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A Constitutive Model for Creep Rupture
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The paper presents a viscoplastic formulation including dam-
age for creep and creep rupture. The model incorporates a damage
evolution law which includes both the viscoplastic strain rate as
well as stress rate. Primary, secondary and tertiary creep are in-
corporated in this formulation. Model parameters are obtained for
polycarbonate using both creep test and the constant strain rate
test data. It is found that the model can give a reasonable predic-
tions for creep and creep rupture. However the model will need
to be modified for the constant strain rate case. The paper also
presents a multi-axial formulation for the model. The formulation
is general enough so we will be able to apply it to a complex prob-
lem of landslides in soil masses which is stated in the paper as our
plan for future research.

Keywords continuum damage mechanics, viscoplasticity, creep,
creep rupture, constitutive equations, landslides

1. INTRODUCTION
The time dependent behavior of materials as diverse as poly-

mers, metals, soils and rock is well known. These materials
under moderate stresses experience primary creep that is fol-
lowed by secondary creep, during which the strain rate is ei-
ther constant or decreases with time. Under high stresses, the
secondary creep is followed by tertiary creep, during which
the strain rate increases with time and may lead to rup-
ture. There are well established models for secondary creep,
which include both analytical as well as empirical formula-
tions [1]. Recently some models have been developed which
include both secondary as well as tertiary creep leading to
rupture [2].

There has been considerable interest in the application of
damage continuum mechanics in modeling material response
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at high stresses and temperatures. Applications of damage me-
chanics include materials as diverse as metals, polymers, con-
crete, soil and rock [3–15].

This paper presents a viscoplastic-damage formulation for
creep and creep rupture starting from one dimensional con-
ditions and leading to multi-axial conditions. A damage law
which includes both strain rate as well as stress rates is adopted
in which data from both creep tests with constant stress and data
from constant strain tests are used to arrive at model parameters.
The model takes into account the damage during primary creep
in addition to secondary and tertiary creep.

The presentation forms a starting point for a much broader
effort the authors have undertaken—the prediction of landslides
in soil deposits. In northern India, particularly in the Himalayas,
landslides pose a major problem. The highways on mountain
roads normally have on one side unsupported slopes which fail
from time to time at a constant stress level. Sometimes a slope
can take as much as 150 years to fail after the construction of
the highway. The problem is clearly one of creep rupture.

Traditionally a soil mass is treated as a continuum wherein
a rupture surface is not predefined. Hence, the problem falls
within the domain of continuum damage mechanics. For ease in
modeling, the material used in this presentation is polycarbonate
which behaves much the same way as saturated clays—the soils
known to be a main culprit in landslides.

2. THE DAMAGE APPROACH
In the damage approach the macroscopic behavior of the

material is modeled by introducing internal state variables which
in some sense describe the physical state of the material [16].
The approach differs from that of a material scientist since here
we make no attempt to model the mechanisms which take place
at the microscopic level as a material deforms. The approach
also differs from the classical fracture mechanics where the
damage propagates along nearly a preconceived path. Here the
damage is assumed to be uniformly distributed.

The first attempt to formulate damage constitutive equa-
tions by a phenomenological approach was made by Kachanov
[17,18]. He postulated that the effective cross section of a struc-
tural member subjected to a uniaxial load deteriorated gradually.
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Following Kachanov’s effective stress approach, if we define
a damage parameter D as

D = Af

A
(1)

where Af is the damaged part of the apparent cross sectional
area A, then, the area of cross section effectively carrying the
load,

Ae = A − Af (2)

Therefore, the effective stress due to the axial load P can be
written as,

σe = P

Ae

= P/A

Ae/A
= σ(

A − Af

)
/A

(3)

i.e., σe = σ

1 − D
; 0 ≤ D ≤ 1 (4)

where D = 0 for the state of no damage and D = 1 for total
damage. It will be assumed that no damage occurs below the
elastic limit. Therefore, the viscoplastic constitutive equations
can be expressed as,

•
ε =

•
σ

E
σ ≤ σ0 (5)

•
ε =

•
σe

E
+

(
σe − σ0

µ

)n

σ > σ0 (6)

Substituting for the definition of the effective stress σe,
Eq. 4, we get the viscoplastic constitutive equation accounting
for damage.

