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Partial differential equation based anisotropic diffusion techniques are used extensively in computer 

vision for image enhancement and de-noising.  Anisotropic diffusion is found to be an efficient and low 

computational complexity approach that has overcome the undesirable effects of linear smoothing filters 

and now is popular in prominent research areas of enhancing the quality of low contrast images and 

speckle noise reduction from geological, industrial, and medical images. This paper presents state-of-the-

art anisotropic diffusion technique and a comprehensive survey on various advancements in anisotropic 

diffusion for image enhancement and de-noising. The capability of anisotropic diffusion for enhancing the 

quality of low contrast images and speckle noise reduction from medical and industrial images are further 

explored. Various quality measures used to validate the performance are studied. The major research 

issues and possible future scopes in anisotropic diffusion filtering are also discussed. 

Povzetek: Prispevek predstavi pregled in novo metodo na področju anizotropne difuzije za povečevanje 

slik in zmanjševanje šuma.  

1 Introduction 
Image quality improvement along with removal of noise 

and de-blurring are the prime objectives in the field of im-

age processing. Image enhancement and de-noising [1] are 

vital topics in image processing literature where the tech-

niques used to remove these imperfections from the 

images are discussed. The images carrying useful 

information needs to get enhance for proper visualization. 

However, the adverse external and environmental 

conditions at the time of image capturing and poor quality 

of imaging devices are some of the principal causes of 

noise [2] in images. Speckle noise and Gaussian blurring 

are dominant in medical images, remote sensing and 

computer tomography images. Magnetic resonance 

imaging (MRI) is affected by Rician and Poisson’s noise. 

Poor contrast of medical images is also a serious problem 

in medical diagnosis and modality. Therefore, image 

enhancement and de-noising has now become a very 

popular and challenging issue in extracting the useful 

information from all the different types of images. In 

earlier days, the linear filtering approaches were used to 

deal with such noises in image. In the linear filtering 

approach, the pixel values are replaced by linear combina-

tions of the pixels around the test pixel in a predefined 

neighborhood [1]. Linear filters perform well in de-

noising but not good at edge points and fine details where 

they tend to blur the edges and fail to protect the image 

information. Spatial nonlinear filters reduce noise without 

edge blurs and thus preserve the edges. But, the problem 

is to recover the meaningful edges in a coarse image under 

the presence of noise and poor contrast. The anisotropic 

diffusion approaches are being used in image processing 

since 1987 when Perona and Malik [3] have introduced a 

non-linear method of edge preserving smoothing that 

outperformed the existing traditional linear methods. 

Anisotropic diffusion [3] also referred to as nonlinear 

diffusion or Perona-Malik diffusion (PMD) is state-of-the-

art technique aims at smoothing noise from the image 

along with edge and fine detail preservation. This is 

originated from the process that creates a scale of more 

and more smoothed images which correspond to the result 

of convolution of the image with a 2D isotropic Gaussian 

filter. The width of the Gaussian filter is made to vary with 

the scale parameter which is analogous to linear and 

space-invariant transformation of the original image and 

thus called as iso-tropic or linear diffusion. However, 

anisotropic diffusion as given by Perona and Malik 

diffusion (PMD) [3] is a generalized improvement of the 

linear diffusion process where the filter was made to 

depend on the local content of the original image. The 

convolution between the original image and content-

dependent filter produces a scale of smoothed images 

along with the preservation of essential contents like 

edges, lines, curves, and boundaries. Consequently, aniso-

tropic diffusion acts as a non-linear and space-variant 

transformation of the original image which is now a very 

common image enhancement and de-noising tool in this 

area. This paper presents a comprehensive study of 

various anisotropic diffusion techniques developed so far 

and their analysis in concern with speckle noise reduction 

and contrast improvement of medical and industrial 

images. 

The rest of the paper is organized as follows. Section 

2 describes the origin and critics of basic anisotropic 

diffusion filtering in images. A comprehensive survey on 
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the advancement of anisotropic diffusion in the field of 

contrast enhancement and speckle noise reduction has 

been presented in Section 3. Various image quality 

assessment parameters used for validation of anisotropic 

diffusion methods are mentioned in Section 4. A brief 

discussion and observations for future research 

exploration are given in Section 5 and finally, the paper is 

concluded in Section 6. 

2 Origin of anisotropic diffusion 
The partial differential equation (PDE) based anisotropic 

diffusion is state-of-the-art image processing technique 

originated by a well-known mathematical formulation of 

Fick's law [4]. The physical observation of this law 

signifies the equilibrium property between the 

concentration differences without creating or destroying 

the mass. This law states that a concentration gradient 

generates a flux which tries to compensate this gradient. 

The expression of Fick's law with continuity equation 

gives rise to the linear diffusion process which is also 

known as isotropic diffusion defined below: 
𝑑𝐼𝑡

𝑑𝑡
= div (𝐶. ∇𝐼) (1) 

where I is input image, ∇I is image gradient, t is iteration 

and C is diffusion coefficient which is kept constant for 

the entire image. This diffusion equation in image 

corresponds to smoothing which is just analogous to the 

linear convolution of image with a Gaussian smoothing 

filter of standard deviation equal to √2t. This tends to 

smooth the entire image equally in all directions without 

taking care of edges, boundaries and fine details. This 

demerit of linear diffusion filtering is solved by 

introducing the new diffusion coefficient [3] which 

depends on the image structures. This idea of adaptivity in 

the diffusion process give rise to anisotropic diffusion 

(PMD)[3] which is as shown below: 
𝑑𝐼𝑡

𝑑𝑡
= div (𝐶(∇𝐼). ∇𝐼) (2) 

where C(∇I) is now termed as diffusion coefficient 

function which is given as: 

𝐶(∇𝐼) =
1

1 +(
|∇𝐼|

𝑘
)

2 (3) 

The diffusion coefficient function denoted by C(∇I) in 

diffusion equation (Eq. (2)) controls the diffusion process 

by varying it in accordance with the gradient magnitude 

∇I at each pixel of the image. A fixed edge threshold 

parameter denoted by k is used depending on the type of 

the image. The diffusion in the images with high k values 

tends to strongly smooth the image whereas lower values 

of k are used to slow down the smoothing process near 

edges. This helps in the preservation of fine edges 

exhibiting high gradient magnitudes along with smoothing 

of low gradient homogeneous noisy background of the 

image. 

2.1 Critics in state of the art 

The anisotropic diffusion approach introduced by Perona 

and Malik (PMD) is quite effective in the images affected 

by Gaussian noise. However, the presence of impulse 

noise leads to image quality degradation. The impulse 

noisy pixels in images due to high gradient magnitudes are 

treated as edge pixels by the diffusion process and get 

preserved in the restored images as shown in Figure 1. 

Here, a noisy ‘Lena’ image with noise variance σ^2=0.2 

has been restored by anisotropic diffusion by varying the 

value of k. Such problems have been observed in medical 

images where speckles appear in the output image due to 

the diffusion process. 

The consequences of PMD in low contrast images are 

quite unsatisfactory as the low gray level edges and the 

noisy background in such low contrast images are difficult 

to discriminate. The assumption used in PMD is that the 

gradient magnitude of edges is larger than that of the noisy 

back-ground which tends to enhance the corresponding 

edges at a particular value of edge threshold parameter k. 

However, in low contrast images, the low gray level inter-

region edges with lower gradient magnitude can never be 

enhanced at the same edge threshold parameter. This 

defect has been demonstrated in Figure 2. 

