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Abstract
Curability of diabetic retinopathy (DR) abnormalities highly rely on regular monitoring, early-stage diagnosis and timely 
treatment. Detection and analysis of variation in eye images can help the patient to take the early action before progression 
of the disease. Vision loss can be effectively prevented by automated diagnostic system that assist the ophthalmologists who 
otherwise practice manual lesion detection processes which are tedious and time-consuming. This paper proposes a hierar-
chical severity level grading (HSG) system for the detection and classification of DR ailments. The retinal fundus images in 
the proposed HSG system are categorized as grade 0 (indicating Non-DR class) and DR severity grades 1, 2, 3 depending 
upon the number of anomalies; microaneurysms and haemorrhages in the fundus images. The challenge of retinal landmark 
segmentation, DR retinal discrimination and DR severity grading have been addressed in this work contributing to the novelty 
of the proposed approach. For non-DR and DR classification, the proposed system achieves an overall accuracy of 98.10% 
by SVM classifier and 100% by kNN classifier. Hierarchal discrimination into further grades of abnormalities resulted in 
accuracy values of 95.68% and 92.60% with SVM classifier using Gaussian kernel and, 97.90% and 95.30% employing fine 
kNN classifier. The HSG system demonstrates a clear improvement in accuracy with significantly less computational time 
comparative to the other state-of-the-art methods when applied to the MESSIDOR dataset. IDRiD dataset is also evaluated 
for performance validation of the proposed HSG system yielding a maximum of 94.00% classification accuracy using a kNN 
classifier with a computational time of 0.67 s.

Keywords  Diabetic retinopathy · Gray- level co-occurrence matrix features · Statistical features · Support vector machine · 
k-nearest neighbour

1  Introduction

Retinal image analysis is an active research area in diabetic 
retinopathy (DR). It is the principal cause of severe eye 
complications or even blindness in the developed as well 
as developing countries. Several risk factors related to this 
disease are unhealthy lifestyle, obesity and aging. However, 
early diagnosis along with continuous periodic examination 
is a determinant factor in diminishing the menace of severe 
visual impairments. At the time of DR screening, retinal fun-
dus images are captured by ophthalmic experts for detection 

and identification of the DR severity level (Yen and Leong 
2008; Habib et al. 2017). There is a need for an automated 
DR diagnostic system, as fundus image evaluation becomes 
tedious due to the increased number of DR cases causing 
a burden on the ophthalmologists (Yen and Leong 2008).

DR can be graded into different grades depending upon 
the level of severity of the disease. It is broadly catego-
rized into proliferative DR (PDR) and non-proliferative DR 
(NPDR). NPDR is further classified into three prominent 
categories: mild non-proliferative, moderate non-prolifer-
ative and severe non-proliferative stages. Healthy fundus 
images having no symptoms of diabetic retinopathy are 
graded as grade 0 images in DR severity grading. Sever-
ity level 1 is indicated by a mild non-proliferative stage in 
which microaneurysms (MAs) develop and appear as dark 
red lesions near the blood vessels. The moderate NPDR 
stage indicates severity level 2. In this stage, the number 
of MAs increases along with blood leakage into the retinal 
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surface causing haemorrhages (HMs). MAs and HMs are 
identified as red lesions as they are dark red in color having 
a similar intensity range. Exudates (EXs) or cotton wools 
(CWs) indicated as yellow lesions may also appear in sever-
ity grade 2. The severe non-proliferative DR stage graded 
as grade 3, consists of an increased number of DR lesions 
along with intra-retinal microvascular abnormality (IRMA) 
which leads to blockage in retinal blood vessels (Vaishnavi 
et al. 2016). Patients suffering from severe NPDR stage 
have higher chances of developing PDR in the near future. 
PDR is characterized by abnormal blood vessel overgrowth 
which leaks blood leading to vision loss ultimately causing 
blindness.

There have been numerous advances in the automated DR 
classification system to address different DR abnormalities, 
some of which are reported in this section. Roychowdhury 
et al. (2012) proposes a two-stage DR detection system in 
which optical disc (OD) localization is accomplished using 
minimum intensity maximum solidity overlap (MinIMaS) 
algorithm and Gaussian mixer model (GMM) is used to 
detect the presence of lesions. This system outperforms the 
state-of-the-art algorithms by diminishing the number of 
false positives in lesion classification providing area under 
the curve (AUC) of 0.9593 for bright lesion detection and 
0.8663for red lesion detection. Habib et al. (2017) intro-
duced an MA classification approach which detects an initial 
set of candidates using GMM and false positives are reduced 
in this approach employing tree ensemble classifier. The 
algorithm was evaluated on DIARETDB2 and MESSIDOR 
Dataset providing receiver operating characteristics (ROC) 
score of 0.415 outperforming the best available techniques. 
An automated DR grading system for the public database 
was introduced by Seoud et al. (2015) in which lesion prob-
ability map is generated for red lesion detection and a set of 
35 features was fed to random forest classifier for classifica-
tion. The system achieves 74.1% accuracy rate providing 
performance comparable to human experts. An automated 
assessment system was developed by Vaishnavi et al. (2016) 
using the SVM classifier and it provides the highest accuracy 
in detecting DR lesions. A scheme to detect retinal hemor-
rhage was proposed by Inbarathi and Karthikeyan (2014) for 
automated DR screening using the support vector machine 
(SVM) classifier. MESSIDOR dataset was considered utiliz-
ing Splat and GLCM features to obtain improved classifica-
tion accuracy. Habib et al. (2016), also introduces MA detec-
tion approach evaluated on a subset of MESSIDOR dataset 
and extracted features were classified using random forest 
classifier. It provides improved sensitivity for MA detection 
as compared to other techniques reported in the literature. 
Lachure et al. (2015) proposed an MA and EX detection 
technique using SVM and K-nearest neighbor (kNN) clas-
sifier considering the MESSIDOR dataset. SVM provides 
better performance over kNN while considering structural 

and GLCM features for DR classification. Authors in Roy-
chowdhury et al. (2013) presented a CAD system to grade 
DR severity using a machine learning approach on fundus 
images with a varying field of view and illumination. Sev-
eral classifiers like SVM, kNN, AdaBoost and GMM are 
analysed to classify retinopathy lesions from non- lesions. 
It lead to the reduction in the number of features used for 
lesion detection and severity classification. A two-step hier-
archical approach was validated using MESSIDOR database 
for classification. In the first step, lesion and non- lesion 
classification is done and in the second step, yellow lesions 
are classified into exudates and cotton wools and red lesions 
are classified into HMs and MAs. The system achieves 
sensitivity, specificity and area under the curve (AUC) of 
100%, 53.16% and 0.904 respectively, which is better than 
the already reported method for image classification for DR. 
Authors in Goatman et al. (2010) presented a technique for 
automatic detection of proliferative DR by detecting ves-
sel like segments using ridge strength measurement and 
watershed line technique. Fifteen features were selected 
for different candidate segments based on the shape, posi-
tion, brightness, contrast, orientation and line density. SVM 
method was used for classification purposes to categorize 
between non-DR and DR affected retinal structures. AUC 
of 0.911 was obtained for new vessels detected originating 
from the optical disc. MA detection technique was proposed 
in Wang et al. (2016) which employs a dark object filter-
ing process for MA candidate detection and the candidate 
cross-sectional profile was processed using singular spec-
trum analysis. A statistical feature set for candidate profiles 
is then extracted to be fed as a training set for k-nearest 
neighbour classification. The approach yields better results 
providing a great tool for DR screening and analysis. Texture 
features of retinal images were exploited in Morales et al. 
(2015) to distinguish between the healthy and pathological 
images. In this paper, local binary pattern (LBP) descriptors 
for retinal images are exploited and compared to the other 
descriptors to validate the effectiveness of the approach 
and it was proved a robust algorithm for DR screening and 
diagnosis using retinal texture features. Koh et al. (2018) 
developed a DR screening system to differentiate between 
non-DR and DR affected fundus image. Feature set after 
canonical correlation analysis was subjected to tenfold 
cross-validations and kNN classification achieving 96.21% 
accuracy. Karthikeyan and Alli (2018) presented an efficient 
DR disease classification method utilizing SVM parameters 
optimized using glowworm swarm optimization (GSO) and 
genetic algorithm (GA). SVM with hybrid GSO feature 
selection provides higher accuracy compared to existing 
DR classification techniques. This paper lags in considering 
computational complexity, therefore, the future work in this 
area will be focused on applying metaheuristic approaches. 
A machine learning bagging ensemble classifier (ML-BEC) 
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employing machine learning and ensemble classification 
method was designed to identify DR features (Somasunda-
ram and Alli 2017). This system comprises two stages; the 
first stage extracts the candidate object features from retinal 
images and the second stage utilizes ensemble classifiers 
features for accurate analysis. Ensemble classifier achieves 
better classification accuracy with reduced DR classification 
time than single classification models. A microaneurysm 
monitoring system was presented by You et al. (2016) to 
enhance the DR screening process for a large population. 
The retinal images are subjected to analysis via cloud com-
puting. Multi-orientation sum of matched filter method was 
used for microaneurysm detection and the classification is 
accomplished using the SVM approach. The results obtained 
demonstrate the feasibility of the systems which provides 
improved accuracy, speed and convenience. Bandyopadhyay 
et al. (2018) proposed an algorithm to detect the finest retinal 
blood vessels and the features of extracted blood vessels are 
fed to the kNN classifier for DR detection. Navarro et al. 
(2016) developed an automated image processing system 
for the detection of microaneurysms by transforming images 
into L*a*b* color space. MA candidate features are sent to 
the kNN classifier stage for final assessment which provides 
an accuracy of 84%. Although, the extensive literature has 
been done by the authors, some of the main research papers 
are tabulated in Table 1 depicting the algorithms proposed 
by various researchers for addressing DR severities.

