## JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -1 EXAMINATION- FEB-2023

COURSE CODE (CREDITS): 18B11EC413 (3)

MAX. MARKS: 15

COURSE NAME: Modern Analog and Digital Communication

COURSE INSTRUCTORS: Dr. Alok Kumar

MAX. TIME. 1 Hour

**Note:** All questions are compulsory. Marks are indicated against each question in square brackets.

Q.1 Find the Fourier series of the 'periodic function f(x) such that

[CO1] [3]

$$f(x) = \begin{cases} -\pi & when - \pi \le x \le 0 \\ x & when 0 < x \le \pi \end{cases}$$

Q.2 An amplitude modulated (AM) wave is represented by the expression:

 $v(t) = 5[1 + 0.6Cos(6280t)]Sin(211 * 10^4 t)$  volts. Find the following:

- a) What are the minimum and maximum amplitudes of the AM wave?
- b) What frequency components are contained in the modulated wave?
- c) What is the power in the side bands?

[CO2] [3]

- Q.3 Derived the expression for amplitude modulated wave while considering message and carrier signal as follows:  $m(t) = A_m Cos(\omega_m t)$  and  $C(t) = A_c Cos(\omega_c t)$ . Where, m(t) is the message signal and C(t) is the carrier signal.  $\omega_m$  and  $\omega_c$  are the angular frequency of message and carrier signal respectively. Draw the AM wave in time domain as well as in frequency domain. [CO2] [3]
- Q.4 What is modulation? How modulation helps in communication?

[CO1, CO2][2]

- Q.5. Explain impulse function with suitable diagram. Write four properties followed by impulse function? [CO1] [2]
- Q.6 Define transmission efficiency in AM. What is its maximum value for AM, when considering modulation index=1? [CO2] [2]