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Abstract Surfactants are found to enhance the diffusion significantly depending on hydrophobic/

hydrophilic group lengths and the structure of the surfactant molecule. Aggregation properties of

sodium dodecyl sulfate (SDS) in the presence of butylated hydroxyanisole (synthetic antioxidant),

at a range of temperatures (25, 30 and 35 �C) have been measured by the conductometric study in

aqueous-ethanolic composite solution. The experimental data of aqueous-ethanolic solutions as a

function of SDS concentration ranging from 1 to 14 mM dm�3 show the presence of inflexion

points indicating micellization and interaction mechanisms. Effect of temperature was also observed

in increasing the CMC (Critical Micelle Concentration) in the narrow composition. From the CMC

values as a function of temperature, various thermodynamic parameters have been evaluated viz:

(a) the standard enthalpy change (DH
�

m), (b) standard entropy change (DS
�

m), and (c) standard

Gibbs energy change (DG
�

m). The results showed that the presence of alcohol, as well as the compo-

sition of water + ethanol may have effect on thermodynamic parameters. The variation in these

parameters with the concentration of surfactant or with the change in temperature suggests the

manifestation of hydrophobic interactions in the studied system.
ª 2012 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The knowledge of molecular mechanism of drug–membrane
interaction is not only of theoretical significance, but also of
potential practical implications (Xu et al., 2002). Biomem-

branes play vital functions besides structural roles like, control
of the passage of selected compounds thus maintaining the
biochemical integrity of cytosol; communication, allowing
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Figure 2 Structural representation of head and tail portions of

SDS.

Figure 3 Specific conductivity as a function of [SDS] in

0.03 mol dm�3 solution at different temperatures in 100% ethanol

composition.
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the exchange of information between the extra and intracellu-
lar phase; biochemical-active surface, due to occurrence of
associated interactive processes studying the molecular events

occurring on biomembrane, as well as the multiple interactions
with bioactive compounds such as drugs which are of para-
mount importance to enhance our knowledge. Surfactants

have been of tremendous scientific importance because of their
many promising applications in detergents, cosmetics, material
fabrication, and drug delivery etc. (Herbette et al., 1991; Seydel

et al., 1994; Lee et al., 2009). The main property of surfactant
systems is that their aggregation phenomena arise from vari-
ous non-covalent interactions (such as pp stacking, H-
bonding, van der Waals interactions) operating at the molecu-

lar level (Rosen, 2004; Xu et al., 2010). The solubility of an
organic compound, which is insoluble or sparingly soluble in
water, is enhanced by the addition of surfactants in aqueous

solution (McBain and Hutchinson, 1955; Elworthy et al.,
1968). A number of investigations have been carried out to
understand the phenomenon of solubilization by surfactant

solutions (Ceraulo et al., 2006; Mugesh et al., 2001; Craig,
1934; Palma et al., 2003). One of the main interest concerns
the extent to which a particular compound can be solubilized

in a given surfactant solution at a specified concentration.
The other important aspect is to know the regions where the
solubilizate molecules are located within the micelles.

However, butylated hydroxyanisole (BHA) is a synthetic

antioxidant available in the form of two isomeric organic com-
pounds (Fig. 1), 2-tert-butyl-4-hydroxyanisole and 3-tert-
butyl-4-hydroxyanisole. BHA is primarily used as an antioxi-

dant and preservative in food, food packaging, and animal
feed, cosmetics, rubber, and petroleum products (Sacchez-
Gallego et al., 2011; Hamid et al., 2010). BHA is also com-

monly employed in medicines as additive, such as isotretinoin,
lovastatin, and simvastatin, among others which made us to
think over their aggregation behavior. 2-tert-Butyl-4-hydroxy-

anisole (a) form has been undertaken for the same studies after
observing its physical properties such as insolubility in water,
freely soluble in ethanol, methanol, propylene glycol, soluble
in fats and oils etc. Knowledge of interactions involving sur-

factants is important to understand how they function in the
biological system. The complete characterization of any bind-
ing interaction requires a quantification of affinity, number of

binding sites and the thermodynamics. The force that drives
thermodynamic data, specifically enthalpy change (DH

�

m) and
Gibbs free energy change (DG

�

m), reveals the complex forma-

tion and mechanism of action at the molecular level. Consider-
ing the eminent industrial and biological importance of
surfactant and BHA, the present work was undertaken with
the primary aim of studying the inflexion point with aggrega-

tion behavior of the SDS with varying aqueous alcoholic
(Ethanol) compositions at different temperatures.
Figure 1 Structure of isomeric forms of BHA.
2. Experimental

2.1. Apparatus and material

Ordinary tap water of conductivity (3–5) · 10�6 S cm�1 at
25 �C was distilled with the help of a Double distillation unit

(Harco make). The water so obtained had a conductivity of
�(1–4) · 10�7 S cm�1 at 25 �C and pH in the range 6.5–7.0.
Figure 4 Specific conductivity as a function of [SDS] in

0.03 mol dm�3 solution at different temperatures in 40% ethanol

composition.



