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Abstract
The diabetic retinopathy accounts in the deterioration of retinal blood vessels leading to a serious compilation affecting the 
eyes. The automated DR diagnosis frameworks are critically important for the early identification and detection of these  
eye-related problems, helping the ophthalmic experts in providing the second opinion for effectual treatment. The deep learn-
ing techniques have evolved as an improvement over the conventional approaches, which are dependent on the handcrafted 
feature extraction. To address the issue of proficient DR discrimination, the authors have proposed a quadrant ensemble 
automated DR grading approach by implementing InceptionResnet-V2 deep neural network framework. The presented model 
incorporates histogram equalization, optical disc localization, and quadrant cropping along with the data augmentation step 
for improving the network performance. A superior accuracy performance of 93.33% is observed for the proposed frame-
work, and a significant reduction of 0.325 is noticed in the cross-entropy loss function for MESSIDOR benchmark dataset; 
however, its validation utilizing the latest IDRiD dataset establishes its generalization ability. The accuracy improvement 
of 13.58% is observed when the proposed QEIRV-2 model is compared with the classical Inception-V3 CNN model. To 
justify the viability of the proposed framework, its performance is compared with the existing state-of-the-art approaches 
and 25.23% of accuracy improvement is observed.

Keywords Diabetic retinopathy · Deep neural network · Convolution neural network · Hand-crafted features · 
InceptionResnet-V2 · Data augmentation

Introduction

Diabetic retinopathy (DR) is caused due to intensive visual 
disability occurring due to prolonged disintegration of blood 
vessels present in retinal region. DR becomes more complex 
to cure at its elevated stages; therefore, initial recognition of 
the problem is significant. Early detection of DR is essential 
for clinical prognosis in order to provide the treatment and 
to further reduce the disease advancement. Early-stage 

DR detection can be categorized into four significant 
classifications: non-retinopathic, mild, moderate, and severe 
stage. The automated DR evaluation methods are adopted by 
several researchers, and these approaches present different 
strategies for severity recognition and its grading into several 
stages [1, 2]. The treatment of DR plan for various patients 
varies with the severity level of DR criticality. Patients 
suffering from zero or mild DR indicate the requirement 
of ordinary treatment with screening, whereas the patients 
suffering from moderate and severe indications of DR may 
refer to the vitrectomy and laser treatment. According to 
severity level, instant and timely treatment of patient is 
significant [1].

The strategies of DR screening through fundus images 
are broadly utilized because of their easiness, suitable 
acquisition, and better visibility of lesions. The increase 
in diabetic patient has strengthened the scope of advanced 
proficient ophthalmologists for initiating the requirement 
of automatic DR diagnosis frameworks. The indications 
of potential DR are not observable through naked eye; 
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therefore, a system for automatic early detection of DR is 
the foremost requirement to investigate the characteristics 
and pattern of DR [1]. The computerized visualization 
for diabetic retinopathy is critical to deal with, thereby, 
providing the burden on ophthalmologists for recognition 
of patients who require immediate eye care and explicit 
treatment [2]. High clinical pertinence of DR arrangement 
for better diagnosis leads various researchers to design an 
automatic DR diagnosis framework.

At present, the machine learning approaches 
presents different computer-aided possibilities for the 
automated classification and analysis of DR. The DR 
recognition utilizes different feature extraction methods 
to extract valuable data from the input fundus images. 
The feature extraction is carried out manually along 
with the variabilities in visual attributes of various 
lesions and should be robust for DR lesion variations 
[3]. The automated frameworks of DR recognition may 
implement the manual feature extraction technique 
for the detection of lesion. It ensures that the lesions 
can be detected during isolation as well as with the 
combination of other lesions, providing a second opinion 
to the ophthalmologist for decision making and further 
assessment. The machine learning–based algorithms are 
capable of categorizing lesion classification depending 
upon the decision boundary along with the activation 
functions. These machine learning approaches can neither 
adjust these decision boundaries by implementing non-
linear values and nor proficient for effectual learning, 
thereby restricting their abilities for settling the difficult 

tasks. Additionally, machine learning technique can be 
improved by implementing feature engineering, which 
itself is a laborious process requiring the proficient domain 
awareness. The feature attributes being used by machine 
learning techniques should have been recognized by the 
domain professionals to reduce data complexity and to 
study the output classification attributes. The deep learning 
has evolved as a forward leap to automate the feature 
engineering procedure by including feature learning 
effectively while learning the features in an incremental 
manner. Deep learning approach is considered as end-
to-end solution finding technique without partitioning 
the process into various parts and afterward joining at 
the last phase, as done for machine learning. The deep 
neural network (DNN) designs have outperformed manual 
grading frameworks in numerous applications. On the 
other hand, convolutional neural networks (CNN) has 
accomplished improvement for image characterization 
and recognition, and they are subsequently implemented 
for DR diagnosis frameworks.

The basic CNN model is presented in Fig. 1 composes 
of input layer, followed by the stack of convolution layer, 
and the number of pooling layers, followed by the fully 
connected layer and the output layer.

The architecture of CNN model involves the combination 
of feature attribute extractor and classifier. Feature extraction 
is carried out from the input layer utilizing both convolution 
and pooling layers. The incremental increase in number of 
convolution layers is utilized to make CNN extract more 
complex feature attributes. The initial network layers are 

Fig. 1  Convolutional neural network architecture
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liable for perceiving the edge properties present in fundus 
images; on the other hand, the deeper layers of convolution 
layers is responsible for learning the feature attributes for 
fundus images recognition into different DR severity grades. 
The feature vector attained from fully connected layer is 
forwarded for the classification, and then, the classification 
outcomes are acquired at the output layer.

Unlike machine learning, CNN-based characterization 
strategies give better execution because of its property of 
scale, rotational property, and its wider field of view. These 
properties of CNN make it reasonable for DR grading 
on the basis of retinal fundus images, as these images 
differ in terms of various sizes and various fields of view. 
Regardless of the numerous advances made to utilize CNN 
in DR diagnosis, these frameworks still face challenges for 
majority of healthcare applications. This article attempts to 
address these challenges by implementing a CNN approach 
on the basis of transfer learning.

A significant amount of time along with huge dataset 
is needed for training a DNN model out of scratch, and 
representation is challenging for healthcare domain where 
fixed number of data is accessible. Therefore, considering 
the task specific application, the transfer learning approach is 
exceptionally better, permitting the utilization of pre-trained 
structures previously utilized for addressing the similar 
domain-specific problem. The transfer learning technique 
permits the learning of another task on the basis of previous 
knowledge making the learning process quicker and more 
precise without requiring a large amount of the training data.

Different literatures for DR severity categorization using 
CNN uncovered that the utilization of transfer learning gives 
better results comparative to the construction of novel CNN 
structures [4]. The well-known dataset utilized for transfer 
learning approach–based pre-trained CNN frameworks is 
ImageNet dataset [5], which comprises a large number of 
images for training. This huge dataset is utilized for training, 
and the non-exclusive feature attributes are identified by the 
fundamental layers of CNN and the dataset-explicit feature 
attributes are recognized by the final layers.

