JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- May 2018

B.Tech CSE VIII//M.Tech CSE II Semester

COURSE CODE: 10M11CI212			M11CI212 MAX. MARKS: 35	MAX. MARKS: 35		
COU	JRSE NA	AME: A	dvanced Operating Systems			
COURSE CREDITS: 3 MAX. TIME. 2						
Note	: All qu	estions (are compulsory. Carrying of mobile phone during examinations will be treated	\overline{d}		
as co	ase of un	fair med	ins.	_		
Q1.	[CO4]		a Suzuki-Kasami Algorithm for providing mutual exclusion in distributed systems e help of an example.	[5]		
Q2.	[CO3]	Find or process	27:540 (hr, min, 1/100 sec.), server B requests time from the time-server A . At 510, server B receives a reply from timeserver A with the timestamp of 10:27:375. It the drift of B 's clock with respect to the time-server A 's clock (assume there is no sing time at the time-server for time service).	[4]		
Q3.	[CO3]	figure.	er four processes ($P1$, $P2$, $P3$, $P4$) with events a , b , c as shown in the following Assume that initial logical clock values are all initialized to θ . Evaluate the vector imestamps for each labeled event.	[5]		
		P1 P2 P3 P4	a b c d e f g m/ n q p q			
Q4.	[CO6]	i)	Discuss the various security risks to distributed systems.	[3]		
	, i		In a RSA cryptosystem, Alice uses two prime numbers p = 11 and q = 13 to generate her public and private keys. Find her private key if the public key is 7. Also encrypt M=8 using her private key.	[3]		
Q5.	[CQ2]	Discus	s the following:	[2*3		
م م		ii)	Any four types of transparencies in distributed systems Network operating system vs distributed operating system Goals of distributed systems.	= 6]		
Q6.	[CO4]*	What a	are the issues with sender initiated and receiver initiated algorithms for distributed ling? How these issues can be resolved?	[4]		
Q7.	[CO5]		Differentiate between read replication and full replication algorithms for distributed	[3]		
	_	·	shared memory.	[2]		
		ii)	Identify the issues in implementing distributed file systems.			