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A B S T R A C T   

Artificial intelligence techniques can unravel clinically consistent information in clinical data which in turn assist 
in decision-making. With the help of state-of-the-art techniques, diagnostic systems are used to identify various 
diseases by using different machine learning (ML) techniques. In this paper, a combination of ML techniques such 
as Radial Basis Function (RBF) and Multiple Layer Perceptron (MLP) was used to predict cell decisions (cell 
survival/death) of AKT protein. AKT signalling networks have various downstream consequences on cellular 
metabolism either directly through the regulation of nutrient transporters, metabolic enzymes or indirectly 
through the control of transcription factors that regulate the expression of metabolic pathways which determine 
cell survival, cell growth, and cell death. Experimental analysis was performed in this work to examine the 
signalling networks that determine cell survival/death decisions by using an amalgamation of three proteins for 
ten different combinations in 13 different slices for a period of 0–24 h. P-P plot, Q-Q plot, and histogram tests 
were used for data visualization to determine which distribution the data fits. In addition, goodness of fit test was 
also employed using distribution functions such as Weibull, Exponential, and Normal distribution to determine 
whether the data fits a distribution of a certain population. The results were validated by calculating the MTTF 
values. The results of the analysis performed show that the Weibull distribution yields remarkable results. Also 
the results obtained with the Multiple Layer Perceptron, MLP 10-8-1 was found to perform better than other 
techniques giving an accuracy of 99.33% when the exponential activation function was used. The results of the 
experimental study indicate that it is possible to create self-consistent cell-signalling compendia based on AKT 
protein data that have been computationally simulated to provide valuable insights for cell survival/death 
regulation.   

1. Introduction 

Computational biology is a branch of science that involves the 
application of computer science in the modeling of processes and 
structures of life [1,2]. It requires the use of computational methods for 
the simulation of biological systems. Computational biology is used in 
the modeling of biological systems which help in the sequencing of 
human genome, and in the modeling of the human brain. In recent 
times, computational intelligent techniques are used for computational 
modeling [3]. Computational modeling is used to model real world 
problems with a view to develop a solution. These models contain 
different variables that divide the systems understudied. Simulation of 
these models can be achieved by regulating each of the variables indi-
vidually or in amalgamation, and by observing how these changes affect 

their outcome [4]. There are different types of computational modeling 
techniques which differ from each other in a few dimensions. 
Non-deterministic, deterministic, static, dynamic, discrete, continuous, 
stochastic, individual based, popularity logic, and automata are some of 
the various computational models [5]. Computational modeling is one 
of the important aspects of big data analytics and nowadays has many 
applications in healthcare especially for the early diagnosis of diseases 
[6]. 

Accurate prediction and diagnosis of multi module and complex 
systems by making presumptions on the results of various measurements 
and tests is a general problem occurring in practice [7]. Numerous ex-
amples include speech recognition, medical diagnosis, and 
error-correcting coding. Achieving high diagnostic accuracy requires 
performing a large number of tests, which can be quite expensive. It is 
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therefore essential to improve scalability and cost-efficiency of diagnosis 
by using only the most relevant measurements at any point in time to the 
current system state and observations. Adaptive learning has its origin in 
artificialintelligence and started gaining popularity in the 1970s. Arti-
ficial intelligence and machine learning technologies have the potential 
to alter healthcare by deriving new and important insights from the vast 
amount of data generated during the delivery of health care every day. 

