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Abstract
This study presents the development of a sustainable production process of environmentally benign silver nanoparticles 
(AgNPs) from aqueous root extract of Rhodiola imbricata (RI) and Withania somnifera (WS) for mitigating environmental 
pollution and investigating their potential applications in agriculture and biomedical industry. RIWS-AgNPs were character-
ized using several analytical techniques (UV–Vis, DLS, HR-TEM, SAED, EDX and FTIR). The antioxidant and anticancer 
activity of RIWS-AgNPs were estimated by DPPH and MTT assay, respectively. UV–Vis and DLS analysis indicated that 
equal ratio of RIWS-extract and silver nitrate (1:1) is optimum for green synthesis of well-dispersed AgNPs (λmax: 430 nm, 
polydispersity index: 0.179, zeta potential: − 17.9 ± 4.14). HR-TEM and SAED analysis confirmed the formation of spherical 
and crystalline RIWS-AgNPs (37–42 nm). FTIR analysis demonstrated that the phenolic compounds are probably involved 
in stabilization of RIWS-AgNPs. RIWS-AgNPs showed effective catalytic degradation of hazardous environmental pollut-
ant (4-nitrophenol). RIWS-AgNPs treatment significantly increased the growth and photosynthetic pigments of Hordeum 
vulgare in a size- and dose-dependent manner (germination (77%), chlorophyll a (12.62 ± 0.07 μg/ml) and total carotenoids 
(7.05 ± 0.04 μg/ml)). The DPPH assay demonstrated that RIWS-AgNPs exert concentration-dependent potent antioxidant 
activity (IC50: 12.30 μg/ml, EC50: 0.104 mg/ml, ARP: 959.45). Moreover, RIWS-AgNPs also confer strong cytotoxic activ-
ity against HepG2 cancer cell line in dose-dependent manner (cell viability: 9.51 ± 1.55%). Overall, the present study for 
the first time demonstrated a green technology for the synthesis of stable RIWS-AgNPs and their potential applications in 
biomedical and agriculture industry as phytostimulatory, antioxidant and anticancer agent. Moreover, RIWS-AgNPs could 
potentially be used as a green alternative for environmental remediation.
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Introduction

Among the various metallic nanoparticles (MNPs), silver 
nanoparticles (AgNPs) have garnered prodigious interest 
during recent years due to their unique physicochemical and 
biological properties [1]. It is estimated that nearly 500 tons 
of AgNPs are produced every year and the global market of 
AgNPs is expected to reach $ 2.45 billion by 2022 [2, 3]. 
AgNPs (1–100 nm) have broad applicability in the field of 
physics, chemistry, biology, medicine and material science 
[4–6]. AgNPs have high electrical and thermal conductivity, 
good chemical stability and pronounced optical, catalytic, 
magnetic and biological properties owing to their high sur-
face-to-volume ratio [7–9]. Due to these distinct properties, 
the AgNPs are widely used in several different products, 
including textile coatings [1], food storage containers, air 
filters, deodorants, toothpaste [10, 11], bone cement, surgi-
cal instruments, surgical masks [12], wound dressings, tis-
sue scaffolds, intermittent catheters, orthopedic prostheses 
[13], topical creams, antiseptic sprays and other medical and 
pharmaceutical products [1, 14].

AgNPs are generally synthesized by top-down or bottom-
up approach [15]. These approaches encompass physical, 
chemical and biological methods for the preparation of 
these AgNPs. However, the physical and chemical meth-
ods are inefficacious, exorbitant, unsustainable, high-
energy demanding, labor-intensive, time-consuming and 
detrimental to the environment [9, 16–18]. Therefore, this 
necessitates the development of a cost-effective and eco-
friendly approach for production of these AgNPs. Green 
nanobiotechnology using biological systems (plants and 

microorganisms) offer a suitable alternative source for the 
synthesis of AgNPs. This green technology of fabricating 
AgNPs is immensely beneficial over chemical and physical 
methods as it is fast, energy efficient, economical, environ-
mentally benign, robust, reliable and relatively reproducible 
process [16, 19, 20]. The major mechanism behind the plant 
extract-mediated biosynthesis of AgNPs is phytochemicals-
assisted reduction of silver ions into silver nanoparticles 
[21]. Recently, AgNPs have been successfully fabricated 
using the extract of different plant species, including Amma-
nia baccifera [22], Citrullus lanatus [23] and Momordica 
charantia [24].

Withania somnifera (L.) Dunal. (Ashwagandha, Family: 
Solanaceae) is an important medicinal plant in the tradi-
tional Indian system of medicine for more than 3000 years 
[25]. W. somnifera  (WS) is widely distributed in Asia, 
Africa, Middle East and Mediterranean region [26]. In 
India, it grows mostly in Punjab, Jammu and Himachal 
Pradesh [27]. About 2000 tons of Ashwagandha roots are 
annually produced in India and the dried roots are sold 
at approximately $ 140 per quintal [28]. The root extract 
of W. somnifera is extensively used for the treatment of 
rheumatism, gynec disorders, bronchitis, arthritis, senile 
debility, tuberculosis and cardiac, skin and inflammatory 
diseases [29–31]. It also possesses a wide array of thera-
peutic properties, including anti-inflammatory, anti-tumor, 
anti-bacterial, antispasmodic, hypoglycemic and hypolipi-
demic effects [32, 33]. These therapeutic properties have 
been mainly attributed to its diverse array of secondary 
metabolites, including steroidal lactones (withaferin A, 
withanolide A, withanolide D, withanolide B), flavonoids 
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and phenolics (dihydroxykaempferol, quercetin, querce-
tin-3-rutinoside, quinic acid, scopoletin and aesculentin), 
tropane alkaloids (tropine, pseudotropine, nicotine, witha-
somine, anaferine), withanone, ashwangandholide, witha-
nolide dimer sulphide, 2,3 dihydrowithaferin A (viscosa-
lactone B) and 27-hydroxywithanolide A [34–36].

Rhodiola imbricata Edgew. (Shrolo, Family: Crassu-
laceae) is a highly valuable medicinal plant in the traditional 
Tibetan and Amchi system of medicine [37]. It grows at 
high-altitude passes (Changla, Khardungla and Penzila) of 
trans-Himalayan Ladakh region [38]. R. imbricata (RI) is 
widely used for the treatment of fever, cough, cold, cardiac 
and nervous system disorders [37]. The roots of R. imbri-
cata contain several bioactive compounds, including phe-
nolic compounds (salidroside, tyrosol, gallic acid, rosavins, 
cinnamyl alcohol, o-methylorcinol, p-hydroxybenzaldehyde, 
4-methoxyphenethyl alcohol, 3-methyl-5-methoxyphenyl-
β-D-glucopyranoside, 2-hydroxymethyl-6-methoxyphenyl-
β-D-glucopyranoside, 3,5-dimethoxyphenyl-β-D-
glucopyranoside), steroidal glycosides and terpenoids that 
have pronounced hepatoprotective, adaptogenic, antioxidant, 
cytoprotective, anticancer, antiviral, and immunostimulatory 
properties [37, 39–44]. R. imbricata root also contains dif-
ferent health-promoting attributes, including essential amino 
acids (histidine and lysine), fatty acids (capric acid, linoleic 
acid and oleic acid), dietary mineral elements (calcium and 
potassium), fat-soluble vitamins (alpha-tocopherol) and 
water-soluble vitamins (nicotinic acid, pantothenic acid and 
pyridoxine) [45, 46].

The biocompatibility, bioactivities and other proper-
ties and applications of plant derived AgNPs primarily 
depends on its shape, size and surface chemistry, which in 
turn are regulated by phyto-constituents (phenolics, flavo-
noids, terpenoids) present in the plant extract. However, 
the nature and concentrations of these phyto-constituents 
vary among different plant species. Therefore, keeping in 
view the phyto-constituents and pharmacological proper-
ties of R. imbricata and W. somnifera, the present study was 
focused on the cleaner production and characterization of 
AgNPs (ultraviolet–visible spectroscopy (UV–Vis), dynamic 
light scattering (DLS), high-resolution transmission elec-
tron microscopy (HR-TEM), selected area electron diffrac-
tion (SAED), energy-dispersive X-ray spectroscopy (EDX) 
and Fourier-transform infrared spectroscopy (FTIR)) from 
aqueous root extract of R. imbricata and W. somnifera for 
managing industrial pollution (catalytic degradation of 
4-nitrophenol (4-NP)) and investigating their potential in 
biomedical (cytotoxicity against human hepatocellular car-
cinoma cell line (HepG2)), agricultural and bio-based (anti-
oxidant) industrial sector. Moreover, the present study also 
investigated the influence of different ratio of RIWS aqueous 
root extract and silver nitrate (AgNO3) on physicochemical 
properties and biological applications of RIWS-AgNPs.

Materials and methods

Chemicals

All the chemicals used in this study were of analytical grade. 
Double-distilled and Milli-Q (MQ) water was used through-
out the study.

Green synthesis of RIWS‑AgNPs

RIWS-AgNPs were synthesized according to previously 
established method with some minor modifications [23]. 
R. imbricata and W. somnifera plants were collected from 
Changla pass (Ladakh, India) and Togan village (Chandi-
garh, India), respectively. The roots of both the plants were 
washed thoroughly with double-distilled water (DDW) and 
then air-dried at room temperature (RT) for 15 days. Sub-
sequently, the air-dried roots were pulverized and sieved 
through a 20-mesh sieve to obtain a fine powder. 5 g of R. 
imbricata root powder and 5 g of W. somnifera root powder 
was mixed thoroughly and dissolved in 100 ml of sterile 
MQ water and boiled at 60 °C for 25 min. After boiling, the 
extract was cooled down to RT and filtered twice through 
Whatman No. 1 filter paper. The extract was then re-filtered 
through 0.45 μm filter (Millex; Merck, Frankfurt, Germany) 
and stored at 4 °C. Subsequently, AgNO3 (1 mM, 2.5 mM 
and 5 mM) and aqueous RIWS-extract (1 mg/ml) were 
mixed in different ratio (v/v) (Table 1) and reaction was 
allowed to progress at 25 °C in dark condition. The reac-
tion mixture was monitored visually at regular intervals to 
observe the changes in the color with time for its subsequent 
characterization.

Characterization of RIWS‑AgNPs

RIWS-AgNPs were characterized according to previously 
established method [47]. The size and specific localized sur-
face plasmon resonance (LSPR) of RIWS-AgNPs (Table 1) 
was observed in the wavelength range of 300–700 nm at 
30 min intervals up to 3 h using BioTek Synergy H1 micro-
plate reader (BioTek Instruments, Winooski, VT, USA) 
equipped with Gen5 software. The hydrodynamic size, 
polydispersity index (PDI), surface charge (zeta potential) 
and stability of RIWS-AgNPs (Table 1) was measured using 
Zetasizer Nano ZS instrument (Malvern Panalytical Ltd., 
Malvern, UK) equipped with Zetasizer software (version 
7.12). The morphological features (size and shape), SAED 
and nature of RIWS-AgNPs were ascertained using Tecnai 
TF20 HR-TEM (FEI, Hillsboro, OR, USA). The TEM grid 
was prepared by loading 5 μl of RIWS-AgNPs suspension 
on carbon-coated copper grid and subsequent drying at RT. 
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The elemental composition of RIWS-AgNPs were ascer-
tained using an EDX instrument attached to Hitachi SU8010 
field emission scanning electron microscope (Hitachi High-
Technologies Corporation, Tokyo, Japan). The functional 
groups of RIWS-AgNPs were characterized by Spectrum 
400 FTIR spectrometer (PerkinElmer, Waltham, MA, USA) 
using KBr pellet method (scan range: 4000–650 cm−1 and 
resolution: 0.4 cm−1).

Catalytic activity of RIWS‑AgNPs

The catalytic degradation of 4-NP by RIWS-AgNPs was 
assessed using previously reported method with some 
minor modifications [47]. Briefly, 200 μl of RIWS-AgNP 
1 (200 μg/ml) was added to 200 μl of 4-NP (10−5 M) and 
2.5 ml of sodium borohydride (0.150 M) and absorbance of 
reaction mixture and blank was measured in the wavelength 
range of 300–700 nm at 30 min intervals up to 180 min using 
BioTek Synergy H1 microplate reader (BioTek Instruments, 
Winooski, VT, USA) equipped with Gen5 software. The 
degradation efficiency of 4-NP by RIWS-AgNPs was esti-
mated using the following formulae:

where R is the degradation efficiency, Ao and A corre-
sponds to absorbance of dye at time t = 0 and t = 180 min, 
respectively.

Seed germination assay and estimation of growth 
and photosynthetic pigments of Hordeum vulgare

Seeds (n = 400) of Hordeum vulgare were washed thor-
oughly with DDW, and then immersed in 70% ethanol for 
1 min and washed five times with sterile MQ water. Then, 
the seeds were surface sterilized with 0.02% w/v mercuric 
chloride solution (containing few drops of Tween-20) for 
1 min and subsequently washed six times with sterile MQ 
water. The surface sterilized seeds (n = 9) were then soaked 
in different concentrations of RIWS-AgNPs (RIWS-AgNP 

R =
Ao − A

Ao
× 100,

1 (2, 20 and 200 μg/ml), RIWS-AgNP 4 (2, 20 and 200 μg/
ml), RIWS-AgNP 7 (2, 20 and 200 μg/ml), RIWS-extract 
(200 μg/ml) and AgNO3 and were kept in dark at RT for 
10 h. Then, the treated seeds were transferred to soil-filled 
seedling trays. Finally, the seed germination index (SGI), 
root and shoot length, root number and photosynthetic pig-
ments (Chlorophyll a, Chlorophyll b and total carotenoids) 
were measured after 10 days of incubation under 25 °C and 
16 h (light)/8 h (dark) photoperiod.

SGI was calculated according to the following formula:

Chlorophyll a, Chlorophyll b and total carotenoids were 
extracted from leaves (acetone with 20% v/v water) and 
measured according to the method of Lichtenthaler and 
Buschmann [48] using the following formula:

Antioxidant activity of RIWS‑AgNPs

The antioxidant activity of RIWS-extract, RIWS-AgNP 1 
(2–100 μg/ml) and standards (BHT and Rutin) was deter-
mined by DPPH (2,2-diphenyl-1-picrylhydrazyl) assay [49]. 
The antioxidant activity was expressed as % inhibition of 
DPPH which was calculated using the following formula:

The efficiency concentration (EC50) and antiradical 
power (ARP) of antioxidant was calculated according to the 
method of Prakash [50], Kroyer [51] and Dajanta [52] using 
the following formula:

SGI(%) =
Number of germinated seeds

Total number of inoculated seeds
× 100.

Chlorophyll a(�g∕ml) = 12.25A
663.2

− 2.79A
646.8

Chlorophyll b(�g∕ml) = 21.50A
646.8

− 5.10A
663.2

Total carotenoids(�g∕ml) =
(

1000A
470

− 1.82ca − 85.02cb
)

∕198.

Inhibition(%) = [(Abscontrol − Abssample)∕(Abscontrol)] × 100.

Table 1   RIWS-AgNPs 
phytosynthesized using 
different combinations and 
concentrations of AgNO3 and 
RIWS-extract

S.no RIWS-AgNP ID RIWS-AgNP composition (RIWS-extract: AgNO3 ratio (v/v))

1 RIWS-AgNP 1 1 (RIWS-extract (1 mg/ml)): 1 (AgNO3 (1 mM))
2 RIWS-AgNP 2 9 (RIWS-extract (1 mg/ml)): 1 (AgNO3 (1 mM))
3 RIWS-AgNP 3 1 (RIWS-extract (1 mg/ml)): 9 (AgNO3 (1 mM))
4 RIWS-AgNP 4 1 (RIWS-extract (1 mg/ml)): 1 (AgNO3 (2.5 mM))
5 RIWS-AgNP 5 9 (RIWS-extract (1 mg/ml)): 1 (AgNO3 (2.5 mM))
6 RIWS-AgNP 6 1 (RIWS-extract (1 mg/ml)): 9 (AgNO3 (2.5 mM))
7 RIWS-AgNP 7 1 (RIWS-extract (1 mg/ml)): 1 (AgNO3 (5 mM))
8 RIWS-AgNP 8 9 (RIWS-extract (1 mg/ml)): 1 (AgNO3 (5 mM))
9 RIWS-AgNP 9 1 (RIWS-extract (1 mg/ml)): 9 (AgNO3 (5 mM))
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Cytotoxic activity of RIWS‑AgNPs

The cytotoxic activity of RIWS-AgNPs was evaluated 
against HepG2 and normal Huh7 cell line, respectively, 
using MTT assay [53]. Briefly, the HepG2 and Huh7 cells 
were cultured in Dulbecco’s modified eagle medium contain-
ing 10% fetal bovine serum, and maintained at 37 °C, 95% 
air, 5% CO2 and 100% relative humidity. Then, the cultured 
cells (100 μl and 10,000 cells/well) were seeded in 96-well 
plate and incubated at 37 °C and 5% CO2 for 24 h. After 
incubation, 20 μl of different concentrations of RIWS-AgNP 
1 (2, 20 and 200 μg/ml) and RIWS-extract (200 μg/ml) was 
added to each well in triplicates and incubated at 37 °C and 
5% CO2 for 24 h. The untreated cells were used as a control. 
After 24 h of incubation, 20 μl of MTT (5 mg/ml in phos-
phate buffer saline) was added to each well and incubated at 
37 °C for 4 h. After incubation, the formazan crystals formed 
as a result of reduction of MTT by mitochondrial dehydro-
genase was solubilized in dimethyl sulfoxide (100 μl/well) 
and the absorbance was measured at 570 nm (test wave-
length) and 620 nm (reference wavelength) using Multiskan 
GO microplate reader (Thermo Fisher Scientific, Waltham, 
MA, USA). The cell viability was assessed using the fol-
lowing formula:

Statistical analysis

Completely randomized design methodology was used to 
carry out all the experiments [54]. The experiments were 
performed in triplicates and the results were presented as 
mean ± standard deviation. The difference between the 
group means was assessed through one-way ANOVA and 
the Bonferroni post hoc test was used to deduce the pair-
wise comparison among group means (p ≤ 0.05). The SPSS 
software (SPSS version 21.0, USA) was used to perform the 
statistical analysis.

Results and discussion

Synthesis and characterization of RIWS‑AgNPs

UV–Vis spectroscopy is a relatively simple, sensitive, 
rapid and selective technique for the characterization of 

EC
50(mg∕ml) = IC

50
∕(DPPH)in mg∕ml

ARP = 1∕
(

EC
50
× 100

)

.

Cell viability(%) =
(Abs

570(sample) − Abs
620(sample))

(Abs
570(control) − Abs

620(control))
× 100.

phytosynthesized AgNPs [21]. The AgNPs generally show 
a characteristic LSPR peak (400–480 nm) due to collective 
oscillation of conduction band electrons [55]. The LSPR 
phenomenon depends on the shape and size of nanoparticles 
[18]. The present study was focused on the characterization 
of RIWS-AgNPs using UV–Vis spectrometry. After 30 min 
of incubation, color of the reaction mixture (AgNO3 and 
RIWS-extract) changed from dark brown to light brown, 
thereby indicating the synthesis of RIWS-AgNPs (Fig. 1j). 
This change in color of reaction mixture is generally attrib-
uted to LSPR effect and reduction of Ag+ ions to Ag0 by 
plant extract [56]. The time-course analysis revealed that 
the intensity of LSPR peaks increased steadily (Fig. 1a–i). 
The UV–Vis spectrometric analysis demonstrated that 
intensity of maximum absorbance increased with increas-
ing ratio of AgNO3: RIWS-extract and increasing concen-
trations of AgNO3 (Fig. 1a–i). Moreover, the LSPR peaks 
were broader in shape as well as red shifted from a smaller 
to a higher wavelength, thereby indicating the formation of a 
small amount of large size poly-disperse AgNPs (Fig. 1a–i). 
This red shift of LSPR peaks is due to aggregation among 
nanoparticles, which results in coupling of LSPR peaks 
that changes the local refractive index of AgNPs [55]. The 
RIWS-AgNP 1 (1:1 ratio of AgNO3 (1 mM) and RIWS-
extract (1 mg/ml) (v/v)) showed blue shifted high intensity 
LSPR peaks (430 nm), thereby revealing the formation of 
a large amount of small size AgNPs (Fig. 1a). According 
to Henglein, the LSPR peak shifts to the blue wavelength 
when electrons are donated to the nanoparticles [57]. Simi-
lar results have also been previously reported [18]. These 
results strongly suggest that the optimum ratio of AgNO3 
and plant extract is an important factor that regulates the 
physicochemical properties of AgNPs. The present findings 
suggest that the 1:1 ratio of AgNO3: RIWS extract and 1 mM 
of AgNO3 is optimum for the synthesis of small size and 
well-dispersed RIWS-AgNPs.