The exhaustive literature survey reveals that there exist 
several research gaps in the existing work done in this area. 
The set of handcrafted features utilized does not provide 
significant improvement in the performance. Also, there is 
the effect of size of dataset in providing the desired perfor-
mance as utilization of small dataset for automated detec-
tion does not provide satisfactory results. Therefore, the 

experimentation can be improved by increasing the anno-
tated dataset and utilizing a different feature vector selection 
strategy as well as changing the choice of the kernel for 
SVM classifier.

1.1 � Contribution

A hierarchical severity grading (HSG) system for DR clas-
sification is proposed in this work to help the ophthalmolo-
gists in  expeditious and easy diabetic retinopathy detection 
which is capable of classifying the fundus images based on 
different DR severity levels. The retinal fundus images are 
graded as; Grade 0, Grade 1, Grade 2 and Grade 3, where 
Grade 0 indicates the non-DR class and the DR extremities 
are classified into three severity levels following the guide-
lines formulated by ophthalmic experts. This work exten-
sively overcomes the challenge of retinal landmark segmen-
tation, DR retinal discrimination and DR severity grading 
contributing to the novelty of the proposed approach. The 
major contribution of our HSG DR grading system lies in 
the critical analysis of multiple classifiers to find an optimal 
classification method for DR lesion detection and grading. 
The novelty of our model lies in the statistical analysis of 
the derived feature set for optimal feature selection. Clas-
sification outcomes are obtained for the statistically opti-
mized feature set, to validate the significance of statistical 
analysis in DR severity classification and grading. Testing of 
the proposed system on the benchmark MESSIDOR dataset 
reveals its outperformance over the state-of-the-art methods 
for NPDR severity classification. The HSG approach is vali-
dated on another IDRiD dataset and uniformity in the experi-
mental outcomes is observed, justifying the generalization 
capabilities of the proposed system for DR severity grading.

Table 1   Literature survey of different NPDR screening techniques

Algorithm proposed by Image processing techniques Database Type of severity grading

Wulandari et al. (2019) Statistical region merging segmentation 
along with convolutional neural network 
(CNN)

MESSIDOR NPDR

Harangi et al. (2019) Hand-crafter features and CNN IDRiD DR and diabetic macu-
lar edema (DME)

Al-Jarrah and Shatnawi (2017) Morphology-based algorithm and artificial 
neural network (ANN)

DIARETDB1 NPDR

Ashraf et al. (2014) Local binary pattern and support vector 
machine (SVM)

DIARETDB1 NPDR

Dupas et al. (2010) Fundus image analysis algorithms MESSIDOR NPDR
Aptel et al. (2008) Single-field non-mydriatic, single-field 

mydriatic, three-field non-mydriatic, 
three-field mydriatic

Local database having 79 patients Both NPDR and PDR

Kahai et al. (2006) Decision support system (DSS) Local database having 143 images 
from Louisiana State University Eye 
Center

NPDR
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The research article is organized as follows: Material 
and methods are described in Sect. 2 elaborating the dataset 
employed and proposed methodology. The results and dis-
cussions regarding experimentations performed is discussed 
in Sect. 3 along with the concluding remarks and future per-
spective of the proposed system in Sect. 4.

2 � Materials and methods

The methodology adopted for the proposed HSG system 
employs the implementation strategy comprising retinal 
landmark segmentation, pathology identification and detec-
tion, feature extraction, selection and DR severity classifica-
tion. Gray-level co-occurrence matrix features are extracted 
corresponding to each candidate object for lesion classifica-
tion. These extracted features are statistically analysed for 
optimal feature selection and the optimal features are fed to 
the hierarchical classification stage.

2.1 � Dataset

The authors have incorporated DRIVE dataset for OD locali-
zation and blood vessel extraction (Bhardwaj et al. 2018a, 
b; Bhardwaj et al. 2019). STARE dataset images are used 
for anomaly detection (Bhardwaj et al. 2020). The proposed 
grading system is evaluated on the benchmark standard 
MESSIDOR (Staal et  al. 2004; Decencière et  al. 2014) 
dataset for NPDR abnormality classification and severity 
grading, as it consists of a varying number of images with 
different resolutions. The feasibility of the proposed system 
is also validated using the latest Indian Diabetic Retinopathy 
Image Dataset (IDRiD) by increasing the number of patient 
samples to help physicians realize the progress of the dis-
ease. The list of publicly available fundus image datasets 
utilized for this work are detailed in Table 2.

MESSIDOR (Staal et al. 2004; Decencière et al. 2014) 
dataset comprises a total of 1200 fundus images acquired 
using a 3CCD camera at 45° FOV by 3 different ophthal-
mologic departments. These images were of standard sizes 
1440 × 960, 2240 × 1488, or 2304 × 1536 pixels captured 
at 8 bits per color plane (Sisodia et al. 2017). The image 
size available in the MESSIDOR dataset comprises dif-
ferent sizes and resolution images. To make it resolution-
independent, pre-processing operations are applied which 
includes image scaling, normalization, image denoising and 
contrast enhancement to normalize all the images to fit the 
same scale. MESSIDOR is a labelled dataset indicating four 
degrees of severities ranging from 0 to 3. Fundus images 
with no DR symptoms are graded as severity level 0; mild, 
moderate and severe DR grades are indicated by severity 
levels 1, 2 and 3 respectively.

The retinal fundus images in the IDRiD (Porwal et al. 
2018) dataset were acquired from an Eye Clinic located in 
Nanded, (M.S.), India captured using a Kowa VX-10a digi-
tal fundus camera with 39 mm distance between lenses and 
the eye. This dataset was formed using 516 images of size 
800 kB approximately with 4288 × 2848 pixel resolution 
and 50° FOV. The dataset consists of 454 fundus images 
containing NPDR severity symptoms and the remaining 62 
contains PDR symptoms. This dataset contains clinically 
relevant images of the adequate quality representative of DR 
and diabetic macular edema tests performed on thousands of 
patients during the period 2009–2017.