Related Work

In the recent years, various researchers have contributed 
towards the automation of DR diagnosis utilizing different 
techniques. This section presents two main aspects: first 
section summarizes the work carried out for the automatic 
DR diagnosis utilizing conventional machine learning–based 
methods followed by the second section presenting recent 
work carried out in this domain composing of convolutional 
neural network frameworks.

Traditional Machine Learning–Based Approaches

The conventional DR classification techniques include 
significant stages of three types: one is image processing, 
followed by stage of feature extraction, and the final stage 
is classification of severity level. The studies for automated 
DR diagnosis include separate segment of feature extraction 
before transferring towards final stage of classifier. The 
classification of DR at its initial phase utilizing Machine 
Learning Bagging Ensemble Classifier (ML-BEC) is studied 
[6]. Their strategy involves feature extraction in its initial 
stage followed by stage of classification by utilizing features 
extracted in the first stage. Srivastava et al. [7] uses various 
kernel strategies in order to recognize the features of MA and 
HM. Seoud et al. [8] presented a study for the recognition 
of different severity levels of DR by using random forest 
classifiers for fundus image classification. Sankar et al. [9] 
presented a study for the identification of non-DR fundus 
images in terms of various DR grades such as mild grade, 
moderate, and extreme grade. Seoud et al. [10] studied shape-
based feature for hemorrhages and MA detection, and their 
work presents superior classification outcomes. Pires et al. 
[11] investigates the automated DR recognition utilizing 
through applying image recognition in initial phases. Meta-
characterization method is utilized to estimate the patient 
requirement for providing instant healthcare services at 
clinics to give an automated recognition instrument in 
remote locations. Antal et al. [12] presented an ensemble-
based framework for improving MA recognition method 
in terms of its reliability. A combination of pre-processing 
segments and candidate extractors utilizing 0.90 ± 0.01 
AUC (area under curve) is accomplished for the DR and 
non-DR classifications of retinal structures dependent on 
the existence and non-existence of MAs. In [13], Mansour 
et al. discussed an overview determining the accuracy along 
with the efficiency of computer-aided diagnosis (CAD) 
frameworks utilizing conventional along with evolutionary 
methodologies. Their study reveals that the implementation 
of DR-CAD framework where the approach of optimization 
and evolutionary methods plays a significant part in pre-
processing utilizing enhancement filters, segmentation 
phase, dimensionality reduction phase, feature extraction, 
and its selection along with the classification. Dai et al. [14] 
presented a study using interleaved deep mining procedure, 
for studying the identification of MA in order to address the 
restrictions of present techniques which neglects to report 
inter and intra class varieties for the detection of MA. Their 
study presents a report for MA region identification during 
fundus image classification by utilizing hybrid interleaved-
deep mining procedure. Rahim et  al. [15] presented a 
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new model for automatic DR recognition for early-stage 
recognition of MA. The adopted procedure includes fuzzy 
histogram for pre-processing and the feature extraction 
before severity level classification.

Conventional methodologies deploy different handcrafted 
feature extraction procedures for the extraction of clinically 
relevant feature attributes from fundus images. The hand-
crafted feature attributes are restricted, and creating new-
effective features is difficult and does not result in better 
outcomes. This feature extraction method is laborious and 
may lead to misclassification. The decision of choosing 
suitable handcrafted feature attributes requires examination 
of different boundary limitations with prior information by 
ophthalmic experts.

The advancement and capabilities of DNN replaced DR 
diagnosis approaches based on machine learning and present 
huge execution improvement in various medical image 
processing applications [16].

DCNN–Based Approaches

Recently, with the evolution of deep neural network 
(DNN)–based techniques which have accomplished 
creative results in different fields particularly in healthcare 
applications. An advancement came into existence in medical 
image examination and its classification performance, by 
introducing new bio-image approach dependent on ensemble 
convolutional neural networks (CNNs). An automated 
computer–aided framework on the basis of deep visual 
feature for diagnosis was discussed by Abbas et al. [17] for 
the classification of various DR severity grades without 
employing pre-processing phases. The deep visual feature 
attributes were inferred utilizing deep learning–oriented 
multilayer semi-supervised method. Deep learning method in 
combination with the domain information for the recognition 
of red lesion and random forest classification is implemented 
for the classification of retinal images on the basis of their 
severity grade. Wang et al. [18] present a deep learning–based 
scheme by implementing regression activation maps in 
accordance with the pooling layers for estimating the region 
of interest–based grading of severity levels. Yu et al. [19] 
presented a new characterization approach for analysis of 
image quality depending upon the human visual framework 
which is combination of saliency charts and CNNs to acquire 
features both supervised and unsupervised which further 
subjected to support vector machine (SVM) classifier as 
an input. Gao et al. [20] utilized deep convolutional neural 
network (DCNN) framework for severity level grading of 
DR utilizing labeled dataset. The framework is capable 
of achieving accuracy of 88.72% for evaluating severity 
levels grading of DR through fundus images. Additionally, 
the network was tested for its deployment on cloud based 
platform for providing DR diagnostic facilities to various 

healthcare centers. A combination of Gaussian mixer model 
(GMM) and visual geometry group network (VGGNet-19) 
is adopted for obtaining better outcomes in terms of 
accuracy [21]. Singular value decomposition (SVD) along 
with the feature selection platform of principle component 
analysis (PCA) was utilized at FC7 and FC8 layers termed 
as fully connected to accomplish better accuracy in 
terms of classification. The network performs better for 
AlexNet dataset and achieves high percentage accuracy 
of classification and achieves better average computation 
time for standard KAGGLE dataset. Transfer learning 
model on the basis of CNN was proposed by Li et al. [22] 
for the classification of DR by adjusting the boundaries of 
pre-trained framework. The observed results present that 
transfer learning model on the basis of CNN achieves better 
results of classification for small datasets. The CNN-based 
framework is applied on colored fundus images for DR 
recognition, and 95% of validation sensitivity is achieved 
[23]. The experiments reveal that the histogram equalization 
along with the fidelity of dataset improves the recognition 
of features and transfer learning utilizing pertained models 
presents accuracy of 74.5%, 68.8%, and 57.2% for 2-ary, 
3-ary, and 4-ary for the GoogleNet transfer framework. The 
CNN oriented exudates localization scheme for diabetic 
macular edema (DME) detection by analyzing datasets of two 
fundus images: one is MESSIDOR, and other is E-Ophtha 
datasets [24]. The classification model of DME delivers 
the 77% of accuracy along with 0.78 of validation harm, 
thereby improving the diagnosis of disease. An algorithm 
is presented for the diagnosis of DR on the basis of Alexnet 
CNN which achieves 88.3% accuracy using MESSIDOR 
dataset fundus images [25]. Wang et al. [26] proposed an 
algorithm on the basis of CNNs Zoom-in-Net for diagnosis of 
DR which presents accuracy of 91.1% which is superior when 
compared with the existing state of art approaches for similar 
MESSIDOR dataset. One study applies the Inception-V3 pre-
trained scheme for dealing with the experiment of marked 
training data inadequacy for the detection of DR. The 
minor sub-sample from Kaggle DR database was utilized 
for model training, and the accuracy of framework was 
tested and verified on another sample dataset. The transfer 
learning method can be implemented in order to overcome 
additional deep learning–based problems of healthcare 
domain. Additionally, an automatic diagnosis framework is 
proposed for the detection of DR on the basis of smartphone 
using Inception-based CNN model and classification strategy 
of binary decision tree. The significance of this technique 
into smartphone delivers a suitable DR diagnostic facility 
even for the experts of non-ophthalmic. One study presents 
a DR image recognition approach on the basis of deep CNN 
framework which composes of six various approached to 
increase the performance DR identification [27]. Without 
depending the fine-tuning, their architecture performs better 
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than the existing techniques on MESSIDOR similar dataset 
presents 5.26× of lesser parameters and reduction in overall 
computation cost of the system. The authors have presented a 
study comparing the traditional machine learning approaches 
and deep learning approaches on the basis of CNN [28]. 
CNN model offers improved agreement to the outcome of 
extremely trained human grading specialists while making 
use of various datasets. Inception-V3 CNN framework 
offers superior performance for each performance metrices 
and results accuracy performance of 89% for EyePACS 
dataset and accuracy of 81.6% for MESSIDOR dataset. 
A cross-disease consideration network was developed 
that absorbs particular features and discovers the internal 
relationship among the diabetic macular edema (DME) 
and the DR [29]. The fivefold cross-validation presents 
significant improvement in performance when estimated 
using the challenge of IDRiD and MESSIDOR dataset. The 
authors proposed an approach for the automatic detection 
of DR and its grading using CNNs [30]. In pre-processing 
step, the retinal fundus images are processed and resized and 
then subjected towards computational layers. A maximum 
accuracy of around 90.9% is attained for the images of 
MESSIDOR dataset forming the competency of CNN-based 
technique for the DR grading.