3 Review on anisotropic diffusion 
The role of anisotropic diffusion filtering in enhancing a 

wide variety of distorted images has played an important 

role in medical, forensic, industrial, and military 

applications. The success of anisotropic diffusion based 

approaches is mainly dependent on the proper selection of 

diffusion coefficient function C(∇I) and the edge threshold 

parameter k. Efficient enhancement of noisy image 

follows causality, piecewise smoothing, and proper edge 

localization [3]. As presented by Perona and Malik, 

anisotropic diffusion equation (PMD) uses four nearest 

neighbors to calculate the gradient in diffusion coefficient 

function as given in Eq. (4): 

𝐼𝑡+1=𝐼𝑡 +
1

4
∑ [𝐶𝑡 . ∇𝐼𝑡]4

𝑖=1  (4) 

 
Figure 1: (left) Impulse Noisy Lena image (σ^2=0.2); 

(middle) Restored image by anisotropic diffusion 

(k=4,T=100); (right) Restored image by anisotropic 

diffusion (k=10,T=100). 

 

 
Figure 2: (left) Original low contrast moon surface 

image; (middle) Restored image by anisotropic 

diffusion (k=4,T=50); (right) Restored image by 

anisotropic diffusion (k=2,T=50). 
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The diffusion coefficient function 𝐶(∇𝐼) of Perona 

and Malik diffusion equation is replaced by 𝐶(∇(𝐺𝜎𝑟
∗ 𝐼)) 

as shown in Eq. (5) where the given image is initially 

convolved with a Gaussian kernel 𝐺𝜎𝑟
 of standard 

deviation 𝜎𝑟 and then the gradient is calculated to get the 

resultant modified diffusion equation (CLMCD) [5]. 

𝜕𝐼𝑡

𝜕𝑡
= 𝐷𝑖𝑣[𝑑(|∇(𝐺𝜎𝑟

∗ 𝐼)|). ∇𝐼] (5) 

This equation is undoubtedly capable of enhancing 

edges and all structures. However, there are strong 

blurring effects as the regularizing Gaussian kernel size σ 

increases. You and Kaveh proposed the fourth-order PDE 

model (YKD) [6] for edge detection by using Laplacian ∇I 

in place of gradient in diffusion coefficient function as 

shown below: 

𝐶(|∆𝐼|) =
1

1+(
|∆𝐼|

𝑘
)

2 (6) 

The method was further extended by Chen et al. [7] 

where a coupled anisotropic diffusion (CBMD) with a 

new edge stopping function was developed which is as 

follows: 

𝜕𝐼𝑡

𝜕𝑡
= 𝑣(𝑡)𝐷𝑖𝑣

(∇(𝐺𝜎𝑟∗𝐼))

|∇(𝐺𝜎𝑟∗𝐼)|
− 𝑢 ((𝐺𝜎𝑟

∗ 𝐼) − 𝐼) (7) 

where v(t) is a function of time and uis a constant. 

Weeratunga and Kamath [8] suggested the use of 

regularized version of image to calculate gradient as given 

in Eq. (8). This helps in converting ill-posed formulation 

of conventional anisotropic diffusion into well-posed 

problem and also make parameter k variable to facilitate 

the enhancement of edges with different gradients. 

∇𝐼 = ∇(𝐺𝜎𝑟
∗ 𝐼) (8) 

A complex diffusion equation (GCD) was developed 

by Gilboa et al. [9] where the diffusion coefficient 

function represents a complex value with an imaginary 

part acts as an edge detector and the real part is responsible 

for ramp preserving de-noising. The complex diffusion 

coefficient function is given as: 

𝐶(𝐼𝑚(𝐼)) =  
𝑒𝑗𝜃

1+ (
𝐼𝑚(𝐼)

𝑘𝜃
)

2 (9) 

where I_m (I) is the imaginary value of the image 

Inormalized by phase angle θ which should be small 

(θ≪1) and k is the threshold parameter. When θ is small 

then it is similar to real diffusion and when it approaches 

to 90^0, the implementation of complex diffusion with 

incremental time-steps becomes an inefficient process. 

Tschumperle and Deriche [10] defined the Hessian 

matrices based anisotropic diffusion formulation (TDD) 

for vector-valued images which is expressed in Eq. (10). 
𝜕𝐼𝑡

𝜕𝑡
= ∑ (𝑡𝑟𝑎𝑐𝑒𝑊𝑖𝑗𝐻𝑖)𝑛

𝑗=1  (10) 

where Wij is a 2×2 symmetric matrices, Hi denotes the 

Hessian matrix of I and I represents pixel varying from 1 

to n. The method illustrates the effective adaptation to 

restore the blurred edge structures but is also sensitive to 

impulse noise and speckles which reduce the quality of 

processed images. Yu et al. [11] used Kernel gradient 

operator ∇(∅I)  in place of |∇I| in the calculation of 

diffusion coefficient function (KAD) as shown in Eq. (11). 

𝑑(|∇(∅𝐼)|) =
1

1+(
|∇(∅𝐼)|

𝑘
)

2 (11) 

Method Features 

PMD [3] • The blurring and localization 

problem of linear diffusion 

filtering is removed. 

• Images close to each other 

could produce divergent 

solutions with very different 

edges. 

• Local noise and contrast are 

not considered. 

• Failure when noise gradient is 

greater than edge. 

• A large number of iterations 

necessary to reach a steady-

state solution 

• .Longer computation time 

along with more blurring 

• Loss of sharpness at edges. 

CLMCD [5] • Blurring of fine details and 

high gradient edges occur. 

YKD[6] • Detection of sharp edges and 

fine details. 

• Sensitive to impulse noise 

and speckles. 

CBMD [7] • Better Gaussian noise 

reduction. 

• Not suitable for high gradient 

edge preservation. 

GCD [9] • Time-dependent Schrodinger 

wave equation.  

• When 𝜃 approaches 𝜋 2⁄  it 

becomes very inefficient to 

implement complex diffusion. 

For small 𝜃, there is no 

difference from the case of 

PM diffusion. 

TDD [10] • Use of Hessian matrices. 

• Edges and impulse noisy 

pixels are treated equally. 

KAD [11] • Selection of optimal choice of 

kernel size is an important 

issue 

WAD [23] • Enhances Flow like patterns. 

• Unable to remove noise 

effectively. 

DAD [24] • Expensive region analysis. 

• Dictionary of several classes 

require rigorous prior 

training. 

EAD [25] • Reduce computational 

complexity. 

• Medical and industrial image 

degradation is not considered. 

Table 1: Summary of Features of General Anisotropic 

Diffusion Methods. 
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All the above modified anisotropic diffusion 

approaches discussed are edge preserving diffusion 

schemes for images corrupted with additive Gaussian 

noise.  

In the last few decades, numerous anisotropic 

diffusion techniques are developed for a variety of image 

applications. Mammogram images [12] are used for early 

detection and treatment of breast cancer and their visibility 

can be improved by anisotropic diffusion based contrast 

enhancement approaches. In opto-acoustic imaging [13], 

the spatial resolution is bounded to a finite value which 

need proper reconstruction algorithms to further improve 

the contrast of such images. Optical coherence 

tomography [14] detects retinal-related diseases since it 

can provide high-resolution information of retinal images 

which helps in the calculation of retinal thickness and 

lesions. In order to automate the visual examination of low 

contrast surface imperfection [15] in glass plates, sheet 

steel, aluminum strips, liquid crystal display panels etc, 

the enhancement of images is often the basic requirement. 

