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Abstract
Recently established Harris Hawks optimization (HHO) has natural behaviour for finding an optimum solution in global

search space without getting trapped in previous convergence. However, the exploitation phase of the current Harris Hawks

optimizer algorithm is poor. In the present research, an improved version of the Harris Hawks optimization algorithm,

which combined HHO with Particle Swarm Optimization and named as ameliorated Harris Hawks optimizer algorithm, has

been proposed to find the solution of various optimization problems such as nonlinear, non-convex and highly constrained

engineering design problem. In the proposed research, the exploitation phase of the existing HHO algorithm is improved

using a particle swarm optimization algorithm and its performance tested for CEC2005, CECE2017 and CEC2018

benchmark problems. Also, discrete algorithms such as FFT algorithms, convolution and image processing algorithm use

multiply and accumulate (MAC) unit as a critical component. The efficiency of a MAC is mainly dependent upon the speed

of operation, power dissipation and chip area along with the complexity level of the circuit. In this research paper, a power-

efficient signed floating-point MAC (SFMAC) is proposed using universal compressor-based multiplier (UCM). Instead of

having a complex design architecture, a simple multiplexer-based circuit is used to achieve signed floating output. The

8 9 8 SFMAC can take 8-bit mantissa and 3-bit exponent. And therefore, the input to the SFMAC can be in the range of

- (7.96875)10 to ? (7.96875)10. The design and implementation of the proposed architecture is done on the Cadence

Spectre tool in GPDK 90 nm and TSMC 130 nm technologies. The analysis has proved that the proposed SFMAC

architecture has consumed the least power than the recent MAC architectures available in the literature.

Keywords Floating-point MAC � UCM � Cadence � TSMC 130 nm � GPDK 90 nm

1 Introduction

Artificial intelligence and machine learning algorithms are

getting popularity to solve many real-world optimization

problems, which have continuous or discrete behaviour and

constrained or unconstrained in nature [1, 2]. Difficulties

arise while tackling the issues based on these types of

characteristics using conventional approaches with mathe-

matical or numerical programming, including sequential

quadratic programming, quasi-Newton method, fast steep-

est, and conjugate gradient [3, 4]. There are several pieces

of evidence, which shows that these all methods are not

enough effective or efficient to deal many types of non-

differentiable, non-continuous problem and also not

applicable for large-scale real-world multi-modal problems

[5]. Thus, a meta-heuristic algorithm has been considered.

It is used to tackle so many issues which are mostly simple
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and easily implemented. In optimization, inhabitants-based

techniques used to find some solution based on suboptimal

and optimal that can be the same with the exact optimal

value situated in its nearby point or neighbourhood. By

generating a population set of individuals, the optimization

process of the algorithm starts. In the population, each

individual represents a candidate solution to the problem

based on the optimization technique. By replacing the

population of the best position of the current location, the

population will be changed iteratively and generate a new

population using some operators that are stochastic [6, 7].

This process of optimization continued until it can satisfy

the maximum iteration. In recent years, there is a growing

awareness and interest in an efficient, inexpensive meta-

heuristic search algorithm for successfully solving various

continuous and discrete real-world problems.

Further, no free lunch (NFL) theorem [8] logically

suggested that none of the developed algorithms is uni-

versally fit for all kinds of optimization problems.

According to the NFL theorem, it cannot consider an

algorithm theoretically as the globally best type of opti-

mizer for general purposes. Hence, the NFL theorem

motivates penetrating and rising more effective algorithms

based on optimization techniques.

Today’s portable devices are capable of image filtering

to face recognition, an audio signal enhancement to voice

recognition, and gesture-based control to biometric

authentication. All those functionalities are the applications

of digital signal processing (DSP). A large number of

mathematical operations are performed repeatedly and

quickly on a series of data samples by DSP algorithms.

Most operating systems and general-purpose micropro-

cessors can successfully execute DSP algorithms. Because

of power efficiency constraints, they are not suitable for use

in portable devices such as PDAs and mobile phones.

However, the rapid growth of portable electronics has

introduced the significant challenges of low power and

high throughput for VLSI design engineers. Among the

other digital blocks, multiply and accumulate (MAC) unit

plays a vital role while evaluating the performance of a

DSP block. While performing convolution, filtering, or any

DSP operations, it is always desired to use an efficient

MAC unit. The efficiency of a MAC unit measured in

terms of two factors:

• speed of operation

• overall power consumption [9, 10]

The underlying MAC architecture contains the main

functional blocks as a multiplier, adder and register/accu-

mulator. The multiplier performs the multiplication oper-

ation over the two input operands; the adder performs the

addition of the result of the multiplier with the result of the

previous cycle, and the register or accumulator stores the

sum for the next cycle addition. Different approaches for

multiplication and addition for MAC operations have been

described in detail in the literature [11, 12]. The essential

activity of MAC is to generate the product of two operands

Xi and Yi and add the result with the previously stored

result from the last multiplication, as shown in Eq. (1).

F ¼
Xn�1

i¼0

XiYi ð1Þ

where i denotes the range of the values. The generalized

block diagram of 8 9 8 bit MAC is shown in Fig. 1.

In recent years, researchers have developed different

MAC architectures [9–17]. For example, a high-speed

MAC architecture that promises with an optimized area is

proposed in 2007 by Abdelgawad et al. [9]. It uses 4:2

compressor circuits to improve speed. A low-power high-

throughput architecture is proposed in [10], where fixed-

point MAC architecture is designed for a signed number. In

[11], an improved version of tree-based Wallace tree

multiplier architecture using the Booth recorder proposed.

This proposed architecture reduces the latency and area of

Wallace tree multiplier with the help of the Booth algo-

rithm and compressor adders. In 2014, Luu et al. proposed

an unsigned 32-bit multiplier for best timing performance

with the optimized area [12]. In 2012, Deepak et al. [14]

proposed a novel architecture for the multiplier. In 2013,

Jagadees et al. proposed a novel architecture using a

modified Wallace tree multiplier [15]. The implementation

is done for 64 bits. In 2013, Francis et al. used the modified

Fig. 1 Generalized block diagram of 8 9 8 bit MAC
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Braun multiplier to implement a basic MAC unit [16]. The

implementation was done on NCSim and RTL compiler.