The literature review suggests that neural network–oriented 
strategies have shown superior outcomes for majority of 
applications including NN-based DR grading frameworks. The 
CNN model requires enormous amount of data to guarantee 
appropriate convergence without data accessibility and 
overfitting which is restricted in medical domain, especially 
in DR detection. The DR severity grading methods present in 
the literature exploits the handcrafter feature attributes which 
are laborious, require proficient expert knowledge, and may 
lead to misclassification. Despite of numerous progresses of 
DNN implementation in DR diagnosis, still these frameworks 
present difficulties for healthcare applications. DCNNs have 
been demonstrated prevalent for the image classification and 
furthermore introduced in DR diagnosis frameworks. Thus, to 
address the limitations of the reviewed work, this article aims 
at assessing the suitability of CNN-based methods for DR 
classification and grading due to its advantageous contribution 
to the medical imaging field.

This paper proposes a fundus imaging–based DR 
grading framework for the categorization of fundus images 
into various classifications based on retinal pathological 
changes using CNNs. A quadrant-based ensemble model 
utilizing InceptionResnet-V2 CNN model (QEIRV-
2) is presented in this work for the identification and 
characterization of NPDR severities generalized over a 
standard MESSIDOR dataset. The novelty of the proposed 
framework lies in the integration of a pre-processing 
phase inclusive of fundus image enhancement, removal of 
optical disc (OD), quadrant cropping, and augmentation of 

data in the model implementation pipeline. The quadrant 
ensemble methodology makes the framework more 
versatile to tiny lesions that exist in retinal fundus images 
which were not noticeable earlier in original fundus 
images. The innovation of the proposed QEIRV-2 model 
offers better accuracy by obtaining enormous trainable 
parameters, and the exploratory outcomes acquired exhibit 
the ability of the proposed framework for proficient DR 
determination. The proposed framework offers better 
performance by applying data augmentation approach 
and hence providing the scale flexibility, rotation, and 
invariance in field of view when validated on a latest 
IDRiD dataset. Additionally, the comparative analysis of 
QEIRV-2 model utilizing other standard model presents 
that the outcome accomplished by our proposed framework 
outperforms the present state-of-the-art methodologies 
justifying its generalization and viability.

The remainder of this paper is structured as follows: 
“Material and Methods” describes the materials and 
techniques required for convolution neural networks 
based application for diagnosis of DR. Proposed method 
is described in “Proposed Methodology” including the 
architectural layout of the proposed CNN architecture. The 
observed experimental results are discussed in “Experimental 
Results and Discussions” which is followed by the description 
of conclusion and future consideration in “Conclusion.”

Material and Methods

This research work has presented a capable DR classification 
solution by categorization of fundus image as per the 
degree of disease severity. The objective is accomplished 
by separating the proposed method into various consecutive 
stages represented in Fig. 2.

Acquisition of Data

Acquisition of data is the essential phase for the execution of 
the proposed framework. Publically accessible fundus image 
datasets, for example, Digital Retinal Images for Vessel 
Extraction (DRIVE) [31], Structured Analysis of Retina 
(STARE) [32], DIAbetic RETinopathy DataBase-calibration 
level 1 (DIARETDB1) [33], Retinal Online Challenge (ROC 
[34], Methods for Segmentation and Indexing Techniques 
Dedicated to Retinal Ophthalmology Retinal Ophthalmology 
(MESSIDOR) [35], and Indian Diabetic Retinopathy Image 
(IDRiD) [36], are utilized for various DR diagnostic tasks. All 
the datasets are applicable for different diagnostic applications 
and consists of large number of fundus images, and they vary 
in image count, their sizes, field of view (FOV), and various 
annotations. This research work uses the methods for evaluating 
the segmentation and indexing approaches in the area of retinal 
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ophthalmology utilizing MESSIDOR dataset [35]. MESSIDOR 
is a DR grading dataset which consists of fundus images in 
which the labels of every image demonstrate the four severity 
levels. It composes of 1200 fundus images collected at 45° 
FOV having differing pixel sizes of 1440 × 960, 2240 × 1488, 
or 2304 × 1536. Out of the totality of 1200 images: 546 are non-
diseased images with no signs of DR, 153 numbers of images 
consist of mild NPDR symptoms, moderate symptoms can be 
seen in 247 images, and 254 images consist of severe symptoms 
of NPDR severity.

The generalization capability of the proposed model is 
validated using the latest Indian Diabetic Retinopathy Image 
Dataset (IDRiD) [36] in this research work. The sample images 
are increased using the retinal fundus images from IDRiD 
(Porwal, et al. 2018) dataset in order to realize the disease 
progression. The dataset comprises clinical fundus images of 
thousands of patients examined at Eye Clinic located in Nanded 
(M.S.), India, during 2009–2017. Kowa VX-10a digital fundus 
camera was used to capture these images at 50° FOV while 
maintaining a distance of 39 mm between the camera lens 
and the eye. IDRiD dataset contains 454 images with NPDR 

severities, out of which 168 have no DR sign, 25 images show 
mild NPDR signs, 168 have moderate, and 93 images have 
severe NPDR symptoms.

OD Segmentation

OD segmentation is accomplished in three stages including 
a pre-processing step (denoising and contrast improvement) 
boundary localization and augmentation of data.