•
ε =

•
σ

E (1 − D)
+ σ

•
D

E (1 − D)2 +
(

σ − σ0 (1 − D)

µ (1 − D)

)n

(7)

In this work, we shall neglect the second term accounting for
the effect of damage rate on the strain rate, to have

•
ε =

•
σ

E (1 − D)
+

(
σ − σ0 (1 − D)

µ (1 − D)

)n

(8)

or

•
ε =

•
σ

E
′ +

(
σ − σ′

0

µ′

)n

(9)

where primes are used to denote the current values of the mate-
rial parameters. Thus,

E′ = E (1 − D)
σ′

0 = σ0 (1 − D)
µ′ = µ (1 − D)

(10)

The rate of progressive degradation of each parameter is then
written as

•
E

′
= −E

•
D

•′
σ
0

= −σ0
•
D

µ′ = −µ
•
D

(11)

A rule for the evolution of damage remains to be postulated.
Here, a knowledge of materials science can be a guide in iden-
tifying processes that are responsible for the deterioration of
stiffness parameters. Two distinct processes may induce dam-
age in viscoplastic materials. An increase in stress generates
stress concentrations along the grain boundaries inside a ma-
terial. And, if the stress rate is high, the stress concentrations
do not have time to relax and a crack growth is triggered ev-
erywhere in the material resulting in the overall degradation of
its stiffness. On the other hand, if the strain rate is too high the
viscoelastic threshold along the crystal planes is exceeded and
the gliding of grains takes place resulting in viscoplastic defor-
mations. A damage rule of the following form, due to Mroz and
Angellilo [19] seems appropriate.

•
D = a

•V
ε + b

•
σ (12)

where a and b are two material constants. The first term of the
damage rule accounts for the degradation due to the growth of
viscoplastic strains (viscous damage), whereas the second term
accounts for microcracking initiated by the increasing stress
(stress damage). During creep under constant stress, the second
term vanishes, whereas during relaxation under constant strain,
the first term may be ignored. No damage occurs within the
elastic domain and for negative stress rates.

2.1. Constitutive Equations for Creep Rupture
Figure 1 shows a typical creep curve. The curve is generally

divided into three parts.

i Instantaneous deformation followed by primary creep.
ii Steady state creep, where the creep rate is essentially con-

stant.
iii Tertiary creep, where the creep rate increases rapidly leading

to creep rupture.
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FIG. 1. A typical creep curve.

Due to the instantaneous application of stress σC , the initial
strain can be computed as follows

•
D = b

•
σ

(
•V
ε = 0

)
(13)

Initial damage,

D (0) = b

∫ σC

σ0

dσ = b (σC − σ0) (14)

Therefore,

ε (0) = σ0

E
+ (σC − σ0)

E [1 − D (0)]
(15)

We will assume that it is the initial damage which is respon-
sible for the primary portion of a creep curve. Thus, applying
the Odqvist’s method, ε (0) takes care of the strain incurred due
to the primary creep, as shown in Figure 1.

Steady state and tertiary creep are modeled by Eqs. (8) and
(12) Since

•
σ = 0,

•V
ε =

[
σC − σ0 (1 − D)

µ (1 − D)

]n

(16)

or

•
D = a

[
σC − σ0 (1 − D)

µ (1 − D)

]n

(17)

Eq. (17) can be solved incrementally for the initial condition
given by Eq. (14). Creep rate is then obtained for each increment
from Eq. (16).

2.2. Constitutive Equations for Constant Strain Rate
Tests

Since,
•
ε = R (the rate of strain) we get from Eq. (8)

dσ

dt
= E (1 − D)

[
R −

{
σ − σ0 (1 − D)

µ (1 − D)

}n]
σ > σ0

(18)

Substituting for
•V
ε and

•
σ into the damage rule, Eq. (12), we

get

dD

dt
= a

[
σ − σ0 (1 − D)

µ (1 − D)

]n

+ tbE (1 − D)

[
R −

{
σ − σ0 (1 − D)

µ (1 − D)

}n]
(19)

Eqs. (18) and (19) are ordinary differential equations of the
form

•
σ = F (σ,D)
•
D = G (σ,D)

(20)

respectively, and can be solved by the methods of numerical inte-
gration. A combination of Runge-Kutta and predictor-corrector
methods is used in this work.

3. EVALUATION OF MATERIAL PARAMETERS AND
PREDICTIONS

The model has 6 material constants which have been eval-
uated for polycorbonate. E and σ0 are determined from the
constant strain rate tests. For the polycarbonate data shown in
Brinson [20] and Brinson et al. [21], E = 350, 000 psi and
σ0 = 4700 psi. Next, the constant b is found from a constant
strain rate test performed at a very high strain rate. If the strain
rate is sufficiently high, the material suffers only stress dam-
age. Since no viscous deformations are assumed to occur in
such a case, we obtain plasticity like constitutive equations, i.e.,
elasticity equations with damage.