Data related to healthcare are disreputable for being complex and 
voluminous. Computational intelligence is a branch of Artificial intel-
ligence (AI) which aims to transform healthcare by increasing rapid 
progress of data analytic techniques. Two main components categorize 
AI methods. The first component consists of machine learning (ML) 
techniques that analyse organized data such as imaging and genetic 
data. In this respect, ML is used to gather patient attributes for thera-
peutic applications or to deduce the probability of disease outcomes. The 
second portion consists of methods of natural language processing (NLP) 
that derive information from unstructured data such as medical jour-
nals/clinical notes. The NLP procedures target structured data that can 
be studied using ML techniques that are machine-readable. Academics 
and medical practitioners believe that applying AI in many practical 
areas of healthcare will help doctors make better clinical decisions or 
even substitute human judgment. In 2015, the funds used for the anal-
ysis of healthcare data and disease prediction was estimated at $1.48 
billion and this is estimated to increase at a rate of 29.3% (annual 
growth rate) by 2025 [8]. Likewise, the global revenue of $811 million is 
predicted to rise by 40% by 2021 due to the demand for AI in healthcare 
applications. The machine learning-as-a-service-market (MLaaS) is 
projected to hit $5.4 billion by 2022 for the healthcare sector owing to 
the use of AI [9]. A study of the application of AI in healthcare using 
artificial neural networks (ANN) to predict if a patient has cardiology 
was presented in [10]. In healthcare, ANN is used in areas such as speech 
recognition, clinical diagnosis, prediction of length of stay, cancer pre-
diction [11], medical image analysis [12], and drug development [13]. 
Improvement in healthcare organizational management requires 
non-clinical applications [14]. AI aims to impersonate human cognitive 
functions. With the use of AI in both structured and unstructured 
healthcare data, AI has brought a paradigm shift in disease diagnosis, 
detection, and treatment. The ML techniques which are commonly used 
include neural network [15,16], support vector machine (SVM), deci-
sion tree (DT), Naïve Bayes (NB), hidden markov, K-nearest neighbor, 
logistic regression, discriminant analysis, and deep learning (DL). These 
techniques have been used in a number of studies to solve healthcare 
related problems. Authors in Ref. [17] presented a comparative study of 
SVM technique alongside other ML techniques such as particle swarm 
optimization (PSO), Quantum particle swarm optimization (QPSO), 
active set strategy and least square support vector machine (LSSVM) for 
the diagnosis of cancer. In Ref. [18], a review of ML techniques 
employed for the diagnosis of neurological disorder was presented, 
while in Ref. [19], the authors presented a SVM and tongue image 
approach for the diagnosis of diabetes. In Ref. [20], NB technique was 
used for the prediction of breast cancer in the United States (US), while 
authors in Ref. [21] achieved better results using ML techniques such as 
SVM, NB, K-nearest neighbor, and DT. In Ref. [22], an automatic disease 
diagnostic system which used SVM was developed, while in Ref. [23], a 
two dimensional tensor empirical wavelet transform method was used to 
detect glaucoma eye fundus from normal eye images. 

ML is a type of AI technique that encompasses algorithmic tech-
niques which allows machines without specific computer programming 
to solve problems. The data used by ML techniques must be correctly 
pre-processed and identified as useful before they can be trained using 
ML techniques. In ML model building, this is important because the 
model’s accuracy is highly dependent on the reliability of the data in 
terms of clinical veracity. An efficient ML based disease diagnostic sys-
tem capitalizes on the doctor’s reasoning ability and computer’s 
computing competence. ML techniques are known to provide promising 
results in healthcare and related areas such as: image registration, 

multimodal image fusion, computer-aided diagnosis, image annotation, 
image-guided medical aid, image database retrieval, and medical image 
segmentation. In the treatment of cancer, there are different types of 
proteins which leads to cell survival/death which can be identified using 
different ML techniques. For the diagnosis of cell death/survival in 
recent years, protein kinase (AKT protein) has been considered as a new 
area of interest [24,25]. These kinases are used by clinicians for the 
treatment of chronic inflammatory diseases, cancer, etc. Cancer pro-
gression results from complex pathological or physiological processes. 
The growing masses within the normal tissue or ability to break tissues 
are the fundamental characteristics of dissemination. This type of spread 
leads to mortality caused by cancer and also morbidity. The cells which 
occupy the basement membrane or adjacent healthy tissue for dissem-
ination lead to Metastasis, which is also known as tumor invasion [26]. 
The processes of invasion includes penetration of surrounding matrix 
and de-adhesion. The difference between normal invasive growth and 
abnormal invasion is that normal cells end up with polarized structures, 
while tumor cells infiltrate into the surrounding tissues. Genomic DNA 
fragmentation, chromatin condensation, cell shrinkage, membrane 
blebbing, and disassembly into membrane-bound vesicles (apoptotic 
bodies) are some of the major apoptotic events. Necrosis and Apoptosis 
are the various types of cell death [27]. Necrosis is an early cell mem-
brane disruption associated with organelle swelling, while the energy 
needed for intracellular interaction is activated by Apoptosis, which is 
tightly regulated and preserved throughout evolution. Apoptotic cell 
death is known as the progressive series of morphological and 
biochemical changes in phosphatidylserine cell surfaces, nuclear 
condensation and fragmentation, proteolytic cleavage of intracellular 
proteins, and DNA cleavage into nucleosomal fragments. Extrinsic and 
intrinsic pathways are related with the inspiration of cell death signal 
pathways in cancer cells [28]. Cytokines, growth factors, and hormones 
are some extracellular signals which are mediated by receptors that help 
in the transduction of cellular cues in intracellular physiology [29]. 

The clear recognition that defects in AKT signalling underlie a 
diverse array of human diseases makes the clarification of downstream 
targets and functions of central importance to the understanding and 
treatment of such diseases. As the ability to knockout, knockdown, or 
pharmacologically inhibit specific AKT isoforms and related AGC ki-
nases has significantly improved, previously identified substrates should 
be more rigorously confirmed. Poor regulation of the AKT pathways lead 
to diseases such as cancer, insulin resistance, diabetes, cardiovascular 
diseases, and autoimmune diseases. It is regulated by growth signals/ 
factors such as insulin. The AKT pathway leads to glucose uptake and 
utilization, glycogen synthesis, fatty acid synthesis, protein synthesis, 
and cell survival/cell proliferation by increasing anabolism and 
decreasing catabolism. 