Denoising and Contrast Enhancement

In this paper, the experimentation was conducted utilizing the 
colored fundus images collected from the benchmark dataset. 
Before forwarding the data towards the network, pre-processing 
phase is crucial in accomplishing optimal fundus image clas-
sification into retinopathic or non-retinopathic. Pre-processing 
phase is useful in identification of lesion and in order to differ-
entiate among genuine lesions and non-lesions feature attributes 
of fundus images. Therefore, the pre-processing is important 
before extraction of features to recognize DR lesions. In the 

Fig. 2  Consecutive steps involved in the Quadrant-based Ensemble InceptionResnet-V2 (QEIRV-2) framework for severity grading
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pre-processing phase, normalization of size and color, denois-
ing, contrast limited adaptive histogram equalization (CLAHE), 
and ODlocalization steps are utilized. All the fundus images are 
resized considering fixed dimensions of 600 × 600 pixels. Size 
normalization is followed by the normalization of color, as the 
fundus images collected utilizing various cameras have distinc-
tive color temperatures and fluctuating illuminations [20, 37]. 
The color normalization utilized for this work incorporates the 
mean estimation operation over the value of each channel of the 
colored fundus image I(x, y). The color normalization expres-
sion is presented by Eq. (1).

where Rx, y,Gx, y,Bx, y is the value of pixels 
corresponding to R,G,B channels and the normalized pixels 
are denoted as Rxi, yi,Gxi, yi,Bxi, yi. The color normalization 
method provides a stable range of input by approximating 
the input from individual image channels for model learning.

Image denoising is a significant step to suppress the noise 
isolated without causing the blurred effect in the retinal 
fundus image. The genuine features of image such as edges or 
discontinuities are appropriately distinguished from the isolated 
noise using the median filtering operation expressed by Eq. (2):

where I�(i,j) is the filtered denoised image, I
[

x, y
]

 is the 
normalized image, and D represents the neighborhood 
centered around location [i, j] in the normalized image [37].

OD Boundary Localization

The denoising of image is trailed with the step of optical disc 
localization, as it is very essential for extracting diagnosis of 
DR pathologies from the retinal anatomical structures. The 
boundary localization for optical disc is obtained through the 
conversion of pre-processed image into HSV plane for intensity 
value extraction. The operation of morphological closing is 
implemented and the biggest circular portion is confirmed as 
the OD portion. After the removal of OD, the segmented fundus 
images are obtained by separating the segmented regions from 
the pre-processed fundus images [38–40].

Data Augmentation

The success of neural networks depends on adequate training 
data, but at the same time, this necessity is not satisfied in 
majority of applications. For the domain of medical image, 
more training data implies additional annotations which are very 

(1)

Rxi,yi = min
{

Rx,y

mean (R)
× 255

}

Gxi,yi = min
{

Gx,y

mean(G)
× 255

}

Bxi,yi = min
{

Bx,y

mean(B)
× 255

}

(2)I
�

(i, j) = median
{

I
[

x, y
]}

, (x, y)ϵN

expensive due to the shortage of experienced ophthalmologists. 
The other disadvantage is the imbalance among the images of 
various diseased classes. In order to mitigate these restrictions 
and improve the ability of the network, the process of data 
augmentation is implemented. The step of data augmentation 
includes flipping (horizontal and vertical), 90–180° random 
rotation, and random zooming that ranges in between [0.85, 
1.15] [41]. The process of data augmentation is useful in 
expanding the training samples as well as strengthening the 
size of class. The combination of image preprocessing and data 
augmentation makes the neural network insusceptible towards 
variation attenuation, insufficient illumination, and changing 
orientations [42–44].

DR Diagnosis System Setup

The convolutional deep neural networks are demonstrated better 
for the tasks of image recognition as well as image classification 
and are, therefore, implemented in DR diagnosis frameworks. 
The convolution neural network (CNN) addresses the issue of 
classification of DR utilizing hierarchical and discriminative 
automatic learning of features without earlier knowledge 
from clinical expertise. For this purpose, LeCun et al. [42, 45] 
presented a distinctive CNN framework which results superior 
outcomes for image recognition-based tasks. Convolutional 
layer, pooling layer, and complete connected layer are the three 
essential segments of CNN.

For an input image X of size, i × j × c, i × j is the image 
size and c represent the number of channels. The function 
calculated through convolutional layer is represented as 
Eq. (3).

where w represents the weight vector, n denotes the 
number of notes, and * represents convolution operator.

Down-sampling is refined by max pooling layer considering a 
small sliding window of a particular stride size. The information 
feature map is partitioned into smaller patches, and the 
maximum of every patch is evaluated utilizing max operation. 
The intermediate reduction in dimensionality is achieved by 
embedding the max pooling layer in between the successive 
convolution layers. The function of non-differentiable, rectified 
linear unit (RELU) is implemented to introduce the non-linearity 
because of its steady gradient output response for positive values 
of input. Therefore, contribution of RELU is a typical choice for 
CNNs [41] which is represented as Eq. (4).

(3)f (X) =

c
∑

n=0

wn ∗ Xn + bias

(4)RELU(X) =

{

0 if X < 0

X otherwise
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The sequence of convolutional and pooling layers is trailed 
by the fully connected layers. Every node of this layer is in 
direct contact with the other node, thus increasing the number 
of connections among the successive layers. This process 
increases the complex computations and also rises the abundant 
network parameters. This issue is settled utilizing dropout 
strategy which drops out the intermediate connections from 
some nodes and, therefore, reduces the complex parameters. 
The softmax activation function is utilized at the output layer 
that permits output interpretation straightforwardly, as the value 
of probability range for this function is in between 0 to 1. The 
output softmax layer is further reduced to four probability counts 
indicating the four degrees of DR severity grading. The function 
of softmax activation is represented by Eq. (5).

where eyi represents the exponential function for the output 
vector yi.

The fine-tuning of CNN framework is essential to utilize the 
arrangement of pre-trained weights and exploit these attributes 
for other datasets. The fine-tuning of pre-trained CNN model 
utilizing the objective data can improve the performance of 
model which fits to the task of classification. Image attributes 
among the source and objective class can be adjusted by 
varying the output layer size to a value equivalent to the 
target classifications [43]. Various layers of CNN framework 
are helpful in learning numerous features at different levels 
of hierarchy. The features are extracted in an incremental 
manner from each of the convolutional layer which is further 
classified in fully connected layer. Low-level feature attributes 
are observed at starting convolutions; however, the high-level 
feature attributes are observed through deeper convolutions. 
In this paper, pre-trained InceptionResnet-V2-based CNN 
model is utilized as extractor of feature and afterward the task 
of classification of performed [44]. 

Performance Indices

The performance of the CNN model is assessed for the 
following metrics: performance accuracy, time complexity, 
and cross-entropy cost function. Time complexity is defined 
as the time needed to train the CNN model. The accuracy 
gives the correct prediction of test data utilizing the trained 
model. The value of accuracy provides the amount of correctly 
predicted data from the overall predictions. The cross-entropy 
loss assesses the exhibition of characterization model, and it 
ranges from 0 to 1 where 0 is the value of cross-entropy loss. 

(5)Softmax(X) =
eyi

∑

i e
yi

Accuracy is represented as Eq. (6) regarding false positive (FP), 
false negative (FN), true negative (TN), and true positive (TP), 
whereas the cross-entropy loss is described by Eq. (7).

where M is class number, t represents correct 
classification for the observations o, p represents the 
likelihood of prediction, and y represents binary indicator 
(that may be 0 or 1) for the correct classification.