•
D = b

•
σ (21)

or,

D = b

∫ σ

σ0

dσ = b (σ − σ0) (22)

and

•
ε =

•
σ

E(1 − D)
(23)

Combining Eqs. (22) and (23)

dσ

dt
+ REbσ = RE (1 + bσ0) (24)
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For the initial condition. σ = 0 at t = 0, the equation has
the solution

σ = 1 + bσ0

b
lef t(1 − e−εE0b) (25)

As the strain becomes large the stress tends to a horizontal
asymptote

σf = 1

b
+ σ0 (26)

i.e.,

b = 1

σf − σ0
(27)

And, when the stress reaches its asymptotic value, D attains
a value of unity and the fracture occurs, Figure. 2.

For the polycarbonate, to find b, we used the stress-strain
curve with the head rate of 20 in/min and the strain rate of 5.5 ×
10−2 per minute. Since the asymptotic value of stress is difficult
to estimate, Eq. (18) was fitted to the curve to find b = 0.000171.

Having determined E,σ0 and b we proceed on to find the
viscosity parameter µ. Again the stress-strain curve with the
head rate of 20 in/min is used. We find the lowest value of
µ which will fit the curve utilizing our main constitutive Eq
(5) and (8) along with the damage rule, Eq. (12). At this stage
the constant a is taken to be zero. µ was found to be nearly
10 × 106 psi.

Next, the exponent n is evaluated from the short term creep
tests, Figure 3. The value of D is entirely due to the initial
damage, D = b(σC − σ0), and its evolution during first 30 min.
of creep tests is negligible. An average value of n for the three
creep curves was found to be 1.25.

σo

(σo + 1/b)

σ

ε

E 

FIG. 2. Stress-strain response for elastic damage.

Now, a creep repture test is utilized to determine the damage
constant a. Its value has to be 0.29 so that the creep rupture
for a stress level of 7952 psi takes place in approximately
40 hours in accordance with the experimental observations
[20, 21].
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FIG. 4. Long term creep test.

A summary of the material parameters for the polycarbonate
is as follows:

E = 350, 000 psi

σ0 = 4700 psi

µ = 10 × 106 psi

n = 1.25

a = 0.29

b = 0.000171

With these parameters, the predictions for creep including
damage are shown in Figure. 3 through 5. It can be observed
that the model can give reasonable predictions of both short term
creep as well as creep rupture. The model can also be used to
predict constant strain rate response as illustrated in Figures 6
and 7 for the strain rate data of Table 1. However, the response is
poor for low strain rates and the model will need to be modified
for this case.

TABLE 1
Strain Rate data

Curve Head Rate (in/min) Strain Rate

R1 20 5.5 × 10−2

R2 2 5.5 × 10−3

R3 .2 5.5 × 10−4

R4 .01 2.75 × 10−5

R5 .002 5.5 × 10−6
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FIG. 5. Evolution of damage during creep.
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FIG. 7. Evolution of damage during constant strain rate tests.

4. CONSTITUTIVE EQUATIONS FOR MULTIAXIAL
LOADING

Just as in the theory of plasticity, we postulate here a yield
surface within which a material behaves elastically. And, after
the stress path reaches the yield surface, viscoplastic strains
begin to accrue. A notable difference between the theory of
plasticity and that of viscoplasticity is, that in the latter, the
stress state does not have to stay on the yield surface. In fact, it
is the excess stress over the current yield surface which governs
the viscoplastic strain rate. If we imagine a potential (or loading)
surface passing through the current stress state, then the rate of
viscoplastic strains is assumed to be proportional to the distance
between the potential and yield surfaces measured along the
stress path. In this work, we shall assume the potential and yield
surfaces to be of the same shape. Thus, the viscoplastic flow
rule can be expressed as,

•V

ε ij = < F (σ − σ′
0) >n

(µ′)n
∂F (σij )

∂σij

(28)

where, F (σij ) = σ′
0, denotes the yield surface and , F (σ − σ′

0),
the magnitude of stress vector between the current stress state
and the yield surface. The brackets, <>, imply that only positive
values of the expression contained are admissible. When the
yield surface is of von Mises type,

F (σij ) =
√

3J 2 − σ′
0 = 0 (29)

where J 2 is the second deviatoric stress invariant and, σ′
0 is

the current value of the uniaxial yield strength. The Flow rule,
Eq. (28), in one-dimension reduces to

•V

ε =
(

σ − σ′
0

µ′

)n

for σ > σ′
0 (30)

This expression is used in Eq. (10). Note that,

σ′
0 = σ0 (1 − D)

µ′ = µ (1 − D)
(31)

More general expressions for degradation are possible
such as

σ′
0 = σ0 − D (σ0 − σr ) (32)

where σr is the residual value of the yield strength, or

σ′
0 = σ0 − D − D0

1 − D0
(σ0 − σr ) (33)

which accounts for the initial value of the damage parameter,
D0.