Due to the analysis of three input proteins, this paper examines the 
pathways of AKT protein that regulate cell survival/death decisions: 
tumor necrosis factor-alpha (TNF-alpha) acts as a programmed cell 
death cue [30,31], while epidermal growth factor (EGF) [32,33] and 
insulin [34] are markers of survival. The most commonly used deregu-
lated pathway is AKT [35]. Protein Kinase B (PKB), also known as AKT is 
a threonine/serine protein kinase that plays a key role in various cellular 
processes such as cell proliferation, glucose metabolism, transcription, 
cell migration, and apoptosis [36,37]. There are three isoforms of AKT: 
AKT 1/α, AKT 2/β, and AKT 3/γ as presented in Table 1. These three 

Table 1 
Types of AKT.  

Homology 75–84% 90–95% 73–79% Chromosomes 

PH Catalytic Domain RD 

AKT 1/α  Thr 308 Ser 473 14q32 
AKT 2/β  Thr 309 Ser 474 19q13 
AKT 3/γ  Thr 305 Ser 472 1q14 
Regulatory domain (RD); Pleckstrin homology (PH)  
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genes are located in different chromosomes of mammals. AKT1 and 
AKT2 are ubiquitously expressed and AKT3 is found in the kidney, brain, 
and heart. In Table 1, the domain of Pleckstrin homology (PH) functions 
as a triphosphate binding module of phosphatidylinositol 3, 4, and 5. 
The regulatory domain (RD) is located adjacent to the kinase domain in 
the C-terminus. Phosphoinositide-dependent protein kinase 1 (PDK1), 
which is also recruited into the plasma membrane by PIP3 is phos-
phorylated by the ‘Thr’ residues. While “Ser” residues are targeted by 
the rapamycin complex 2 (mTOR C2) mammalian target. AKT is inac-
tivated by protein phosphatises action and is first characterised for its 
function in regulating cell proliferation and survival. Oncogenetic is 
called the over activation of AKT signalling. All AKT isoforms can 
phosphorylate the proline rich AKT substrate but the actin-associated 
protein paladin can only phosphorylate AKT1. AKT is an important 
therapeutic target for the treatment of human diseases because of AKT’s 
essential role in controlling diverse cellular functions. 

In this paper, a ML algorithm was used to enhance competent de-
cisions for AKT related healthcare applications. This paper aims to 
reduce the research gap with regard to developing successful decision 
support techniques for cancer related medical applications. Machine 
learning (ML) is a broad multi-disciplinary area that is rooted in data 
processing, statistical analytics, and algebra knowledge, etc. Machine- 
learning techniques are influencing healthcare decisions, i.e. ANN can 
be used to improve the delivery of healthcare at a reduced cost. A 
computer assisted disease diagnosis system with a high success rate is 
important to help doctors diagnose diseases correctly in circumstances 
that cause experienced doctors to hesitate in making a decision. A cur-
rent exploratory research in this area shows that new experiments seek 
to achieve improved results with a high rate of success. The issue of 
classification can be found in various areas such as the outcomes of 
medical tests that indicate the existence or absence of a disease. Most 
academics have recently tried to propose new classification approaches 
to improve the findings of existing processes. All signalling systems are 
of great interest since they play an important role in curing diseases such 
as cancer, rheumatism, and arthritis. The cell decision process requires 
the analysis of the crosstalk mechanisms between death and survival 
receptors. Cell proliferation is one essential response governed by signal 
transduction. 

This paper therefore presents an adaptive diagnostic technique (MLP 
and RBF) for the purpose of predicting cell decisions (cell death/sur-
vival). The AKT protein pathways that controls cell death/survival de-
cisions using a combination of three input proteins - tumor necrosis 
factor-α (TNF), epidermal growth factor (EGF), and insulin was examined. 
AKT regulates cell metabolism by using binding, cellular survival, and 
different downstream effectors. Different parameters were calculated for 
all the ten different combinations of three inputs proteins for AKT pro-
tein. Out of which the best combination of TNF-EGF-Insulin was iden-
tified using different features like maximum, minimum, standard 
deviation, and mean values, and the results were validated by calcu-
lating the observed, expected, and cumulative values for different 
boundary levels. The selected concentrations were used for the classi-
fication of the cells using ANN techniques such as MLP and RBF. A time 
series 3D plot was generated for all the best combinations and validated 
with the training and testing accuracies. The training and testing results 
yield the same results as that of the ANN model which accurately pre-
dicts cell survival or otherwise cell death. 