Cardiac ultrasound images [2] are used to assess cardiac 

physiological indicators, coronary heart diseases, 

diagnosing heart failure covering a wide range of clinical 

applications. Detection of brain tumor position [16] using 

MRI and removal of defective pixels from the image is 

quite challenging. The identification of potential tumors 

on computer tomography images for the early stage oral 

cavity cancer detection [17] requires suitable filtering 

algorithms. In all these applications, there is a wide use of 

anisotropic diffusion which helps in defect removal along 

with detail preservation. The biometrics fingerprint 

identification [18] using anisotropic diffusion is quite 

popular since fingerprint has a systematic texture with 

well-ordered local inclination and frequency. There is a 

wide use of anisotropic diffusion in digital radiography 

[19] to detect the weld defects in the welding industry. 

Anisotropic diffusion has also been used in the detection 

and removal of cracks in digital paintings [20] because the 

appearance of cracks on paintings deteriorates the quality 

perceived. Mineralogy, surveillance, agriculture, and 

astronomical area mostly use hyper spectral images [21] 

where anisotropic smoothing helps to restore the image 

features. Remote sensing image [22] helps in detecting 

vehicles, buildings, road-linked objects and acquisition of 

transportation data. Classical divergence based 

Anisotropic approaches include Weickert’s edge-

enhancing diffusion (WAD) [23], Cho’s dictionary-based 

anisotropic diffusion (DAD) [24] and its extended 

anisotropic diffusion (EAD) [25] are diffusion techniques 

available in the literature which are  quite effective in all 

the above image applications. 

Table 1 summarizes the above discussed anisotropic 

diffusion techniques. The major issue with anisotropic 

diffusion is to deal with speckle noise and poor contrast. 

The performance of anisotropic diffusion techniques in the 

field of speckle-noise reduction and low contrast image 

enhancement are discussed in the following Sections. 

3.1 Speckle noise reduction 

The most dominant type of noise in real world imaging is 

speckle noise [26][27] which is the form of locally 

correlated multiplicative noise. The principal causes of 

this noise are the environmental conditions during image 

acquisition and the quality of the image sensing elements. 

This speckle noise has a direct impact on the performance 

and structural detail of the image under process. A 

generalized model of speckle noise [26][27] is given as: 

𝑔𝑖,𝑗 = 𝐼𝑖,𝑗𝑛𝑖,𝑗 (12) 

where, 𝑔𝑖,𝑗 and 𝐼𝑖,𝑗 are observed speckle noisy image and 

original image at the pixel position (i,j) resepectively. 𝑛𝑖,𝑗 

is the speckle noise perturbation which is generally 

assumed to be white Gaussian noise of zero mean and 

variance 𝜎𝑛
2 at position (i,j).  The use of medical imaging 

is very much affected by such multiplicative speckle noise 

which degrades its usefulness in diagnosis and modality. 

But to de-speckle the image without disturbing the 

essential features like edges and boundaries has always 

been observed to be very difficult and challenging task. 

Classical de-speckling filters like Lee [28], Frost [29], 

Kuan [30] and Gamma [31] inhibit smoothing near edges 

by using adaptive filters where calculation of coefficient 

of variation is important. The problem of inaccurate 

speckle statistical modeling and the issue of poor 

localization of edges in these window based filter is solved 

by using non-homogeneous diffusive heat phenomenon. 

This is state-of-the-art speckle reducing anisotropic 

diffusion (SRAD) [32] where the diffusion coefficient 

function has been defined as: 

𝑐(q) =
1

1+[𝑞2(𝑥,𝑦,𝑡)−𝑞0
2(𝑡)]/[𝑞0

2(𝑡)(1+𝑞0
2(𝑡))]

 (13) 

or 

𝑐(𝑞) = exp {−
[𝑞2(𝑥,𝑦,𝑡)−𝑞0

2(𝑡)]

[𝑞0
2(𝑡)(1+𝑞0

2(𝑡))]
} (14) 

where q(x,y,t) is named as instantaneous coefficient of 

variation which is dependent on ∇I and is determined as: 

𝑞(𝑥, 𝑦, 𝑡) = √
(

1

2
)(∇𝐼/𝐼)2−(

1

4
)(∇2𝐼/𝐼)2

1+(
1

4
)(∇2𝐼/𝐼)2

 (15) 

and 𝑞0(𝑡) is speckle scale function. The edge preservation 

sensitivity of this method was further examined [15] and 

presented as detail preserving anisotropic diffusion where 

the orientation of edges were made to stabilize while 

removing speckle noise as indicated in Eq (16). 

𝑞(𝑥, 𝑡) =
|𝛼‖∇𝐼‖2−𝛽(∇2𝐼)2|

1/2

[𝐼+𝛾∇2𝐼]
 (16) 

The q(x,t) denotes the edge stabilizing function with 

α,βand γ are the regularization parameters. However, the 

improper selection of these regularization parameters in 

diffusion equation suffers from over filtering and blurring 

of edges. Further, edge-sensitive extensions of SRAD are 

presented in detail preserving anisotropic diffusion 

(DPAD) [33] and oriented speckle reducing anisotropic 

diffusion (OSRAD) [34] where DPAD equation as derived 

from Kuan filter is given by Eq. (17). 

�̅�𝑡𝐼𝑖,𝑗
𝑡+∆𝑡 = 𝐼𝑖,𝑗

𝑡 +
∆𝑡

|𝜂𝑖,𝑗̅̅ ̅̅ ̅|
𝑑𝑖𝑣[𝑐2(𝐶𝑖,𝑗)∇𝐼𝑖,𝑗

𝑡 ] (17) 
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where 𝑐2(𝐶𝑖,𝑗,𝑡) = 1 − 𝑘𝑘
𝑖,𝑗,𝑡

 and 𝑘𝑘
𝑖,𝑗

= 1 −

1+
1

𝐶𝑖,𝑗
2

1+
1

𝐶𝑢
2

. 

Optimized Bayesian non-local means (OBNLM) [35] 

method came out as an improved de-speckling method 

where Bayesian formulation has been used which is based 

on nonlocal mean filtering mechanism. A Type-II Fuzzy 

anisotropic diffusion algorithm (FuzAD) [36] for OCT 

images was suggested by Puvanathasan and Bizheva by 

considering uncertainty in the calculated diffusion 

coefficient. This proves the best edge preserver in 

comparison to Type-I fuzzy anisotropic diffusion 

algorithm, wiener filter and Adaptive Lee filter for fairly 

short processing time. Probability-driven speckle reducing 

anisotropic diffusion POSRAD [37] uses tissue-based 

statistical models and shows good result. However, there 

is still a significant loss of structural details in the restored 

image. Wu and Tang [38] suggested an anisotropic 

method for speckle noise removal by considering two 

functions named as fidelity and speed function based upon 

ENI (edge, noise, interior pixels). If p=(i,j) is pixel under 

consideration and 𝑁𝑃
0(𝑤) are neighbor pixels centered at 

test pixel p and window size is w, then for each 𝑞 ∈
𝑁𝑃

0(𝑤), d(p,q) is a difference in intensity of pixelp and q. 

The controlling speed function and the controlling fidelity 

function are shown in Eq (18) and (19) respectively. 