The International Clinical Diabetic Retinopathy Disease 
Severity Scale (Wilkinson et al. 2003) referred in this work 
categorized the diabetic retinopathy from 0 to 4 severity 
levels. The DR severity grade 0 is denoted for the non-DR 
category, grade 1 denotes mild NPDR symptoms, moderate 
NPDR severity level is indicated by grade 2, grade 3 denotes 
severe NPDR symptoms and PDR symptoms are indicated 
by grade 4. The International Clinical Diabetic Retinopathy 

Table 2   Dataset description

MESSIDOR: Methods for Evaluating Segmentation and Indexing technique Dedicated to Retinal Ophthalmology, 2004 [Online]. Available: 
https​://www.adcis​.net/en/Downl​oad-Third​-Party​/Messi​dor.html. Accessed: Feb. 10, 2019
IDRiD: Indian Diabetic Retinopathy Image Dataset, 2018 [Online]. Available: https​://dx.doi.org/10.21227​/H25W9​8. Accessed: May. 11, 2020

Dataset Image size FOV 
(degrees)

Number of 
images

Usage

DRIVE (Staal et al. 2004) 565 × 584 45 40 Structural analysis of retina
STARE (Hoover et al. 2000) 605 × 700 35 400 Abnormal blood vessel, exudates, haemorrhages and 

microaneurysms detection
DIARETDB1 (Kauppi et al. 2007) 1500 × 1152 50 89 Position and detailed labelling of retinal abnormalities
MESSIDOR (Staal et al. 2004; 

Decencière et al. 2014)a
1440 × 960, 

2240 × 1488, 
2304 × 1536

45 1200 DR severity grading

IDRiD (Porwal et al. 2018)b 4288 × 2848 50 516 DR severity grading

https://www.adcis.net/en/Download-Third-Party/Messidor.html
https://dx.doi.org/10.21227/H25W98
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Disease Severity Scale ranging from 0 to 4 is detailed in 
Table 3.

This tabular representation reveals that the occurrence of 
NPDR severity relies on the presence of microaneurysms, 
haemorrhages and intra-retinal microvascular abnormalities 
(IRMA) and no signs of proliferative diabetic retinopathy 
(PDR) are seen till the third stage of International Clinical 
Diabetic Retinopathy Disease Severity grading. However, 
the PDR stage occurs due to retinal neovascularization or 
pre-retinal vitreous haemorrhage. This research article uses 
the NPDR severity grading scale range of the International 
Clinical Diabetic Retinopathy Disease Severity Scale rang-
ing from 0 to 3.

Both MESSIDOR and IDRiD datasets used for the evalu-
ation of the proposed (HSG) system provide DR severity 
level grading for individual images in the dataset in terms 
of retinopathy grade and risk of macular edema. For this 
research work, we have used retinopathy grades as a refer-
ence and their explanation along with the number of images 
present in the dataset are provided in Table 4.

Table 4 presents the number of images in each DR 
severity grade and also describes the retinopathy grades 
depending upon the number of microaneurysms and haem-
orrhages. As per International Clinical Diabetic Retinopa-
thy Disease Severity Scale dataset guidelines, DR severity 
grading depends upon the number of MAs and HMs and 
therefore these lesions are combined to generate the DR 
grading. For the classification-stage 2, the feature vector 
of the lesion and non-lesion objects is scaled in the range 
of 0 and 1. Lesion objects are manually annotated as class 
label 1 and non-lesion objects are labelled as class label 
0 depending upon the results of automated lesion detec-
tion as well as ground truth annotations. Feature vectors 
annotations for different classification stages are given in 
Table 5.

The complete set of images is separated into training 
and testing set using 70%-30% training and validation cri-
teria. tenfold cross-validations are used to divide the train-
ing set into 10 distinct classes and every subset of training 
data is used to train the classifier against the other (10–1) 
validation set for the entire training phase. This validation 
scheme yields better training which provides the favour-
able outcomes for the classification task.

Table 3   International Clinical 
Diabetic Retinopathy Disease 
Severity Scale considering 
NPDR severities

Disease 
severity scale

Diabetic retinopathy grade Description

0 Non-DR grade No abnormalities
1 Mild NPDR grade Microaneurysms only
2 Moderate NPDR grade More number of microaneurysms but less than severe NPDR
3 Severe NPDR grade More than 20 intra-retinal microaneurysms or hemorrhages

Prominent intra-retinal microvascular abnormalities (IRMA)
4 PDR grade Neovascularization or pre-retinal vitreous hemorrhage

Table 4   NPDR grades 
distribution for MESSIDOR and 
IDRiD datasets

NMA number of microaneurysms, NHM  number of hemorrhages

Retinopathy grades Grading description Number of images in 
MESSIDOR dataset

Number of images 
in IDRiD dataset

Grade 0 (NMA = 0) and (NHM = 0) 546 168
Grade 1 (0 < NMA ≤ 5) and (NHM = 0) 153 25
Grade 2 (5 < NMA < 15) or (0 < NHM ≤ 5) 247 168
Grade 3 (NMA ≥ 15) or (NHM ≥ 5) 254 93

Table 5   Annotations for 
different classification stages

Classification stage 1 Classification stage 2 Classification stage 3

Grades Annotations Grades Annotations Grades Annotations

Grade 0 0 Grade 0 0 Grade 0 0
Grade 1, 2, 3 1 Grade 1 and 2 1 Grade 1 1

Grade 3 2 Grade 2 2
Grade 3 3
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2.2 � Performance metrics

The performance of classification is analysed using vari-
ous performance metrics which are defined in terms of true 
positives (TP), true negatives (TN), false positives (FP) and 
false negatives (FN) which are specified in the following 
equations [from Eq. (1) to Eq. (6)].

Positive prediction value (PPV) is the measure of statisti-
cal variability in data which computes the deviation of DR 
affected class from its true value. It is expressed by Eq. (1).

Sensitivity (Sen.) is defined as the ratio of TP to the 
sum of TP and FN. It provides the measure of the ability of 
the classification method to correctly identify the true DR 
affected class. Its range is between 0 to 100% and more its 
value tending towards 100% more is the ability to correctly 
detect the DR affected pixels. Sensitivity is expressed by 
Eq. (2).

Specificity (Sp.) provides the measure of the ability of the 
classification method to correctly identify the non-DR class. 
It is defined as the ratio of TN to the sum of TN and FP. Its 
range lies in between 0 to 100% and more its value tending 
towards 100% more is the ability to correctly detect the non-
DR pixels. Specificity is expressed by Eq. (3).

Accuracy (Acc.) is termed as the proportion of the total 
number of truly identified non-DR and true DR affected fun-
dus images out of the total number of fundus images con-
sidered for classification. Accuracy is expressed by Eq. (4).

The performance metric area under the curve (AUC) indi-
cates the overall quality of classification performance.

The two parameters evaluated to validate the correctness 
of the OD segmentation approach are optical disc overlap 
and dice metric. Optical disc overlap is defined as the ratio 
of true positives (TP) to the sum of true positive (TP), false 
negative (FN) and false positive (FP) given by the Eq. (5).

TP represents the area that is correctly overlapped 
between the manual ground truth and automatically 
obtained OD segmentation. FN represents those pixels 

(1)Positivepredictionvalue(PPV) =
TP

TP + FP

(2)Sensitivity(Sen.) =
TP

TP + FN

(3)Specificity(Sp.) =
TN

TN + FP

(4)Accuracy(Acc.) =
TP + TN

TP + FN + TN + FP

(5)Opticaldiscoverlap =
TP

TP + FN + FP

that are classified only in the manual ground truth and FP 
denotes the pixels which are only classified by the auto-
mated segmentation approach. Another parameter used for 
performance evaluation of the OD segmentation approach 
is dice metric which is expressed in Eq. (6). Dice metric is 
the measure for comparing the similarity between two seg-
mentations and it is defined as the ratio of 2 × TP to the sum 
of TP, FN, FP and TN.

2.3 � Methodology

The proposed system is implemented using MATLAB2018b 
environment on a computer system equipped with Intel Core 
i5 processor, 3 GHz and 8 GB RAM. The authors have 
implemented the command based SVM and inbuilt kNN 
classifier in this research work. A novel hierarchical sever-
ity grading (HSG) classification method comprising three 
hierarchal stages is proposed in this work that is capable of 
generating DR severity grade of every fundus image and its 
framework is depicted in Fig. 1.

Figure 1 illustrates the complete framework of the pro-
posed HSG system for accurate DR severity grading. The 
proposed system comprises of three main stages: Retinal 
landmark segmentation, DR lesion discrimination and DR 
severity grade classification. Retinal landmark segmenta-
tion facilitates in the identification of non-DR and DR 
affected fundus images. The second stage of the proposed 
method enables the discernment of DR lesions (red and yel-
low lesion) employing lesion discrimination strategy. The 
third stage classifies the fundus images into different grades 
combining the guidelines provided by International Clinical 
Diabetic Retinopathy Disease Severity grading. The com-
plete algorithm of the proposed HSG system is illustrated in 
Fig. 2, however, the block by block description of the pro-
posed methodology is detailed in the following subsections.

