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Abstract: Motivation: Till date vast varieties of studies have given major 
attention to TGFβR1 and TGFβR2 receptors in colorectal cancer (CRC), 
however TGFβ1 remains to be poorly understood. It is still a major challenge to 
identify the functional SNPs in a CRC-related TGFβ1 gene. Method: In this 
study, total 136 mutations were retrieved for TGFβ1 out of which non-
synonymous 37 mutations were considered. Initially sequence and structure 
based tools were used for damage prediction. The mutations that were predicted 
to be damaging by majority of the tools were then considered for the structure 
dynamics study. Result: In this paper we targeted only one mutation type, i.e., 
L28F to evaluate its effect on disease. Structure conservation studies have been 
performed to infer the effect of the mutation at the region with respect to its 
conservation profile. The study depicts the changes occurring to the overall 
structure due to a single amino acid variation (i.e. L28F).  
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computational systems biology approach. More specifically, he is working on 
DNA repair mechanisms and their role in malignancies. He is also exploring 
Alzheimer’s Disease (AD) through myriad of computational approaches. 

This paper is a revised and expanded version of a paper entitled ‘Structure 
based inference of functional single nucleotide polymorphism ‘L28F’ and to 
determine its role in TGFβ1 allied colorectal cancer (CRC)’ presented at Inbix’ 
2017, BISR, Jaipur, India, 9 November, 2017. 

 

1 Introduction 

Colorectal cancer (CRC) sometime also called as the cancer of bowel or the colon; it 
initiates from the colon or sometimes from rectum (Haggar and Boushey, 2009). It is the 
third one majorly diagnosed malignancy and the fourth leading cause of cancer related 
deaths worldwide. It is expected to increase by the estimate of about 2.2 million 
incidences and 1.1 million cancer allied deaths by the year 2030 (Arnold et al., 2016). 
Mortality rate is prominent in the developed countries and risk is relatively higher in men 
than in women (Tariq and Ghias, 2016; Hisamuddin and Yang, 2006). There are many 
other factors also that can enhance the risk of cancer like chemical, environmental, 
lifestyle, etc., which are responsible for the CRC initiation and its metastasis (Haggar and 
Boushey, 2009; Grady and Markowitz, 2002).  

Amongst the above mentioned factors DNA repair mechanisms play important role in 
maintaining inner biochemistry of the cells. It is the major player that take care of the 
damages that happens inside the cells, but if this mechanism becomes faulty it could lead 
to the major damages that remains unrepaired (Markowitz and Bertagnolli, 2009; 
Gavande et al., 2016; Dietlein et al., 2014). According to studies mismatch repair (MMR) 
mechanism act as a major player in regulating CRC (Peltomaki, 2001). Majority of the 
cancers were reported to be resistant to the growth inhibitory effects of TGFβ1 (Elliott 
and Blobe, 2005; Singh et al., 2007; Cui et al., 1996; Park et al., 2000). TGFβ1 induces 
and regulates apoptosis, through the Smad mediated pathway (Yamamura et al., 2000). 
However, in case of the Smad-independent pathway, Ras/Raf mediated mitogen-activated 
protein kinases (MAPK) pathway (Fink et al., 2001; Hanafusa et al., 1999) drives the 
proliferation of human colon and as well as that of prostate cancer cells (Park et al., 2000; 
Yan et al., 2001). Specifically wnt and TGFβ pathways are the major suppressors of the 
colon (Takaku et al., 1998), and pancreatic (Cullingworth et al., 2002) cancers, which 
they either execute individually or in a coordinated manner.  

Transforming growth factor-beta (TGFβ) mediates several effects such as growth 
inhibition, apoptosis, and epithelial to mesenchymal transition (EMT) process, that 
augments cell migration and invasion (Akhurst and Hata, 2012). TGF-β1 is encoded on 
chromosome 19q; and is a precursor protein containing 391 amino acids. Out of which 
the C-terminal 112 amino acids constitute the mature protein having molecular weight of 
25kDa (Rhyu et al., 2005). Inhibition of TGF-β1 signalling pathway has been reported to  
prevent progression and metastasis of certain advanced tumours (Ono et al., 2012). TGF-
β1 is known to have a strong immunosuppressive effect including those on the tumour 
cells. In our study the TGFβ1 gene, A to G transition at amino acid number 28 changes 
leucine to phenylalanine and are termed Leu28Phe (L28F) mutation (Table 1) have been 
studied. 
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Table 1 Genotypic information for the studied SNP 

