Size of the Dataset: 20,000 

Number of Classes the Dataset has been divided into: 26 

Number of Attributes: 16 

Data Type of Attributes: Integer 
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4.2.2 Analysis:  

(i) Comparison based on time: 

 

-  

       

As can be seen from the graph above, as we vary the value of k, the value of time varies as well. 

The time taken by kNN increase with k, by heaps and bounds. On the contrary, the dependence 

of LSH on k remains minimal here as well. 

In terms of time, kNN using LSH again outshines simple kNN. 

 

(ii) Comparison based on Accuracy: 
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The code for kNN did not work properly when 100% of the data was taken for training purposes. 

It took 107 minutes for the code to process merely 7 or 8 elements in the testing data. Hence 

subsets of the dataset of size 5000 and less were taken for training purposes and testing was done 

on maximum 100 elements each time. 

As can be seen from the graph above, the accuracy for kNN in this case is almost always less 

than 60 percent and there is a huge effect of the size of training data on the accuracy which 

ranges from 25% to 65% as the data ranges from 20% to 100%. 

 

As for the accuracy for LSH, the accuracy is not very high and promising either, but it is still 

better than that of simple kNN. There is noise reduction in distribution of elements in kNN using 

LSH as the random distribution of elements in the dataset is not considered, and elements are 

rearranged based on their proximity with the elements in the 26 buckets. 
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4.3 WHEN RUN ON GLASS DATASET: 

4.3.1: About the Dataset 

Size of the dataset: 214 

Number of Classes data is divided into: 6 

Number of attributes: 9 

Data Type of Attributes: Floating point integers 

4.3.2:Analysis: 

(i) Comparison based on time: 

 

 

 

Here the comparison between the performance of the two codes in terms of time makes a clear 

contribution to our search for the better algorithm. The time take by the kNN using LSH is 

around 1 millisecond, whereas the time taken by kNN varies from 20 milliseconds to 160 

milliseconds as the value of ‘k’ changes. The difference in performance is too evident to deserve 

an explanation. There were two hash functions used in the LSH code to increase the accuracy, 

0 

20 

40 

60 

80 

100 

120 

140 

160 

180 

0 20 40 60 80 100 

Ti
m

e
 t

ak
e

n
 in

 m
ill

is
e

co
n

d
s 

Value of k 

Time taken 

time taken(knn) 

time taken(lsh) 



47 
 

thus double the calculation than the previous LSH codes, and still the performance remains 

outstanding. 

(ii) Comparison based on Accuracy: 

The data in the dataset was randomly distributed with no sense of being class specific  

which can be attributed to the low accuracy of both kNN and kNN using LSH in this 

case. 

 

 

Although both the codes were to deal with the same dataset, the trend of the accuracy of the LSH 

code being more than that of the kNN code remains to be. The accuracy of the kNN code goes 

maximum upto 40 percent due to random classification. In case of LSH, there is some 
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improvement due to redistribution, but the accuracy still remains to be below 70 percent 

throughout. 

 

 

4.4 When run on Chess Dataset: 

4.4.1 About the Dataset: 

Size of the Dataset: 27,000 

Number of Classes the dataset has been divided into: 17 

Number of attributes: 6 

Type of Attributes: Mixed Data type (Both characters and integers) 

 

4.4.2: Analysis: 

 

(i) Comparison based on time: 

The graph below completely confirms our assumption so far. The performance of LSH in terms 

of time, irrespective of the size of dataset is better than that of kNN. The kNN code heavily 

depends on the value of k, whereas the code for LSH is by and large independent of the value of 

‘k’ when computing k nearest neighbours. 

0 

10 

20 

30 

40 

50 

60 

70 

0 20 40 60 80 100 120 

A
cc

u
ra

cy
(%

) 

Size of Training data 

Accuracy  

Accuracy(lsh)(%) 

Accuracy(knn) 



49 
 

 

 

(ii) Comparison based on Accuracy: 

 

The accuracy here again shows a similar trend. It doesn’t go very low or very high 

but remains almost stable with the variance of maximum 10 in both the cases. 

 

 

 

 Even in this comparison, the accuracy for LSH is more than that of the simple kNN. This 

 can again be attributed to the noise reduction that takes place in case of LSH. 
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The datasets and the experimentation with them, provide an insight into the functioning of the 

two algorithms, where one algorithm gains and where the other one loses. 

Here, LSH is in a better position because of lesser computation involved in comparison to the K 

Nearest Neighbour Search. It has better accuracy because it operates independently  and doesn’t 

lay much emphasis on the distribution already present. 
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CHAPTER 5: CONCLUSION 

 

Through the project, various methods of approximation have been studied. The ones 

implemented have been studied all the more in detail. 

The K Nearest Neighbour search algorithm has been implemented at basic level and then its 

variations were created to run it for different datasets, and analyse its performance. 

Also the k Nearest Neigbour Algorithm using Locality sensitive Hashing was first implemented 

at basic level and then it was modified to make it suitable for the various datasets.  

As seen in the graphs, the performance of kNN is still marred by a variety of factors in terms of 

time. It is dependent on the size of the dataset and also the value of ‘k’. this verifies the 

complexity of the code which is O(knd).  

kNN using Locality sensitive Hashing outperforms the simple k Nearest Neighbours Algorithm 

in terms of time based performance. Irrespective of the value of ‘k’ and the dimension of the data 

items, there is almost constant time taken by the LSH algorithm which proves that when it comes 

to efficiency in terms of time, LSH is the algorithm to opt for. 

One would think that if LSH is cutting down on time, it must be at the cost of Accuracy. Well 

yes, some amount of accuracy is compromised on, but then when a comparison is drawn between 

the levels of accuracy between kNN using LSH and simple kNN, LSH stands in a win win 

situation. 

The accuracy of kNN using LSH irrespective of the data distribution in the dataset has constantly 

remained more than that of the simple kNN. The initialisation of the buckets in LSH with the 

average of all data items belonging to a class and then allotment of buckets both to items in the 

training data and testing data, cuts down on the noise in the initial distribution and gives even 

better results than kNN which completely bases itself on the given division of the classes. 

Thus, all in all, for data mining purposes the algorithm which is set to give better performance 

both in terms of time as well as accuracy irrespective of the size of the dataset, the dimension of 

the data items is k Nearest Neighbour Search Algorithm using Locality Sensitive Hashing.  



52 
 

   CHAPTER 6: REFERENCES 

 Research papers:- 

 Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High 

Dimensions  

        -Alexandr Andoni and Piotr Indyk  

 Nearest Neighbor Search: the Old, the New, and the Impossible  

             -Alexander Andoni  

 An Optimal Algorithm for Approximate Nearest Neighbor Searching in Fixed 

Dimensions  

             -David M. Mount, Nathan S. Netanyahu, Ruth Silverman and Angela Y. Wu 

 Similarity search in high dimensions via hashing 

 

 -A. Gionis, P. Indyk, and R. Motwani 

 . Fast Approximate Nearest Neighbours with Automatic Algorithm 

Configuration  

 

-  Marius Muja, David G. Lowe: 
 

 

Books:  

 

 Mining of Massive Datasets 

- Jure Leskovec, Stanford Univ.  Anand Rajaraman Milliway Lab 

& Jeffrey D. Ullman Stanford Univ 

 

 Data Mining : Concepts and Techniques 

- Jiawei Han and. Micheline Kamber. University of Illinois at Urbana-

Champaign 

 