2.3.1 � Retinal Landmark Segmentation

The preliminary steps involved in automated detection of 
DR are image pre-processing and masking of retinal land-
mark background portions including optical disc (OD) and 
vasculatures. Fundus image pre-processing involves varia-
tion attenuation, green channel conversion, image denoising 
and contrast enhancement employing the contrast limited 
adaptive histogram equalization approach (CLAHE).

In this paper, Grayworld normalization is used for image 
variation attenuation (Bhardwaj et al. 2018a, b). RGB val-
ues of the original image are initially scaled and the change 
in illumination is mitigated by averaging the scaled RGB 
values by applying three constant scaling factors α, β and γ 

(6)Dicemetric =
2 × TP

TP + FN + FP + TN
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in R, G and B color channels respectively. The equation for 
grayworld normalization is expressed in Eq. (7).

This normalization step is used to eliminate the image 
variations and fit all the fundus images to the same scale.

Further, green channel conversion is done and this con-
verted image is used for information extraction as this 
channel has maximum contrast out of all the three RGB 
channels. Filtering is done to suppress the isolated noise 
in the fundus image without blurring the edges. CLAHE 
is used for contrast enhancement and the contrast of each 
region is enhanced in such a way that the histogram of 
the output region approximately matches the specific 
histogram distribution (Niemeijer et al. 2004; Bhardwaj 

(7)(�R, �G, �B) =

�
�R

�

n

∑
iR
,

�G
�

n

∑
iG

,
�B

�

n

∑
iB

�

et al. 2018a, b). Let Iden be the denoised fundus image 
represented by a matrix of integer pixel intensities rang-
ing from a dynamic range of 0 to L − 1, L is the maximum 
value of intensity range (256). The normalized histogram 
(hn) of the denoised image is denoted by Eq. (8),

for n = 0,1,…, L − 1.
Thus, the histogram equalized image (fi,j) is expressed 

by Eq. (9),

where floor function rounds off to the nearest integer value.

(8)hn =
number of pixels with intensity n

Total number of pixels

(9)fi,j = floor((L − 1)

fi,j∑

n=0

hn)

Fig. 1   Framework of the proposed HSG system
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For the segmentation of retinal landmarks, optical disc 
(IOD) and blood vasculatures (IBV) are segmented and 
removed from the histogram equalized image.

2.3.1.1  OD localization  OD localization is achieved employ-
ing the HSI color model considering only the intensity values 
(Bhardwaj et al. 2019). Circular Hough transform is used to 
locate the circular regions in the fundus image by considering 

the radius range of 70–140 pixels. The morphological closing 
operation is performed for the exact boundary localization of 
the OD portion and the largest circular region in the intensity 
plane is indicated as the optical disc (IOD). OD segmentation 
( I ′OD ) is achieved using Eq. (10).

(10)I
�

OD = f i,j − IOD

Fig. 2   Algorithm for the proposed HSG system
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The block diagram of the OD segmentation approach 
used in the proposed HSG system is depicted in Fig. 3.

Table 6 depicts the comparison of the OD segmentation 
approach with another approach i.e. region growing OD 
segmentation method (Bhardwaj et al. 2018b). This method 
initializes the seed point and thereby growing the region by 
appending the similar property neighborhood pixels to the 
seed. In this approach, the optical disc centre is considered 
as the seed point and the absolute difference between the 
seed and the pixels is used as the stopping criteria for region 
growing.

The comparative analysis of both the approaches validates 
the segmentation efficiency of the proposed approach over 
the other in terms of optical disc overlap and dice metric 
parameters. Therefore, the viability of the proposed OD seg-
mentation method is demonstrated from this performance 
validation.

2.3.1.2  Blood vessel segmentation  Blood vessel segmen-
tation in this work utilizes a two-fold approach in which 
morphological closing followed by global thresholding for 
vessel structure estimation. The maximum contrast green 
channel is utilized for blood vascularture segmentation 
and morphological closing operation is applied on the pre-
processed green channelled fundus image. The morphologi-

cally closed image (Icl) is subjected to vessel structure esti-
mation by setting a global threshold by taking the absolute 
difference of the original image and the estimated retinal 
background.

The segmented blood vasculature is expressed in Eq. (11).

Post-processing steps are applied on estimated vessel 
structure for local contrast enhancement of the blood vascu-
latures and to remove the false detected isolated regions. The 
fundus image is labelled into different components (vessel 
pixel or non-vessel pixels) depending upon the pixel con-
nectivity among four adjacent and four diagonal neighbors 
(8-connectivity) to obtain the true vessel pixels (Giancardo 

(11)IBV = f (Icl)subject to f =Global Thresholding

Fig. 3   Block diagram of OD segmentation approach

Table 6   Performance evaluation of OD Segmentation approach

Approaches Region growing 
OD segmentation 
approach (Bhardwaj 
et al. 2018b)

Proposed morphology 
based OD segmenta-
tion approach

Parameters
 Optical disc overlap 0.9565 0.9872
 Dice metric 0.94.89 0.9931
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et al. 2012). If these background regions are not masked at 
the initial stage, the automated system may detect exudates 
as false OD region and blood vessels may falsely be detected 
as red lesions (microaneurysms). Candidate regions corre-
sponding to lesion candidates are identified as foreground 
regions.

2.3.2 � DR lesion discrimination

2.3.2.1  Pathology identification and  detection  In the 
pathology identification process, the foreground candidates 
are categorized into true lesions (red or yellow) and non-
lesions. For lesion identification and detection, morphologi-
cal operations are used to distinguish red and yellow lesions 
depending upon their intensity values. Red lesions corre-
spond to dark intensity regions whereas yellow lesions cor-
respond to brighter intensity regions.

Red lesion candidates are detected by subtracting the 
morphologically closed image from pre-processed histogram 
equalized image as expressed in Eq. (12).

For yellow lesion detection, all the background regions 
and the identified red lesion candidate regions are consid-
ered as background and they are subtracted from the pre-
processed image. Yellow lesions are detected using a hard 
thresholding method by selecting a threshold value consid-
ering histogram properties of the lesion. The expression for 
yellow lesion candidate detection is given in Eq. (13).

Red lesions have the dark intensity and therefore are 
found on the extreme left of the histogram; however, yellow 
lesions have the bright intensity and hence found on the right 
side of the histogram (Bhardwaj et al. 2020). The automati-
cally classified regions using morphological operations are 
compared to manually annotated ground-truth regions to 
obtain the true lesions and discard non-lesion candidates 
as it discards some false candidates which are neither red 
nor yellow lesion candidates. False red lesion candidates 
correspond to some crossing points or branches in the blood 
vessels, black spots or scars due to previous clinical records. 
Nerve fibre layer reflections or some other bright structures 
appear as false exudates candidates. Post-processing steps 
are used in the proposed approach which reduces the chances 
of false candidate detection up to a great extent. Hierarchi-
cal categorization of detected pathologies divides true red 
lesions into microaneurysms and hemorrhages whereas true 
yellow lesions into exudates and cotton wool spots.

2.3.2.2  Feature set description  For the identification of DR 
lesions, a feature set comprising shape features, intensity 

(12)IRed_cand = fBV − Icl

(13)Iyellowcand
= (f BV ∩ (IRedcand ∪ IOD))Hard Thresholding

features and textural features have been investigated. The 
geometrical properties of DR lesions are exploited using 11 
shape features including lesion area, convex area, perim-
eter, major axis length, minor axis length, eccentricity of 
the lesion, lesion orientation, diameter, solidity, extent, and 
compactness (Seoud et al. 2016). The another set of features 
utilized for lesion discrimination comprises of pixel-based 
intensity features. This feature set consists of nine attributes 
including maximum and minimum pixel intensities, mean, 
median, standard deviation (SD), inter-quartile range (IQR), 
mean absolute difference (MAD), skewness and kurtosis 
(Harini and Sheela, 2016; Selvathi et  al. 2012). The third 
set of features exploit the image textural properties of the 
detected lesions considering the pixel spatial relationships. 
Gray-level co-occurrence matrix (GLCM) textural features 
used in this work includes lesion autocorrelation, correla-
tion of lesions, lesion contrast, lesion energy, lesion entropy, 
lesion homogeneity, lesion dissimilarity, cluster shade of 
lesions, cluster prominence of lesions, maximum probabil-
ity, inverse difference normalized, inverse different moment 
normalized, information measure of correlation1 and infor-
mation measure of correlation2 (Clausi 2002; Sood 2017; 
Acharya et al. 2009).