The novelty of this paper lies in the use of Q-Q plot and histogram test 
for data visualization which was used to observe the distribution of data. 
Goodness of fit test was used to determine whether the data fits a dis-
tribution of a certain population and the results were validated using 
MTTF test. Normality test was also performed using distribution ID plots 
considering different distribution functions. Different features were 
extracted and were classified using ANN techniques such as RBF and 
MLP by varying the activation functions instead of using other ML or 
deep learning techniques [38]. 

The remaining paper is structured as: Section 2 presents the 

materials and methods used for the prediction of cell survival/death for 
AKT protein. Section 3 describes the findings obtained and the impli-
cations are discussed afterward. This is accompanied by a conclusion 
and suggestion for future work in section 4. 

2. Materials and methodology 

In this section, experimental analysis was performed on HT29 car-
cinoma cells to examine the pathways of AKT which help in controlling 
survival/death decisions due to the amalgamation of three different 
proteins. The AKT/Protein kinase B (PKB)/Ras-related C3 botulinum 
toxin substrate (Rac) are the inceptive kinase with indistinguishable 
properties as Protein kinase C (PKC)/Protein kinase A (PKA). These 
proteins take part in metabolism, progression of survival and apoptosis. 
Phosphatidylinositol-3-kinase (PI-3K)/AKT signalling pathway is oper-
ated through tyrosine kinase (TrK). The phosphoinositide phosphates 
(PIP2 and PIP3) are two identical monomer molecules which composed 
of the plasma membrane and Protein kinase 1 (PDK1). PDK1 combines 
two identical monomers leading to activation of AKT. AKT leads to 
several types of cancers. It regulates the metabolism by binding, cellular 
survival, and different downstream effectors. For transcription of pro- 
survival genes, AKT activates NFkB via IKB kinase. In this research 
paper, the work is divided into two modules: experimental analysis and 
computational modeling. The computational model for cell survival/ 
death was developed using an algorithm which was implemented using 
Statistica Software 11 [39] and Minitab 11 software on an Intel Core 
processor system. This algorithm is presented in Table 2. In total, 300 
values of each combination of input proteins was considered in this 
paper. 

2.1. Experimental analysis 

For the experimental analysis, authors have considered HT29 carci-
noma cells. The human colon adenocarcinoma cell line HT29, is not only 
used to study the biology of human colon cancers, but is receiving 
special interest in studies focused on food digestion and bioavailability 
due to the ability to express characteristics of mature intestinal cells. The 
permanent cell line HT29 was established by Fogh and Trempe in 1975 
[40] from an adenocarcinoma of human colon. HT29 carcinoma cells are 
sensitive to different drugs such as oxaliplatin, 5-fluorouracil, etc. These 
cells are also sensitive to chemotherapeutic drugs that are used for the 
treatment of colorectal cancer. The HT29 cell line is also employed as an 
in-vitro model to learn transportation, absorption, and secretion of in-
testinal cells. The experimental analysis was performed to examine the 
different combinations of three proteins (0, 0.2, 1, 5, 100, 500 ng/ml) 
for a 24 h time period. The 24 h’ time is partitioned as 0, 5, 15, 30, 60, 

Table 2 
Algorithm of the computational modeling procedure for AKT protein.  

Input: HT carcinoma cells 

Output: Computational model resulting in the determination of cell survival/death 

Step 1: Perform experimental analysis on HT carcinoma cells considering three 
different proteins. 

Step 2: Perform analysis for different concentration values (ng/ml) and at different 
time periods. 

Step 3: Prepare heat map for the resultant considering only AKT protein. 
Step 4: Pre-processing the resultant data using goodness of fit test considering 

different distribution functions such as Weibull, Exponential, and Normal 
distribution. 

Step 5: Validate the results by calculating MTTF values for different distribution 
functions. 

Step 6: Extract the various features for testing, training, validation, and overall phases 
considering the ten different concentrations. 

Step 7: Perform classification using the ANN Machine learning technique (MLP and 
RBF). 

Step 8: Computational model output results in the prediction of cell survival/death to 
diagnose cancer and AKT related diseases.  
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and 90 min, and 2, 4, 8, 12, 16, 20, and 24 h. To investigate the efficient 
relationships between the cytokine-receptor interactions, commence-
ment of intracellular signalling cascades, the survival-death decisions 
were interpreted by analysing ten disparate treatments of input proteins. 
The analysis was done for thirteen different proteins, but in this paper 
authors only examined the AKT signals. This study generates a heat map 
of the three different proteins (TNF-EGF-Insulin) with different con-
centrations (0-0-0, 5-0-0, 5-1-0, 0-0-500, 100-0-0, 5-0-5, 0-100-0, 
100-100-0, 0.2-0-1, and 100-0-500). 