Proposed Methodology

Different CNN models have been anticipated for various tasks 
of classifications which include Lecun et al. [42, 45], AlexNet 
[46], VGGNet [47], ResNet [48], and Inception Architecture 
[49]. The authors of this article utilized the InceptionResnet-V2 
version of benchmark Inception network as Inception CNN 
model, and its derivatives have indicated huge improvement for 
the application of image classification and recognition.

InceptionResnet‑V2 model

InceptionResnet-V2 corresponds to 164-layer deep network that 
was at first intended to characterize 1000 object classes [49]. 
The network was trained over large number of images, and it 
may be retrained over a smaller set of data while preserving 
the information about the training model. This network attains 
the exceptionally accurate classification outcomes without 
requiring massive training comparative to its counterparts. The 
mathematical analysis is done for the computation of output 
size and trainable parameters of the network. The standard input 
image size for InceptionResnet-V2 is given by Eq. (8).

where h1 = height, w1 = width and c1 = channel number 
associated with the input image.

The initial convolutional filter consists of K = 32 filters of 
f × f = 3 × 3 size, stride (S) size of 2, and valid padding (P) of 
35. Its output size is calculated using Eq. (9).

(6)Accuracy =
TP + TN

TP + FP + TN + FN

(7)CrossEntropy =
1

∑M

t=1
yo,tlog(po, t)

(8)h1 × w1 × c1 = 229 × 229 × 3

For

(

h2 =
h1 − f + 2P

S
+ 1

)

,

(

w2 =
w1 − f + 2P

S
+ 1

)

,
(

c2 = K
)

(9)yields
→

(

h2 =
229 − 3 + (2 × 35)

2
+ 1

)

,

(

w
2

=
229 − 3 + (2 × 35)

2
+ 1

)

, (c2 = 32)
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The number of trainable parameters in each layer is computed 
using the weight information ( wc ) and the bias ( bc ). For filter size 
f = 3, number of filters K = 32, and number of channels c1 = 3, 
trainable parameters are calculated using the equation expressed 
by Eq. (10).

Output size of Convolutional Filter = h2 × w2 × c2 = 149 × 149 × 32

wc = f 2 × c1 × K and bc = K

Number of Trainable Parameters = wc + bc

(10)
yields
→

(

32 × 3 × 32
)

+ 32 = 896 parameters

No trainable parameters exist for the pooling layer as it 
calculated using a fixed function which requires no training.

Preceding the stack of convolutional and pooling layers, 
there is a fully connected layer at the end of the network which 
contains a vector of same size as that of the number of neurons 
present in it. The trainable parameters present in this layer are 
calculated using Eq. (12).

The output size of the preceding layer is o = 1 × 1 for 
K = 2048 number of filters, and the fully connected layer 
consists of (nFC = 4) neurons. Thus, the weight ( wFC ) and 
bias ( bFC ) values are calculated as follows:

Correspondingly, the output sizes and the parameters of 
further layers of InceptionResnet-V2 CNN model are calculated. 
Table 1 gives the layered network design of InceptionResnet-V2 
network presenting the indexing of layer including layer type, 
activations, learnables, and trainable parameters.

The initial layers of InceptionResnet-V2 model are 
accountable for evaluating the edge properties of fundus image; 
on the other hand, final layers are countable for evaluating the 
classification attributes of images for retinopathy grading. With 
the increase in number of activation layers, the dimension of the 

Output size of Pooling Layer = hp × wp × dp = 73 × 73 × 64

wFC = o2 × K × nFC = 12 × 768 × 2048 and bFC = nFC = 4

Number of Trainable Parameters in the final Fully Connected layer = wc + bc

(12)yields
→ 1,572,864 + 4 = 1,572,868 parameters

Table 1  Network architecture of 
InceptionResnet-V2 network

Type Activations Learnables Parameters

Size of filter Stride Number of 
filters/pooling

Trainable

Input data (299 × 299 × 3) –– ––
Convolution layer (149 × 149 × 32) (3 × 3) 2 32 896
Convolution layer (147 × 147 × 32) (3 × 3) 1 32 9,248
Convolution layer (147 × 147 × 64) (3 × 3) 1 64 18,496
Pooling layer (73 × 73 × 64) (3 × 3) 2 Max pool ––
Convolution layer (73 × 73 × 80) (1 × 1) 1 80 5,200
Convolution layer (71 × 71 × 192) (3 × 3) 1 192 138,432
Pooling layer (35 × 35 × 192) (3 × 3) 2 Max pool ––
5 × InceptionResnet module A (35 × 35 × 256) –– ––-
Reduction A (17 × 17 × 768) –– ––-
10 × InceptionResnet module B (17 × 17 × 768) –– ––-
Reduction B (8 × 8 × 2048) –– ––-
5 × InceptionResnet module C (8 × 8 × 2048) –– ––-
Pooling layer (1 × 1 × 2048) (8 × 8) 8 Avg pool ––-
Softmax output layer 4 –– 1,572,868

Similarly, the output size and learnable parameters of the 
other subsequent convolutional layers are also obtained using 
these equations.

The pooling layer is the subsequent layer to the convolutions 
in the network architecture. The output size of this layer is 
computed from the previous convolutional layer’s output, i.e., 
h2 × w2 × c2 = 147 × 147 × 64, filter size of pooling is f × f = 3 × 3, 
and stride (S) = 2 given by Eq. (11).

For hp =
h2 − f

S
+ 1,wP =

w2 − f

S
+ 1, dp = c2

(11)

yields
→ hp =

(

147 − 3

2
+ 1

)

,wp =

(

147 − 3

2
+ 1

)

, dp = 64

448 Journal of Digital Imaging  (2021) 34:440–457



image diminishes in terms of length and breadth, but the death 
of image increases until the layers output flattens.

In the initial phase, all the fundus images are provided to the 
InceptionResnet-V2 framework. The performance of the frame-
work is observed for specific indices such as network accuracy, 
time complexity, and cross-entropy loss function considering 
epoch size as 20 and iteration count 200. Table 2 presents the 
performance outcomes obtained from the InceptionResnet-V2 
framework for the considered parameters.

It depicts the comparison of statistics observed for Inception-
Resnet-V2 framework which presents 82.14% accuracy for the 
maximum epoch size of 20 at the iteration of 200. The cross-
entropy cost function is observed to provide the minimum value 
of 0.65 for the same parameter consideration. The time com-
plexity taken by the CNN framework for the experimentation 
is observed as 38 min and 50 s. The accuracy of the network 
improves while taking 200 iterations, and it is noticed that it 
improves from 60% for first epoch to 82.14% at the 20th epoch 
of the network. After this point, the accuracy does not improve 
by increasing the epoch size or the iteration count. The higher 
accuracy values are not obtained for this experimentation as the 
complete fundus image is considered, and the features of small 
lesion are not extracted using CNN framework which further 
reduces the performance of the network. In order to overcome 
this restriction of the detection of small lesion and to improve 
network performance, the authors in this work have presented a 

novel approach which is Quadrant-based Ensemble Inception-
Resnet-V2 framework.