𝑔𝑛(𝐸𝑁𝐼𝑃) =
1

2
+

1

2
cos (

2𝜋𝐸𝑁𝐼𝑃

𝑁
) (18) 

𝜆𝑛(𝐸𝑁𝐼𝑃) =
1

4
−

1

4
cos (

𝜋𝐸𝑁𝐼𝑃

𝑁
) (19) 

𝐸𝑁𝐼𝑃 = ∑ 𝐼𝑝𝑞∈𝑁𝑃
0(𝑤) (𝑞) (20) 

𝐼𝑃(𝑞) = {
1        𝑤ℎ𝑒𝑛𝑑(𝑝, 𝑞) ≤ 𝑇
0       𝑤ℎ𝑒𝑛𝑑(𝑝, 𝑞) > 𝑇

 (21) 

where 𝑁 = ((2𝑤 + 1)2 − 1) denotes the number of pixels 

in a squared size window w. The value of 𝑔𝑛 is minimum 

at edge, maximum at interior pixels and intermediate at 

noise. The value of 𝜆𝑛 is minimum at noise, maximum at 

interior pixels and intermediate at edges. The revised new 

selective degenerate diffusion (NSDD) model based on 

Eq. (18) and (19) is given as: 
𝜕𝐼

𝜕𝑡
= 𝑔𝑛(𝐸𝑁𝐼𝑃(𝐼, 𝑤, 𝑇))|∇𝐼|𝑑𝑖𝑣 (

∇I

|∇I|
) +

𝜆𝑛(𝐸𝑁𝐼𝑃(𝐼0, 𝑤, 𝑇)(𝐼0 − 𝐼) (22) 

The condensed anisotropic diffusion model (CAD) 

[39] uses diffusion term to preserve and enhance edges 

where as the second regularization term condenses the 

diffusion and emphasize thin, linear, and point features 

stabilization. The method was further extended by Nafiset 

al. [83] where impulse noise initially removed by median 

filtering and then de-speckling is done by gray level 

variance controlled anisotropic diffusion. Febrinni et al. 

[40] proposed a revised anisotropic diffusion filter named 

as improved edge enhancing diffusion (IEED) to minimize 

noise on homogeneous regions while keeping weak edges. 

Although, IEED is less complex and does not use any 

mathematical modeling of noise, however, it is useful for 

speckle noise reduction. The problem of edge blurring is 

mildly resolved in ADMSS [41] by extending the 

formulation of Cottet and Ayyadi [42] to perform selective 

diffusion so that diffusion across the fine structures and 

homogeneous regions are discriminated and in this way 

visibility of important structures is enhanced. Fick’s law 

based physical diffusion equation theory is used in doubly 

degenerate nonlinear diffusion (DDND) model by Zhou et 

al. [43] to promote de-noising process as given below: 

Method 
Optimal 

Parameters 

𝑸𝟏=Edge 

controlling 

quantile,  

𝑸𝟐 =Corner 

controlling 

quantile, 

∆𝒕= time step,  

𝒏𝒊𝒕𝒆𝒓 =number 

of iterations 

𝝈, 𝝆 =smoothing 

parameter 

(ADMSS), 

 𝑾 =window 

size 

 𝒉 =smoothing 

parameter 

(OBNLM), 

𝜶 =Patch size 

𝑴 =area to 

search similar 

patches 

𝑵𝑪 =tissue class 

𝒏𝒎 =value of 

memory element 

𝒌𝒔 = number of 

super pixel 

𝝀, 𝜶 = positive 

balance constant  

𝝈, 𝝆 =scaling 

parameter of 

Gaussian kernel  

𝑻 =Threshold 

(NSDD) 

𝝈𝒔𝒑𝒆𝒄𝒌𝒍𝒆 = 

standard 

deviation of 

speckle-noise 

model 

𝑽𝒔𝒑𝒆𝒄𝒌𝒍𝒆 = 

variance of 

speckle noise 

 

Lee [28] 
𝜎 = 0.01, 
 𝑊 = 7 

Frost [29] 𝑊 = 7 

Kuan [30] 
𝜎 = 0.01, 
 𝑊 = 6 

Gamma [31] 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑜𝑜𝑘𝑠(𝐿)
= 4000, 
 𝑊 = 5 

SRAD [32] 
∆𝑡= 0.3,  
𝑛𝑖𝑡𝑒𝑟 = 100 

DPAD [33] 

∆𝑡= 0.3,  
𝑛𝑖𝑡𝑒𝑟 = 10,  
𝑊 = 5 

OSRAD [34] 

∆𝑡= 0.3, 
𝑛𝑖𝑡𝑒𝑟 = 20,  
𝜎 = 1 

OBNLM 

[35] 

𝑀 = 67, 
 𝛼 = 3,  
ℎ = 0.9 

FuzAD [36] ----- 

POSRAD 

[37] 

∆𝑡= 0.5, 
𝑛𝑖𝑡𝑒𝑟 = 200,   
𝜎 = 1, 
𝜎𝑠𝑝𝑒𝑐𝑘𝑙𝑒 = 0.5 

NSDD [38] 
𝑊 = 2 ,  
𝑇 = 20 

CAD [39] 

𝑛𝑖𝑡𝑒𝑟 = 300,
𝜎 = 0.5, 

 ∆𝑡
= 0.05, 

   𝑊 = 7 

IEED [40] 

∆𝑡= 0.5, 
𝑛𝑖𝑡𝑒𝑟 = 200, 
𝑄1 = 0.95 , 
𝑄2 = 1 

ADMSS [41] 

∆𝑡= 0.3, 𝑛𝑖𝑡𝑒𝑟 = 19, 
 𝜎, 𝜌 = 0.005, 
𝑛𝑚 = 3   
𝑁𝐶 = 4  

CDAD [44] 

∆𝑡= 0.5,  
𝑛𝑖𝑡𝑒𝑟 = 200, 
 𝜌 = 0.18, 
Cluster number=5 

EPPR-

SRAD [45] 

∆𝑡= 0.02, 
𝑛𝑖𝑡𝑒𝑟 = 145,   
𝜎 = 50, 
𝑘𝑠 = 35 

NDEB [46] 𝜎𝑠𝑝𝑒𝑐𝑘𝑙𝑒 = 2,3,4 

IDDND [47] 𝜎𝑠𝑝𝑒𝑐𝑘𝑙𝑒 = 2,3,4 

GAD-LBM 

[48] 

𝑉𝑠𝑝𝑒𝑐𝑘𝑙𝑒

= 0.03,0.12 

SGS-SRAD 

[49] 

∆𝑡= 𝑉𝑠𝑝𝑒𝑐𝑘𝑙𝑒

= 0.03,0.120.1, 
𝑛𝑖𝑡𝑒𝑟 = 100 

Table 2: Summary of Optimal Parameters of Speckle 

Reducing Ani-sotropic Diffusion Techniques. 
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𝜕𝐼𝑡

𝜕𝑡
= div (𝑏(I)

1

(1+|∇𝐼|2)
(1−𝛽)

2⁄
∇𝐼) (23) where b(I) is the gray level indicator function which is 

utilized to regulate the diffusion process depending on 

Method Advantages Disadvantages 

Lee [28] 

Frost [29] 

Kuan [30] 

Gamma [31] 

• Successfully inhibit smoothing near edges. 

 

• All are sensitive to the size and shape of the filter. 

• Do not enhance edges. 

• These four Filters are not directional. 

• Noisy boundaries of sharp features remain unfiltered. 

• High CV in window on edge results in less smoothing 

but problem occurs when noisy pixel is inside the 

window. 

SRAD [32] • Preserve as well as enhance edges. 

• Adaptive Filtering. 

• In speckle presence, instantaneous CV plays 

a crucial role as an edge detector. 

• Accidently eliminates some details in the original 

image. 

• Over-filtering is there. 

 

DPAD [33] • Large window helps to get better results and 

stability. 

• Detail preservation and noise removal are 

better than SRAD. 

• An accurate estimation of statistics is required. 

• Sometimes meaningful structural details are lost during 

iterations. 

• Overfiltering occurs. 