SNP ID Mutation type SNP region AA change 
Observed allele 

change 
rs199946261 Missense Exon6 L28F A/G 

TGF-β1 has an important role in development, tissue repair, immune defense 
inflammation and tumorigenesis (Skeen et al., 2012). The studies have found to have 
involvement of the TGF-β1 in CRC in modulating the degree of angiogenesis (Ferrari  
et al., 2009). Drug resistance (oxaliplatin) has been noticed for the TGF-β1 via the 
promotion of EMT, cancer stem cell-like properties, crosstalk with interleukin 6, 
regulating mismatch repair system inducing cell cycle arrest and autophagy in several 
cancers (Asiedu et al., 2011). This shows that blocking the TGF-β1 pathway may 
enhance the efficacy of chemotherapy under certain circumstances. Pharmacological 
inhibition of TGFβ could be used as a therapeutic strategy to hinder tumour progression, 
improve drug delivery and efficacy of the treatment. The TGFβ targets (e.g., 1D11, 
AP12009, SD-208) as well as TGFβ inhibitory drugs (e.g., tranilast) have shown to 
reduce tumour progression and metastasis in vivo, mainly owing to augmentation of the 
immune response (Papageorgis and Stylianopoulos, 2015). It is anticipated that the 
studied mutational change in TGFβ will provide additional opportunity to scrutinise other 
agents for the therapeutic interaction of the CRC. 

Several evidences support the significant role of TGFβ1, TGFβR1, and TGFβR2 in 
signalling which in case of deletion can cause angiogenesis (Dickson et al., 1995; Oshima 
et al., 1996; Larsson et al., 2001). In normal condition TGFβ1 hamper the propagation of 
normal intestinal epithelial cells (Kurokowa et al., 1987), and control the proliferation 
and differentiation of normal colonic epithelium (Avery et al., 1993). TGFβ1 is known to 
be the most abundant and ubiquitously expressed isoform of TGFβ (Xu and Pasche, 
2007). Therefore, the study of TGFβ1 could prove to be clinically beneficial for diagnosis 
of tumours. Based upon the established and essential role of TGFβ1 we targeted our 
study in the site specific mutation analysis. The pipeline of the analysis performed for the 
structural studies are mentioned in Figure 1. 

2.1 SNP’s collection and damaging ns-SNPs prediction 

Data collection for the SNPs was done using dbSNP (Sherry et al., 2001) and COSMIC 
(Forbes et al., 2011) databases using keyword ‘TGFβ1’ and disease ‘colorectal cancer’. 
This in total resulted in 136 mutations including misense, intronic variants, and non-
synonymous (ns-SNPs). By considering the focus only on ns-SNPs, the data has left only 
to 37, final analysis were performed only on these ns-SNPs. The nsSNP mutations were  
predicted to be damaging or not using an array of sequence based (PolyPhen (Adzhubei 
et al., 2013), I-Mutant Suite (Capriotti et al., 2005), PROVEAN (Choi and Chan, 2015),  
MutPred (Li et al., 2009), SNP & GO (Calabrese et al., 2009), PredictSNP (Bendl et al., 
2014), MAPP (Stone and Sidow, 2005), SNAP (Bromberg and Rost, 2007), SIFT (Sim  
et al., 2012), Mutation Accessor (Reva et al., 2011)) (Supplementary Table 1) and 
structure based (SNP Effect 4.0 (De Baets et al., 2012), Eris (Yin et al., 2007),  
SNP&GO3D (Capriotti et al., 2013)) SNP damage prediction tools (Supplementary  
Table 2). Out of these 37 ns-SNPs, we considered L28F for the analysis as it was found 
to be on the interface and therefore thought to be the significant ns-SNP that makes the 
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higher chances of altering the cavity site which could therefore hinder the binding of the 
ligand. Also, this SNP were predicted to be damaging by maximum of the tools, and 
therefore taken further for structural analysis and simulations. 