Warrier et al. proposed the low-power Baugh–Wooley

multiplier-based unit in 2014 [17]. A pipeline-based

architecture was introduced in this work. Split MAC

architecture is explained by Xia et al. [13]. A technique to

compress the partial product using ‘interleaved adders’ and

a ‘modified hybrid partial product reduction tree (PPRT)’

schemes was proposed to enhance the speed of operation

further. There are several architectures explained in the

past by various designers. However, the architectures

described in [9–13, 15–17] (90% of them in the literature)

are designed either in Verilog or VHDL.

The main disadvantage of using HDL is that the basic

blocks that are used while designing any architecture use

predefined building blocks (standard PMOS–NMOS

implementation). Because of this, even after using smart

and efficient structural designs, the architecture lags in

certain aspects. The main reason for such a shortcoming is

the non-optimization of basic building blocks. In this

research work, a full custom IC approach is adopted to

design the internal blocks of the MAC architecture,

yielding an efficient MAC in terms of power and delay. On

the other hand, the MAC architecture also uses the uni-

versal compressor-based multiplier (UCM) for designing

the proposed SFMAC architecture.

In recent years, various hybrid meta-heuristics search

algorithm has been developed such as orthogonally

designed adapted grasshopper optimization [18], hybrid

crossover oriented PSO and GWO [19], imperialist com-

petitive learner-based optimization [20], Barnacles mating

optimizer [21], equilibrium optimizer [22], improved fit-

ness-dependent optimizer algorithm [23], improved whale

optimization algorithm [24], multi-strategy enhanced sine

cosine algorithm [25], refined selfish herd optimizer [26],

artificial ecosystem-based optimization [27], incremental

Grey wolf optimizer, expanded Grey wolf optimizer [28],

life choice-based optimizer [29], multi-objective heat

transfer search algorithm [30], simplified salp swarm

algorithm [31], self-adaptive differential artificial bee col-

ony [32]. Along with this, few recent variants of HHO

algorithm have been developed and have been applied to

different science and engineering optimization problems

including numerical and global optimization problems; for

example, intensify Harris Hawks optimizer [IHHO] [33]

has been used to engineering optimization problems, HHO-

IGWO has been tested for CEC2005 benchmark problems

[34], Swarm Intelligence based Harris Hawks optimization

has been applied for spatial assessment of landslide sus-

ceptibility [35], quasi-reflected Harris Hawks optimizer has

been applied for global optimization problems [36],

dynamic Harris Hawks optimization with mutation mech-

anism has been applied for satellite image segmentation

problem [37], and quadratic binary Harris Hawk opti-

mization has been used for feature selection [38]. In the

proposed research, a new nature-inspired hybrid opti-

mization technique, hHHO-PSO, has been implemented

and tested for various well-known benchmark functions,

i.e. CEC2005, CEC2017, and CEC2018. The primary

impression behind this kind of proposed optimization

technique is encouraged from the cooperative-natural

behaviour of the most intelligent bird, named Harris Hawks

of its natural hunting behaviour and the escaping or

avoiding nature of the prey (rabbit) [39]. Thus, a novel

mathematical model, which is stochastic and meta-heuris-

tic, is implemented in this research paper and applied to

optimize low-power signed floating-point MAC architec-

ture to tackle different types of optimization problems.

The remaining part of this paper is divided into the

following sections: Sect. 3 describes the UCM architecture

and its advantages over the Wallace tree multiplier. Sec-

tion 4 describes the proposed SFMAC architecture in detail

with the initial considerations and various essential build-

ing blocks. Section 5 describes the results and discussion

along with the comparison with the existing architectures.

Finally, the conclusion and future work are explained in

Sect. 6.

2 Literature review

Optimization is a vast area of research, and research is

going on very fast. The researchers are doing continuous

work on different problems to implement various types of

new techniques on diverse issues and are capable of suc-

cessfully finding the results. The work is profitable to see

the latest algorithms and also the algorithms with its hybrid

form to mitigate any types of drawback in the present in

exiting methods. In the proposed research, contemporary

research papers are selected to investigate the shortfalls of

existing algorithms. A brief review of literature pertaining

to recent meta-heuristics search algorithm is depicted in

Table 1.

In the recent year, several variants of Harris Hawks

optimizer have been proposed such as IHHO [40],

MOHHO [41] and quasi-reflected HHO [36]. Further,

conventional HHO and its recently proposed variants have

been applied to various engineering optimization problems;

namely, Ahmad Abbasi et al. proposed the applications of

the algorithm Harris Hawks optimizer to design the micro-

channel heat sinks to decrease the generation to entropy. A

variety of materials and liquids have likewise been asses-

sed to decide the ideal structure of the micro-channel [42].

Mohamed Abd Elaziz et al. designed competitive chain-

based HHO optimization algorithm to solve the global

optimization problem with multilevel image threshold
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problems, and it was verified in 36 IEEE CEC 2005 stan-

dard benchmarks and 11 natural grey-scale images [43].

Huiling Chen et al. designed a photovoltaic cell which was

used to identify the parameter using Harris Hawks opti-

mizer algorithm with chaotic drifts [44]. Dalia Yousri et al.

designed an artificial ecosystem-based optimization tech-

nique which is used to recognize different types of

parameter configuration of PV model [45]. Saravanakumar

and Dr. D. Chandra Mohan have solved crossover line

balanced problem using Harris Hawks optimization tech-

nique to select good quality chromosomes to identify the

presentation of the sequential construction system [46].

Krishan Arora et al. designed an improved Harris Hawks

optimizer which is used to analysis the sensitivity of load

frequency control problem including wind power penetra-

tion [47]. Kashif Hussain et al. applied Harris Hawks

optimization problem to solve the problem including

optimum and high-dimensional power flow [48]. Pei Du

et al. designed hybrid multi-objective Harris Hawks opti-

mizer (MOHHO) for daily check PM 2.5 and PM 10

forecasting with high stability and accuracy [41].

Mohammad Zohrul Islam et al. designed single- and multi-

objective optimum power flow including emission of

environment [49]. Qian Fan et al. proposed a new quasi-

Table 1 Recent meta-heuristics optimization algorithms

Year of

development

Algorithm name Main findings or conclusion relevant to the proposed research work

2020 Orthogonally designed adapted grasshopper

optimization [OAGO] [18]

Orthogonally designed dapted grasshopper optimization was designed to

solve the optimization problem. It was tested on 30 IEEE CEC2017

benchmarks to find the effectiveness of the meta-heuristic algorithm

2020 Hybrid crossover oriented PSO and GWO [HC-

PSO-GWO] [19]

Hybrid PSO and GWO algorithms were designed to solve a global

optimization problem

2020 Imperialist competitive learner-based optimization

[ICLBO] [20]

Imperialist competitive learner-based optimization was implemented to

solve the engineering design problem

2020 Barnacles mating optimizer [BMO] [21] Barnacles mating optimizer was designed to solve the problem related to

engineering optimization

2020 Equilibrium optimizer [EO] [22] Equilibrium optimizer was created to solve optimization problems, and it

was tested on 58 unimodal, multi-modal, and composition functions and

three engineering problems

2020 Improved fitness-dependent optimizer algorithm

[IFDOA] [23]

Improved fitness-dependent optimizer algorithm was designed and tested

on CEC2019 to validate its feasibility to a real-world problem

2020 Improved whale optimization algorithm [IWOA]

[24]

Improved whale optimization algorithm was designed using the

mechanism of a joint search to solve the global optimization problems

2020 Multi-strategy enhanced sine cosine algorithm

[MSESCA] [25]

Multi-strategy enhanced sine cosine algorithm was designed to an

engineering design problem in the real-world and improve global

optimization

2020 Refined selfish herd optimizer [RSHO] [26] Refined selfish herd optimizer designed to solve the global optimization

problem

2020 Intensify Harris Hawks optimizer [IHHO] [40] Hybrid Harris Hawks optimizer combined with SCA implemented to get

solutions to numerical and engineering optimization problems

2019 Artificial ecosystem-based optimization [AEBO]

[27]

A novel meta-heuristic optimizer, artificial ecosystem-based optimization,

was implemented to resolve the problem related to unidentified search

space

2019 Incremental Grey wolf optimizer and expanded

Grey wolf optimizer [I-GWO and Ex-GWO] [28]

Incremental GWO and expanded GWO were the improved versions of

GWO, which are used to solve the global optimization problem

2019 Life choice-based optimizer [LCBO] [29] Life choice-based optimizer considered to resolve optimization problems,

and it tested on six CEC-2005 functions

2019 Multi-objective heat transfer search algorithm

[MHTSA] [30]

The multi-objective technique invented to get solutions to the problem

related to the truss method

2019 Simplified salp swarm algorithm [SSSA] [31] Simplified salp swarm algorithm created to resolve the optimization

problem, and it was verified on 23 standard benchmarks to check the

feasibility of this technique

2019 Self-adaptive differential artificial bee colony [SA-

DABC] [32]

The new method was designed and tested on 28 Nos. of standard

benchmark problem to solved global optimization problems
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reflected Harris Hawks optimizer to solve the global opti-

mization problems [36]. In recent research studies per-

taining to optimization algorithm, it has been reported that

swarm intelligence optimization have some drawbacks

which need to be solved [50]. Another important concern in

swarm intelligent algorithm is regarding exploration, which

is inopportune measure without theoretical guidance. In

practical application, it creates serious problem. This

motivated our attempts to propose yet another memetic

algorithm for the designing of low-power signed floating-

point MAC architecture.

3 Mathematical formulation of ameliorated
Harris Hawks optimizer

In this paper, the HHO algorithm includes exploitative and

exploratory phases inspired by surprise pounce, the nature

of exploration of prey, and different strategies based on the

attacking phenomenon of Harris Hawks. It is one of the

gradient-free and inhabitants-based algorithms for opti-

mization techniques, which can be used to formulate an

optimization problem. HHO has some major phases, such

as the phase of exploration, conversion from exploration to

exploitation and stage of exploitation.

3.1 Phase of exploration

In the proposed technique, Harris Hawks settle randomly

on some positions and wait to detect and locate the prey

based on two types of strategies. They are considering the

equal chance w for each balancing approach based on the

locations of another member of the family. Equation (2)

shows that when w� 0:5; it determines the average loca-

tion of Harris Hawks and when w\ 0.5, it balance on

random positions.

H iterþ 1ð Þ ¼ Hrand iterð Þ Hrand iterð Þ � 2es2H iterð Þj j; w� 0:5
Hrabbit iterð Þ � Hm iterð Þ½ � � es3 LBound þ es4 UBound � LBoundð Þ½ �; w\0:5

�

ð2Þ

Equation (2) is used to find out the best value of different

locations and the component of random scale, which is

based on the range of the upper and the lower bound of the

variables, where es3 is the scale coefficient, which is used

to increase the rule of nature randomly, while the value of

es4 is mostly near about one, and this pattern is distributed

similarly, including the average position. The ordinary

location of the Harris Hawks can be achieved by using

Eq. (3).

Hm iterð Þ ¼ 1

N

XN

i¼1

Hi iterð Þ ð3Þ

where es1, es2, es3, es4 and w are arbitrary numbers in

between (0, 1) and these are improved in each iteration,

Hrabbit iterð Þ = rabbit’s position, Hrand iterð Þ = number of

Harris Hawks are selected from recent population,

N = total number of Harris Hawks.

The initial position of the search agents has been gen-

erated randomly within the lower and upper bounds of the

search space using LBound þ rand� UBound � LBoundð Þ, and
then modified positions can be generated using Eq. (2) to

determine the best value of different locations. According

to this rule, the HHO algorithm adds the movement of scale

length up to the lower bound LBound. Randomization of the

scaling coefficient has been taken into consideration to

provide more exploration in different sections of the search

space. There is also a possibility to create other types of

updated rules, but here we have developed the simple rule,

which can copycat the nature of the hawks.