OSRAD [34] • Local image geometry is considered. 

• Reduce noise. 

• Preserve and enhance contours. 

• Complex statistical models for speckle distribution are 

considered 

 

OBNLM [35] • Very efficient speckle removal while 

preserving structure. 

• Manual tuning. 

• Automatic tuning is required in OBNLM filter. 

• Less robust. 

• Effect on post-processing tasks such as image 

registration or image segmentation needs to explore. 

Type-II Fuzzy 

AD [36] 
• Logarithmic transformation is utilized to 

transform speckle noise to additive noise. 

• Less processing time. 

• Significant reduction in speckle pattern. 

• Applicable only for OCT images. 

• Require log transformation. 

• New Fuzzy rules can be added to consider more 

features of interest. 

POSRAD [37] • The tissue-based statistical model is 

considered. 

• Structural loss of details is still there 

NSDD [38] • Random-valued impulse noise is removed 

effectively. 

• Selective diffusion and fidelity at edge, 

noise, and interior pixels. 

 

• There is no explicit formula or method to determine the 

parameters 𝑤 and 𝑇. 
• Results are checked on standard test images. 

• The new controlling function can be extended to any 

other PDE denoising model. 

CAD [39] • Better speckle reduction. • Explored for different noise. 

• Can be explored for image segmentation, feature 

extraction. 

IEED [40] • Outperform state of art filters for SAR 

image despeckling. 

• Preserve small detail and weak edges. 

• Computation time is low 

• Only for Speckle contaminated images. 

ADMSS [41] • Preserve and enhance relevant tissue detail.  

• No over filtering. 

• Application on noise other than speckle can be 

checked. 

• Can be extended for Low-contrast and color images. 

CDAD [44] • Cluster-based automatic smoothing 

•  Stable results are obtained 

• Checked against SRAD filter only. 

• More clustering techniques can be used to perform 

AD. 

EPPR-SRAD 

[45] 
• The over-smoothing effect is reduced. 

• Good diagnostic quality results for cardiac 

and liver US images. 

• Computation time is more. 

• Can be explored for different noise and colored 

images. 

NDEB [46] • Applicable for low contrast speckled image. • Can be explored further for industrial image. 

IDDND [47] • Suitable for color image denoising. 

• Low contrast Image Enhancement. 

• Can be checked on industrial and remote sensing 

image. 

GAD-LBM [48] • Excellent noise reduction and edge 

preservation. 

• Computationally Efficient. 

• Good Stability. 

• Mathematically further can be explored. 

• Application on different noisy and color images can 

be extended. 

SGS-SRAD 

[49] 
• Good edge preservation as found by Canny 

Edge detector. 

• Inapplicable for low-contrast images. 

Table 3: Summary of Features of Speckle Reducing Anisotropic Diffusion Techniques. 
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image structures. K-means clustering-based anisotropic 

diffusion filter (CDAD) [44] uses cluster-based speckle 

scale function to choose the homogeneous sample region 

and separate it from noisy region. To control and guide the 

diffusion process in speckle noise images, Mishra et al. 

[45] uses probability density function of edge pixel 

relativity information (EPPR-SRAD) to ensure maximum 

edge preservation. Zhou et al. [46] further modified 

DDND [43] and give new de-speckling diffusion model 

(NDEB): 
𝜕𝐼𝑡

𝜕𝑡
= div (

∇𝐼

1+(|∇𝐼| 𝑘)⁄ 𝛽(𝐼)) (24) 

where 𝛽(𝐼) = {1 − 𝑏(𝐼)} is a region indicator function. 

Gao et al. [47] observed erroneous pixels appear in 

homogeneous background of the image obtained by 

ADMSS [41] and therefore they developed an improved 

DDND model (IDDND) for multiplicative speckle 

reduction. Xu et al. [48] suggested Gabor filter based 

anisotropic diffusion (GAD-LBM), supporting the 

advantages of the Lattice Boltzmann method [81] on rapid 

parallel implementation. GAD-LBM diffusion equation is 

as follows: 
𝜕𝐼𝑡

𝜕𝑡
= 𝑑𝑖𝑣 (

2

3
(

1

𝑅(𝐺𝑠𝑑)
−

1

2
) ∇𝐼) (25) 

where 𝑅(𝐺𝑠𝑑) =
2

1+3𝑔(𝐺𝑠𝑑)
 is a relaxation factor based on 

𝑔(𝐺𝑠𝑑) =
1

1+(𝐺𝑠𝑑 𝑘⁄ )2 which is edge enhanced Gabor 

diffusion coefficient function. Goyalet al. proposed an 

SGS-SRAD filter [49] for de-speckling of US images 

which is a combination of SavitzkyGolay smoothing filter 

[82] and SRAD [32]. The optimal parameter settings and 

the important features of all the discussed anisotropic 

diffusion techniques for speckle noise removal are 

summarized in Table 2 and Table 3 respectively. 

3.2 Low contrast image enhancement 

The low gray level inter-region edges in low contrast 

images require proper enhancement to ease the image 

understanding. Low Contrast medical, geological, 

industrial, and photographic images exhibit this problem 

mostly due to imperfect illumination and settings of image 

sensor at the time of image capturing and acquisition. The 

simplest way to enhance the contrast of the image is 

intensity transformation which is also called as histogram 

stretching [1].The state-of-the-art anisotropic diffusion 

technique named as local variance-controlled forward-

and-backward (LVCFAB) diffusion method is presented 

by Wang et al. [50] for image intensification along with 

noise reduction by combining sharpening and smoothing 

coefficients in forward and backward direction as given in 

Eq. (26). The algorithm needs to work upon for adaptive 

parameter selection and lowering of computational 

complexity. The diffusion coefficient function of this 

method is: 

𝐶 =  𝐶𝑓𝑜𝑟𝑤𝑎𝑟𝑑 + 𝐶𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 (26) 

Chao and Tsai [51] suggested anisotropic diffusion 

based defect detection in glass images where grayscale 

variation of defects for background is barely discernible. 

The diffusion model combines smoothing and sharpening 

in one single equation whose strength is dependent on two 

separate diffusion coefficient functions 𝑆1and 𝑆2 as given 

in Eq. (27) and (28) respectively. 

𝐼𝑡+1 = 𝐼𝑡 +
1

4
∑ [𝑆1(∇𝐼𝑡) − 𝑆2(∇𝐼𝑡)]4

𝑖=1 ∇𝐼𝑡  (27) 

𝑆2(∇𝐼) = 𝛼. [1 − 𝑆1(∇𝐼)] (28) 

where α is a weighting parameter that lies between 0 and 

1. Chao and Tsai [52] further formulated an edge-

preserving smoothing technique for restoring noisy low 

contrast medical and artwork images where the diffusion 

coefficient with adaptive threshold k is used as: 

𝑘 =
𝜎𝑁

2

𝑘0
 (29) 

Here, 𝜎𝑁
2 is normalized variance and 𝑘0 is a constant. 

Chao and Tsai [53] give a diffusion coefficient function 

based on logarithmic function to control diffusion by 

varying the parameters α, β and γ as given below: 

𝑑(∇𝐼) = 𝛼. ln (∇𝑓 + 𝛽) + 𝛾 (30) 

This method proves beneficial for brightness 

enhancement films in industrial applications. Nafis et al. 

[54] used histogram statistics to find adaptive threshold 

parameter in diffusion equation as given in Eq. (31). 

𝑘′ =
1

1+𝑒
−(𝑎0𝜎𝑔

2 −𝜎𝑤
2 )

 (31) 

where 𝜎𝑔
2 and 𝜎𝑤

2  are global and local gray level variance 

with w as a local window size and 𝑎0 is a constant. This 

method is quite effective in generalized low contrast 

images. Robust coherence enhancing diffusion (RCED) 

and robust anisotropic diffusion (RAD) filters developed 

by Ham et al. [55] by combining anisotropic diffusion 

with adaptive smoothing based on asymmetric diffusion 

flow instead of symmetric as in the case of anisotropic 

diffusion. This method was quite effective in enhancing 

the tiny and coherent structures. However, it is not suitable 

for noisy images. Wang et al. [21] suggested gradient and 

laplacian based hyperspectral anisotropic diffusion 

(GLHAD) algorithm by introducing the Laplacian 

function into classical PMD [3] for HSI improvement. The 

operational utility of GLHAD method needs to be 

improved further by proper parameter selection and 

optimization. In Weickert’s diffusion method [56], 

seismic image filtering result is much better than PMD [3] 

and also effective in single dimensional audio signals but 

still some undesirable oscillations and artifacts are 

observed in the output. Zhou et al. [57] proposed adaptive 

parameter time fractional-order anisotropic diffusion 

filtering which attenuates noise with minimal impact on 

desirable seismic information in comparison to PMD [3] 

and Weickert [56] and thus helps in seismic data 

processing and interpretation. Zanget al. [22] applied a 

similar idea of image enhancement for road network 

extraction. Ben Gharsallah [58] suggested geometric 

smoothing and sharpening anisotropic diffusion (GSSAD) 

in welding inspection of radiographic images for detection 

of defects which may affect the well-functioning of many 

electro-mechanical systems. Here, the diffusion function 

is calculated in x and y direction. The local geometric 

variables are computed first which are 𝐷1𝑥 , 𝐷1𝑦 , 𝑃1𝑥 , 𝑃1𝑦 

and a are weighting factor. The two weighting smoothing 

functions (𝑔1𝑥(𝐷𝑥 , 𝑃𝑥) and 𝑔1𝑦(𝐷𝑦 , 𝑃𝑦)) and the two 

sharpening functions (𝑣1𝑥 and 𝑣1𝑦) are shown in Eq (32), 

(33), (34) and (35) respectively. 
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𝑔1𝑥(𝐷𝑥 , 𝑃𝑥) =
2

1+exp 𝑎|
𝐷1𝑥
𝑃1𝑥

|
 (32) 

𝑔1𝑦(𝐷𝑦 , 𝑃𝑦) =
2

1+exp 𝑎|
𝐷1𝑦

𝑃1𝑦
|
 (33) 

𝑣1𝑥 = 𝛼1(1 − 𝑔1𝑥) (34) 

𝑣1𝑦 = 𝛼1(1 − 𝑔1𝑦) (35) 

These separate diffusion coefficients for smoothing 

and sharpening improve the control of the diffusion 

process in radiography. Chen et al. [59] gives self-

adaptive tangential and normal diffusion coefficients. 

Diffusion coefficient α based on local variance 𝜎2 and 

threshold T is given as: 

𝛼(𝜎2) = {
cos (

𝜋

𝑇
𝜎2) 𝑤ℎ𝑒𝑛𝜎2 ≤ 𝑇

cos (
𝜋

2(255−𝑇)
(𝜎2 − 3𝑇 + 510)) 𝑤ℎ𝑒𝑛𝜎2 > 𝑇

 (36) 

Liu and Zhang [60] combined non-linear diffusion with 

dynamic stochastic resonance DSRNAD to enhance dark 

and low contrast images but they found poor texture 

preservation however edges are enhanced successfully. 

Cho and Kang [61] used geodesic path kernel-based 

diffusion (GPKAD) for adaptive smoothing with contrast 

stretching. Chen et al. [62] detect defects in anti-reflective 

glass images and replacesk in Eq. (2) by 1/Z as a variable 

edge threshold where z is defined as: 

𝑧 =
𝑓(𝑥,𝑦)−𝜇

𝜎
 (37) 

where μ and σ are local mean and standard deviation. The 

computation in this method (ARAD) [62] is fast but 

regardless of whether the edge strength of a defective 

object is low or high, the edge gets enhanced and therefore 

the applications of ARAD in medical imaging require 

more modifications in diffusion equation. NDEB [46] and 

IDDND [47] discussed in section 3.1 can be included for 

low contrast speckle contaminated images too. Nair et al. 

[63] proposed first-order anisotropic diffusion (FORADF) 

model which is given as:   

𝐼𝑡+1 = 𝐼𝑡 + 𝛼𝐶. {𝑀𝑒𝑑[(∇𝑁𝐼𝑡), (∇𝑆𝐼𝑡), (∇𝐸𝐼𝑡), (∇𝑊𝐼𝑡)]}
 (38) 

where 0<α<1 and  N,S,E,W are four neighbors of center 

pixel. The diffusion coefficient C in this model is defined 

as: 

𝐶 = 𝑒𝑥𝑝. (−(𝑀𝑒𝑑[∇𝑡𝐼] 𝑘⁄ )) (39) 

Where Med denote the median of the gradient magnitudes 

calculated in the four main directions and k is threshold 

constant. Chen et al. [64] proposed an optimal anisotropic 

diffusion by combining the concept of artificial neural 

network with local gradient which effectively 

distinguishes image structures and textures.  

A summary of optimal parameters and features of 

different anisotropic diffusion methods discussed for low 

contrast images are shown in Table 4 and 5 respectively. 

4 Performance analysis and 

assessment 
In order to validate the performance of image 

enhancement and d-noising methods, various image 

quality assessment (IQA) techniques [65][66][67] are 

available in the literature. The IQA parameters used for 

anisotropic diffusion based enhancement and de-noising 

methods are presented in this Section. The de-speckling 

performance is mostly measured by Equivalent Number of 

Looks (ENL) [40] given as: 

𝐸𝑁𝐿 = (
4

𝜋
− 1)

𝜇�̃�
2

𝜎
�̃�
2 (40) 

where 𝜇𝐼
2 and 𝜎𝐼

2 are mean and variance of de-speckled 

image I. Contrast Measure (CM) [44] is used to check the 

performance of contrast improvement in de-speckling 

algorithms which can be defined as: 

CM =
1

n
∑ |c(i)|. log(1 + |c(i)|)m  (41) 

Method Optimal Parameters 
𝒏𝒊𝒕𝒆𝒓 = 

number of 

iterations 

𝑾 =wind

ow size 

𝜶 =Patch 

size 

𝝀, 𝜶 =posi

tive balance 

constant 

(GLHAD) 

𝝈, 𝝆 

=scaling 

parameter of 

gaussian kernel 

(GLHAD) 

𝑻 = 

Threshold 

(NSDD) 

𝝈𝒏 = 

AWGN noise 

level 

𝒉𝒓,, 𝒌𝒇, 𝜸𝟏 = 

forward 

diffusion 

parameter 

(LVCFAB) 

𝜶𝒓,, 𝒌𝒃, 𝜸𝟐 = 

backward 

diffusion 

parameter 

(LVCFAB) 

𝜶𝑮𝑺𝑺𝑨𝑫= 

sharpening 

strength 

indicator 

𝝀𝑭𝑶𝑹𝑨𝑫𝑭 = 

control 

parameter 

LVCFAB 

[50] 

ℎ𝑟,, 𝑘𝑓 , 𝛾1 = (0.2,50,0.1) 

𝑎𝑛𝑑 

𝛼𝑟,, 𝑘𝑏 , 𝛾2

= (0.9,200,0.02)   