2.2. Computational modeling 

In this research paper, P-P plot, Q-Q plot, and histogram tests were 
used for data visualization so as to observe the distribution of data. 
Goodness of fit test was also employed considering distribution func-
tions such as Weibull, Exponential, and Normal distribution to deter-
mine whether the data fits a distribution of a certain population. The 
results were validated by calculating MTTF values. After the fiting and 
normalization of data, different features were extracted. Feature 
extraction is the process of reduction of redundant attributes of an image 
and simplifying the amount of resources required to represent an image 

[41]. The temporal features (time domain features), which are simple to 
extract and have easy physical interpretation are: the energy of the 
signal, zero crossing rate, maximum amplitude, minimum energy, etc. 
The spectral features (frequency based features), which are obtained by 
converting the time based signal into the frequency domain using 
Fourier Transform, like: fundamental frequency, frequency components, 
spectral centroid, spectral flux, spectral density, and spectral roll-off. 
Various features such as minimum, maximum, mean, and standard de-
viation were calculated for testing, validation, training, and overall data 
for all ten different concentrations of the three input combinations. The 
extracted features were classified using the proposed ML technique 
(MLP and RBF). The proposed methodology is shown in Fig. 1. Machine 
learning offers the capability of efficient and effective classification of 
different sensed imagery. The power of ML provides the ability to map 
classes with very multifaceted characteristics and to handle data of high 
dimensionality. In these modern times, the accessibility of large datasets 
coalesced with the exponential growth in calculating power and 
enhancement in algorithms led to an unparalleled flow of awareness in 
the area of ML. Currently, ML algorithms are frequently used for 
dimensionality reduction, clustering, regression, or classification of 
high-dimensional input data. Nevertheless, executing a ML classification 

Fig. 1. Proposed methodology for cell death/survival decision using AKT protein.  
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is not simple and recent literatures provide divergent recommendations 
regarding many concerns. Typically, all ML algorithms are categorized 
into groups based on function, learning style, or the problem to be 
solved. In this paper, artificial neural network (ANN) is used for classi-
fication purpose. In engineering, ANN can be used for two important 
functions, namely as a pattern classifier and nonlinear adaptive filter. 
They are mainly adaptive nonlinear systems that study the performance 
of an input/output map function of a dataset. Adaptive means that 
during the process, the device parameters adjust and this is typically 
referred to as the training period. The ANN parameters are permanent 

after the training process and can be used to solve problems. The ANN 
method is roughly categorized into MLP and RBF. Between inputs, 
weights and sigmoidal activation functions, MLP uses dot products. By 
using back propagation for all layers, training is typically accomplished. 
RBF utilizes Euclidean weight and input distances which can be used as 
Gaussian activation functions that make neurons more locally sensitive. 
RBF possibly uses hybrid approaches with unsupervised learning or back 
propagation for learning. 

Fig. 2. Preprocessing for AKT.  
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3. Results and discussion 

As discussed in the methodology section regarding experimental 
analysis, authors have performed experiments and the results of the 
experimental analysis is presented and discussed in this section. The 
results of the experimental analysis showed the uniqueness of the three- 
fold marker protein selection technique; the first stage which included 
pre-processing techniques, followed by extraction of different features 
like maximum, minimum, standard deviation, and mean values to select 
the best combinations of TNF-EGF-Insulin, and lastly, the detection stage 
which was performed using MLP and RBF technique to provide a high 
prediction accuracy and low complexity. The results obtained when the 
input proteins response of HT29 human colon carcinoma cells was 
examined indicate that the MLP and RBF approach can be used to reveal 
important aspects of biological cue-signal-response systems. In geno-
mics, the databases used for these types of experiments are prevalent, 
primarily because they contain sequence data with consistent start and 
end points with ease of fusing data which are organized and homoge-
neous. Cell-signalling data on the other hand is unstructured and het-
erogeneous and relies on biological content. Ten different 
concentrations were measured and then normalized with three inputs 
and an average of four outputs (phosphatidylserine exposure (PE), 
membrane permeability (MP), nuclear fragmentation (NF) and caspase 
substrate cleavage (CC)), giving a final result of 10 inputs and 1 output. 