3.2 Conversion from the phase of exploration
to the phase of exploitation

In this algorithm, based on the HHO optimization tech-

nique, there can be transference from exploration condition

to exploitation condition. After that, alteration between

various types of nature is based on exploitative behaviour,

based on the prey’s avoidance energy. Due to this avoid-

ance behaviour, it decreases the energy of the prey. The

equation based on the behaviour of the energy of the prey is

given below:

EG ¼ 2EG0 � 1� iter

itermax

� �
ð4Þ

where EG = Avoidance energy of the prey, EG0 = Initial

condition of the energy, itermax = Maximum iteration.

Here, for this proposed algorithm, EG0 changes ran-

domly in between the interval (- 1, 1) for each number of

iteration. If the number of iteration reduces from 0 to - 1,

that means the nature of the physically flagging behaviour

of the rabbit is represented, and if the number of iteration

rises from 0 to 1, that means the establishment nature of the

rabbit is represented. The avoidance energy EG is dynamic,

and it also tends to go down in a decreasing manner during

the running condition of the iterations. If the avoidance

energy EGj j � 1, that means to explore the location of the

rabbit, the Harris Hawks search different kinds of regions.

Hence, this algorithm can perform the phase of exploration

and if EGj j\1; that means during the stage of exploitation,

the nature of the algorithm is to exploit the nearby solu-

tions. That means we can say exploration occurs when

EGj j � 1, while the exploitation occurs when EGj j\1.
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• Phase of exploitation

In this section, the performance of Harris Hawks is to

behave like a surprise attack by attacking nature upon

projected prey identified in the previous phase. Though

prey often tries to escape or avoid dangerous conditions.

Hence, various types of hunting styles happen in real cir-

cumstances. According to avoiding and escaping the nature

of the victim and the policies of hunting of Harris Hawks,

there are four types of probable strategies that are presented

in the optimization technique based on HHO to implement

the stage of attacking strategy. The main behaviour of such

kinds of preys is to try to avoid or escape from this kind of

situation, based on threatening conditions. Let es be the

probability that the prey can escape successfully when

es\0:5 or cannot escape successfully when es � 0:5 before

surprise the pounce. The Harris Hawks will give their

performance soft or hard encircle to catch the prey at any

conditions whatever the prey does. That means hawks will

surround the prey from the different types of various

directions softly or hardly, which is depending upon the

prey’s energy itself. In real-time operation or for the real

situation by the performance of the surprise attack, the

Harris Hawks get nearer to the projected prey to raise their

probabilities in attacking and after that killing the rabbit.

After some time, avoiding or escaping prey must lose their

energy; therefore, the Harris Hawks increase the encircle

process to catch the shattered prey smoothly. The con-

straint EG is applied to implement this tactic and allows

HHO to change over between hard and soft encircle pro-

cesses. The soft encircle occurs for EGj j � 0:5, and hard

encircle occurs for EGj j\0:5.

• Soft encircle

If es � 0:5 and EGj j � 0:5, that means the rabbit still has

its enough energy through which it can try to avoid or

escape by jumps randomly but is unable to go forward into

its safe condition. This soft encircle occurred by Harris

Hawks, for which the victim rabbit tends to more and more

exhaust and, after that, execute the surprise attack. This

kind of natural behaviour is demonstrated by some rules

and given below:

H iterþ 1ð Þ ¼ DH iterð Þ � EG KHrabbit iterð Þ � H iterð Þj j
ð5Þ

DH iterð Þ ¼ Hrabbit iterð Þ � H iterð Þ ð6Þ

where DH iterð Þ = difference between the iteration based

on the present location and the vector-based on the position

of that victim rabbit.

es = random number inside (0, 1), K ¼ 2 1� esð Þ, this
signifies the strength of jump randomly throughout the

procedure of avoiding and escaping. The value of K

randomly changes for each iteration to simulate the beha-

viour of the motion of the rabbit.

• Hard encircle

If es � 0:5 and EGj j\0:5, that means the rabbit is so

shattered, and at this condition, it has small avoidance or

avoidance energy. In this situation, the Harris Hawks per-

form scarcely to enclose the projected victim to do finally

shock attack. At this condition, the current locations are

changed and updated by using Eq. (7)

H iterþ 1ð Þ ¼ Hrabbit iterð Þ � EG DH iterð Þj j ð7Þ

3.2.1 Soft encircle with advanced fast dives

If still EGj j � 0:5, but at this time es\0:5, that means the

rabbit has sufficient energy to avoid or escape successfully,

and before the surprise attack, a soft encircle created. This

process is much more intelligent than the previous process.

The levy flight (LFT) conception is applied in the HHO

algorithm by which we can understand the mathematical

model of the leapfrog movements and the patterns of

avoiding or escaping prey. It helps to detect the LFT based

on such patterns, which can be identified as the activity of

chasing such kinds of animals like sharks and monkeys.

Hence, the LFT-based patterns can be utilized in this

technique of the phase of the HHO algorithm. It also

developed to mimic the actual zigzag movements of vic-

tims (rabbits) during the phase of escaping and asymmet-

rical abrupt and advanced fast dives of Harris Hawks

around avoiding the prey. Harris Hawks perform numerous

teams rapidly dives around the prey (rabbit) and then try to

increasingly correct their position and location as well as

the directions concerning the rabbit’s pretended motion.

Observations also maintain this type of mechanism in the

real world in other reasonable situations in the behaviour of

nature. With the help of this nature, the hawks can

increasingly select the best probable dive towards the

rabbit when they desire to catch the rabbit in economic

situations. So, for better performance of a soft encircle, the

Harris Hawks can decide their next movement (MN) based

on a rule given in Eq. (8):

MN ¼ Hrabbit iterð Þ � EG KHrabbit iterð Þ � H iterð Þj j ð8Þ

After that, they can relate the probable result of such

kind of movement to the previous dives, which detect that

it will be better dive or not. If they see that the performance

(motion) of the prey (rabbit) is more deceptive, which

means they also start to accomplish abrupt, rapid, and

irregular dives when oncoming the rabbit. The dive is

based upon the LFT patterns, which follow the given rule

in Eq. (10) [51].
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P ¼ MN þ RS � LFT DIMð Þ ð9Þ

where DIM = problem’s dimension and RS = size of the

random vector by size 1� DIM

LFT xð Þ ¼ 0:01� a� d

lj j
1
c

ð10Þ

d ¼
C 1þ cð Þ � sinðpc

2
Þ

C 1þc
2

� �
� c� 2 c�1

2

� �
 !1

c

ð11Þ

where a; l are denoted as such kind of value randomly in

between (0, 1) and c set to 1.5, which represent as default

constant.