In order to define the evolution of damage, we postulate a
damage surface in three-dimensional stress space:

�
(
σij

) = c (34)

The stress damage takes place only when the stress state lies
on the damage surface and the stress path is directed exterior to
the surface as in the theory of plasticity. The surface contracts
during the deformation process. The evolution of damage can
be defined as,

•
D = •

Dε + •
Dσ

= a

(
δij

•V

ε ij

)
+ b

(
δij

∂�

∂σij

)
•
�

(35)

where, the stress damage,
•
Dσ, is admissible when

•
� = ∂�

∂σij

•
σij > 0 (36)

A parabolic damage surface of the form, J 2 + mJ1 − c = 0,
seems appropriate inasmuch as damage has been found to be
dependent on the hydrostatic pressure, and the form is free of
corners and discontinuities.

If we assume that the damage surface is conical (Drucker-
Prager type),

� =
√

3J̄2 + mJ1 − c = 0 (37)



CONSTITUTIVE MODEL FOR CREEP RUPTURE 465

where m can be taken as an integer number and,

c = c0 +
∫ •

� dt (38)

then, for a uniaxial test Eq. (38) reduces to

•
D = a

•V
ε +b(1 + m)(1 + m)

•
σ (39)

which reduces to Eq. (12) only for the value of m equal to zero.
In that case, the damage and yield surfaces would be similar.

No confusion should arise here between the concepts of hard-
ening and damage. Material science recognizes the fact that
two entirely different mechanisms are responsible for the two
processes. Hardening occurs due to the inhomogenous nature
of microstructure and the build up of elastic energy in its mi-
croelements, whereas damage takes place due to microcracking.
Hardening is a function of total viscoplastic work, the damage
is a function of stress rate and the viscous strain rate.

Perhaps the picture will be clearer if we assume that the ma-
terial hardens until the peak stress level is reached. Thereafter,
hardening stops and the damage begins leading to strain soften-
ing or necking phenomenon. When the damage and yielding are
simultaneously activated, as is the case in this work, c0 = σ0 in
Eq. (38).

For the von Mises yield surface, Eq. (29), and the Drucker-
Prager damage surface, Eq. (37), the necessary equations for the
model are summarized as follows.

J̄2 = 1

2
sij sij (40)

•V

ε ij = 1

µ(1 − D)
< (3J 2)

1
2

−σ0 (1 − D) >n

( √
3

2
√

J 2

sij

)
(41)

•
σij = De

ijk1

(
•
εk1 − •V

ε k1

)
(42)

where, [De] is the elasticity constitutive matrix.

∂�

∂σij

=
√

3

2
√

J 2

sij + mδij (43)

•
D = •

Dε + •
Dσ

i.e.,

•
D = aδij

•V

ε ij + b

(
δij

∂�

∂σij

) (
∂�

∂σk1

•
σk1

)
;

•
� > 0 (44)

•
Dσ = 0; for

•
� ≤ 0 (45)

= 0; for
(
3J 2

) 1
2 < c (46)

Eq. (41) can be incorporated into a finite element program
by a procedure such as that of Zienkiwicz and Cormeau [22].
The formulation above lies within a more general theoretical
framework recently presented by Einav et al. [23].

5. CONCLUSIONS
The paper presents a viscoplastic formulation including dam-

age for creep and creep rupture. The model incorporates a dam-
age evolution law which includes both the viscoplastic strain
rate as well as stress rate. Primary, secondary and tertiary creep
are incorporated in this formulation. The model parameters are
obtained for polycarbonate using both creep test and constant
strain rate test data. It is found that the model can give reason-
able predictions for creep and creep rupture. However the model
will need to be modified for the constant strain rate case.

A multi-axial generalization of the model is also presented.
The three-dimensional framework is fairly comprehensive inas-
much as it can be applied to polymers as well as pressure de-
pendent media such as geomaterials. However, a detailed im-
plementation for the multi-axial model is not included.

It is hoped that the work presented forms a good starting
point in our quest for a damage model for predicting landslides
in soil deposits.
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