QEIRV‑2

In this paper, the authors presented a QEIRV-2 framework which 
is designed utilizing four InceptionResnet-V2 frameworks. The 
models I, II, III, and IV shown in Fig. 4 are joined together for 
obtaining greater number of free parameters in order to achieve 
superior accuracy. The input to these four models is provided 
utilizing crops of fundus image at four various quadrants. The 
proposed CNN framework is encouraged from the approach of 
transfer learning that permits the knowledge transfer from one 
domain to another.

Transfer learning can be achieved implementing various 
approaches like data mapping from different domains at one 
common platform, and another is to use various templates 
and assigning them with individual weights. This article is an 
attempt where the initialization of model is carried out utiliz-
ing the InceptionResnet-V2 CNN framework for addressing the 
issue of DR diagnosis.

The input layer of the model assumes input size as 299 × 299 
for the direct implementation, and therefore, the resizing of the 
fundus images up to that smaller size results in miss identifica-
tion of tiny sized microaneurysms and exudates, which were 
easily visible in the original sized fundus images. To combat this 
issue, the fundus images are resized to pixel size of 600 × 600 
which are further cropped in four quadrants of size 300 × 300. 
The cropped quadrants are further subjected to 4 Inception-
Resnet-V2 frameworks and thereafter the processing; the out-
comes of fully connected layers are concatenated for four dif-
ferent models and transferred to the softmax output layer. This 
alteration in the experimental phase of the original Inception 
framework presents improved capability by providing huge 
number of network parameters. Figure 3 depicts the strategy of 
cropping of fundus image into four quadrants.

The input subjected to the network layer are pre-processed 
using constant enhancement and OD localization steps fol-
lowed by data augmentation forming the quadrant crops of 
input size 299 × 299. Figure 4 depicts the architectural layout 
of InceptionResnet-V2 CNN framework utilized in this work.

The proposed Quadrant-based Ensemble InceptionResnet-V2 
model is effective in recognizing very small and tiny DR lesions 
present at quadrants of the retinal fundus image. Another benefit 
of using the proposed quadrant-based arrangement for DR clas-
sification lies in the expansion of training samples considered 
for the experimentation. Data augmentation strategies and parti-
tioning every fundus into four quadrant crops overcome the data 
deficiency issue for neural network application. So, the draw-
back of availability of limited annotated dataset is addressed in 
this work through quadrant cropping and data augmentation. 
The complete process of the proposed methodology is detailed 
in Algorithm 1.

Table 2  Results of InceptionResnet-V2 model considering complete 
Fundus image as input

min minutes, s seconds

Epoch Iterations Time complexity Accuracy value Cross-
entropy 
loss

1 1 52 s 60.00% 0.721
2 20 1 min 19 s 51.32% 0.793
3 30 2 min 47 s 53.21% 0.762
4 40 4 min 31 s 55.67% 0.771
5 50 6 min 15 s 62.17% 0.762
6 60 8 min 43 s 55.67% 0.732
7 70 11 min 47 s 62.17% 0.824
8 80 13 min 59 s 65.21% 0.765
9 90 15 min 09 s 62.17% 0.691
10 100 19 min 38 s 65.21% 0.682
11 110 21 min 56 s 55.67% 0.710
12 120 24 min 48 s 60.00% 0.652
13 130 25 min 52 s 62.17% 0.681
14 140 27 min 16 s 65.21% 0.684
15 150 30 min 26 s 71.57% 0.695
16 160 33 min 06 s 75.33% 0.672
17 170 35 min 22 s 75.33% 0.681
18 180 36 min 56 s 80.00% 0.672
19 190 37 min 05 s 82.14% 0.669
20 200 38 min 50 s 82.14% 0.665
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Algorithm 1: Proposed Methodology for Quadrant based Ensemble Inception Resnet V-2 model

Input: Fundus Images acquired from the dataset.

Output: Diabetic Retinopathy grades distinguishing between different DR severities.

Begin

Step 1: Acquire the retinal fundus images from the image datastore and annotate these fundus images into 

different DR grades.

Step 2: Apply background elimination to attain the background segmented image.

Step 2.1: Pre-processing of fundus images

� Color normalization to model the fundus image (I(x,y)) into corresponding R,G, B channels.

� Median filtering to discriminate the isolated noise from the normalized image.

� CLAHE on the denoised image to attain the pre-processed output fundus image (Ipre-process).

Step 2.2: Optical Disc (OD) segmentation

� Apply Hue, Saturation and Value (HSV) model conversion on the pre-processed image (Ipre-process).
� The largest circular region (IOD) is identified using Morphological closing operation and contour filling.

� The OD segmentation (IODsegment) is obtained after OD removal.

= − −

Step 4: Split all the OD segmented images (IODsegmented) into four quadrants: IQI, IQII, IQIII and IQIV.

Step 5: Apply data augmentation: Flipping (horizontal and vertical), 90-180 degrees random rotation and 

random zooming that ranges in between [0.85, 1.15].

Step 6: The augmented retinal fundus image crops are fed to four InceptionResnet-V2 CNN networks.

Step 7: Apply depth concatenation at the fully connected layers of all QEIRV-2 models.

Step 8: Access the network performance using network accuracy, cross-entropy loss function and time 

complexity.

Step 9: Acquire the classification output for different DR classes using benchmark MESSIDOR dataset.

Step 10: Perform validation using latest IDRiD dataset to improve the generalizability of the proposed model.

End

The Inception Resnet-V2 model is retrained using the transfer learning approach over the retinal fundus image 

MESSIDOR dataset while persisting the knowledge of its original training development. The learned knowledge 

of the previous training process is applied for the DR classification using comparatively smaller dataset and the 

network performance is observed for different cases of experimentation. 
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Experimental Results and Discussions

The experimentation was performed utilizing MATLAB2018b 
environment on a computer system framework equipped with 
Intel Core i5 processor, 8 GB RAM, and NVIDIA GeForce 
4 GB GPU. The retinal images from MESSIDOR dataset 
are divided into training and testing set using the proportion 
of 3:1 to prevent poor randomization. The outcomes were 
investigated for the epoch size of 1 to 20, and the iteration 
count was expanded from 1 to 200 [18, 19]. The complete 
setting of parameters for the experimental analysis is depicted 
in Table 3.

The hyper-parameter setting for the experimentation 
consists of the batch size, base learning rate, dropout rate, 
epoch sizes, and iteration count. Keeping the values of 
all the hyper-parameters constant, the performance of the 
QEIRV-2 model is analyzed using evaluation parameters 
like network accuracy, cross-entropy cost function, and 
time complexity during the model handling [21, 41].

For the performance assessment of the proposed 
methodology, two unique modules are considered involving 
the image cropping and data augmentation strategies 
associated with the proposed model. The variation in 
experimentation of both the modules is seen in term of using 
the OD localization and contrast enhancement steps.

Module 1: QEIRV-2 CNN model without OD localization 
and contrast enhancement.

Module 2: QEIRV-2 CNN model with OD localization 
and contrast enhancement.

In module 1, the retinal fundus images are provided 
directly to the QEIRV-2 CNN model after data 
augmentation and image cropping without undergoing 
the OD localization and contrast enhancement steps. 
However, in module 2, initially, the OD localization 
and contrast enhancement steps are applied on the 
retinal fundus images and then data augmentation and 
imaged cropping are performed subsequently on the OD 
segmented and contrast enhanced retinal fundus images 
prior feeding them to the QEIRV-2 convolutional neural 
network. The results of the proposed model are assessed 
for the two unique modules in terms of various evaluation 
parameters.