The results of the generated heat map are shown in Fig. 2 in form of 
images pre-processed by plotting histograms, P-P plot, Q-Q plot, and 
performing normality tests. Fig. 2(a) shows the P-P plot, Fig. 2(b) rep-
resents the Q-Q plot, Fig. 2(c) gives the histogram representation, and 
Fig. 2(d) represents the empirical cumulative distribution function 
(CDF) of AKT. The goodness of fit using Anderson Darling (AD) values 
were calculated for different distribution functions and the results are 
presented in Table 3. The goodness of fit test is a statistical test that helps 
to determine whether a set of observed values match those expected 
relative to the understudied model. There are different types of goodness 
of fit tests, but in this paper, AD test was used. This test helps to deter-
mine whether the data fits into an expected set of data. This is also 
known as test of normality. This test doesn’t make any assumption about 
the distribution of the data. AD statistic is used to compare the degree to 
which a set of data fits into a certain distribution function to determine 
which one is best. The best function is obtained when the AD value is 
lower than others [42]. Table 3 shows that the Weibull distribution 
function yields remarkable results. To validate the results, the percentile 
and mean time to failure (MTTF) tests were also performed. Most times 
it is very difficult to determine the best distribution on the basis of 
probability plot and goodness of fit measures. The table of percentiles 
(shown in Table 4) helps in comparing the percentiles for various 
different distribution functions. The table shows that based on Normal 
distribution fitted to cell death, 1% of the cells are expected to fail by 
0.45, likewise 10% of the cells are expected to fail by 0.47. MTTF was 
used to compare the selected distribution with a distribution ID plot. The 
normal function has a MTTF of 0.505 as tabulated in Table 5. The 
Weibull function has the largest MTTF of 0.506. The Weibull function is 
selected because of its better MTTF value which validates our results. 
The exponential mean or Mean Time to Fail (MTTF) is calculated using 
1/λ, where λ is a constant for the time which reduces with failure rate. 
The exponential distribution is the only distribution to have a constant 
failure rate. The different features extracted from the ten different 

combinations of three input proteins for AKT protein are presented in 
Table 6. For all the ten combinations of protein, 42.85 was obtained as 
the minimum value, 347.22 as the maximum value, 153.13 as the mean 
value, and 126.11 as the standard deviation for 5-0-5 ng/ml combina-
tions of input proteins. Where 5-0-5 ng/ml signifies 5 ng/ml of TNF, 0 
ng/ml of EGF, and 0 ng/ml of insulin. 

The selected concentrations were used to classify the cells using the 
MLP and RBF ANN techniques. If the ANN techniques expected perfor-
mance is > 0.5, it will lead to cell survival, or else it will lead to cell 
death. For MLP 10-8-1, 10 means ten distinct combinations of three 
distinct input proteins, 8 hidden layers, and 1 output prediction of cell 
survival/death. The MLP 10-8-1 3D plot for the final result is shown in 
Fig. 3. Different threshold values expressed with different colors are 
used to distinguish between cell survival/death. The accuracies of the 
training and testing accuracies of ten different ANN models using MLP 
and RBF are presented in Table 7. The table shows that MLP 10-8-1 gives 
99.33% training accuracy and 99.33% of testing accuracy. It was also 
observed that the maximum individual classification accuracy for sur-
vival is 98.66% and maximum individual classification accuracy for 
death is 100%. Out of 300 testing cases, 148 cases (148/150) were 

Table 3 
Goodness of fit test for AKT protein.  

Distribution Anderson-Darling (adj) 

Weibull 18.44 
Lognormal base 10 23.28 
Exponential 126.69 
Normal 22.63  

Table 4 
Percentiles for AKT protein.  

Distribution Percentage Percentile Error Lower Upper 

Weibull 1 0.447927 3.43E- 
03 

0.441256 0.454698 

Lognormal base 
10 

1 0.458430 2.13E- 
03 

0.454272 0.462626 

Exponential 1 0.005083 2.93E- 
04 

0.004539 0.005692 

Normal 1 0.457161 2.32E- 
03 

0.452614 0.461708  

Weibull 5 0.470660 2.50E- 
03 

0.465793 0.475579 

Lognormal base 
10 

5 0.471685 1.75E- 
03 

0.468273 0.475121 

Exponential 5 0.025940 1.50E- 
03 

0.023164 0.029048 

Normal 5 0.471385 1.85E- 
03 

0.467762 0.475007  

Weibull 10 0.481064 2.07E- 
03 

0.477027 0.485136 

Lognormal base 
10 

10 0.478907 1.56E- 
03 

0.475858 0.481975 

Exponential 10 0.053282 3.08E- 
03 

0.047582 0.059666 

Normal 10 0.478967 1.63E- 
03 

0.475780 0.482154  

Weibull 50 0.509393 1.05E- 
03 

0.507331 0.511464 

Lognormal base 
10 

50 0.505277 1.22E- 
03 

0.502891 0.507674 

Exponential 50 0.350535 2.02E- 
02 

0.313031 0.392532 

Normal 50 0.505715 1.21E- 
03 

0.503353 0.508077  

Table 5 
Values of MTTF for AKT protein.  