Hydrodynamic size, polydispersity and surface 
charge of RIWS‑AgNPs

Dynamic light scattering (Photon Correlation Spectroscopy) 
and zeta potential are the most accepted techniques for deter-
mining the surface charge, hydrodynamic size, polydisper-
sity and stability of phytosynthesized nanoparticles [58]. 
These techniques depend on the interaction of light with 
suspended nanoparticles [8, 59]. As shown in Fig. 2a–i and 
Table 2, the z-average (d-nm) or mean hydrodynamic size 
of RIWS-AgNPs range from 118.6 to 2969 nm. The poly-
dispersity index (PDI) of RIWS-AgNPs range from 0.171 
to 1 (Table 2). The PDI of RIWS-AgNP 1, RIWS-AgNP 
2 and RIWS-AgNP 3, was found to be 0.179, 0.201 and 
0.174, respectively, which is much below 0.3, thereby indi-
cating that the synthesized nanoparticles are well dispersed 
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in nature [60]. The results also suggest that the average 
hydrodynamic size and polydispersity of RIWS-AgNPs 
increased with increasing ratio of AgNO3: RIWS-extract as 
well as increasing concentrations of AgNO3. These find-
ings also corroborate with the UV–Vis spectrometric results 
in this study. The zeta potential of RIWS-AgNP 1, RIWS-
AgNP 2 and RIWS-AgNP 3 was found to be − 17.9 ± 4.14, 
− 14.5 ± 5.38 and − 5.20 ± 4.22 mV, respectively, indicating 
that the negative surface charge increased with increasing 
ratio of AgNO3: RIWS-extract (Fig. 2j–l). The high negative 
surface charge on RIWS-AgNPs is due to prominent coat-
ing of RIWS root extract-derived phenolic hydroxyl (OH) 
groups on outer surface layer of these MNPs [22, 34–37, 
39–42]. The high negative surface charge on RIWS-AgNP 1 

exerts strong electrostatic repulsion among the nanoparticles 
that probably prevent agglomeration and impart long-term 
stability to these phytosynthesized AgNPs.

Spatial resolution of RIWS‑AgNPs

HR-TEM is a powerful technique for understanding the spa-
tial resolution of AgNPs. As shown in Fig. 3, the phytosyn-
thesized RIWS-AgNPs are mostly spherical with an average 
size of 37–42 nm. Moreover, they are well dispersed, indi-
cating that the phytosynthesized RIWS-AgNPs are stable 
against aggregation. These results also corroborate with 
the UV–Vis analysis in this study (Fig. 1). RIWS-AgNPs 
are probably capped by a thin layer of phyto-constituents 

Fig. 1   UV–Vis absorption spectra of RIWS-AgNPs ((a) RIWS-AgNP 
1, (b) RIWS-AgNP 2, (c) RIWS-AgNP 3, (d) RIWS-AgNP 4, (e) 
RIWS-AgNP 5, (f) RIWS-AgNP 6, (g) RIWS-AgNP 7, (h) RIWS-
AgNP 8 and (i) RIWS-AgNP 9) and RIWS-extract over different time 

intervals. The black and red arrow indicates the increase in wave-
length of RIWS-AgNPs ((a–i)). Blue arrow indicates the increase in 
absorbance of RIWS-AgNPs ((a–i)). (j) The figure shows the change 
in the color of reaction mixture (AgNO3 and RIWS-extract)
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from root extract of RIWS that render stability and prevents 
them from aggregation (Fig. 3a–d) [34–37, 39–42]. The 
interplanar “d” spacing of RIWS-AgNP was estimated to 
be 0.236 nm, which corresponds to the d111 lattice spacing 
of face-centered cubic structure (fcc) of silver (Fig. 3e). The 
SAED pattern illustrates circular fringes corresponding to 
(311), (220), (200) and (111) planes of fcc structure of silver 
which suggest that the phytosynthesized RIWS-AgNPs are 
crystalline in nature (Fig. 3f).

Elemental composition of RIWS‑AgNPs

The elemental composition of AgNPs is generally estab-
lished using EDX [58]. In this study, the EDX analysis 
shows a characteristic absorption peak of silver at 3 keV 
(Fig. 4) due to LSPR, thereby validating the formation 

Fig. 2   Particle size distribution 
(DLS) ((a) RIWS-AgNP 1, (b) 
RIWS-AgNP 2, (c) RIWS-
AgNP 3, (d) RIWS-AgNP 4, 
(e) RIWS-AgNP 5, (f) RIWS-
AgNP 6, (g) RIWS-AgNP 7, (h) 
RIWS-AgNP 8 and (i) RIWS-
AgNP 9) and Zeta potential ((j) 
RIWS-AgNP 1, (k) RIWS-
AgNP 2, (l) RIWS-AgNP 3) of 
RIWS-AgNPs
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Table 2   Z-Average and Polydispersity index of biosynthesized 
RIWS-AgNPs

S. No RIWS-AgNP ID Z-Average (d-nm) Polydisper-
sity index 
(PDI)

1 RIWS-AgNP 1 118.6 0.179
2 RIWS-AgNP 2 128.4 0.201
3 RIWS-AgNP 3 129.2 0.174
4 RIWS-AgNP 4 138.6 0.465
5 RIWS-AgNP 5 141.3 0.257
6 RIWS-AgNP 6 168.2 0.41
7 RIWS-AgNP 7 207.4 0.235
8 RIWS-AgNP 8 347.1 0.371
9 RIWS-AgNP 9 2969 1
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of RIWS-AgNPs [61]. Similar results have been previ-
ously reported in Artocarpus heterophyllus and Ceratonia 
siliqua  leaf extract-derived AgNPs [62, 63]. The EDX 
analysis also demonstrated the presence of carbon, oxy-
gen and nitrogen which could be ascribed to the phyto-
constituents of RIWS root extract that are capped on the 
surface of AgNPs [34–37, 39–42].

Surface chemistry of RIWS‑AgNPs

FTIR spectroscopy is widely used for characterizing the 
surface chemistry and functional groups involved in the 
reduction of silver ions [58]. In this study, the FTIR analy-
sis of aqueous root extract of RIWS showed a spectrum of 
distinct IR band characteristic of O–H stretching of alcohols 

Fig. 3   HR-TEM images of RIWS-AgNP 1 at different resolutions ((a) 100 nm, (b) 10 nm, (c, d) 5 nm), and (e) interplanar “d” spacing; and (f) 
SAED pattern of RIWS-AgNPs

Fig. 4   EDX spectra showing 
the presence of silver, carbon, 
oxygen and nitrogen in RIWS-
AgNPs
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and phenolic compounds (3329.1 cm−1), C–H stretching of 
alkanes and aromatic compounds (2932.3 cm−1), C≡C stretch 
of alkynes group (2153 cm−1), C = C stretching of aromatic 
group (1601.3 cm−1, 1399 cm−1), C–O stretch of alcoholic, 
carboxylic acid, ester and ether functional sites of biomol-
ecules (1148.7 cm−1), C–N stretching of aliphatic amines 
or alcohols/phenols (1077.3  cm−1, 1027.3  cm−1), = C–H 
stretching of alkenes group (931.6  cm−1), C–H bending 
of alkynes group (862.5 cm−1), N–H stretch of 1° and 2° 
amines (766.9  cm−1) and CH2 (709.2  cm−1) functional 
groups (Fig. 5) [64–66]. Whereas, the RIWS-AgNPs dis-
played IR band characteristic of O–H stretching of alcohols 
and phenolic compounds (3344.6 cm−1), C–H stretching 
of alkanes and aromatic compounds (2930.7 cm−1), C≡C 
stretch of alkynes group (2153.1 cm−1), C = C stretching 
of aromatic group (1606 cm−1, 1399.8 cm−1), C–N stretch-
ing of aliphatic amines or alcohols/phenols (1076.8 cm−1, 
1030 cm−1) functional groups (Fig. 5) [64–66]. The slight 
shift observed in IR band of RIWS-AgNPs spectra, as com-
pared to the spectra of RIWS-extract, might be attributed to 
the phenolic functional groups present in the aqueous root 
extract of RIWS that probably act as reducing, capping and 
stabilizing agent for green synthesis of these AgNPs (Fig. 5) 
[30, 34–37, 39–42].

Catalytic activity of RIWS‑AgNPs

4-NP is primarily used in production of pharmaceuticals, 
dyes, fungicides, insecticides and pesticides [67, 68]. It is 
listed as a toxic pollutant by the United States Environmental 
Protection Agency [69]. The short-term ingestion of 4-NP 
in humans causes cyanosis, drowsiness, nausea and head-
aches [68]. The 4-NP is resistant to biological and chemical 
hydrolysis due to presence of an electron withdrawing nitro 
group and is of great environmental concern [70]. Therefore, 
new technologies are still constantly developing to remove 
this hazardous pollutant from the environment. Recently, 

there has been an increased attention towards the catalytic 
applications of AgNPs [71]. The catalytic activity of AgNPs 
usually depends on its shape, size and composition [72]. 
Therefore, the present study investigated the influence of 
RIWS-AgNPs on catalytic degradation of 4-NP. The addi-
tion of NABH4 and RIWS-AgNPs resulted in reduction of 
4-nitrophenolate ion to 4–aminophenol as indicated by the 
change in the color of reaction mixture (Fig. 6) [73]. The 
degradation efficiency of 4-NP by RIWS-AgNPs was found 
to be 57%. The UV–Vis analysis demonstrated an efficient 
catalytic degradation of 4-NP as evident by a considerable 
decrease in absorbance peak of 4-NP at the end of 30 min, 
60 min, 120 min, 150 min and 180 min time interval (Fig. 6). 
This decrease in absorbance peak of 4-NP is mainly attrib-
uted to the large surface area of MNPs that act as substrate 
for electron transfer reaction or electron relay effect [74]. 
This decrease could also be explained on the basis of Lang-
muir–Hinshelwood model, which suggests that borohydride 
ions can transfer surface-hydrogen species to MNPs and 
subsequent adsorption of 4-NP on MNPs leads to catalytic 

Fig. 5   FTIR spectra of RIWS-
extract and RIWS-AgNPs
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degradation of 4-NP by surface-hydrogen species [75]. Fran-
cis et al. [76] also reported similar catalytic degradation of 
4-NP from Elephantopus scaber-derived AgNPs. The pre-
sent findings suggest that RIWS-extract-derived AgNPs is 
a promising green alternative source of MNPs for treating 
toxic environmental pollutant.