So, including all of these, the actual and final strategy

for updating the actual location of Harris Hawks in the

phase of soft encircle can be achieved by Eqs. (12) and

(13), which are given below.

H iterþ 1ð Þ ¼ MNf ; if F MNð Þ\F H iterð Þð Þ ð12Þ
H iterþ 1ð Þ ¼ P;f if F Pð Þ\F H iterð Þð Þ ð13Þ

3.2.2 Hard encircle with advanced fast dives

If EGj j\0:5 and es\0:5, at this moment, the prey has

insufficient energy to escape or avoid, and a hard encircle

is created before the surprise attack to catch and kill the

rabbit. In this situation, the Harris Hawks try to reduce the

distance with the escaping rabbit. So, this rule can be

performed based on a hard encircle condition followed by

Eqs. (12) and (13), where the value of MN and P can be

obtained using the new rule in Eqs. (14) and (15) which

contain the next position for the next iteration.

MN ¼ Hrabbit iterð Þ � EG KHrabbit iterð Þ � Hm iterð Þj j ð14Þ
P ¼ MN þ RS � LFT DIMð Þ ð15Þ

where Hm iterð Þ can be obtained from Eq. (2).

3.3 Particle Swarm Optimizer

An airborne particle in a search space can mimic with the

help of the PSO algorithm and moving towards to catch

optimal solutions in the global region. The particle of PSO

[52] is represented by

Pr 2 x; y½ �; r ¼ 1; 2; 3. . .Dia and x; y 2 RN : ð16Þ

In starting condition, there are the position and velocity of

each particle, which are initialized randomly in nature.

Each of the particles should maintain its best position in the

local region as well as the global region.

Equation (17) is used to appraise the velocity and the

location among all of the existing elements.

veli iterþ 1ð Þ ¼ x� veli iterð Þ þ c1
� r1 PLBEST � Xi iterð Þð Þ þ c2
� r2 GLBEST � Xi iterð Þð Þ ð17Þ

Xi iterþ 1ð Þ ¼ Xi iterð Þ þ veli iterþ 1ð Þ ð18Þ

where veli = velocity of the particle, Xi = position of the

particle, PLBEST = best location of the particle in the local

region, GLBEST = best location of the particle in the global

region, r1 and r2 are the random number between the limits

[0, 1], c1 and c2 are used as a leaning factor,

where x the inertia weight which regulates how much a

particle can hold its current velocity in the next iteration.

Suitable selection of inertia weight can deliver the particles

with a balance between exploitation and exploration

capability.

• Complexity of computation

The complexity of computation of this proposed algo-

rithm is mainly subject to three major processes, such as at

first initialization, after that evaluation of fitness and at last

updating of Harris Hawks. It must be noted that I denotes

number of Harris Hawks and the complexity of computa-

tion of the process of initialization is U Ið Þ For the updating
mechanism, the complexity of computation is

U itermax � Ið Þ þ U itermax � I � DIMð Þ, which is collected

for penetrating for the best position and again update the

position vector of all the Harris Hawks, where itermax

represents the maximum iteration and the dimension of the

problem represents DIM. Thus, the complexity of compu-

tation of this proposed algorithm is

U Iðitermaxð Þ þ itermaxDIM þ 1ÞÞ.
In the proposed hybrid HHO-PSO algorithm, the steps

of PSO are applied sequentially after the HHO algorithm to

improve the exploitation and exploration to further extent.

The pseudocode of the proposed hybrid optimizer has been

shown below.

4 Test data for validation

To validate the performance of the proposed hybrid HHO-

PSO optimizer, the CEC2005, CEC2017 and CEC2018

benchmark functions have been taken into consideration

[72, 73]. The test data for unimodal, multi-modal and fixed

dimensions benchmark functions are shown in Appendices

1, 2 and 3, respectively. The pseudocode of the proposed

hybrid optimizer is shown in Fig. 2. The overall pseu-

docode of the proposed optimizer has been divided into

two sections. The foremost section represents the steps of

Harris Hawks optimizer using Eqs. (2)–(15), and the later

section represents the steps of Particle swarm optimizer,

which are represented in Eqs. (16)–(18). The steps of the
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proposed hybrid algorithms are described in the form of a

flow chart in Fig. 3. The upper half of the flow chart rep-

resents the major steps of Harris Hawks optimizer, which

included phase of exploration, phase of exploitation, hard

encircle, soft encircle with advanced fast dived and hard

encircle with advanced fast dived. After implementation of

hard encircle with advanced fast dives using Eqs. (14) and

(15), the updated final positions are further supplied to the

swarm position vector, which is further updated using steps

of positions and velocity updation using Eqs. (17) and (18)

of particle swarm optimization. The finally obtained posi-

tion has been supplied to the fitness function to calculate

the final fitness value.

5 The UCM architecture

Although the Wallace tree multiplier is much faster than

the array multiplier [53], it requires a large number of

adders. Moreover, the Wallace tree multiplier is highly

Fig. 2 Pseudocode for proposed hybrid optimizer
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irregular and complicated. So, in order to overcome the

irregular structure, several modified Wallace tree multi-

pliers are proposed in the literature [11, 12, 53–60]. All

these multiplier architectures are based upon the Wallace

tree algorithm. Hence, replacing the Wallace tree algorithm

may further improve the result of the multiplier. Another

important point here is, instead of using traditional Wallace

tree adder, compressor circuits such as 3:2 compressors or

4:2 compressors can be used for partial product addition.

