Roll No:			
----------	--	--	--

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- April 2018

B.Tech IV Semester

COURSE CODE: 10B22CI421

MAX. MARKS: 25

COURSE NAME: Computer Organisation

COURSE CREDITS: 04

MAX. TIME: 1.5 Hrs

Note: All questions are compulsory. Each question carries equal marks. Carrying of mobile phone during examinations will be treated as case of unfair means.

- 1. (a) A computer uses a memory unit with 256 K words of 32 bits each. A binary instruction code is stored in one word of memory. The instruction has four parts: an indirect bit. an operation code, a register code part to specify one of 64 registers, and an address part.
 - i. How many bits are there in the operation code the register code part, and the address part?
 - ii. Draw the instruction word format and indicate the number of bits in each part.
 - iii. How many bits are there in the data and address inputs of the memory?
 - (b) For each of the following 16-bit instructions, give the equivalent four-digit hexadecimal code and explain in your own words what it is that the instruction is going to perform. Give the symbolic representation of each instruction.
 - i. 0001 0000 0010 0100
 - ii. 1011 0001 0010 0100
 - iii. 0111 0000 0010 0000
 - iv. 0111 0000 0000 0010
 - v. 1111 0000 0100 0000
- 2. (a) Draw and explain the hardwired Control Unit for the basic computer.
 - (b) What are Instruction Cycle Phases? Draw and explain the common bus with timing clock for Instruction cycle: [Fetch Decode [Indirect] Execute] *

T0: AR ← PC (S0S1S2=010, T0=1)

T1: $IR \leftarrow M$ [AR], $PC \leftarrow PC + 1$ (\$0\$1\$2=111, T1=1)

T2: D0, ..., D7 \leftarrow Decode IR(12-14), AR \leftarrow IR(0-11), I \leftarrow IR(15)

3. (a) The memory unit of the basic computer is to be changed to a 65,536 x 16 memory, requiring an address of 16 bits. The instruction format of a memory-reference instruction remains same for I = 1 (indirect address) with the address part of the instruction residing in positions 0 through 11. But when I = 0 (direct address), the address of the instruction is given by the 16 bits in the next word following the instruction. Modify the micro operations during time T₂ T₃ (and T₄ if necessary) to conform with this configuration.

(b) Write RTL for each memory referenced instruction.

4. (a) Specify the RTL for following control inputs, that will be executed during the next clock cycle.

-					900. *	449
	S ₂	S_1	S_0	LD of register	Memory	Adder
a.	1	1	1	IR	Read	
b.	1	1	0	PC	410-5	
c.	1	0	0	DR	Write	
d.	0	0	0	AC 🔏	M. 24	Add

(b) What is the value of r in Register Reference Instructions? Specify the RTL for following register instructions.

5. (a) Draw and explain the Input-Output interface with Accumulator.

(b) Write all the Input-Output Instructions with RTL for:

