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A B S T R A C T   

Circuit designers are always faced with new obstacles as a result of the persistent trend in today’s nanoscale 
technology to follow Moore’s law. The complexities inherent in the production process have increased 
dramatically due to the rapid downscaling of integration. Parallel to this, the complexity and unpredictability of 
silicon chip flaws have increased, making circuit testing and diagnosis more challenging. The amount of test data 
has multiplied, and the criteria governing integrated circuit testing have grown both in size and in the complexity 
of correlation. The modern situation provides a useful framework for investigating novel machine learning-based 
test solutions. In this paper, the authors examine different recent developments in this developing field in the 
context of digital logic testing and diagnosis.   

1. Introduction 

Machine learning (ML), which is armed with the strength of 
contemporary cloud computing and the accessibility of enormous 
amounts of data and storage, is at the forefront of current technological 
development. Since ML-based techniques can effectively solve complex 
problems that were thought to be intractable a decade ago, they are now 
widely used in modern industry. Their applications’ range almost 
completely encompasses all fields, and they hold possibilities only 
constrained by human creativity. Through accurate illness diagnosis and 
a grasp of biological systems like gene control, which are incredibly 
useful in the drug discovery process, it has revolutionized the medical 
and pharmaceutical industries. Its redefining impact on communication, 
production, manufacturing, and the entertainment sector is comparable. 
Because many of these applications require evaluating vast amounts of 
historical data, machine learning (ML) is pervasive in the technological 
world. By utilizing relevant information, ML offers a method to turn this 
data into knowledge that is then used for future analyses and prediction 
solutions. The essential prerequisite for developing a ML engine is a 
sufficient volume of trustworthy data. Since the decision-making process 
for predicting the parameters is reduced to a simple function evaluation 
once the model has been trained from the data, the success of ML in all 
these fields can be credited to the speedy solutions it offers. 

The availability of high-speed hardware and graphics processing 
units, which speed up the necessary computation, is a crucial factor 

behind the upswing in ML, especially in deep learning. In this study, the 
authors concentrate on the difficulties of testing digital hardware logic 
and talk about how ML might help with these issues. Although ML in this 
field is still in its infancy, there are plenty of opportunities to investigate 
applications of these methods and to create original solutions. Tech
nology for digital electronics has been around for almost 50 years. 
Transistors were created in 1954, which opened the door to creating 
smaller devices and ultimately the creation of integrated circuits (ICs) in 
1962. The development of complementary metal-oxide-semiconductor 
(CMOS) technology brought about a new paradigm for low-power cir
cuit design. For the implementation of digital circuits with very large- 
scale integration, CMOS design styles are frequently employed in 
VLSI. There are billions of transistors on a single die in today’s IC de
vices. In the production cycle of digital IC chips, testing for 
manufacturing flaws is just as important as designing because it in
fluences dependability, price, and time-to-delivery. Effective testing is 
also required to calculate chip yield and reveal process variances. Over 
the past three decades, numerous aspects of fault modeling, detection, 
and diagnosis, as well as fault simulation, built-in self-test, and Design- 
for-Testability (DfT), have been thoroughly studied, resulting in effec
tive test generation and fault-diagnosis algorithms, as well as testable 
designs [1–3]. For evaluating digital logic, several industrial tools have 
been created over the years. However, as IC chips have become more 
complicated, testing and, more specifically, diagnosis, have become 
increasingly difficult. 
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According to Moore’s law, the number of transistors on a single IC 
chip has reached billions with today’s deep-submicron technology, with 
the newest technology being less than 7 nm. Low technology nodes 
boost the yield of high-speed electronic products and decrease silicon 
area, but they necessitate complex production procedures. Intricate 
manufacturing procedures and high levels of integration have increased 
ICs’ susceptibility to failure and introduced additional faults with more 
complicated behaviors. The advantage of miniaturization is thus 
accompanied by more recent testing difficulties. Defect localization 
must be carried out to identify defective chips and increase the yield of 
IC chips so that the process can be enhanced in subsequent 
manufacturing cycles. Defect/fault detection, which entails finding 
systematic faults before their location [4], has thus become a crucial 
stage in IC design and manufacture. The majority of machine learning 
(ML) based digital test applications are in the diagnosis field. There have 
been various attempts to apply ML to circuit testing in the industrial 
setting [5]. The lack of meaningful data is a significant impediment in 
this sector. Additionally, ML modeling in the subject of digital testing is 
still relatively new, with only a small number of research having been 
described in the literature thus far, in contrast to other sectors where ML 
techniques have been intensively investigated and successfully utilized. 
This survey focuses on the numerous features and modeling approaches 
that have been employed while walking through the various problem 
scenarios in the context of digital logic testing where ML techniques 
have been applied. The majority of the issues in this field are brand-new, 
and there are many opportunities to increase the efficiency of current 
solutions. It’s crucial to remember that ML offers automated tools to 
solve many challenging test problems that would have been difficult to 
solve otherwise. 