Figure 5 Specific conductivity as a function of [SDS] in

0.03 mol dm�3 solution at different temperatures in pure water.
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Water thus purified was used for all experiments. Sodium
dodecyl sulfate (SDS) (Fig. 2) and butylated hydroxyanisole
(AR grade and purity >99%) were obtained from Merck

Chemicals Ltd. Conductometric measurements were carried
out with a calibrated digital conductivity meter (Cyber Scan
CON 510, Merck). These were performed in a high precision

water thermostat (Harco Make) having a temperature control
accuracy of ±0.05 �C. The specific conductivities (j) of BHA
(concentration 0.03 mol dm�3) solutions at a concentration

range of 1–14 mM dm�3 of SDS have been measured at three
different temperatures (i.e. 25, 30 and 35 �C).

3. Result and discussion

3.1. Conductivity study; determination of CMC

The aggregation behavior of SDS has been evaluated to under-
stand BHA–SDS interactions. Specific conductance (j) was
Table 1 Thermodynamic parameter data – CMC, DH
�

m, DG
�

m,

temperatures.

% Composition

(ethanol + water)

Temperature (�C) CMC (103) D

100 25 5.5 �
30 6.6 �
35 7.0 �

80 25 6.5 �
30 6.7 �
35 7.0 �

60 25 7.3 �
30 7.5 �
35 7.9 �

40 25 5.7 �
30 5.9 �
35 6.2 �

20 25 6.4 �
30 6.6 �
35 7.6 �

0 (H2O) 25 6.0 �
30 6.4 �
35 6.7 �
found to be concentration dependent on SDS (anionic surfac-
tant) in aqueous ethanolic solution of butylated hydroxyani-
sole. Definite inflexion points were obtained suggesting that

j is concentration and temperature dependent, which increases
with the amount of SDS added as well as with the rise in tem-
perature (Figs. 3–5). From these break/inflexion points on the

plots, critical micellar concentrations (CMC) were evaluated
for SDS as reported in Table 1. The micellization caused by
SDS in pure aqueous solution with butylated hydroxyanisole

was found to be lower in comparison to its standard value
(8 mM dm�3). This is due to the presence of a bulkier moiety
as ter-butyl substitution at position-2 and moreover hydroxy
group at position-1 contributing eminently (Fig. 6) for better

interaction and therefore causing micellization much earlier.
Lowering of repulsion between the surfactant head group
and also the hydrophobic nature of CHþ3 of BHA must have

provided surface for the micellization. Thus, the extra hydro-
phobicity offered by BHA seems to reduce CMC values of
SDS. However, an increase in CMC with raising temperature

could be related to the increase of thermal motion of such
hydrophilic (ethanol + water) groups and their solubility
which favors micellization.

3.2. Thermodynamic study

In order to attain further information regarding antioxidant–
surfactant interactions from these experimental data, various

thermodynamic parameters of micellization have been calcu-
lated and examined. The standard Gibbs free energy change
for micellization is given by Eq. (1) (Abuin et al., 1997; Ruso

et al., 1999).

DG
�

m ¼ RT lnðXCMCÞ ð1Þ

where the mole fraction at which the CMC occurs is
XCMC = {CMC of surfactant/(CMC of surfactant + concen-

tration of drug + 55.55)} with concentrations in units of
mM dm�3, R is the gas constant, and T is temperature in
kelvin. The standard enthalpy change for micellization, DH

�

m

is obtained through Eq. (2) (Del et al., 1995)
and DS
�

m values of different compositions at three different

H
�

m (kJ mol�1) DG
�

m (kJ mol�1) DS
�

m (kJ mol�1 K�1)

0.10393 �0.38760 0.01134

0.14965 �0.42725 0.00925

0.20369 �0.48450 0.00802

0.03637 �1.88185 0.07381

0.05238 �2.25066 0.07327

0.07129 �2.61303 0.07262

0.03637 �1.85773 0.07285

0.05238 �2.22253 0.07233

0.07129 �2.57784 0.07161

0.04157 �1.90915 0.07470

0.05986 �2.28238 0.07408

0.08148 �2.64834 0.07333

0.08834 �1.88507 0.07187

0.12720 �2.25441 0.07090

0.17314 �2.58910 0.06902

0.05716 �1.89849 0.07365

0.08231 �2.26209 0.07265

0.11203 �2.62577 0.07182



Figure 6 Overview of different substitutions of BHA.