CTAD1 

[51] 
𝑛𝑖𝑡𝑒𝑟 = 30, 𝛼𝑐𝑡 = 0.2, 𝑘 = 2 

CTAD2 

[52] 
𝑛𝑖𝑡𝑒𝑟 = 50,100,200, 𝑘 = 40 

CTAD3 

[53] 
𝑛𝑖𝑡𝑒𝑟 = 10, 𝑘0 = 1,2 

HSAD 

[54] 
𝑛𝑖𝑡𝑒𝑟 = 50, 𝑊 = 3,

𝑘 = 12 

RCED 

[55] 
∆𝑡= 0.2, 𝑛𝑖𝑡𝑒𝑟 = 100,

𝜎
= 0.7, 𝜌
= 5 

GLHAD 

[21] 

∆𝑡= 0.5, 𝑛𝑖𝑡𝑒𝑟 = 25, 𝜆
= 0.5, 𝛼
= 0.1, 𝜌
= 1,
𝜎
= 0.02 

GSSAD 

[58] 

∆𝑡= 0.25, 𝑛𝑖𝑡𝑒𝑟 = 40, 𝑊
= 2, 𝛼𝐺𝑆𝑆𝐴𝐷 = 0.1  

LVAD 

[59] 
𝑛𝑖𝑡𝑒𝑟 = 5,  𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 1 

DSRNAD[6

0] 

                  ----- 

  

GPKAD 

[61] 
𝜎𝑛 = 25, 𝑛𝑖𝑡𝑒𝑟 = 1, 𝑊 = 7 

ARAD 

[62] 
𝑛𝑖𝑡𝑒𝑟 = 5, 𝑊 = 7 

FORADF 

[63] 
𝑛𝑖𝑡𝑒𝑟 = 5,  𝜆𝐹𝑂𝑅𝐴𝐷𝐹

= 0.25,0.5,0.75,1 

Table 4: Summary of Optimal Parameters of Anisotropic 

Diffusion Techniques for Low-Contrast Image 

Enhancement. 
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where n and m are the number of pixels and edge points 

respectively. c(i) is local contrast at 𝑖𝑡ℎ pixel which is 

calculated as c(i) = ∑ (i − 𝑖′)p  where p denotes neighbor 

pixels around i. Puvanathasan and Bizheva [36] utilized 

Contrast-to-Noise Ratio (CNR) which is the difference 

between particular image features relative to background 

which is as given in Eq. (42). 

CNR =
1

R
(∑

(μr−μb)

√σr
2+σb

2

R
r=1 ) (42) 

where μb and σb
2  are mean and variance of background 

noise. μr and σr
2 are mean and variance of 𝑟𝑡ℎ region of 

interest. Pratt and Wiley [68] uses Pratt’s Figure of Merit  

(FOM) to calculate edge preservation in de-noised images. 

FOM range is between 0 and 1 where 1 represents the best 

edge detection. FOM score decreases with an increase in 

the noise level. 

𝐹𝑂𝑀 =  
1

𝑚𝑎𝑥{𝑛,̂𝑛}
∑

1

1+𝑑𝑖
2𝛾

�̂�
𝑖=1  (43) 

where �̂� and n are detected and reference pixel, di is 

Euclidean distance between 𝑖̂th edge pixel and its nearest 

neighbor and γ= 0.9. Narvekar and Karam [69] used 

Cumulative Probability Blur Detection (CPBD) where 

reference image is unknown. Perceptual fog density is 

calculated by Fog-Aware Density Evaluator (FADE) [70] 

where low FADE is desired. Wang and Bovik [71] 

presented a full-reference image quality metric which is a 

Universal Image Quality Index (UQI). Wang et al. [72] 

Method Advantages Disadvantaages 

LVCFAB 

[50] 
• Do sharpening as well as smoothing. 

• Good choice for industrial image de-

noising. 

• Adaptive parameter selection is required. 

• Computational complexity needs to be 

reduced. 

• Extended for color images. 

CTAD1 

[51] 
• Detects defects in low contrast 

surface images. 

• Sharpening is introduced along with 

smoothing. 

• Extended for image restoration. 

CTAD2 

[52] 
• Maintains fine details including local 

characteristics. 

• Fail on high-level noise and impulse noise. 

CTAD3 

[53] 
• Automatic parameter selection by 

Particle Swam Optimization. 

• Less computation time. 

• Effective and efficient defect 

detection. 

• Applicable only for non-textured surface. 

HSAD [54] • Low gray level inter-region edges 

are detected. 

• Checked for speckle and high dense noise 

condition. 

RCED [55] • Adaptive Smoothing. 

• Robust. 

• Applied on Medical images. 

• Quality measure is not employed for 

validation. 

GLAHD 

[21] 
• Good edge preservation for HSI. • Parameter selection is an issue. 

• Computation time needs to be reduced. 

GSSAD 

[58] 
• Defect detection and segmentation 

are good. 

•  

• Can be explored for Medical imaging also. 

LVAD [59] • Local variance calculation facilitates 

the difference between noise and 

details. 

• Compared with linear filtering only. 

• Parameter setting needs regulation. 

DSRNAD[60] • Good perceptual quality  • No texture preservation. 

GPKAD 

[61] 
• Better detail preservation. • Anisotropic diffusion based CNN denoiser 

model can be developed. 

• Performance is checked for AWGN only. 

ARAD [62] • Detect defects in anti-reflective 

glass. 

• Inspection efficiency is high. 

• Less computation time. 

• Applied on other surface images. 

• Equal enhancement of low and high contrast 

defects. 

• Problem in Defect segmentation and 

classification. 

FORADF 

[63] 
• Low arithmetic complexity 

• Robust and power-efficient. 

• Can be checked for industrial and medical 

images. 

Table 5: Summary of Features of Anisotropic Diffusion Techniques for Low-Contrast Image Enhancement. 
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and Brooks et al. [73] presented Mean Structural 

Similarity Index Measurement (MSSIM) by combining 

luminance similarity, contrast similarity, and structure 

similarity between reference image x and the distorted 

image y as shown in Eq.(44). 

MSSIM = [𝐼(𝑥, 𝑦)𝛼 . 𝐶(𝑥, 𝑦)𝛽 . 𝑆(𝑥, 𝑦)𝛾] (44) 

where I, C and S are luminance, contrast and structure 

measurement with α, β and γ are     constants. Wang and 

Bovik [74] presented a simple and very popular Mean 

Square Error (MSE) and Peak Signal to Noise Ratio 

(PSNR) error sensitivity metric which can be calculated 

using Eq (45) and (46) respectively. 

𝑀𝑆𝐸 =
1

𝑀𝑁
∑ (fo − fd)2i=M.j=N

i=1,j=1  (45) 

𝑃𝑆𝑁𝑅 = 20 log10 (
𝑀𝑎𝑥𝑓

√𝑀𝑆𝐸
) (46) 

Where fo and fd are original and de-noised image 

respectively. 𝑀𝑎𝑥𝑓  is the maximum possible pixel 

intensity of fo. Chao and Tsai [51] used 3-sigma statistical 

control based threshold (𝜇𝑑 + 𝑆𝜎𝑑) where 𝜇𝑑 and 𝜎𝑑 are 

mean and standard deviation of diffused image. S denotes 

the control constant set to 3. Ding et al. [75] introduced 

Directional Anisotropic Structure Measurement (DASM) 

by thorough study of structures and textures, to represent 

visually important dominant structures which is defined 

as:  

𝐷𝐴𝑆𝑀(𝑝) = 𝐺(𝑝). 𝐴(𝑝). 𝐷(𝑝) (47) 

where p is the pixel under test. G(p), A(p) and D(p) are 

gradient of p, intensity change in local structure and 

structural direction respectively. Liu and Zhang [60] used 

Relative Contrast Enhancement Factor (RCEF) defined as 

follows: 

𝑅𝐶𝐸𝐹 =
𝜎�̃�

2

𝜇�̃�
.