Follow of paper: Section 2 consists of the machine learning concept 
and its use in testing. Yield learning and diagnosis are shown in Section 3 
and Section 4 consisting of ATPG, test cost, and testability issues. In 
Section 5, a summary, challenges and future directions is shown which is 
followed by conclusion in Section 6. 

2. Machine learning 

As the name implies, ML is a field that tries to “learn” knowledge and 
information from data using the computational capacity of the modern 
“machine,” primarily computers. While its overall goal—concluding the 
data—is similar to that of statistical learning, it is more open to incor
porating different approaches and the types of data it can be used 
beyond statistical learning. Its methodology also applies to computer 
science, and geometry, and simply mimics the biological processes of 
brain networks, which are still poorly understood. The types of data 
include unstructured data like themes and graphs, as well as simple 
tabular, structured data and more complicated structured data like 
photos and videos. Two fundamental methods of ML are used, 
depending on the type of data. The first strategy involves clustering, 
which is a type of unsupervised learning and involves examining the 
data to see if any patterns exist. In the second method, each data point 
has labels that can be used to approximate some function or model that 
the labels are thought to represent, allowing any ensuing unlabeled data 
to be given an appropriate label. Under supervised learning, Bayesian 
inference, k-means clustering, and spectral clustering are the frequently 
used methods. Decision trees, support vector machines (SVMs), artificial 
neural networks (ANNs), Bayesian networks, and random forests (RFs) 
are prominent methods for supervised learning [6]. The prevalence of 
supervised learning is increased by the accessibility of common tools, 
particularly SVMs and ANNs. 

Although supervised learning is frequently favored over unsuper
vised methods (labels are frequently absent or challenging to collect). As 
a result, the approach must be based on the type of data that is provided. 
There are numerous prospects for supervised learning applications in the 
field of digital logic testing, different data sources that have been or 
could be perhaps applied to machine learning applications in the realm 

of digital electronic testing.  

• Manufacturing test response  
• Simulation  
• Historical data on diagnosis  
• Circuit Parameters  
• Circuit Structure  
• Physical Layout 

To create a useful model or inference, we frequently don’t interact 
with the data directly because of the following problems: (a) the data’s 
dimensionality may be too large; (b) the data may be biased, and (c) the 
data may not be representative (d) They may be chaotic and boisterous. 
Thus, before we can make them useable, substantial preprocessing may 
be needed for computations based on ML. Feature engineering, or the 
creation of features, is one of the key steps in this path from the infor
mation at hand. Feature selection is also necessary for some circum
stances. When it comes to data like graphs, a new technique called 
representation learning is gaining popularity [7]. 

2.1. ML in analog circuit testing 

Analog and digital components both make up an electrical chip. The 
two, however, have quite different working theories, levels of 
complexity, and testing requirements. Compared to digital operations, 
analog operations are significantly more complex, and testing analog 
circuitry is significantly more difficult [8,9]. The signals in analog cir
cuits, in contrast to those in digital circuits, are not discrete, making it 
difficult to think of an appropriate fault model that captures all mistake 
patterns when testing them. Additionally, they behave in a nonlinear 
manner, and the characteristics of the environment and the circuit 
greatly affect how they behave and how they get the outcome. As a 
result, the majority of analog circuit testing methods are 
parameter-based, making it challenging to develop deterministic testing 
procedures. In this field, a variety of statistical and ML approaches have 
been investigated [10–12]. The good news is that analog circuits are 
compact and only makeup about 10% of the device [13]. 

The testing of digital circuits, however, has been the subject of 
intensive research over many years and is today a subject that is well 
understood. An analog circuit uses significantly more complicated 
components, while a digital circuit uses much more clearly defined 
failure models. Additional possibilities for creating effective test stra
tegies are provided by the automated tools for test generation, fault 
simulation, and DfT insertion that are readily available. But further 
difficulties have emerged for digital logic testing as a result of numerous 
technical developments [14]. In this developing field, several methods 
based on machine learning have recently been created. 

3. Yield learning and diagnosis 

Technology that scales quickly, necessitates a complex and accurate 
production process. Since manufacturing methods only get better with 
time, the initial yield (percentage of excellent chips) is poor. Thus, the 
yield ramp-up during volume production has become dependent on 
yield learning [15]. Yield learning entails comprehension, of the fail
ures, identifying the flaws, and then putting the necessary corrective 
procedures in place to enhance the manufacturing process. Fig. 1 depicts 
the several phases of yield learning [16]. 

3.1. Wafer-level diagnosis 

It is difficult to maintain good yield when fabricating IC chips 
because of the complexity of today’s production process. In addition, 
silicon wafer manufacture has a long time cycle [12]. As a result, it’s 
critical to spot wafer flaws as soon as possible to optimize the 
manufacturing process and cut down on time and yield loss. It has been 
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noted that the faults typically appear in groups in specific places on a 
wafer [17]. [18] proposes a kernel-based approach to identify such 
clusters. Die inking is a procedure used to identify dies with latent flaws. 
Additionally, burn-in tests are frequently used for identifying these 
latent flaws. However, the expense and complexity of burn-in testing 
make them unaffordable [19]. In [19], a way to automate this process 
using ML was described. During training, faulty dies that are adjacent to 
defective clusters in a wafer are manually inked. For example, a binary 
classifier is utilized during the testing phase to determine whether or not 
a die is flawed. One of the most popular kernels used in the literature 
that employs the Gaussian function for distance computation is an SVM 
with a radial basis function kernel. To eliminate noise, morphological 

processes like erosion and dilation are applied. During classification, a 
feature vector depending on the distance of the die from faulty clusters is 
utilized. Fig. 2 depicts the related flow diagram. 

3.2. Fault diagnosis: preprocessing 

The fault diagnostic process may be aided by the information found 
in the failure record of damaged chips. Because data collecting is costly 
and time-consuming, the whole failure data may not be available for 
diagnosis [20]. Poor diagnosis frequently results because just a tiny 
portion of the entire response data is provided. For relief to solve this 
issue [20], propose a method to establish the bare minimum of test re
sults necessary for accurate diagnosis. The technique uses a binary 
classifier to determine when to halt the response collection operation. 
The classifier determines whether to go on to the following test response 
after collecting each test response. The features are determined by the 
chip’s output response upon application of the final test pattern. Results 
for different classifiers, including KNN, SVM, and decision trees, have 
been presented. The research by [21] introduces a classifier to forecast 
the failure log’s diagnostic value, the location of faults (scan-chain or 
functional logic), and the time of failure essential to diagnosis. To create 
the classifier, they applied RF and supplied a collection of features based 
on the failure log as illustrated in Fig. 3. 

3.3. Fault diagnosis: post-processing 

Despite playing a significant role in directing the PFA process, fault 
detection is done on an abstract level. Additionally, the reported number 
of candidate problems (diagnostic resolution) is typically high. The 
findings of fault diagnosis using ML approaches can be adjusted using a 
variety of strategies. They typically have two goals in mind: (a) defect 
identification, which entails linking the identified fault to a flaw. This is 
difficult, particularly if it simply considers the circuit’s failure reaction 
[22–24] (b) enhancing diagnostic resolution, in which the possible de
fects are examined to further trim the set to enhance the diagnostic 

Fig. 1. Yield learning phases [16].  

Fig. 2. Automated die-inking [19].  
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resolution [25]. The circuit’s structure, logical information, and output 
response are where both techniques get the properties they employ 
faulty chips. 

3.4. Defect identification 

The issue of locating bridging flaws in a failed circuit is tackled in 
[23]. According to [26], this data is useful for calculating defect density 
and size distribution, which are necessary for yield learning. Since a 
bridging defect denotes a short between two signal lines, a set of 
bridging faults involving line A’s nearby lines (B, X, and, Y) that are " (A, 
B), " (A, X), " (A, Y)" are taken into consideration for each candidate fault 
involving line A. The circuit’s logical data is expressed as Boolean 
characteristics. For instance, the “feedback” feature examines if a 
structural path exists between a bridging fault’s two lines. Such a 
channel under the fault may cause a latch or provoke an oscillating 
behavior that affects the test result. As a result, these locations could not 
be considered potential candidates for bridging faults. Other Boolean 
properties are applied similarly to determine if the lines drive parity 
gates, identical gates, or have a logical correlation. By examining the 
relationship between the tester output and the simulated response of the 
circuit in the presence of the candidate defect under various bridging 
fault models, test-dependent features are created [3]. A rule-based 
classifier and decision-tree-based classification are used to process 
these errors. Bridge faults are those that receive high marks for both 
logical and test-based fault characteristics. A decision tree is used to 
categorize the remaining faults after rule-based categorization to iden
tify the non-bridge problems [27]. Fig. 4 depicts the categorization 
scheme’s flow [23]. The training set is developed utilizing SPICE 
simulation and the findings of PFA’s defect diagnosis. 