Distribution Mean Error Lower 
boundary 

Upper 
boundary 

Weibull 0.506522 1.12E- 
03 

0.504335 0.508720 

Lognormal base 
10 

0.505719 1.22E- 
03 

0.503330 0.508119 

Exponential 0.505715 2.92E- 
02 

0.451608 0.566304  
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correctly classified and 3 cases (3/150) were wrongly classified. Finally, 
it was observed that the training and testing results yield the same value 
as that of the ANN model (MLP 10-8-1), indicating the accurate pre-
diction of cell survival or else death. The designed algorithm when 
tested on AKT protein shows that the MLP provides better results with 
the least run-time complexity for cell survival/death prediction. Since, 
ANNs techniques are adaptive to complex problems, changing the net-
works topology makes them able to handle different levels of complexity 
and predict the desired output of a system when adequate experimental 

data is provided. One of the advantages of neural network is that it al-
lows the modeling of physical phenomena in complex systems without 
requiring exhaustive experimentation or without requiring explicit 
mathematical representations. Non–linear neural network was used to 
uncover important aspects of biological cue-signal-response systems 
using TNF, EGF, and Insulin mediated response of HT-29 human colon 
carcinoma cells. Although several analysis were performed, the hall-
mark of this work is in the description of the predictive model of a 
cytokine-signal-response compendium used to investigate the regulation 

Table 6 
Different extracted features for AKT protein.   

Samples 0-0-0 5-0-0 100-0-0 0-100-0 5-1-0 100-100-0 0-0-500 0.2-0-1 5-0-5 100-0-500 AKT 

Overall Minimum 140.62 164.91 83.77 161.62 81.72 151.16 140.69 143.8 42.85 110.21 0.46 
Maximum 188.99 188.99 155.71 205.73 156.59 178.1 217.53 200.24 347.22 323.42 0.54 
Mean 162.11 177.87 110.13 181.91 123.84 165.68 175.41 173.84 153.13 219.09 0.51 
Standard deviation 14.31 6.15 26.88 11.84 27.4 6.74 24.24 17.86 126.11 79.95 0.02 

Test Minimum 140.79 166.35 83.79 162.51 82.19 151.19 141.25 143.8 42.98 110.72 0.47 
Maximum 188.78 188.91 154.21 205.73 154.65 178.1 215.79 198.38 347.22 323.4 0.53 
Mean 162.04 176.5 108.68 182.8 119.59 166.54 177.3 170.44 171.75 230.53 0.51 
Standard deviation 14.74 6.22 27.11 11.85 28.08 7.24 24.91 18.61 132.39 80.82 0.02 

Train Minimum 140.62 164.91 83.77 161.62 81.72 151.16 140.69 143.92 42.85 110.21 0.47 
Maximum 188.99 188.99 155.71 205.55 156.59 178.01 217.53 200.24 346.22 323.42 0.54 
Mean 161.66 177.72 108.54 182.22 122.48 165.65 176.99 173.12 160.28 221.72 0.51 
Standard deviation 13.77 6.03 26.16 12.19 28.25 6.73 24.66 18.02 128.77 80.89 0.02 

Validation Minimum 141.43 165.88 84.12 161.86 83.01 151.83 142.93 143.87 42.98 110.81 0.46 
Maximum 188.35 188.74 155.17 203.85 153.44 176.94 211.48 199.64 336.94 315.43 0.53 
Mean 164.25 179.94 119 179.56 134.49 164.93 166.15 180.6 101.12 195.4 0.5 
Standard deviation 18.16 4.8 28.95 5.78 4.96 6.67 18.3 5.65 16.63 38.47 0.02  

Fig. 3. 3D plot of MLP 10-8-1 for Final output of residual, target, and output. 
Note: 10 signifies ten different combinations of three different input protein, 8 hidden layers, 1 output cell survival/death. 
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of cell fate with the combination of the input proteins for AKT protein. 
The compendium contains more than 10,000 biochemical measure-
ments based on the states and activities of cell-signalling proteins and 
apoptotic responses in human cells. Experimental databases are com-
mon in genomics, majorly because sequence data are structured and 
homogeneous with clear start and finish points, and they provide a 
relative ease to fuse data. In contrast, cell-signalling data are unstruc-
tured and heterogeneous, and depend on biological content. The results 
were validated by calculating the observed, expected, and cumulative 
values for different boundaries level as tabulated in Table 8. 

In Table 8, the observed frequency (fobs or fexp) is the number of 
individual data points in a specific class. To calculate the total number of 
individual data points in a dataset, sum all the frequencies resulting to N. 
The percent observed is the ratio of fobs and N, (fobs/N). The cumulative 
frequency (cf) represents the number of individual data data points 
located at or below each score and its percentages represent the per-
centage of data accumulated as it moves up the scale. 

A comparison of existing works is also presented in Table 9. Exper-
imental findings show that the proposed technique performs better than 
existing techniques, with the ability to provide low complexity and high 
prediction accuracy. In addition, it showed that self-consistent cell sig-
nalling data based on AKT protein which are replicated computationally 
can give insights into the control of cell decisions. 