2.3.2.3  Statistical analysis  Statistical analysis methods 
adopted in this paper using the SPSS package are based on 
box plots, Pearson correlation coefficient analysis, t test and 
ANOVA.

Box plots Feature vector can be graphically represented 
as a box or whisker diagram presenting more information 
in terms of the degree of dispersions, skewness in data 
and identifying the outliers. Box-plots are used for graphi-
cal normality analysis of feature set indicating the quartile 
ranges specifically pin-pointing the outliers. Five significant 
points in the data distribution are depicted by box plots: 
minimum, first quartile, median, third quartile and maximum 
data point.

Pearson correlation coefficient analysis Pearson correla-
tion measures the linear correlation between two sets of sam-
ples and its value ranges from − 1 to 1. Pearson correlation 
coefficient value 1 shows a total positive linear correlation 
between the samples and 0 shows no correlation. The total 
negative correlation is indicated by the value of the Pearson 
correlation coefficient as − 1.

Levene’s test Levene’s inferential statistic test is used to 
assess the equality of variances for two or more than two 
groups. Its result depends upon the p value and if the signifi-
cant p value is less than 0.05 then it is considered significant 
otherwise not.

t test and ANOVA t test is a parametric test helpful in eval-
uating the sets of continuous data by comparing their means. 
Analysis of variance (ANOVA) inferential statistical tool 
analyzes the difference or variation among the group means. 
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This is basically the generalization of the t test for more than 
two groups as it provides evidence of whether the means of 
several groups are equal or unequal. The significance of t test 
and ANOVA are depicted by the p value taken as less than 
0.05 otherwise the test depicts insignificant value. Selected 
features based on statistical analysis done using the above-
mentioned tools are provided for the classification stage.

2.3.3 � DR severity grade classification

Red lesion candidates are grouped to obtain DR severity 
level grading per fundus image in the dataset. MESSIDOR 
dataset annotations are graded per image, where grade 0 
indicates non-DR fundus image, grade 1 implies mild DR 
symptoms, moderate DR stage is indicated as grade 2 and 
grade 3 implies severe DR stage.

To classify the DR grades into different stages, various 
classifiers available in the literature were used to obtain 
higher accuracy (Habib et al. 2016; Lachure et al. 2015; 
Roychowdhury et al. 2013). We have used support vector 
machine (SVM) and k-nearest neighbour (kNN) classifiers 
for the classification task in this research work.

2.3.3.1  Support vector machine (SVM) classifier  SVM 
discriminative supervised learning method separates the 
hyperplane using labelled training data and optimally cat-
egorizes the testing data. This approach is basically applica-
ble for binary classification but its practical applications can 
be used to solve multi-class pattern recognition problems.

For a given set of training data of n points denoted by 
Eq. (14);

where output ji may either be 1 or − 1 denoting individual 
class for binary classification to which point i⃗i belongs. So 
the hyperplane can be represented as a set of points satisfy-
ing the Eq. (15).

where ��⃗w indicates weight vector, i⃗ denotes input vectors and 
b is the bias. The hyperplane representation for the multi-
class classification problem is shown in Fig. 4.

For the multi-class DR classification problem, we have 
used “one-against-rest” approach in which different classi-
fiers are prepared for each class. Let the number of classifiers 
trained for multiclass classification be ‘n’ and for a particular 
jth classifier to be trained, the whole fundus image dataset is 
used for training to classify the members of class J against 
the rest. Two tuning parameters regularization parameter 
(C) and gamma ( � ) are varied to achieve better accuracy 

(14)
(
i⃗1, j1

)
,……… ., (⃗in, jn)

(15)��⃗w ∙ i⃗ − b = 0

for non-linear classification. Regularization Parameter is 
responsible for avoiding misclassification of each training 
example and gamma determines the influence of each train-
ing example in the classification process. The error function 
for SVM classifier is expressed by Eq. (16).

This error function is needed to be minimized depending 
upon regularization parameter C and error metric � subject 
to minimization constraint, �+ ≥ 0 , 𝜀− < 0.

SVM classification relies on kernel selection as there are 
different SVM kernels like linear, polynomial, Gaussian 
radial basis function (RBF) kernel, etc. For the DR classi-
fication problem, Linear and Gaussian radial basis function 
kernels are considered as polynomial kernels and do not 
provide favourable outcomes in terms of accuracy. For an 
input vector x, support vector xi, bias b and weight vector w, 
linear Kernel is given by Eq. (17).

The polynomial kernel is denoted by Eq. (18):

where d indicates the degree of the polynomial.
Gaussian radial basis function kernel is expressed by 

Eq. (19) where � denotes the Gaussian envelope width for a 
high-dimensional feature space.

2.3.3.2  k‑nearest neighbour (kNN classifier)  The other clas-
sifier used in this paper is the kNN classifier which classifies 
k- nearest neighbors depending upon the Euclidean distance 
between the dataset samples. The dataset contains a total of 

(16)C

L�

i=1

�
�+
i
+ �−

i

�
+

1

2
‖w‖2

(17)K(x, xi) =
∑

��⃗w ∙ �����⃗x, xi + b

(18)K(x, xi) =
(
1 +

∑
��⃗w ∙ �����⃗x, xi

)d

(19)K(x, xi) = exp(−𝛾 ×
�

‖���������⃗x − xi‖
2
)

Fig. 4   Hyperplane representation for the multi-class classification 
problem
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‘n’ samples with ‘f’ number of feature vectors where input 
sample with f features is denoted by Eq. (20).

The Euclidean distance between sample xi and xj (for 
j = 1, 2, 3, …, n) is expressed by Eq. (21).

Depending upon the Euclidean distance between samples, 
k-nearest training data points are considered for multiclass 
classification and assign the most frequently occurring class 
to the test data (Lachure et al. 2015). For DR classification 
problem, fine and weighted kNN algorithms are used (Ven-
katesan et al. 2012; Rahim et al. 2016). Fine kNN classifies 
the nearest neighbor by making a finely detailed distinction 
between the classes whereas weighted kNN uses distance 
weighting to determine the members of a particular class.

(20)xi(xi1, xi2, xi3 ………… , xif )

(21)
d
(
xi, xj

)
=

√
(xi1 − xj1)

2
+ (xi2 − xj2)

2
+⋯ + (xif − xjf )

2

3 � Results and discussion

The performance of the proposed HSG system is analysed 
in terms of visual, statistical and performance metrics. 
The results of the background and foreground segmenta-
tion, pathology identification and detection are depicted in 
Fig. 5. OD region and blood vessels are considered as the 
background portions whereas lesions from the foreground 
segmentation are extracted as pathological regions.

The separation of background and foreground portions 
from the original fundus image is necessary for lesion iden-
tification. The field of view part is separated by masking and 
the optical disc portion is located and removed as this por-
tion of the retina is undesirable for DR pathology diagnosis. 
Blood vessels have a similar intensity as those of microaneu-
rysms and hemorrhage and regarded as background regions 
and thus removed. Further from the foreground portion, DR 
pathologies are identified as lesion candidates. As per the 
grading guidelines provided in the MESSIDOR dataset, 

Fig. 5   Background retinal land-
mark segmentation, foreground 
identification and pathology 
detection
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MA and HM lesion candidates are combined after pathol-
ogy identification to classify images based on DR severity 
grading. GLCM features are extracted for lesion candidates 
in grade 1, grade 2, grade 3 and non-lesion candidates for 
grade 0 fundus images. Extracted features are analysed sta-
tistically using various statistical tools.

3.1 � Statistical analysis of shape and intensity 
feature set

The shape and intensity-based features are of significant 
importance for lesion discrimination and statistical analysis 
of these extracted features is done to obtain most prominent 
features reducing the dimensional complexity. The feature 
set analysis is done using the significance value (p-value) 
investigation and the observations are depicted in Table 7.

Table 7 reveals the statistical significance of shape and 
intensity features for lesion discrimination, in terms of sig-
nificant p-values. All the intensity features and shape fea-
tures except eccentricity and orientation provides signifi-
cant p-value indicating their statistical relevance to lesion 
discrimination strategy.

The feature set investigating and literature suggests that 
GLCM based textural features provides the promising out-
comes for DR severity grading problem and therefore they 
are considered for further experimentations involved in this 
research.