Experimental Assessment of Module 1

In module 1 of experimentation, the input retinal 
images are cropped into four quadrant crops and data 
augmentations steps are utilized to increase the training 
examples. Quadrant-based Ensemble InceptionResnet-V2 
model has been utilized in this work, and network 
execution is assessed in terms of accuracy, cross-entropy 
loss, and time complexity. The outcomes of the proposed 
QEIRV-2 CNN model are assessed for module 1 scenario 
which is tabulated in Table 4.

Fig. 3  Fundus image cropping 
strategy
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The tabular representation depicts the performance 
indices of Quadrant-based Ensemble InceptionResnet-V2 
CNN model while excluding the contrast enhancement 
and OD localization stages and including image cropping 
and data augmentation steps. For module 1 scenario, the 
proposed QEIRV-2 model gives 85.68% of accuracy rate at 
the 20th epoch and 200th iteration count while considering 
a fixed set of hyper-parameters. The cost analysis of the 
proposed model is done in terms of cross entropy loss 
and time complexity. From the experimentation, it is seen 
that the cross-entropy loss diminishes with the increase 

in epoch size and the minimum value 0.401 of this cost 
function is attained at 20th epoch. The time complexity 
of the entire network execution is 49 min and 17 s. It is 
observed that the accuracy value improves from 40% at 
the 1st epoch count to 85.68% at the 20th epoch while 
considering 200 iterations. Authors have also tried for 
further evaluation while refining the epoch size beyond 
20, but this leads to accuracy saturation. This quadrant 
ensemble methodology produces better network 
performance in terms of accuracy and cross-entropy 
cost function while maintaining a tradeoff with the time 
complexity. In order to make the framework more effective 
and robust, image processing pipeline is considered in the 
subsequent module 2 including the contrast enhancement 
and optical disc segmentation steps.

Experimental Assessment of Module 2

The impact of fundus image contrast enhancement 
and OD localization steps is checked on CNN network 

Fig. 4  Architectural layout of proposed Quadrant-based Ensemble InceptionResnet-V2 CNN model

Table 3  Hyper-parameter setting for experimental analysis

Hyper-parameters Values allocated

Batch size 15
Epoch 20
Iterations 200
Base learning rate 0.0001
Dropout rate 0.5
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execution. The retinal fundus images are provided 
as the input to the proposed CNN architecture after 
applying the pre-processing steps. The same setting of 
hyper-parameters is considered as depicted in Table 3. 
InceptionResnet-V2 variant of baseline Inception model 
is tested experimentally using image pre-processing, OD 
segmentation, quadrant cropping, and data augmentation 
steps to analyze the variation in results obtained.

The assessment results shown in Table 5 present the 
performance statistics of proposed InceptionResnet-V2 
model for module 2 scenario. The maximum accuracy of 
93.33% is achieved for 20th epoch and 200th iteration. 
The time complexity of 44 min 22 s was observed for 
the training of network. The cross-entropy loss value 
also reduces at every epoch, and a much-reduced cross-
entropy loss of 0.325 is observed at 20th epoch. The 
network accuracy performance improved from 46.67% 
at epoch 1 to 93.33% at 20th epoch considering 200 
iterations for module 2 scenario. The cost function 
also reduced from 0.705 to 0.325 using this scenario 
while maintaining a tradeoff with the time complexity. 
Accuracy performance and cost function do not improve 
beyond this level even at increasing the epoch size.

The assessment of both the modules reveals that the 
involvement of the pre-processing pipeline (contrast 

enhancement and OD localization) improves the network 
performance by 8.89% in terms of accuracy, and the cost 
function is minimized by 18.95% in adjustment with the 
time complexity. The proposed Quadrant-based Ensemble 
InceptionResnet-V2 model yields improved DR grading 
performance with reduced cost function while utilizing 
the novel pipeline of image pre-processing and OD 
segmentation.

Comparative Analysis of Conventional Inception‑V3 
and Proposed QEIRV‑2 Model

The performance assessment of proposed Quadrant-
based Ensemble Inception-V3 (QEIRV-3) models is 
done with the conventional Inception-V3 CNN model in 
terms of accuracy, time complexity, and cross-entropy 
cost function, in order to validate the viability of image 
pre-processing pipeline. The examination was done 
considering the hyper-parameter setting of 20 epoch size, 
200 iteration count, batch size of 15, dropout rate of 0.5, 
and base learning rate of 0.0001 as constant.

Figure 5 indicates that our proposed strategy has provided 
a noteworthy performance improvement comparative to the 
classical Inception-V3 network architecture. The accuracy 
improvement of 13.58% is seen with a critical reduction from 

Table 4  Results of proposed QEIRV-2 model for module 1

min minutes, s seconds

Epoch Iterations Time complexity Accuracy value Cross-
entropy 
loss

1 1 52 s 40.00% 0.789
2 20 2 min 37 s 51.78% 0.698
3 30 4 min 56 s 55.49% 0.678
4 40 6 min 44 s 61.82% 0.667
5 50 8 min 52 s 54.94% 0.712
6 60 10 min 48 s 65.48% 0.609
7 70 13 min 53 s 62.95% 0.632
8 80 15 min 49 s 65.93% 0.614
9 90 18 min 29 s 65.50% 0.622
10 100 20 min 47 s 61.84% 0.675
11 110 23 min 28 s 73.37% 0.537
12 120 25 min 32 s 53.38% 0.667
13 130 27 min 47 s 65.68% 0.587
14 140 29 min 16 s 66.87% 0.562
15 150 32 min 47 s 65.58% 0.561
16 160 35 min 26 s 82.05% 0.493
17 170 37 min 52 s 82.05% 0.468
18 180 42 min 52 s 85.58% 0.458
19 190 45 min 48 s 85.68% 0.421
20 200 49 min 17 s 85.68% 0.401

Table 5  Results proposed QEIRV-2 model for module 2

min minutes, s seconds

Epoch Iterations Time complexity Accuracy value Cross-
entropy 
loss

1 1 55 s 46.67% 0.705
2 20 3 mins18 s 50.00% 0.702
3 30 5 min 05 s 52.78% 0.672
4 40 7 min 27 s 61.11% 0.647
5 50 9 min 15 s 69.44% 0.641
6 60 10 min 26 s 70.83% 0.620
7 70 12 min 48 s 73.61% 0.580
8 80 15 min 08 s 70.83% 0.598
9 90 16 min 53 s 69.44% 0.613
10 100 19 min 38 s 72.22% 0.577
11 110 21 min 58 s 75.00% 0.546
12 120 23 min 47 s 77.78% 0.490
13 130 26 min 54 s 75.00% 0.592
14 140 29 min 19 s 76.39% 0.503
15 150 32 min 17 s 80.00% 0.486
16 160 35 min 50 s 80.00% 0.474
17 170 38 min 48 s 86.67% 0.584
18 180 41 min 07 s 86.67% 0.313
19 190 42 min 51 s 93.33% 0.359
20 200 44 min 22 s 93.33% 0.325
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0.665 to 0.325 in cross-entropy cost function comparative to 
the classical approach while using the proposed QEIRV-2 
model. However, time complexity is a compromise in this 

case as the execution time for Inception-V3 model is 38 min 
50 s while module 1 and module 2 of the QEIRV-2 take 
49 min 17 s and 44 min 22 s, respectively.