3.5. Board-level diagnosis 

Printed circuit board technology has made it possible to incorporate 
a variety of components, including memory, I/O, ASIC, and memory, on 
a single board. Therefore, diagnosis is also required at the board level. 
Although the individual components may pass the manufacturing test in 
the ATE, it has been observed that they fail the board-level functional 
test. The components are marked as “no issue discovered,” mostly 
because the real testing environment differs from the ATE environment. 
To maintain the dependability of digital systems and for routine main
tenance, this challenge in the industry needs to be carefully managed. 
The diagnosis of functional faults at the board level is conducted using 
logic. When predicting problematic components for fresh boards, the 
knowledge of the primary causes of failure syndromes for an initial 
group of boards that might be repaired is employed as training data. The 
failure data of the components in a test set is used to identify the 
symptoms. The underlying root-cause cases that are diagnosed for these 
disorders produce a set of features, and they act as labels in the training 
set. In this area, several methods based on different ML techniques have 
been presented, including decision trees, ANN, SVM, and vector ma
chines [28–31]. The inputs are supplied with various syndromes in the 
ANN-based technique [32], and the outputs indicate the components 
[32]. used a collection of two-layer, single-output ANNs (Fig. 5) to 
address large-size board-level diagnosis issues. The output node repre
sents a component and categorizes it as the main cause of a failure or 
not. The dependence of training sets on historical data, which is 
frequently constrained, is the main issue with the majority of ML ap
plications in this field. In addition to having restricted access to histor
ical data, the size of the feature vector is typically enormous due to the 
size of the test set, which causes overfitting during training. This was 
remedied by utilizing a technique known as syndrome merging to 
condense the feature vector [33]. Keep in mind that some syndromes 

Fig. 3. Three-output classifiers where X is a feature vector with d elements, and y1, y2, and y3 are discrete variables denoting the classes [21].  

Fig. 4. Flow for the classification of bridging defects [23].  
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maybe not be observable or calculable [34]. suggested another method 
to process the training set, which included models using naive Bayes 
classifiers. 

4. ATPG, test cost, and testability issues 

A few recent developments include ATPG and testability analysis, 
where ML techniques have been shown to offer unique answers. The 
majority of ML-based test methodologies established thus far focus on 
fault diagnosis in digital circuits. Applications include test compression, 
estimating fault coverage under unknowable (X) inputs, and circuit 
testability, in particular analysis of the time and improvement. 

4.1. Test compression 

The test time and test data volume are used to calculate the test cost. 
The use of the compressor/decompressor architecture in scan-based test 
environments is one technique to lower test costs. The scan chains are 
loaded using a pseudo-random pattern generator (PRPG), occasionally 
in conjunction with a decompressor. The test-response data is similarly 
compressed using a MISR. It has been demonstrated that, in addition to 
different circuit parameters, the PRPG’s length significantly influences 

the test cost [35]. Running ATPG can exhaustively answer the pattern 
generator design problem, however, due to the time required, it can 
become impractical [35]. suggest using a predictor based on a Support 
Vector Regression (SVR) to address this issue. From the ATPG log file, 
several features are extracted, and the most appropriate features are 
chosen. Fig. 6 provides an example for deciding on PRPG length. two 
distinct predictors, one for the test’s duration and the other for the 
volume of test data, are taught. Test costs are anticipated for each option 
for PRPG length, and the length with the lowest cost is chosen [35,36]. 

4.2. Circuit testability 

Two types of ML-based research have been done in the field of circuit 
testability. The first seeks to determine the amount of fault coverage lost 
as a result of an X-signal (an unknown logic value) at a CUT’s input. The 
second deals with the issue of adding test points to increase testability. 

4.2.1. Analysis of X-sensitivity 
Because these values cannot be calculated during ATP, the existence 

of sources reduces the detectability of a circuit, which results in a 
reduction in fault-coverage for a specific test set. Uninitialized memory 
cells, bus congestion, and improper operation of analog-to-digital 

Fig. 5. An illustration of the ANN architecture used by [32].  