But as there is a possibility of using the same compressor

again and again for doing addition (same as Wallace tree

addition), the same would not be much effective. The

Fig. 3 Flow chart of the hHHO-

PSO algorithm
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universal compressor-based multiplier (UCM) architecture

is used for the design of the proposed SFMAC architecture

considering the disadvantages of the Wallace tree multi-

plier, as mentioned earlier, where an N:1 bit size universal

compressor algorithm is used for the multiplication oper-

ation. It is claimed that the UCM produces the result with

better efficiency than any other multiplier proposed in the

literature [61].

6 Proposed signed floating-point MAC
(SFMAC) architecture

The proposed MAC architecture mainly focuses on the

signed architecture based on the synchronized block

enabling with effective pipelining technique. The block

enabling is a power saver technique that activates a circuit

momentarily, and for the rest of the time, the circuit is

inactive. Because of this simple phenomenon, most of the

energy/power can be saved. Moreover, the main reason for

introducing synchronization is to avoid unnecessary loss of

data. Due to the non-availability of proper synchronization,

the data under process in the preceding block may be lost

while transferring the same to the next block. Thirdly and

most importantly, the pipeline processing is the utmost

requirement of the digital system as it increases the sys-

tem’s efficiency tremendously. As multiplier and the adder

are the two core blocks, a detailed analysis done while

choosing the appropriate circuits. In comparison, it is

selecting the adder, the key importance given to the delay

and power-efficient design. The adder circuit proposed by

Bhattacharyya et al. in 2014 is used [62] in the proposed

SFMAC design to address the issue

of power dissipation. As discussed earlier, the array

multiplier is the simplest multiplier algorithm, but it pro-

duces very high delay in comparison with the conventional

Wallace tree multiplier. On the other hand, the rectangular

styled Wallace tree multiplier is faster than conventional

Wallace tree multiplier as it divides the partial products

into two groups [57]. But the irregular structure is the most

significant disadvantage of rectangular styled Wallace tree

multiplier. The novel UCM architecture, on the other hand,

has a regularity in structure and performs better in terms of

delay in comparison with the Wallace tree multiplier.

Therefore, the novel UCM architecture is chosen as the

multiplier for the proposed design.

A multiplexer-based MAC architecture is proposed in

this paper, capable of performing MAC operation on

signed floating-point inputs. For this, a novel input-data

format is recommended, which takes 9-bit binary data with

the MSB as the sign bit and 4-bit exponential input with the

MSB as the exponential sign bit. Therefore, the size of the

novel input-data format is 13 bits. Moreover, the SFMAC

architecture, with its various building blocks, uses multi-

plexer circuits rigorously for selecting among a positive or

negative number.

6.1 Initial considerations

The architecture uses sign-magnitude as well as 2’s com-

plement representations to represent positive as well as

negative numbers (including exponent terms). The overall

inputs and output of SFMAC are represented in sign-

magnitude form, whereas for internal calculations, the

same inputs are converted to 2’s complement form. The

final output of the proposed MAC architecture (MAC

output) is 16 bits along with one sign bit. The inputs to the

SFMAC are two 8-bit binary numbers arranged in a format,

as shown in Fig. 4. The overall size of each input of the

SFMAC representation is 13 bits, in which two bits

reserved for the sign bits of the number, and it is the

exponent. The sign bit can be ‘0’ or ‘1’ based on positive or

negative number representation. Remaining eleven bits are

used for an 8-bit binary representation and 3-bit exponent

representation in binary. One crucial point here to note is

that the 3rd bit of the exponent in binary representation is

by default made as ‘0’ because to represent a 2-bit number

in 2’s complement form it requires 3 bits. The range of 2’s

complement representation is shown in Eq. (19):

�ð2n�1Þtoþ ð2n�1 � 1Þ ð19Þ

where ‘n’ is the number of bits.

Therefore, in this architecture, the exponent term can

range from ‘- 4’ to ‘? 3’. The input numbers can have a

range from - (0.11111111)2 9 2?3 to ? (0.1111

1111)2 9 2?3. Hence, the range of the inputs of the pro-

posed SFMAC architecture in the decimal number system

is from - (7.96875)10 to ? (7.96875)10. The inputs to the

SFMAC architecture should be entered in decimal point

only. For example, instead of providing the inputs to the

SFMAC as (001)2 and (010)2, the numbers should be

Fig. 4 Input format representation of SFMAC
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entered as (0.00100000)2 9 2?3 and (0.0100000)2 9 2?3.

Similarly, (101)2 and (10)2 should be represented as

(0.10100000)2 9 2?3 and (0.10000000)2 9 2?2, respec-

tively, to process it through the SFMAC.

The primary contents of the SFMAC architecture are

exponential adder (EA), 8-bit multiplier, 16-bit register,

exponent comparator circuit (ECC), exponent shifter cir-

cuit (ESC), 16-bit adder and 2:1/4:1 multiplexer of

Fig. 5 The novel SFMAC architecture
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different sizes. The overall architecture of SFMAC is

shown in Fig. 5.

6.2 Exponential adder (EA)

The EA block performs multiplication of the exponents of

the inputs. Therefore, it basically adds the exponents (as

2n 9 2m = 2(n?m)). Though the inputs to the EA block are

Fig. 6 Operation of EA block

8904 Neural Computing and Applications (2021) 33:8893–8922

123



Fig. 7 Operation of ECC block

Table 2 Test results for

unimodal benchmark functions

using the hHHO-PSO algorithm

Functions Mean SD Best Worst Median p value

F1 7.62E-98 3.11E-97 9.40E-118 1.67E-96 2.30E-103 1.73E-06

F2 2.49E-51 1.20E-50 9.00E-58 6.56E-50 9.05E-55 1.73E-06

F3 7.38E-75 4.02E-74 3.39E-98 2.20E-73 8.85E-88 1.73E-06

F4 1.23E-47 6.73E-47 4.52E-57 3.69E-46 2.82E-53 1.73E-06

F5 0.007324 0.008526 0.000442 0.035424 0.003318 1.73E-06

F6 0.000144 0.00025 5.53E-07 0.001333 6.96E-05 1.73E-06

F7 0.000177 0.000174 1.02E-05 0.00077 0.000127 1.73E-06
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of 4 bits each (including one sign bit), it produces the result

in 5 bits as the addition of two 2-bit numbers can produce a

maximum of 3-bit result and for representing a 3-bit binary

number in 2’s complement form, it requires 4 bits. On the

other hand, the MSB bit (i.e. 5th bit) is the result’s sign bit.