Effect of RIWS‑AgNPs on seed germination, growth 
and photosynthetic pigments of Hordeum vulgare

Recently, plant extract-derived AgNPs have gained tre-
mendous popularity in agricultural sector [77]. Several 
studies have demonstrated the positive and negative effect 
of phytosynthesized AgNPs on plant growth and develop-
ment [78]. The effect of AgNPs on plant growth generally 
depends on its size, concentration, source of nanoparticles 
and plant species under investigation [77]. Therefore, the 
present study investigated the influence of different con-
centrations of RIWS-AgNPs on germination, growth and 
photosynthetic pigments of Hordeum vulgare. As shown in 
Fig. 7a–d, the RIWS-AgNP 1 (200 μg/ml) treatment signifi-
cantly increased the germination index (77%), root number 

(7.33 ± 0.25), shoot length (17.29 ± 0.41 cm) and content 
of photosynthetic pigments (chlorophyll a (12.62 ± 0.07 μg/
ml), chlorophyll b (8.14 ± 0.02 μg/ml), total carotenoids 
(7.05 ± 0.04 μg/ml)) in H. vulgare, as compared to the other 
concentrations of RIWS-AgNPs and control (p ≤ 0.05). 
However, the higher concentrations of RIWS-AgNPs have 
a negative impact on growth and photosynthetic pigments 
of H. vulgare (Fig. 7a–d). Therefore, the results suggest that 
the effect of RIWS-AgNPs on germination, growth and pho-
tosynthetic pigments of H. vulgare is mainly dependent on 
its concentration and physicochemical properties (size and 
zeta potential). Gupta et al. [77] also reported similar stimu-
latory effect of phytosynthesized AgNPs on seed germina-
tion, chlorophyll a, carotenoids content and seedling growth 
in rice. The authors found that AgNPs treatment significantly 
increased the levels of catalase, ascorbate peroxidase and 
glutathione reductase and substantially decreased the levels 
of hydrogen peroxide and lipid peroxidation, which in turn 
have enhanced the growth and germination in rice seedlings 
by increasing the efficiency of redox reactions. AgNPs treat-
ment also significantly increased the root growth in rice and 
Arabidopsis due to its interaction with multiple cellular 
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Fig. 7   Effect of RIWS-extract-derived AgNPs (RIWS-AgNP 1—
RIWS-AgNP 9), RIWS-extract and silver nitrate on (a) growth 
((1) Silver nitrate, (2) RIWS-AgNP 7 (2  μg/ml), (3) RIWS-AgNP 
7 (20  μg/ml), (4) RIWS-extract (200  μg/ml), (5) RIWS-AgNP 7 
(200 μg/ml), (6) RIWS-AgNP 4 (2 μg/ml), (7) RIWS-AgNP 4 (20 μg/
ml), (8) RIWS-AgNP 4 (200  μg/ml), (9) RIWS-AgNP 1 (2  μg/ml), 

(10) RIWS-AgNP 1 (20  μg/ml), (11) Control, (12) RIWS-AgNP 1 
(200 μg/ml)), (b, c) seed germination index, root length, shoot length 
and root number and content of (d) Chlorophyll a, Chlorophyll b and 
total carotenoids in  Hordeum vulgare.  Values are mean ± standard 
deviation of three replicates
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signaling pathways including cell proliferation, reactive oxy-
gen species (ROS) scavenging and hormone signaling path-
ways [77, 79, 80]. Previous studies have also established that 
AgNPs regulates the expression of genes associated with 
secondary metabolism, cell cycle, carotenoid biosynthesis, 
antioxidant enzymes and metabolic pathway of phenolic 
compounds [77, 80–83]. In this study, the enhanced growth 
in H. vulgare might also be a consequence of increased 
concentration of photosynthetic pigments in seedlings after 
treatment with RIWS-AgNPs (Fig. 7d). The present findings 
revealed that 200 μg/ml of RIWS extract-derived AgNPs 
(RIWS-AgNP 1) could be effectively used as a green nano-
biotechnological source to increase the yield and produc-
tivity of H. vulgare. The present study also suggests that 
nano-biotechnological interventions hold promising future 
prospects in agriculture sector.

Antioxidant activity of RIWS‑AgNPs

DPPH assay is widely used for determining the anti-
oxidant activity of natural compounds [84]. The present 
study compared the antioxidant activity of RIWS-AgNPs, 
RIWS-extract and standards (BHT and Rutin). The RIWS-
AgNPs showed significantly higher antioxidant activity, as 
compared to RIWS-extract and BHT at 2–100 μg/ml con-
centrations (p ≤ 0.05, Fig. 8a). The IC50 value (μg/ml) of 
RIWS-extract, RIWS-AgNPs, BHT and Rutin was observed 
to be 12.47, 12.30, 12.43 and 12.36, respectively (Fig. 8b). 
The EC50 value (mg/ml) of RIWS-extract, RIWS-AgNPs, 
BHT and Rutin was calculated to be 0.106, 0.104, 0.105 
and 0.105, respectively (Fig. 8c). The ARP value of RIWS-
extract, RIWS-AgNPs, BHT and Rutin was found to be 
947.02, 959.45, 952.38 and 952.39, respectively (Fig. 8d). 