Fig. 6. Illustration of the PRPG-selection method [35].  
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converters are only a few examples of X-sources. Additionally, many 
design flaws that are discovered during the post-silicon validation stage 
manifest themselves as X-values. In [36], X-sensitivity, or the impact of 
X on the reduction in fault coverage in digital circuits, has been 
explored. The X-sensitivity of inputs in a digital circuit can be predicted 
quickly and accurately. The X-sources can be ranked using this forecast. 
By rewiring specific components during post-silicon validation, the in
puts with high X-sensitivity can be taken into account for X-masking or 
deletion from the perspective of enhancing testability and also for fixing 
those design defects that cause X-values. Similar to memory cells, those 
that store X-values can be left without initialization if their impact on 
detection ability is minimal, saving test time. Running ATPG repeatedly 
is one method of calculating the detect ability loss. However, due to the 
lengthy computation required, it is not practicable. By [36], an 
SVR-based X-sensitivity predictor has been created. There are a few 
traits that have been identified that are solely dependent on the circuit’s 
structural characteristics. Fig. 7 illustrates the three circuit partitions 
used to study the structural influence: P1, the output cone of the P1 is the 
X-source, P2 is the circuit subcircuit that affects X propagation, and P3 is 
the remainder of the circuit. It is simple to see that the X-source pri
marily affects the gates in P1 and P2, with P1 being more influenced 
than P2. Taking these facts into account, some innovative features based 
on the two partitions are offered. The percentage of sensitive gates in P1, 
the percentage of output ports in P1, and the number of gates that are 
immediately reachable from the X-source all affect certain aspects. 

4.2.2. Test-point insertion 
In [37], the issue of test-point insertion in a logic circuit was inves

tigated from an ML perspective, and a classifier was created. This is the 
first instance of a test problem being handled by a deep learning-based 
technique. Additionally, efforts have been made to learn from circuit 
graphs, but this has proven difficult because ML tools whereas a graph 
mostly contain unstructured data are more suited for structural/vector 
data. To analyze graphical data [37], suggested using a neural network 
dubbed a Graph Convolution Network (GCN). The circuit netlist’s nodes 
are categorized as either easy-to-observe points or difficult-to-observe 
points in the graphs that depict them. A node embedding method is 

used to express graphic aspects. Each node has several testability-related 
attributes that were acquired using the SCOAP tool [38]. The GCN 
creates an embedding for each node based on these properties and its 
local neighborhood data. Fig. 8 depicts the classifier’s overall flow. 

4.3. Timing analysis 

The clock frequency of a circuit must be determined by timing 
analysis. Numerous static and dynamic (input pattern dependent) vari
ables affect a circuit’s timing. The input voltage that reaches the gates 
and, as a result, the propagation delay are both impacted by Power 
Supply Noise (PSN). It is one of the elements that affect the circuit’s 
Dynamic Timing Analysis (DTA). Y created an ML method to estimate 
the circuit timing while accounting for the PSN effect to accelerate DTA 
[39]. [40] proposed utilizing SVM to estimate circuit delay caused by 
voltage droop. 

5. Summary, challenges and future directions 

In Table 1, a synopsis of the pertinent literature is provided. We’ll 
then examine the numerous difficulties and directions for the future. 
Although there are numerous instances of digital logic testing where 
machine learning has been or might be used, these instances neverthe
less seem disjointed and disorganized. The availability of sufficient data 
that is high quality and volumetrically sufficient is essential for the 
success of ML-based approaches. While some of the prospective data 
sources indicated, standard ML databases for IC testing have not yet 
been created, and as a result, their absence represents a significant 
barrier to the adoption of ML tools. Below are a few of the causes of this 
bottleneck:  

a. lack of industrial time-series test data [47]: The vast majority of 
databases containing the failure logs gathered during the production 
testing of integrated circuits (ICs) as well as the associated diagnostic 
data are not accessible to the general public. Such information would 
be a valuable resource for upgrading training models and assisting 
with future IC-chip diagnosis procedures. 