𝜇𝑓

𝜎𝑓
2 (48) 

where 𝜎2 and μ denotes mean and variance of the 

observed image �̃� and input low contrast image f 

respectively. Another Distribution Separation Measure 

(DSM) determines the enhancement of the target area 

relative to the background is shown in Eq. (49). 

𝐷𝑆𝑀 = (|𝜇𝑢
𝑇 − 𝜇𝑢

𝐵|) − (|𝜇𝑓
𝑇 − 𝜇𝑓

𝐵|) (49) 

where T and B  are the target and background area of the 

observed image respectively. LIVE dataset [76] and TID 

dataset [77] are popular databases that are used for taking 

standard images for verification of different algorithms. 

Table 6 and Table 7 demonstrate the comparative analysis 

of different anisotropic diffusion methods in terms of all 

these IQA parameters for speckle noise reduction and 

contrast improvement respectively. 

5 Observations and discussions 
Anisotropic diffusion based image smoothing with edge 

preservation is a growing field of research since it is a key 

factor for successful image enhancement, de-noising, 

segmentation, classification and recognition. The goal of 

this study is to review existing anisotropic diffusion 

filtering techniques and to address several challenging 

problems for image enhancement and de-noising. A lot of 

work in this area have been done in past to improve the 

visual quality of images. However, there are still some 

new directions of research in anisotropic diffusion for 

achieving better image enhancement and de-noising. 

Some properties of diffusion coefficient function are not 

yet fully explored and thus have sufficient scope to 

develop more effective diffusion filters. 

An important research issue in anisotropic diffusion 

approaches is the selection of optimal threshold parameter 

in diffusion coefficient function which can be further 

explored in order to deal with the higher noise content and 

better edge preservation. In most of the related literature 

[48] [49] [52] [53] [54], the edge threshold has been 

considered as a function of image contents which is a good 

idea for more robust results. However, as the noise level 

increases or in the edge abundant areas, this scheme failed 

to protect maximum edges. Therefore, in this regard, a 

proper image content analysis is required for formulating 

the edge threshold function as well as the diffusion 

coefficient function. 

The parameter adjustments in many of the anisotropic 

diffusion methods [9] [10] [13] [14] [15] [21] [22] [34] 

[36] [83] required lot of experimentations and it also 

expands the computational burden. This reveals the user 

to worry about the parameter settings for all the images in 

the entire experiment. However, it will be a good idea to 

explore the possibility of developing some optimization 

technique to optimize these parameters which also helps 

in reducing the overall computational burdens. Another 

important issue where the computational complexity plays 

an important role is researching the choice of better 

window size or to develop an adaptive window 

mechanism for neighborhood operation in images which 

can perhaps provide efficient enhancement and de-noising 

with reduced time and space requirements. 

There are many emerging approximation and 

optimization tools available in the literature where most of 

them are based on soft computing techniques like fuzzy 

logic and artificial neural network (ANN), singular value 

decomposition (SVD), principal component analysis 

(PCA), swarm optimization (SA) and genetic algorithm 

(GA) etc. These all are very useful in various fields of 

mathematical science and engineering where parameter 

settings are required. However, there are very few 

techniques available in the literature [35] [36] [55] [80] 

[84] [85] [86] where these soft computing tools have been 

utilized in anisotropic diffusion filters. This motivates to 

explore the properties of the soft computing based 

techniques to develop more approximated and optimized 

anisotropic diffusion model for specific image 

applications. The anisotropic diffusion approaches could 

be further studied for various scientific and industrial 

image applications such as image segmentation, object 

recognition and morphological image operations etc. 

6 Conclusion 
A comprehensive survey on image enhancement and de-

noising by partial differential equation based anisotropic 

diffusion method is presented in this paper. The physical 

background of anisotropic diffusion and its application in 

image enhancement and denoising is discussed. The ad-

vancements of anisotropic diffusion in speckle noise 

reduction and contrast improvement have been explained. 
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The important critics in state-of-the-art methods are 

identified. The possible future scopes and research issues 

in this field have been taken out for the discussion.  

Anisotropic diffusion filters are indeed the best option 

for speckle contaminated and low contrast images. 

However, a strong and exhaustive exploration for defining 

optimal diffusion coefficient function is required for some 

specific type of images. Medical images require such 

anisotropic diffusion techniques by proper formulation of 

the diffusion equation since the presence of even small 

artifacts leads to false diagnosis. The quality of low 

contrast images for industrial applications can be 

improved by examining the image feature analysis in 

order to formulate the diffusion coefficient function. 

Further to benchmark various anisotropic diffusion 

technique, more advanced image quality metric can be 

explored depending upon the type and availability of 

image under processing. 

Method IQA Image Type 

SRAD [32] FOM US and SAR Images 

DPAD [33] MSSIM US Image 

OSRAD [34] FOM 2D and 3D Synthetic image 

OBNLM [35] ENL 2D and 3D Synthetic image, Real US image 

Type-II Fuzzy AD 

[36] 

PSNR, ENL, CNR OCT fingertip and retina Images 

POSRAD [37] FOM Cardiac US image 

NSDD [38] PSNR Standard Test Images (Lena & Pepper) 

CAD [39] FOM, MSE, SNR, MSSIM Real US and Simulated image 

IEED [40] ENL Index SAR Image 

ADMSS [41] ENL, PSNR, SSIM US image 

CDAD [44] CM US image 

EPPR-SRAD [45] SSIM, MSE, FOM Synthetic and Real US Cardiac & Liver images 

NDEB [46] MSE, PSNR, MSSIM Test Image, Real and synthetic US Image (Low 

contrast) 

IDDND [47] MSE, PSNR,SSIM Real ultrasound and RGB color images (Low 

contrast) 

GAD-LBM [48] SSIM,PSNR,FOM Synthetic and clinical images 

SGS-SRAD [49] SSIM, MSE, PSNR Real and synthetic US images 

Table 6: Comparative Analysis of Speckle reducing Anisotropic Diffusion Techniques. 

 

Method IQA Image Type Noise 

LVCFAB [50] PSNR, CNR, SSIM Low contrast Standard test image, 

MR image 

Gaussian noise, Blur 

CTAD2 [52] PSNR Artwork, Medical and Test Image Gaussian noise, Blur 

HSAD [54] CM Test image Gaussian noise and blur 

GLAHD [21] PSNR, MSSIM Synthetic and Real HSI Gaussian noise, Blur, Impulse 

noise 

GSSAD [58] MSE, PSNR Synthetic Image, Real Weld 

Radiography Images 

Gaussian noise, Blur, Impulse 

noise 

LVAD [59] MSE, PSNR Test Images Gaussian noise and blur 

DSRNAD[60] RCEF, PQM , 

DSM 

Cell Phone Image (dark), MR 

Image, Video surveillance  Image 

All noise type 

GPKAD [61] MSE, PSNR, 

MSSIM 

Test Images Gaussian Noise 

ARAD [62] CM Low contrast Surface Image Blur 

FORADF [63] MSE, PSNR, SSIM Standard test Images Gaussian noise, Impulse 

noise, mixed-noise 

Table 7: Comparative Analysis of Anisotropic Diffusion Techniques for Low-Contrast Image Enhancement. 
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