A PED-latch block pair is used to make the EA block

synchronized at the output of every output bits. The flow

chart explains the operation of the EA block in Fig. 6.

Fig. 8 Convergence curve of

hHHO-PSO with GWO, ALO,

DA, MVO, SCA, MFO, SSA,

PSO and HHO for unimodal

benchmark functions
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Fig. 9 Trial solutions for unimodal benchmark functions
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6.3 8-bit multiplier

The multiplier block used in this case is the UCM archi-

tecture, explained in [61]. The additional circuitry added to

the multiplier is synchronization. As used in the EA block,

a PED-latch block pair is used at the output of every output

bits of the multiplier.

6.4 16-bit register

Generally, due to fluctuation in the inputs, the output

changes, and it is almost impossible to track the output.

The primary use of the register is to hold the data until the

next cycle is processed. Here, 16-bit registers are used at

the final output and immediately after the multiplier. The

main content of the register is a D flip-flop and a data

selection circuit consisting of basic gates.

6.5 Exponent comparator circuit (ECC)

The ECC inputs are the product of the exponents (EA

output, i.e. 5-bit) and the output exponent of the previous

cycle (5 bits in size). The major point to consider here is

that if both the input terms to the ECC block carry the same

sign, then the actual difference among the two is the

arithmetic difference between the numbers, whereas if both

the inputs carry different signs, then the actual difference

among the two is the arithmetic sum of the two numbers.

For example, the actual difference between ‘? a’ and

‘? b’ is ‘a - b’ or ‘b - a’, whereas, for ‘- a’ and ‘- b’,

the actual difference is ‘(- a) - (- b)’, which is ‘b - a’

or ‘(- b) - (- a)’ which is ‘a - b’. But if the inputs are

‘ ? a’ and ‘- b’ or ‘- a’ and ‘ ? b’, then the actual dif-

ference is going to be ‘a - (- b)’, which is ‘a ? b’ or

‘b - (- a) which is ‘b ? a’. The flowchart explains the

operation of the ECC block in Fig. 7. ECC architecture

uses multiplexers to compare the inputs. This operation

produces a 5-bit output, which is to be used for performing

the binary shifts.

6.6 Exponent shifter circuit (ESC)

The ESC block is responsible for shifting the smaller

number (either the product of the 8-bit inputs or the pre-

vious cycle MAC output) by the amount of difference

between the exponents of these two. The inputs to the ESC

block are the 5-bit output of the ECC block, a 16-bit pro-

duct of the inputs, and 16-bit value of the previous cycle

output. The step-by-step procedure is as follows:

1. The identification of the smaller number is made based

on the ECC output (5-bits). If the MSB of the ECC

block output is ‘1’, then the product of the inputs is

shifted towards the right by the equivalent decimal

value of the remaining 4-bit binary of the ECC block

output. On the other hand, if the MSB of the ECC

block output is ‘0’, then the previous output is shifted

towards the right by the equivalent decimal value of

the remaining 4-bit binary of the ECC block output.

2. The input to the ESC block, which need not be shifted,

is identified by the MSB of the ECC block output.

6.7 16-bit adder

The adder block is again a synchronized block (i.e. it is

clocked). The ESC block outputs processed through a 2’s

complement block and a 2:1 multiplexer for representing a

positive or negative value. For example, if the shifted

output of the ESC block is negative, then its 2’s comple-

ment value is considered. Similarly, the non-shifted output

of the ESC block is negative; then, it’s 2s complement

value is considered. The shifted or non-shifted number can

be the product of the inputs or the previous output.

Therefore, to distinguish the same, the 5th bit of the ECC

Table 3 Test results for fixed

dimension multi-modal

benchmark functions using the

hHHO-PSO algorithm

Functions Mean SD Best Worst Median p value

F14 1.359861 1.255145 0.998004 5.928845 0.998004 1.73E-06

F15 0.000394 0.000218 0.000311 0.001534 0.00035 1.73E-06

F16 - 1.03163 4.80E-09 - 1.03163 - 1.03163 - 1.03163 1.73E-06

F17 0.397904 3.49E-05 0.397887 0.398014 0.397887 1.72E-06

F18 3 5.28E-07 3 3.000002 3 1.73E-06

F19 - 3.86123 0.003411 - 3.86278 - 3.84668 - 3.8626 1.73E-06

F20 - 3.09508 0.103221 - 3.23625 - 2.83723 - 3.13262 1.73E-06

F21 - 5.0494 0.006604 - 5.05463 - 5.02164 - 5.0518 1.73E-06

F22 - 5.08332 0.004117 - 5.08739 - 5.07417 - 5.08524 1.73E-06

F23 - 5.12272 0.005766 - 5.12837 - 5.10713 - 5.12455 1.73E-06
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Fig. 10 Convergence curve of hHHO-PSO with GWO, ALO, DA, MVO, SCA, MFO, SSA, PSO and HHO for multi-modal benchmark functions
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block output is considered. The shifted or non-shifted value

of the current inputs’ product and previous output in pos-

itive or negative number representation is the adder block’s

inputs. Additionally, the PED and latch pair is used in the

adder block for synchronization.

6.8 1/4:1 multiplexer of different sizes

As the algorithm does not use any programming approach,

multiplexers of different sizes with multiple or single bit

are considered for solving the conditions.