Figure 1 Flowchart for the structure analysis (see online version for colours) 

 

2 Materials and methods 

2.2 Structure selection for TGFβ1 

For performing structure level analysis, the structure search was done using the keyword 
‘TGFβ1’ in Protein DataBank (PDB) (Sussman et al., 1998), the search resulted in a five 
structures, i.e., three NMR spectroscopy (1KLA, 1KLC, 1KLD) and two X-ray 
crystallography structures at a resolution of 3Å (3KFD, 4KV5). Now the question arouse 
that what structure could be used for the analysis, therefore we decided to make use of 
the Theseus-3D tool (Theobald and Wuttke, 2008). Theseus-3D is a maximum likelihood 
(ML) method that performs the PCA (principal components analysis) for examining the 
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complex correlations among atoms within a structural ensemble. From this 4KV5 was 
found to be most suitable as it comes out be median structure among all. Therefore, its 
PDB structure was obtained from the PDB with both A and B chains as the structure was 
homodimer. PyMOL’s mutagenesis tool was then used to create the mutations on the 
structure (DeLano, 2002), where the rotamers for each mutant amino acid with least 
steric clashes were selected.  

2.3 Molecular dynamics (MD) 

Molecular dynamics helps to evaluate the structural stability of the native and mutant 
proteins. In our study molecular dynamics simulations were performed using GROMACS 
package v5.1.2 package (Abraham et al., 2015). The dynamics was run using optimised 
potential for liquid simulations (OPLS) force field on all-atom (Siu et al., 2012). The MD 
simulation was executed for the L28F variant including the native one for the time period 
of 100 ns each. Solvation (aiding the water molecules) was done using water model 
TIP3P inside a triclinic box (Jorgensen et al., 1983). The counter ions were added using 
the genion tool so as to replace the solvent molecules by monoatomic ions (i.e., Cl), four 
chloride ions were added each for L28F, and for the wild protein with most favourable 
electrostatic potential. Particle-based method was used to calculate the electrostatic 
potential on all atoms. After then structure was relaxed through energy minimisation 
steps of 50,000 which is then followed by solvent equilibration and the equilibration of 
the system for 100 ps. 100 ns run of production step was performed for 100 ns  
using 100 ps time step for the integration of the equation of motion in the NPT at 1 
atmospheric pressure. The MD simulation coordinates were saved at 100 ps time period 
for carrying further analysis. Further processing and analysis were carried out using 
GROMACS analysis tools and trajectories were visualised using PyMOL (DeLano, 
2002) and VMD (Humphrey et al., 1996) and plots were plotted using gnuplot (Williams 
et al., 2012). 

2.4 Determining polar and non-polar Interactions 

The polar and non-polar interactions play a key role in determining the structural impact 
on the protein. For determining the interaction types we have used the Ligplot; it is a 
program that make use of a standard PDB file that generates schematic 2D 
representations of protein-ligand complexes (Wallace et al., 1995). The program is helps 
to show instructive representation regarding the intermolecular interactions like hydrogen 
bonds, hydrophobic interactions etc. The polar interactions obtained through Ligplot were 
cross validated using the H-bond command of the GROMACS, and the interactions that 
were actually existed have shown in Table 2. 

Table 2 STRIDE residue conformations 

 Phi-angle (Φ) Psi-angle (Ψ) 
Solvent accessible surface 

area (SASA) 
Leu28 –109.84 –18.68 6.8 
Phe28 –119.06 –32.42 37.2 
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3 Results and discussion 

3.1 Structural conservation studies 

CONSURF is a server that has been widely used for determining the functional regions in 
proteins (Ashkenazy et al., 2016). It uses empirical Bayesian inference to calculate the 
evolutionary conservation, in sequence as well as the structure of the proteins and nucleic 
acids. Generally the degree to which an amino acid position is conserved strongly 
depends on its structural and functional importance. In our study, when structural 
conservation was accessed for the mutant (Leu28) form of the protein; it attained high 
level of conservation score (Figure 2(a)). It suggests the significance level of the residue 
for the structural and functional impact. Similar procedure was applied to the mutant one 
(Phe28), this also shown to have good conservation score (lightpink colour) (Figure 2(b)). 
Therefore the mutation in this region is not favourably accepted as it may lead to the 
damaging effect.  