4. Conclusion 

Health related problems in the medical field are enormous and 
treatment is becoming more expensive. In recent times, machine 
learning (ML) techniques are being used as a vital tool to solve the 
challenges in this area. This study showed that ML techniques such as 
Radial Based Function (RBF) and Multiple Layer Perceptron (MLP) can 
be used for different levels of healthcare related decision-making and 
diagnosis to aid treatment. Influenced by the ever increasing advance-
ments in the field, medical experts take advantage of the hybrid models 
of ANN with efforts to tailor solutions to healthcare related problems. 
This paper presented a series of experimental analysis to predict cell 

decisions of AKT protein using ten different combinations of three input 
proteins over a span of 0–24 h in 13 different slices. The mechanisms for 
activating AKT/PKB, the lipid second messenger-mediated phosphory-
lation of AKT/PKB have been well described in recent decades, and the 
study of AKT/PKB in promoting cell survival and proliferation is rapidly 
expanding. The data was visualised and normalized for the purpose of 
experimentation to extract various features. Lastly, RBF and MLP tech-
niques were applied for the prediction of cell death/cell survival. 
Promising results were achieved using RBF and MLP techniques for the 
prediction of cell survival/death. In light of this, we hope that a critical 
appreciation of the way they operate and the risks they might pose can 
serve as a motivation for academics and medical specialist to develop 
new and transformative ML techniques to better diagnose cancer and its 
related diseases. In the future, the authors hope to explore the use of 
deep learning to achieve a better performance for cell survival, which in 
turn will entail a variety of optimization techniques to be applied for 
intensified selection of attributes. 
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Table 7 
Comparison of training and testing accuracies using different ANN models for AKT.  

S/No. Network name Training performance Test performance Validation performance Hidden activation Output activation 

1 MLP 10-9-1 96.59 96.01 0.95 Tanh Tanh 
2 MLP 10-4-1 97.54 96.45 0.95 Tanh Identity 
3 MLP 10-13-1 98.48 98.43 0.95 Tanh Exponential 
4 MLP 10-10-1 98.77 98.76 0.95 Logistic Logistic 
5 MLP 10-8-1 99.33 99.33 0.95 Exponential Exponential 
6 RBF 10-22-1 98.76 98.67 0.94 Gaussian Identity 
7 RBF 10-28-1 96.76 95.97 0.95 Gaussian Identity 
8 RBF 10-21-1 98.70 98.67 0.94 Gaussian Identity 
9 RBF 10-26-1 98.40 95.45 0.94 Gaussian Identity 
10 RBF 10-29-1 96.57 96.78 0.94 Gaussian Identity  

Table 8 
Fitting distribution and chi-square value for different boundaries level.  

Upper Boundary Variable: AKT, Distribution: Normal (AKT) 
Chi-Square = 276.04040, Degree of freedom (df) = 6 (adjusted), p value = 0.000 

Observed 
Frequency (fobs) 

Percent 
Observed 

Cumulative 
Frequency (cf) 

Cumul. % 
Observed 

Expected 
Frequency (fexp) 

Percent 
Expected 

Cumulative 
Expected (cf) 

Cumul. % 
Expected  

≤0.46000 0 0.000 0 0.000 4.315 1.438 4.315 1.438  
0.47000 10 3.333 10 3.333 8.821 2.940 13.136 4.379  
0.48000 58 19.333 68 22.667 19.668 6.556 32.804 10.935  
0.49000 32 10.667 100 33.333 35.032 11.677 67.836 22.612  
0.50000 0 0.000 100 33.333 49.851 16.617 117.687 39.229  
0.51000 13 4.333 113 37.667 56.674 18.891 174.361 58.120  
0.52000 93 31.000 206 68.667 51.477 17.159 225.837 75.279  
0.53000 85 28.333 291 97.000 37.355 12.452 263.192 87.731  
0.54000 9 3.000 300 100.000 21.656 7.219 284.848 94.949  
< Infinity 0 0.000 300 100.000 15.152 5.051 300.000 100.000   

Table 9 
Comparison of proposed technique with related works.  

S/ 
No. 

Technique Proteins Accuracy 
(%) 

1. GLCM + k-NN [32] EGFR, IRS, ERK, MK2, 
JNK, FKHR 

75.60 

2. GLDS + k-NN [28] AKT 76.90 
3. DWT + SSVM [36] ERK, MK2, JNK 80.00 
4. GLDS + SVM [28] AKT 84.60 
5. GLCM + SVM [32] EGFR, IRS, ERK, MK2, 

JNK, FKHR 
85.80 

6. Proposed Technique (MLP 
and RBF) 

AKT 99.33  
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