The higher antioxidant activity of RIWS-AgNPs might be 
attributed to the fact that AgNPs are capped with the bioac-
tive compounds of the RIWS-extract that does not readily 
lose electrons, as compared to the bioactive compounds in 
the plant extract alone [34–37, 39–42, 85]. Similarly, several 
researchers have reported that the antioxidant activity of the 
plant extract-derived AgNPs is significantly higher as com-
pared to the plant extract alone [86]. In this present study, 
the antioxidant activity of RIWS-extract and RIWS-AgNPs 
was found to increase in a concentration-dependent manner. 
The results suggest that the RIWS-AgNPs might be used as 
a potent antioxidant agent in different pharmacological for-
mulations for ameliorating free radical-associated disorders, 
including cancer, atherosclerosis, diabetes and neurodegen-
erative diseases [87].

Cytotoxic activity of RIWS‑AgNPs

Hepatocellular carcinoma is the third leading cause of can-
cer-related deaths globally [88]. World Health Organization 
estimates that every year 7,88,000 people die from primary 
liver cancer [89]. According to International Agency for 
Research on Cancer, the global burden of new cancer cases 
are expected to reach 27.5 million by 2040 [90]. Moreo-
ver, the global industry of cancer treatment is estimated to 
increase by $ 150 billion in 2020 [91]. Radiotherapy, sur-
gery and chemotherapy are some of the conventional meth-
ods used for the treatment of cancer patients. However, the 
conventional cancer treatments have several drawbacks, 
including high recurrence rate, non-specificity, limited bio-
availability, toxicity and other severe side effects that limit 
their clinical effectiveness [19]. In this context, the MNPs 
offer a promising platform for cancer theranostics due to 

Fig. 8   DPPH free radical scav-
enging activity ((a) inhibition 
(%), (b) IC50, (c) EC50 and (d) 
ARP) of RIWS-AgNP 1, RIWS-
extract and standards (BHT and 
rutin). Values are mean ± stand-
ard deviation of three replicates
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their unique physicochemical properties, high surface area to 
volume ratio, high permeability, low cost and high stability 
in biological fluids [92]. As shown in Fig. 9a, the RIWS-
AgNPs showed high cytotoxicity against HepG2 cell line 
(RIWS AgNPs 1 (200 μg/ml) Cell viability: 9.51 ± 1.55%), 
as compared to RIWS-extract (Cell viability: 60.39 ± 2.51%; 
p ≤ 0.05). Moreover, there is a gradual increase in cytotox-
icity with concomitant increase in concentration of RIWS-
AgNPs (Fig. 9a). Furthermore, RIWS-AgNPs showed lim-
ited cytotoxicity (RIWS AgNPs 1 (200 μg/ml) Cell viability: 
78.25 ± 1.25%) against normal Huh7 cell line (Fig. 9b). This 
increased cytotoxicity activity of RIWS-AgNPs against 
HepG2 cancer cell line might be attributed to the genera-
tion of ROS, disruption of mitochondrial respiratory chain, 
G2/M or sub-G1 cell cycle arrest and decreased cellular 
ATP content [92]. Several authors have also suggested a 
down-regulation of DNA-dependent protein kinase and 
Bcl-2 gene and upregulation of Bax gene and p53 by bio-
genic AgNPs [93]. This strong cytotoxicity of RIWS-AgNPs 
could also be attributed to high antioxidant activity of these 
MNPs as reported in this study (Fig. 8). Several research-
ers have reported a significant correlation between the anti-
oxidant activity and anticancer efficacy [94]. The results 
suggest that the cytotoxicity of RIWS-AgNPs increased 

in a concentration-dependent manner. Sahu et al. [95] also 
reported a concentration-dependent cytotoxicity of AgNPs 
against HepG2 cell line. The present findings suggest that 
the RIWS-AgNPs are biocompatible and could potentially 
be used as a chemotherapeutic agent in the near future.

Conclusion

In this present investigation, we have successfully estab-
lished a safe, simple, economical and environment-friendly 
green approach for biosynthesis of RIWS-extract capped 
silver nanoparticles (RIWS-AgNPs) with pronounced bio-
activities (antioxidant and anticancer) and diverse industrial 
applications. The various analytical techniques (UV–Vis, 
FTIR, TEM, DLS and SAED) have unveiled that equal ratio 
of AgNO3 (1 mM) and RIWS-extract (1 mg/ml) is most 
favorable for the synthesis of small size, well dispersed, 
crystalline and stable RIWS-AgNPs. The findings of this 
present study suggest that phytosynthesized RIWS-AgNPs 
have tremendous potential in mitigating environmental pol-
lution by promoting effective degradation of hazardous 
organic pollutant (4-nitrophenol). The present findings dem-
onstrated that RIWS-AgNPs exert concentration-dependent 
antioxidant activity and cytotoxicity against HepG2 cancer 
cell line. Moreover, RIWS-AgNPs also enhanced the seed 
germination, growth and photosynthetic pigments of Hor-
deum vulgare in concentration and size-dependent manner. 
The results suggest that phytosynthesized RIWS-AgNPs 
have promising prospects in cancer therapeutics, ameliorat-
ing free-radical-associated health maladies, and boosting 
agro-economy. The future studies need to be focused on 
understanding the mechanism of action of RIWS-AgNPs.
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