Figure 2 CONSURF results (see online version for colours) 

 

Figure 3 Secondary structure prediction through PDBsum. Prediction showing the position 
number 28 tends to be in a helix before the mutation inclusion (see online version  
for colours) 

 

To determine the position of the Leu28 at the structure level, structure prediction  
was captured from the PDBSum (Laskowski et al., 2017). Through PDBSum it was 
found Leu28 lies at helix conformation before mutation (Figure 3). For confirming these 
results we have used STRIDE web server. STRIDE (Heinig and Frishman, 2004) provide 
the secondary structure assignment for the given structure. Figure 4 have shown the  
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position of the Leu28 (present in α-helix region) and Phe28 position (present in turn 
region), both of them fall in allowed region it has also shown the phi-psi angles along 
with the solvent accessible surface area (SASA) (Table 2). 

Figure 4 Ramachandran Plot signifies the position of Leu28 and the mutated Phe28 (see online 
version for colours) 

 

3.2 MD analysis 

Through the MD simulation it is possible to observe and predict the structural effects 
occurring due to the mutational events that could be proved to provide possible insights 
in CRC. The MD simulation was completed for 100 ns time period for the each native 
and mutant structure. Both the global and local factors were analysed from the molecular 
dynamics studies. Globally, the root mean square deviation (RMSD) (Figure 5), root 
mean square fluctuation (RMSF) (Figure 6), radius of gyration (Rg) (Figure 7), solubility 
accessible surface area (SASA) (Figure 8), were analysed to check the stability of MD 
simulation and to determine when does the time of equilibration attained. 

Significant changes were observed within the native and the mutant form of the 
protein 4KV5. It was observed that the mutant L28F (RMSD of 3.1Å) was similar to the 
native’s (final RMSD of 2.9Å) trajectory until 50 ns, however after 50 ns these mutants 
were observed to be different in comparison to the native trajectory that reflected the 
deviation of the structural coordinates from its actual position that could result into the 
structure alterations (specifically at secondary structure level). By looking at the 
individual residue’s fluctuations throughout the 100 ns simulation, there is relatively 
higher residue fluctuation in the mutant in comparison to the native structure specifically 
for the Arg94, and Tyr50 residues (Figure 6).  

The radius of gyration was found to be 2.12 nm for the mutant (L28F) which was 
almost equivalent to the wild (2.11 nm). Radius of gyration tells that a globular protein 
becomes a linear molecule if undergone denaturation. Therefore from the analysed radius 
of gyration data we found that the structure remains intact and globular throughout the 
simulation and thus confirms that the MD trajectories are stable (Figure 7).  
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Figure 5 Graph displaying the root mean square deviation (RMSD) (see online version  
for colours) 

 

Figure 6 Graph displaying the root mean square fluctuation (RMSF) (see online version  
for colours) 
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Figure 7 Graph displaying the radius of gyration (Rg) (see online version for colours) 

 

Figure 8 Graph displaying the solvent accessible surface area (SASA) (see online version  
for colours) 

 

One of the key factor in measuring the protein stability is the solvent accessible surface 
area (SASA); that predicts the protein conformational changes when binds to its substrate 
or ligand (Marsh and Teichmann, 2011). Therefore from the SASA analysis not much 
exposure has been found for the L28F variant (Figure 8). The superposition of the first 



   

 

   

   
 

   

   

 

   

    Structure based inference of functional single nucleotide polymorphism 89    
 

    
 
 

   

   
 

   

   

 

   

       
 

timeframe (0 ns) to the last timeframe (100 ns) reflected the minor conformational 
changes in terms of secondary structure conformation, i.e., at the loop region, helix 
region and also at the beta-sheet region (Figure 9(a)). Also, residues around the 5Å 
regions of the Phe28 have been captured to find alterations in structure. As shown in 
Figure 9(b) significant structural differences has been found in the residues within 5Å 
radius.  