Figure 7 DH
�

m (kJ mol�1) of SDS as a function of temperature in

% composition [ethanol + water].

Figure 9 DG
�

m (kJ mol�1) of SDS as a function of temperature in

% composition [ethanol + water].

Figure 8 DS
�

m (kJ mol�1 K�1) of SDS as a function of temper-

ature in % composition [ethanol + water].
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DH
�

m ¼ �RT2½d lnðXCMCÞ=dT� ð2Þ

where d ln(XCMC)/dT is the slope of the straight line obtained
by plotting ln XCMC against temperature. The standard entro-
py changes DS

�

m, were determined from Eq. (3) (Chauhan
et al., 2007)

DG
�

m ¼ DH
�

m � TDS
�

m ð3Þ

The negative values of DH
�

m and DG
�

m and positive values of
DS

�

m are indicative of BHA–surfactant interactions as pre-
sented in Table 1. Negative values of DH

�

m (Fig. 7) showed that

the process of solubilization of BHA and the interaction with
SDS is exothermic within the system, thus suggesting strong
interactions between BHA and SDS. These interactions were

found to be maximum at 20% ethanol, showing minima and
at 100% ethanol (min. value), as shown in Fig. 7. This is due
to BHA getting solubilized in SDS and located near the outer
surface of micelle where the negatively charged head group of



Figure 10 Proposed hypothetical model of BHA interaction.
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surfactant and polar/bulkier group of BHA exist. However,

the presence of ethanol component can interact by dipole–
dipole or ion–dipole interactions (Dubey, 2011), whereas in
water; polar groups are hydrated, the intermolecular aggrega-

tion of drug molecules through their hydrophobic parts is ex-
pected to occur in a way analogous to micellization, favoring
their limited aqueous solubilization and this aggregating ten-
dency is affected with the addition of non-aqueous compo-

nents (Sharma et al., 2008). It is because of the presence of
ethanol with small hydrophobic group accommodated in water
structure substitutionally while larger hydrocarbon groups

stays interstitially in solvent system, leading to enhancement
of structure (BHA–Surfactant) (Chauhan et al., 2007). Positive
DS

�

m values indicated that entropy is dominating over the mic-

ellization process within the system (Fig. 8). This observation
can be explained as a re-organization of water molecules at
the micellar solubilization of ethanol. Such an effect would in-
deed cause a smaller decrease in entropy and enthalpy which is

in good agreement with the observed values of DH
�

m and DS
�

m

as reported in Table 1. A decrease in entropy with an increase
in temperature is because of weakening of intermolecular

bonds with temperature. However water is caging around
non-polar solutes, a distorted structure is formed which en-
abled the maintenance of hydrogen bonds that water cannot

form with the hydrophilic core (Vassili et al., 2001). So, in this
process of rearrangement, entropy decreases due to the exo-
thermic character of the process.

It has been observed that DG
�

m values (Gibbs free energy)
are negative and the magnitude remains practically constant
over the entire ethanol composition range (Fig. 9) but for pure
ethanol higher values has been observed. This observation

indicated that BHA is solubilized preferentially in the micellar
aggregates. A decrease in the magnitude of DG

�

m with an in-
crease in temperature clearly reveals that hydrophobic effects

decrease with an increase in temperature which in turn shows
the penetration of these solubilizates into the micelle becomes
less favorable at higher temperatures. From the calculated

thermodynamic parameters it has been depicted that BHA re-
sides in the outer surface or interface of the micelle as shown in
Fig. 10.

4. Conclusion

It can be concluded from the conductivity and thermodynamic

results that the mixture formed in different compositions of
BHA and SDS is an ideal system, shown through the variation
in aggregation behavior and other obtained values. Micellar
interactions of SDS in aqueous-ethanol solutions of BHA by
conductometric and thermodynamic analysis provided valu-
able information regarding structural changes in the constitu-

ent molecules of BHA as well as surfactant which are further
characterized by hydrophobic interaction as well as hydropho-
bic hydration. The decrease in CMC in the presence of BHA is

due to the establishment of additional hydrophobic interac-
tions between hydrophobic parts of surfactant and BHA.
The calculated thermodynamic parameter jTDS

�

mj was found

larger than jDH�

mj suggesting micellization is entropy driven.
Moreover, negative enthalpy ðDH�

mÞ and Gibbs free energy
ðDG�mÞ values indicated that the system is feasible and is of exo-
thermic nature while positive DS

�

m values interpret that the

driving force for micellization is entropic i.e. the tendency of
hydrophobic group of surfactant to transfer from solvent sys-
tem to the interior of micelle.
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