3.2 � Statistical analysis of GLCM feature set

The statistical analysis of extracted GLCM feature set for 
non-DR and DR affected fundus images is done using various 
SPSS statistical tools. Statistical feature set analysis using box 
plots reveals the normality visualization of GLCM features 

indicating the data distribution inside a rectangular box and 
pinpointing the outliers. Box plots of different GLCM features 
are shown in Fig. 6 which indicates 25% to 75% of the data 
distribution inside a rectangular box. Individual points outside 
the rectangular box are specified as outliers.

The relationship between GLCM feature variables is quan-
tified using a pair-wise correlation test as provided by Pearson 
correlation coefficients tabulated in Table 8.

The Pearson correlation coefficient values shown in Table 8 
reveal that GLCM features except cluster shade and energy 
are prominent but further analysis using other statistical tech-
niques is required to check the usefulness of less related fea-
tures for DR classification. Further investigation is done in 
terms of descriptive statistical analysis using Levene’s test, t 
test and ANOVA for optimal feature selection. The statistical 
significance of GLCM features is determined by Levene’s test 
for equality of variance ( � ) and t test for equality of means 
( � ). Levene’s test is performed on the null hypothesis (H0) 
considering that there is no significant difference between the 
variance of GLCM features extracted from different DR grade 
classes as expressed by Eq. (22). Null hypothesis rejection H1 
given by Eq. (23), states that there is a significant difference 
between the variance of GLCM features of non-DR and DR 
affected class.

The null hypothesis ( H′

0
 ) for the t test states there is no 

significant difference between the mean values of GLCM 
features for grade 0 and grade 1–3 which is expressed as 
Eq. (24). Rejection of the null hypothesis is indicated as H′

1
 

which states that there is a substantial difference between 
the mean values of GLCM features for non-DR and differ-
ent DR severities and it is given in Eq. (25).

(22)Ho ∶ �0 = �1

(23)H1 ∶ �0 ≠ �1

Table 7   Statistical analysis of 
extracted shape and intensity 
features

Shape features Intensity features

Features ANOVA (p 
value)

t test (p value) Features ANOVA (p 
value)

t test (p value)

Lesion area 0.019 0.019 Minimum intensity 0.000 0.003
Lesion perimeter 0.033 0.040 Maximum intensity 0.000 0.000
Major_axis_length 0.003 0.033 Mean intensity 0.000 0.000
Minor_axis_length 0.005 0.011 Median intensity 0.000 0.000
Lesion eccentricity 0.062 0.062 MAD intensity 0.000 0.000
Convex_area 0.002 0.005 SD intensity 0.000 0.000
Lesion orientation 0.102 0.102 IQR 0.000 0.000
Lesion equiv_dia 0.002 0.002 Lesion skewness 0.015 0.012
Lesion solidity 0.007 0.015 Lesion kurtosis 0.005 0.005
Lesion extent 0.030 0.033
Lesion compactness 0.000 0.002
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The null hypothesis is accepted if the significance val-
ues for the feature set are greater than 0.05. The results for 
Levene’s test and t test are summarized in Table 9 for the 
GLCM feature set for grade 0 and grade 1–3 distinguishing 
between non-DR and different DR severities.

The tabular representation of Levene’s test and t test 
for GLCM features reveals that all the GLCM features are 
significant having a p value less than 0.05 except cluster 
shade and energy. Cluster shade and energy features show 
insignificance as the p value deviates from 0.05 significant 
level. Therefore, the null hypothesis is rejected for GLCM 
features except for cluster shade and energy indicating that 
there is a significant difference between the means and 
variances of both the DR abnormality grades in terms of 
GLCM features (H1 and H’1).

(24)H
�

0
∶ �0 = �1

(25)H
�

1
∶ �0 ≠ �1

t test reveals the descriptive statistics of the features but 
for more statistical evidence in terms of inferential statistics 
and brings out the inference about the DR phenomenon con-
cerning the selected sample, one-way analysis of variance 
(ANOVA) is used. The significant values obtained for the 
one-way ANOVA test applied on GLCM features are tabu-
lated in Table 10.

Table 10 shows the significance values of features using 
the ANOVA test and the GLCM textural features except 
cluster shade and energy are proven prominent as their p 
value is less than 0.05. Cluster shade and energy features 
deviate from significant p value thus showing statistical 
insignificance.

From the statistical and inferential analysis using Lev-
ene’s test, t test and ANOVA, it is revealed that among the 
feature set consisting of 14 GLCM features, two features 
are insignificant for our research problem and the rest of the 
features are prominent for DR severity grade classification. 
Further all the computations are done using these prominent 
12 GLCM features.

Fig. 6   Box plots of some of the extracted GLCM feature set
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3.3 � Hierarchal severity grade (HSG) classification

The reduced feature set comprising 12 GLCM features are 
used for various classifiers for DR severity grading. After 
exhaustive literature review and empirical experimenta-
tion, SVM classifier with linear and Gaussian RBF kernels 
and kNN classifiers (fine and weighted) are reported in this 
research work. Classification results of the HSG system for 
DR demonstrate the feasibility of the proposed system for 
stage 1, stage 2 and stage 3 classification of abnormalities. 
The entire set of images is divided randomly into training 
and validation set for testing and validation using 70–30% 

criteria, considering 840 images for training and 360 for test-
ing, out of total 1200 images from the MESSIDOR dataset. 
The reported results are the average of the tenfold cross-
validations which divides the training set into 10 distinct 
classes to obtain better training of the classification task. 
The composition of sample images taken with their explicit 
number is shown in Table 11.

Different cases considered for DR severity grading and 
classification detailed in the following section are tabulated 
in Table 12.

3.3.1 � Classification‑stage 1 (non‑DR and DR affected 
fundus images)

Classification stage 1 classifies the fundus images into non-
DR and DR affected class, Grade 0 and Grade 1, 2, 3 (col-
lectively) respectively. The results of this classification stage 
using SVM and kNN classifiers with different kernels are 
shown in Table 13.

For non-DR and DR affected fundus images classifica-
tion, the features determining the DR severity levels are 
graded correctly providing accuracy of 98.10% employing 
SVM classifier and 100% for kNN classifier. SVM classifier 
using linear kernel provides an average sensitivity, specific-
ity and positive prediction rate of 100%, 95.23% and 97.06% 
respectively. This is a linear problem, thus better results are 
observed for linear SVM kernel comparative to Gaussian 
RBF SVM kernel.

3.3.2 � Classification‑stage 2

Grade 1 and grade 2 severity levels comprise mild and mod-
erate DR abnormality symptoms which are graded into one 
category and the grade 3 category includes severe DR abnor-
mality symptoms. Grades 1 and 2 are less severe and have 
similar lesion properties and are therefore considered col-
lectively for classification-stage 2. The classification results 
are tabulated in Table 14.

For the DR classification-stage 2, the SVM classifier 
provides 91.50% overall accuracy using the linear kernel 
and 95.68% using the Gaussian radial basis function kernel. 
Positive prediction value, sensitivity and specificity of 90%, 
93.77% and 95.56% respectively is achieved by the linear 
SVM classifier. SVM classifier employing Gaussian RBF 

Table 9   Levene’s test and t test for GLCM Features

Features Levene’s test t test

F Sig t Sig. (2-tailed)

Auto correlation 55.124 0.000 − 4.826 0.000
Correlation 108.862 0.000 3.443 0.001
Contrast 109.651 0.000 − 3.480 0.001
ClusterShade 13.601 0.000 0.744 0.458
ClusterProminance 97.118 0.000 − 4.214 0.000
Energy 7.595 0.007 1.050 0.295
Entropy 73.125 0.000 2.414 0.017
Homogenity 40.663 0.000 4.290 0.000
InverseDiffNorm 104.124 0.000 3.560 0.000
InvDiffMoment 109.226 0.000 3.491 0.001
Dissimilarity 106.816 0.000 − 3.523 0.001
MaxProb 34.019 0.000 4.078 0.000
InfoCorr1 91.816 0.000 − 3.880 0.000
InfoCorr2 121.068 0.000 3.479 0.001

Table 10   ANOVA results for GLCM feature set

GLCM features

Features One way ANOVA 
(significant value)

Auto-correlation 0.001
Correlation 0.000
Contrast 0.001
ClusterShade 0.458
ClusterProminance 0.000
Energy 0.295
Entropy 0.017
Homogeneity 0.001
InverseDiffNorm 0.000
InvDiffMoment 0.001
Dissimilarity 0.001
MaxProb 0.001
InfoCorr1 0.000
InfoCorr2 0.001

Table 11   Training and Validation set distribution for DR severity 
classification

Grade Grade 0 Grade 1 Grade 2 Grade 3

Image set
 Training set 240 200 200 200
 Testing/validation set 160 60 60 60
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kernel provides 97.62%, 95.24% and 96.82% of PPV, sensi-
tivity and specificity values respectively. Gaussian RBF ker-
nel employed for SVM classification provides better results 
in terms of all the performance indices as classification-stage 
3 is a non-linear problem. kNN classifier provides an overall 
accuracy of 97.90% for fine kNN and 95.70% weighted kNN 
classifier. Fine kNN classifier achieves positive prediction 
value, sensitivity and specificity of 98.76%, 97.62%, 99.02% 

respectively and weighted kNN classifier provide 95.83%, 
97.44%, 97.98% of PPV, sensitivity and specificity values 
respectively. Further classification of abnormality grades 
reduces the grading efficiency as the features of different 
abnormality classes are somewhat correlated. Gaussian RBF 
kernel for SVM classifier and fine kNN classifier provides 
better performance in terms of different indices due to the 
robustness of these classifiers for non-linear classification 
problems.