Fig. 7. A combinational circuit showing an X-source (blue), the three partitions P1 (blue), P2 (brown), P3 (green), and the gates directly fed by the X-source (red) 
[36]. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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b. Simulated data production is a laborious procedure that takes a lot of 
time [35,36]. A broad collection of simulated data would be a useful 
data source and could benefit ML-based solutions.  

c. Lack of baseline: According to [48], there are no benchmark circuits 
for analyzing ML approaches to test problems. However, it is possible 
to extract the circuit structure from the netlist of the benchmark 
circuits. They may provide information that can be used to derive 

both structural and functional aspects. ML studies are not intended to 
use the current benchmark suites [49–56]. There is a dearth of va
riety and quantity among them. Such data must be produced using a 
variety of big benchmark circuits with different connecting struc
tures and functionalities. A repository of this kind could be created 
by unbiased synthesis or by gathering commercial circuits. 

d. Extraction of features from circuits: It is clear that feature engi
neering is an important step in the majority of settings. Automatic 
feature extraction from circuit netlists is urgently required for digital 
logic testing. Additionally, it is necessary to prevent over-fitting and 
remove noisy data (in the case of output response data from a CUT). 
Be aware that circuit data are not usually presented in a compre
hensible or orderly manner (e.g., logical interconnection or physical 
layout data). Consequently, a lot of time and effort is wasted in this 
process. Additionally, the features are rarely reusable since a new 
feature set is typically needed for each distinct test scenario. Auto
mated feature extraction from circuits is desperately needed because 
human feature engineering is a laborious procedure. Even though 
there have been numerous similar projects in other domains like 
pattern recognition and picture analysis, this is still an open subject 
in the area of logic testing. Convolution techniques-based deep 
learning has been effectively used on image and video data where the 
underlying features are implicitly used during learning and testing 
rather than being explicitly retrieved or selected. Additionally, new 
approaches to managing unstructured data, such as representation 
learning, have been created. These approaches can prepare the data 
for the direct use of ML tools. The work put out by [37], which 
introduced GCN for node embedding of a graph, representing the 
netlist of a circuit, has pioneered efforts in this regard. 

6. Conclusion 

In this paper, authors have examined several issues that come up 
during the testing and diagnosis of VLSI circuits and where ML has been 
successfully used. In managing the intricacy of the issue, they have 
surpassed conventional heuristic-based approaches and delivered 
believable solutions far faster. Future acceptance of ML approaches to 
other chip testing issues will be sparked by solutions to the difficulties of 
data generation and automated feature engineering. There is still room 
to generate data and develop representation approaches for digital cir
cuits, which will advance both academic and commercial research on 
ML-guided tests. ML-based testing requires either a repair or reconfi
guration mechanism, which may provide redundancy in terms of area 
overhead, but may provide a fast prediction of anomalies in a system 
with robustness and resiliency. 
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Fig. 8. Network architecture of GCN. Node embeddings are generated in Layer 1 and Layer 2. The Fully Connected (FC) third layer execute nodes classification [37].  

Table 1 
Comparison with state-of-art work.  

Work Problem Data Method 

Wafer Level Diagnosis 
[18] Identifying-Defect-Clusters FD Clustering 
[19] Automated-Die-Inking Historical 

Data 
SVM 

[41] Correction-of-Failure-and- 
parameters 

FD Statistical Correlation 

[42] Targeting-Hard-to-Model- 
Faults 

FD Bayesian Method 

[43] – SD Multi-Stage ANN 
Fault-Diagnosis Pre-Processing 
[20] Regulation-of test-data- 

volume 
FD Classification 

[21] Inferring-Diagnostic- 
Efficiency 

FD Random Forest 

Fault-Diagnosis Post-Processing 
[24] FI: Defect-Classification SD ANN 
[23] FI: Identifying-bridging- 

defects 
SD and FD Decision Tree 

[22] FI: Transient-and- 
intermittent-faults 

SD Bayesian Network 

[25] Improving-Diagnostic- 
Resolution 

SD SVM 

Volume Diagnosis 
[44] VD-of-unmodeled-faults SD SVM 
[45] VD-for-root-cause- 

identification 
Volume FD Bayesian network, MLE 

[46] Identification-of- 
systematic-defects 

FD Clustering (furthest 
neighbor) 

Board Level Diagnosis 
[29–31] Fault-isolation Historical 

Data 
SVM/ANN/Decision 
tree 

[33] Syndrome-merging – – 
[34] Missing-syndrome- 

computation 
– Naïve Bayes 

Test Compression 
[35] Test-cost-optimization SD SVR 
Circuit Testability 
[36] Prediction-of-X-sensitivity SF and SD SVR 
[37] Test-point-insertion SFs, SCOAP, 

SD 
GCN 

Timing analysis 
[39] Based-on-PSN SD Multiple tools 

Note: FD-Failure Data, FI- Fault Identification, SD-Simulated Data, SF-Structural 
Feature, VD-Volume Diagnosis. 
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