Fig. 5  Comparative analysis of conventional Inception-V3 and proposed QEIRV-2 models

Fig. 6  Comparison of the proposed QEIRV-2 model with different CNN models for MESSIDOR dataset
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Comparative Analysis of Various Mainstream CNN 
Models for Benchmark Dataset

The similar arrangement of hyper-parameter setting as 
well as image-preprocessing is done, and the performance 
of various mainstream standard CNN models like 
AlexNet, ResNet, and VggNet is assessed considering 
benchmark MESSIDOR fundus image dataset. The 
comparison is drawn to assess the practicability of our 
proposed QEIRV-2 model and to establish its robustness 
among the other CNN counterparts. Figure 6 represents 
the comparison of different CNN models with the 
Inception network derivatives.

The comparison is evaluated for various pre-
trained CNN models in terms of network accuracy, 
time complexity, and cross-entropy cost function. The 
analysis reveals that the AlextNet architecture involves 
a smaller number of layers and therefore takes the 
least computational season of 17 min 04 s as far as the 
execution time is concerned. However, the performance 
accuracy accomplished utilizing this network is 73.33% 
which is less when compared with different networks. 
The proposed QEIRV-2 yields the best network outcomes 
in terms of both the accuracy as well as cost parameters 
while involving a trade-off with the time complexity. The 

time complexity however is not a big issue as the latest 
system is trained on GPUs; thus, the main concern is 
performance which is improving by our proposed strategy.

Performance Validation with the Latest IDRiD 
Dataset

The generalization of the proposed QEIRV-2 model is 
validated by the utilization of latest IDRiD dataset. To 
get an oversight of classification performance in terms 
of performance parameters, the proposed methodology 
has been applied on the images acquired from IDRiD 
dataset and the observations are made for QEIRV-2 
model considering same hyper-parameter settings.

The performance outcomes obtained from Table 6 reveals that 
the IDRiD dataset also provides the equivalent performance for 
the proposed QEIRV-2 approach. An accuracy value of 92.38% 
is achieved while maintaining a reduced cross-entropy loss of 
0.338 with the time complexity of 45 min and 59 s. The QEIRV-2 
model has made the preeminent attempts to address the DR 
severity problem and generalizes the grading capability of the 
proposed method attaining better performance. The performance 
of IDRiD dataset follows the same trend as obtained for the 
MESSIDOR dataset which justifies that the proposed models 
yield the uniform outcomes regardless of the dataset utilized, 
which in turn establishes its generalization abilities.

Comparative Analysis of Proposed QEIRV‑2 Model 
with Other Existing Methods

Inspite of the fact that the DR research is mostly centered 
around utilizing the machine learning approaches till date 
and a very little of the advancement is experienced in the 
CNN-based DR severity grading techniques. Regardless of 
this restriction, a comparative investigation of other existing 
state-of-the-art DR severity grading approaches has been 
made relative to our proposed QEIRV-2 model.

Table  7 portrays the outcomes of various CNN-
based DR grading and classification methods using the 

Table 6  Results proposed QEIRV-2 model for module 2

min minutes, s seconds

Epoch Iterations Time complexity Accuracy value Cross-
entropy 
loss

1 1 59 s 48.98% 0.715
2 20 03 min 45 s 51.05% 0.709
3 30 05 min 38 s 52.69% 0.697
4 40 07 min 47 s 60.13% 0.654
5 50 9 min 39 s 65.67% 0.648
6 60 10 min 49 s 70.67% 0.623
7 70 12 min 52 s 73.86% 0.583
8 80 15 min 27 s 70.67% 0.591
9 90 16 min 45 s 69.85% 0.603
10 100 19 min 53 s 73.86% 0.562
11 110 21 min 40 s 75.08% 0.552
12 120 23 min 36 s 77.39% 0.495
13 130 26 min 51 s 75.08% 0.561
14 140 29 min 29 s 76.45% 0.534
15 150 32 min 37 s 81.78% 0.472
16 160 35 min 54 s 81.78% 0.492
17 170 38 min 42 s 87.81% 0.432
18 180 41 min 45 s 87.81% 0.339
19 190 43 min 58 s 92.38% 0.338
20 200 45 min 59 s 92.38% 0.338

Table 7  Comparison of CNN-based existing methods with the pro-
posed QEIRV-2 model using MESSIDOR dataset

Author Year Accuracy value

Wang et al. [26] 2017 91.1%
Lam et al. [23] 2018 74.5%
Johari et al. [25] 2018 88.3%
Chen et al. [27] 2018 90.5%
Goncalves et al. [28] 2019 81.6%
Li et al. [29] 2019 92.6%
Saranya and Prabakaran [30] 2020 90.9%
Proposed QEIRV-2 model 2020 93.3%
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generalized MESSIDOR dataset. The comparison of 
our proposed method is done with the latest approach 
proposed by Saranya and Prabakaran [30], and it is 
observed that the proposed QEIRV-2 model surpasses the 
existing state-of-the-art method without the requirement 
of feature explicit detection of DR lesions. The highest 
percentage accuracy improvement of 25.23% is observed 
from Lam et al. [23] by utilizing our proposed strategy. 
The primary concern of future perspective for this work 
will be the attainability and robustness of the proposed 
QEIRV-2 model in real-time scenario for dealing with 
the DR grading issue.

Conclusion

The interest for computerized DR diagnosis framework 
has increased because of enormous diabetic populace and 
expectedness of diabetic retinopathy cases among them. 
The state-of-the-art review suggests that a great deal of 
accomplishment was seen in numerous DR-related areas 
like DR lesion recognition and blood vessel segmentation; 
however, the outcomes attained may vary from the clinical 
practices in real-world scenario. In this article, a computerized 
DR grading framework has been proposed utilizing the deep 
learning architecture. The proposed Quadrant-based Ensemble 
InceptionResnet-V2 model incorporates a pre-processing 
pipeline to improve the effectiveness of DR grading and 
evaluation. The exploratory outcomes acquired exhibit the 
ability of the proposed QEIRV-2 model for proficient DR 
determination. The proposed model yields the finest accuracy 
performance of 93.33% with a significantly reduced cross-
entropy loss function to 0.325. The accuracy improvement 
of 13.58% is observed while comparing the QEIRV-2 model 
with the classical Inception-V3 CNN model. The comparative 
analysis with the other mainstream CNN models reveals the 
outperformance of the proposed method in terms of all the 
performance parameters. The validation of the QEIRV-2 is 
also done utilizing the latest IDRiD dataset which establishes 
the viability of the proposed model. An accuracy improvement 
of 25.23% was accomplished when compared with the state-
of-the-art DR grading and classification approaches using the 
same generalized MESSIDOR dataset, justifying the diagnostic 
capability of the proposed model. In the future, the proposed 
framework will be  utilized for giving demonstrative help to 
the ophthalmologists by  providing a second opinion  for DR 
grading problems, thereby, addressing the real time scenario.
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