3.3.3 � Classification‑stage 3

Further, to classify DR into distinct abnormalities, Grade 0, 
1, 2 and 3 are separated into different classes in classifica-
tion-stage 3. The results for classification-stage 3 in terms 
of PPV, Sensitivity, specificity and accuracy are provided 
in Table 15.

SVM classifier employing linear and Gaussian kernel pro-
vides overall accuracy of 91.30% and 92.60% respectively for 
the DR classification-stage 3. The positive prediction value, 
sensitivity and specificity of 94.27%, 91.58% and 97.24% 
respectively are achieved by the linear SVM classifier. SVM 
classifier employing Gaussian RBF kernel provides 92.62%, 
92.65% and 97.36% of PPV, sensitivity and specificity val-
ues respectively. Gaussian RBF kernel for SVM classifier 
performs better than linear kernel due to its competence for 
non-linearity. kNN classifier provides 95.30% accuracy for 
fine kNN and 87.90% accuracy is observed for the weighted 
kNN classification method. Fine kNN classifier achieves posi-
tive prediction value, sensitivity and specificity of 96.35%, 
94.41%, 98.25% respectively and weighted kNN classifier pro-
vide 90.12%, 90.38%, 95.45% of PPV, sensitivity and specific-
ity values respectively. The highest accurate results providing 
95.30% accuracy are observed for fine kNN classifier as unlike 
SVM it does not need higher training examples to distinguish 
between the classes and decides its class labels depending 

Table 12   Cases for HSG 
classification

Non-DR DR affected

Case 1 Classification-Stage 1 Grade 0 Grade 1, 2, 3
Case 2 Classification-Stage 2 Grade 0 Grade 1 and 2 Grade 3
Case 3 Classification-Stage 3 Grade 0 Grade 1 Grade 2 Grade 3

Table 13   Performance 
measure of HSG system for 
classification-stage 1

PPV positive prediction value, AUC area under the curve

Features Classifier Sensitivity (%) Specificity (%) Accuracy (%) PPV (%) AUC​

GLCM Features Linear SVM 100 95.23 98.10 97.06 1.00
Gaussian RBF SVM 93.93 90.47 92.60 93.93 0.99
Fine kNN 100 100 100 100 1.00
Weighted kNN 100 100 100 100 1.00

Table 14   Performance metrics of HSG system for classification-stage 
2

PPV positive prediction value, Sen. sensitivity, Sp. specificity, Acc. 
accuracy, AUC​ area under the curve

Classifier SVM kNN

Linear kernel Gaussian 
RBF kernel

Fine kNN Weighted 
kNN

Parameter
 PPV
  PPV0 87.50% 100% 100% 100%
  PPV1 86.67% 100% 100% 87.50%
  PPV2 95.83% 92.86% 96.29% 100%

 Sen
  Sen0 100% 100% 100% 100%
  Sen1 92.86% 85.71% 92.86% 100%
  Sen2 88.46% 100% 100% 92.31%

 Sp
  Sp0 97.50% 100% 100% 100%
  Sp1 93.93% 100% 97.06% 93.94%
  Sp2 95.24% 90.47% 100% 100%

 Acc
  Acc0 97.87% 100% 100% 100%
  Acc1 93.62% 95.74% 97.87% 95.92%
  Acc2 91.49% 95.74% 97.87% 95.74%

 Overall 
accuracy

91.50% 95.68% 97.90% 95.70%

 AUC​ 1.00 1.00 1.00 1.00
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upon its immediate neighbors making it best suitable for DR 
classification problem.

Grade 1 DR severity images have similar features as that 
of Grade 0 and therefore can be falsely detected as non-DR 
fundus images. In literature, fewer attempts have been made 
for automated grading of DR severity and desirable accuracy 
is not achieved by the methods provided in the literature (Gian-
cardo et al. 2012).

3.4 � Validation of the proposed system using Indian 
Diabetic Retinopathy Image Dataset (IDRiD) 
dataset

The generalization ability of the proposed HSG system 
is validated using the IDRiD dataset to increase much 
more patient samples helping the physicians to realize 
the progress of the disease. To get an oversight of dif-
ferent classifier performance, we intend to check the 
performance metrics utilizing KNN and SVM classifiers 

for classification-stage 3. The proposed methodology is 
applied on the IDRiD dataset and the performance metrics 
analysis of observed for HSG approach comparing SVM 
and kNN classifiers is given in Table 16.

The performance metrics evaluated in Table 16 reveals 
the feasibility of the proposed HSG system for the IDRiD 
dataset providing a maximum of 94.00% accuracy for 
fine kNN classifier with 0.99 AUC. The proposed sys-
tem provides 90.60% accuracy for the linear SVM clas-
sifier, 91.90% accuracy for the Gaussian SVM classifier 
and 93.31% accuracy for the weighted kNN classification 
method. In this work, kNN classifier have made the preem-
inent attempts to address this problem and generalize the 
grading ability of the proposed HSG system achieving bet-
ter accuracies.

The two datasets involved in the experimental implemen-
tation of the proposed HSG approach are compared in terms 
of accuracy and computational time in Fig. 7.

It is observed from Fig. 7 that higher accuracy values 
with comparably less computational time are achieved using 
the HSG system with kNN classifier approach. It is revealed 
that the kNN classifier takes 0.73 s to train which is less 
compared to the SVM classifier, taking 1.13 s exploiting the 
MESSIDOR dataset. However, training of IDRiD dataset 
takes 0.67 s to train kNN classifier and 1.10 s for SVM clas-
sifier training. The reduced computational time of kNN with 
increased system accuracy justifies the selection of kNN 
classifier for DR severity classification. The proposed HSG 
system provides uniform results, irrespective of the dataset 
being used, thus establishing its generalization capabilities.

A comparative analysis of the HSG system for sepa-
rating non-DR and DR affected fundus images is done in 
Table 17 whereas the comparison of classification-stage 3 
HSG DR classification with the existing approaches is made 
in Table 18.

The comparative study reveals that our system for sepa-
rating non-DR and DR affected images provide 100% aver-
age accuracy using kNN classifier that is maximum among 
the existing methods using the same dataset. Our system 
employing fine kNN classifier provides an accuracy of 
95.30% and AUC of 0.99 and it is compared to other state 
of the art approaches in Table 18. The comparison reveals 
that the proposed HSG method performs better in terms of 
accuracy and AUC among other existing approaches for 
classification-stage 3 of DR severity grading.