Also we looked at the longevity of the hydrogen bonds that stabilise the dimer, and 
the new hydrogen bonds formed during the simulation. Along with the hydrogen bonds 
polar interactions and hydrophobic interactions were also studied through the Ligplot 
(Figure 10). Hydrogen bonds give information regarding most of the directional 
interactions that fortify protein folding, protein structure and molecular recognition. New 
inter-chain hydrogen bonds were found to be formed (Table 3) in the final snapshot of the 
simulation trajectory (Figure 11). Some bonds were formed at the beginning of the 
simulation and maintained throughout the 100 ns trajectory, while others were formed at 
the end of the simulation only. We hypothesise that former bonds are created due to the 
internal structural adjustments to compensate the entropic cost of mutating a residue and 
they are maintained to make the dimer structure stable. The bonds not present throughout 
the trajectory, but only in the last timeframe of the trajectory (at 100 ns) are transient 
bonds formed as result of the minor fluctuations and are not contributing to the stability 
of the mutant structure. Interestingly, these new bonds are not observed in the native 
structure at the end of its 100 ns simulation, thus emphasises the possibility of bonds 
created to stabilise the structure. 

Also, trajectory visualisation has been performed for all 10,000 frames (100 ns) for 
the native and for mutant (L28F) using VMD (Humphrey et al., 1996). Figure 12 shown 
structural variations through localised RMSD differences, where the red regions shows 
high deviation, green regions with intermediate deviations, and blue regions is showing 
low deviation. We observed that no major changes are happening to the overall protein 
structure. However, in the secondary structure regions (i.e., loop region, helix region) 
changes were observed and such changes might cause conformational change and hence 
can lead to the functional alterations. 

Our study is not limited to the single mutation study, in future we will come up with 
analysis of other damaging mutations particularly for TGFβ1 gene that could be targeted 
in colorectal cancer study. 

Figure 9 Mapping the respective frames around 5Å region of the mutant residues (see online 
version for colours) 
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Figure 10 Ligplot interactions: (a) for the first frame of the mutant L28F (0 ns) and (b) for the last 
frame of the mutant L28F (100 ns) (see online version for colours) 

 
(a) 

 
(b) 
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Figure 11 Hydrogen – bond interactions with respect to time (see online version for colours) 

 

Figure 12 Superposed snapshots of 100 ns simulation of TGFβ1 dimer site mutants (see online 
version for colours) 

 

Table 3 Polar interactions obtained through the Ligplot 

4kv5_Native_t0 
4kv5_Native_t

100 4kv5_L28F_t0  4kv5_L28F_t100  

ChainA-ChainB H-Bond 
ChainA-
ChainB H-Bond ChainA-ChainB H-Bond ChainA-ChainB H-Bond 

Gln57-Ser102 2.98 Asp27-Asn69 2.74 Asp27-Asn69 3.19 His68-Asp27 2.6 

Tyr58-Asn103 3.01 Asn103-Tyr58 2.87 Asn103-Tyr58 3.13 Tyr65-Asp27 2.98 

Asn69-Asp27 2.83 Asn42-Tyr58 2.74   Tyr58-Cys44 3.13 

Asp27-Asn69 3.08 Gln57-Ser102 3.31   Tyr58-Asn103 2.78 

Asn103-Tyr58 2.82 Gln57-Asn103 2.99   Asn103-Tyr58 2.98 

Asn42-Tyr58 3.03 Tyr58-Asn103 2.89     

  Tyr58-Asn42 2.84     

4 Conclusion 

The study characterises the association of deleterious mutation resulting in colorectal 
cancer progression by interfering the functionality of the TGFβ1. In this study 
rs199946261 was identified to be a damaging SNP that can hinder the functionality of the 
involved protein. Using MD analysis, we observed that the changes occurring at structure 
level due to a single amino acid variation at position (L28F) can cause damage to the 
structure by altering its conformation and thus possibly inhibit its activity. Also, in future 
we will consider some other TGFβ1 related damaging SNPs to determine their damaging  
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effects at structural level. We hope that this computational analysis will provide broad 
view of the disease to the biological researchers so that effective methods can be 
developed for the disease eradication thus enhancing the survival rates. The results 
presented here will be helpful for experimental biologist to test the effect of SNP and its 
subsequent phenotypical responses. 
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Supplementary Table 1 Damaging nsSNPs prediction through sequence prediction tools 
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