It was observed from Tables 17 and 18 that our pro-
posed approach outperforms the state-of-the-art methods 
in terms of accuracy and AUC. The system proposed is 
less complex in terms of run-time providing cost-effec-
tive mass screening solutions for the detection of dia-
betic retinopathy. For the proposed HSG system, SVM 
and kNN classifiers are utilized to assess classification 
performance for DR severity grading. Fine kNN classifier 

Table 15   Performance metrics of HSG system for classification-stage 
3

PPV positive prediction value, Sen. sensitivity, Sp. specificity, Acc. 
accuracy, AUC​ area under the curve

Classifier SVM kNN

linear kernel Gauss-
ian RBF 
kernel

Fine kNN Weighted kNN

Parameters
 PPV
  PPV0 96.36% 98.07% 100% 88.89%
  PPV1 85.71% 87.28% 91.67% 81.13%
  PPV2 95.00% 95.65% 100% 95.45%
  PPV3 100% 89.47% 93.75% 95.00%

 Sen
  Sen0 92.98% 89.47% 91.43% 84.21%
  Sen1 96.00% 96.00% 100% 86.00%
  Sen2 82.61% 95.65% 86.21% 91.30%
  Sen3 94.74% 89.47% 100% 100%

 Sp
  Sp0 97.83% 98.91% 100% 93.48%
  Sp1 91.92% 92.93% 94.68% 89.89%
  Sp2 99.20% 97.62% 100% 99.21%
  Sp3 100% 100% 98.32% 99.23%

 Acc
  Acc0 94.91% 95.30% 97.98% 92.39%
  Acc1 93.20% 93.96% 96.64% 88.59%
  Acc2 98.31% 97.31% 97.32% 97.99%
  Acc3 97.33% 98.66% 98.66% 99.33%

 Overall 
accuracy

91.30% 92.60% 95.30% 87.90%

 AUC​ 0.99 0.99 0.99 0.89
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provides the maximum accuracy of 95.30% among all the 
classifier combinations used in this paper for abnormal-
ity grade classification. SVM classifier results into biased 
classification outcomes as it classifies each test sample 
belonging to the majority class (Niemeijer et al. 2004). 
kNN decides its class label depending upon its immediate 
neighbors, therefore, providing robust classification. How-
ever, a new technological advent in the field of medical 

sciences has developed with deep neural network (DNN) 
based screening methods. Abbas et al. (2017) have devel-
oped a deep visual feature-based DR severity classifica-
tion method derived using deep learning-based multilayer 
semi-supervised technique. Wang and Yang (2018) yields 
better classification outcomes by introducing a deep learn-
ing technique employing Regression Activation Maps 
(RAMs) after pooling layer for severity level grading 

Table 16   Performance 
metrics of HSG system for 
classification-stage 3 (non- DR 
grade and DR affected grades 
1–3) utilizing IDRiD dataset

PPV positive prediction value, Sen. sensitivity, Sp. specificity, Acc. accuracy, AUC​ area under the curve

Classifier SVM kNN

Linear kernel Gaussian RBF 
kernel

Fine kNN Weighted kNN

Parameters
 PPV
  PPV0 96.36% 94.12% 97.06% 96.96%
  PPV1 84.21% 92.59% 93.10% 91.38%
  PPV2 94.12% 82.75% 88.46% 88.46%
  PPV3 90.00% 96.87% 96.77% 96.87%

 Sen
  Sen0 92.98% 91.42% 94.28% 91.42%
  Sen1 96.00% 90.91% 98.18% 96.36%
  Sen2 89.56% 92.31% 88.46% 88.46%
  Sen3 94.74% 93.93% 90.91% 93.93%

 Sp
  Sp0 97.83% 98.24% 99.12% 99.12%
  Sp1 90.91% 95.74% 95.74% 94.68%
  Sp2 99.21% 95.93% 97.56% 97.56%
  Sp3 98.46% 99.13% 99.13% 99.13%

 Acc
  Acc0 95.97% 96.64% 97.98% 97.31%
  Acc1 92.62% 93.96% 96.64% 95.30%
  Acc2 94.63% 95.30% 95.97% 95.97%
  Acc3 97.99% 97.98% 97.31% 97.98%

 Overall accuracy 90.60% 91.90% 94.00% 93.31%
 AUC​ 0.91 0.94 0.99 0.98

Fig.7   Comparison of MESSI-
DOR and IDRiD datasets in 
terms of accuracy and computa-
tional time
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based region of interest localization. Yu et al. (2017) uses 
the combination of CNNs and saliency maps to obtain both 
supervised as well as unsupervised features which act as 
input for SVM classifier. A deep CNN model was utilized 
by Gao et al. (2018), for DR severity grading utilizing their 
self built labelled dataset. The accuracy of 88.72% was 
achieved for severity level grading of DR fundus images 
using this particular model. These neural network-based 
methods have demonstrated revolutionary performance 
for various image classification and object recognition 
applications even surpassing the manual systems. Despite 
many advances that have been made for using DNNs in 
DR diagnosis, still these systems pose challenges in their 
practical implementation. The authors are working on the 
deep learning-based implementation of DR screening and 
a transfer learning based CNN module have been tested 
by the authors utilizing various pre-trained CNN mod-
els. Performance evaluation of CNN based classification 
model in terms of accuracy exploiting AlexNet, Goog-
leNet, ResNet, Vgg16, Vgg19 and InceptionV3 pre-trained 
models is depicted in Table 19.

From this tabular interpretation, it is revealed that our 
proposed kNN classifier based approach provides remark-
able performance even when it is compared to the deep 
learning based approach. This is due to the better learning 
of machine learning classifier for small set of data and deep 
leaning methods require large amount of annotated data for 
proper convergence. However, while increasing the number 

of data samples for deep learning the network performance 
may improve. This is the future perspective of this research 
work.

The ultimate goal of our HSG system is to classify the 
fundus images with no retinopathy symptoms as non-DR 
and the fundus images with retinopathy lesions as abnormal 
irrespective of database, FOV and resolution.

4 � Conclusion

This paper proposes a hierarchical severity level grading 
(HSG) system for the detection and classification of DR 
disease employing SVM and kNN classifiers. A total of 14 
GLCM features were identified from pathologies obtained 
after foreground and background retinal landmark segmen-
tation for the 400 fundus images. The statistical analysis 
resulted in 12 optimal features which are further fed to the 
respective classifiers. The variation in the classification was 
brought by selecting the different kernels for SVM as well as 
kNN classifiers. The proposed HSG system employs retinal 
fundus image categorization as grade 0 (indicating non-DR 
class) and DR severity grades 1, 2, 3 depending upon the 
number of DR anomalies present in the fundus images. The 
result for non-DR and DR affected fundus image classifi-
cation provides 100% specificity, sensitivity, accuracy and 
positive prediction value. The classification-stage 3 of the 
proposed HSG approach utilizing kNN classifier achieved 
good classification results in terms of five statistical indices: 
accuracy, 95.30%; sensitivity, 94.41%; specificity, 98.25%; 
positive prediction value 96.35%; and AUC, 0.99. MESSI-
DOR dataset takes 1.13 s for SVM classifier training and 
computational time of 0.73 s for training kNN classifier. 
Performance validation of the proposed HSG system on the 
IDRiD dataset provides a maximum of 94.00% accuracy 
using kNN classifier providing the computational time of 
0.67 s. Therefore, the selection of kNN classifier for classi-
fication of DR anomalies is justified in terms of accuracy as 
well as computation time. The proposed system can be uti-
lized for the screening of DR abnormalities as it provides an 

Table 17   Comparison table for DR severity grading for separating 
non-DR and DR affected images using MESSIDOR database

Dataset used MESSIDOR Accuracy (%)

Technique
 Lachure et al. (2015) 90.00
  Rahim et al. (2016) 93.00

 Bandyopadhyay et al. (2018) 95.30
 Proposed HSG system (classification-stage 1) 100

Table 18   Comparative analysis of proposed HSG system (classifica-
tion-stage 3) with the existing methods utilizing MESSIDOR data-
base

Dataset used MESSIDOR Accuracy (%) AUC​

Technique
 Roychowdhury et al. (2013) 78.12 0.90
 Seoud et al. (2015) 74.10 0.73
 Navarro et al. (2016) 84.00 –
 Thammastitkul and Uyyanonvara (2016) 87.00 0.85
 Xiao et al. (2019) 90.50 0.85
 Proposed HSG system (Classification-stage 

3)
95.30 0.99

Table 19   Performance evaluation of CNN based DR severity grade 
classification model

Pre-trained CNN models Accuracy obtained for CNN based 
DR severity grade classification (%)

AlexNet 73.33
GoogleNet 65.56
ResNet 65.83
Vgg16 82.14
Vgg19 80.76
Inception V-3 87.50
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alternative solution for automated DR screening by showing 
statistically significant improvement in the results obtained. 
In the future, this work will be extended by utilizing deep 
learning and optimization algorithms for DR severity grade 
classification. Additionally, future work of this research will 
be focused on addressing neovascularization and blood ves-
sel bleeding problems causing proliferative DR which may 
lead to retinal detachment resulting in acute blindness.
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