7 Results and discussion

To validate the results, 30 trial runs are taken into con-

sideration to overcome the stochastic nature of the pro-

jected hHHO-PSO algorithm, and each objective function

has been estimated for average value, best values, standard

deviation and worst value. To approve the phase of

exploitation recommended algorithm, unimodal benchmark

functions F1, F2, F3, F4, F5, F6, and F7 are taken into

consideration. Table 2 shows the solution of the unimodal

benchmark function using the hHHO-PSO algorithm. The

convergence curve of hHHO-PSO and its comparative

analysis with GWO, ALO, DA, MVO, SCA, MFO, SSA,

PSO and HHO are shown in Fig. 8, and the trial solutions

for unimodal benchmark functions are shown in Fig. 9. To

validate the phase of exploration of the submitted algo-

rithm, the multi-modal benchmark functions F7, F8, F9,

F10 and F11 are taken into consideration, as these func-

tions have many local optimal searches with the number

increasing exponentially with dimension.

For fixed dimension benchmark problems, the test

results are shown in Table 3. The trial solutions for fixed

dimension benchmark functions and their convergence

curve are shown in Fig. 14 and Figs. 7, 8, 9, 10, 11, 12, 13,

respectively. For statistical analysis of the proposed algo-

rithm, the nonparametric test, i.e. Wilcoxon rank-sum test,

has been taken into consideration at 0.05 significance level.

For statistical analysis of the proposed algorithm, the

nonparametric test, i.e. Wilcoxon rank-sum test, has been

taken into consideration at 0.05 significance level. The

p value from Wilcoxon rank-sum has been recorded for

CEC2017 Hybrid Benchmark functions and is shown in

Tables 4, 5, 6, 7. It has been experimentally found that the

Fig. 11 Trial solutions for multi-modal benchmark functions
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low p-value of Wilcoxon rank-sum validates the research

study at 0.05 significant level.

To verify the parametric variations of PSO, two differ-

ent values of c1 and c2 are taken into consideration for

CEC2017 benchmark functions, and comparative results

are recorded for c1 = 2, c2 = 2, and c1 = 0.95, c2 = 0.89.

It has been experimentally observed that the best value of

c1 and c2 is 2 for proper tuning of the simulated annealing

algorithm. The computational time is recorded for

CEC2017 benchmark functions and compared with TLBO-

FL and PSO-GWO algorithm, as shown in Table 7.

The test results for CEC2018 benchmarks functions are

evaluated for 5, 10 and 15 number of objectives and are

recorded in Table 8. The test results have been compared

with NSGA-IIITS–NL [68] to show its effectiveness.

The design and implementation of the overall SFMAC

architecture was done on Cadence Virtuoso CMOS tech-

nologies. The Cadence Spectre tool was used to perform a

detailed analysis. The architecture uses a clock gating

scheme along with pipelining to reduce the power

dissipation.

7.1 Explanation of SFMAC using binary values

Let us consider an example to elaborate on the operation of

the proposed architecture. The input numbers are as

follows:

Input1 = 001001011, Input1 exponent = 0000

Input2 = 101010001, Input2 exponent = 1001

The MSB (9th bit) of input1 and input2 is the sign bit,

highlighted in bold. Similarly, the MSB (4th bit) of input1-

exponent and input2-exponent is the sign bit, which is

highlighted in bold as well. In this example, input1 and

input1-exponent are positive, and input2 and input2-ex-

ponent are negative. On the other hand, the previous output

00000000000000000 with exponent as 0000. Therefore,

the previous output, as well as its exponent, is positive. The

execution steps as per the example mentioned above are as

follows:

1. Based on the inputs, the product of the two inputs

(NUM) is calculated as 10001011110111011 (in 16

bits). As one of the input numbers is negative, the

resultant is negative.

2. The exponent of the NUM is the addition of the

exponents of the inputs. The NUM exponent result is

10001 (- 1). The NUM exponent is represented in 5

bits because the addition of two 2-bit numbers can

produce a result in 3-bit. Moreover, a negative 3-bit

number requires 4 bits to represent. Additionally, the

5th bit is used to signify the sign bit.

3. If the exponents of the NUM and previous outputs are

compared, then it can be observed that the exponent of

NUM is - 1 and exponent of previous output is ? 0.

As the NUM is smaller than the last output, it is shifted

by 1 bit from the left to right to get the updated value as

10000101111011101.

4. The shifted NUM (i.e. 10000101111011101) is added

with previous output 00000000000000000 which pro-

duces a result as 10000101111011101 with exponent as

00000. The same is shown in HEX code as -

0BDD 9 2?0 in the output curve at the 2nd rising

edge of clock 8, as shown in Fig. 14.

5. As the input does not change in the next cycle, the

NUM remains the same, i.e. 10001011110111011. On

the other hand, the latest values of input1-exponent and

input2-exponent are 1011 and 0010. Therefore, it

produces the NUM exponent as 10001 ( 1).

6. As the NUM in this cycle is smaller than the previous

cycle output (as the last output’s exponent is more

significant than NUM exponent), the NUM is shifted

by 1 bit towards its right, which produces the updated

NUM as 10000101111011101 with updated NUM

exponent as 00000.

7. The updated NUM and previous output are added and

produce the result as 10001011110111010 with the

exponent as 00000. The same is shown in HEX code as

-17BA 9 2?0 in the output curve at the 3rd rising edge

of clock 8. The simulation waveform is shown in

Fig. 14.

The pipeline mechanism using clock pulse is ensured by

activating the consecutive blocks after a fixed period. But

the clock for the consecutive blocks is differed by a delay

of 1.4 ns. The delay is to latch the previous block’s output

effectively, which acts as the input for the next block. The

delay of clock signals is calculated by the maximum

propagation delay of the individual blocks of the SFMAC

architecture, as expressed by Eq. (20).

sClock Delay

¼ max sdelay EA; sdelay UCM; sdelay reg1. . .sdelay reg2

� �

ð20Þ

where sdelay EA is the propagation delay of the EA block;

sdelay UCM is the propagation delay of the universal com-

pressor-based multiplier (UCM); sdelay reg1 and sdelay reg2

are the propagation delay of the register 1 and register 2,

respectively. For finding the delay of the internal blocks,

the designs are implemented in 90 nm CMOS technology.

bFig. 12 Convergence curve of hHHO-PSO with GWO, ALO, DA,

MVO, SCA, MFO, SSA, PSO and HHO for fixed dimension

benchmark functions
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Fig. 13 Trial solutions for Fixed dimension benchmark functions
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The evaluated delay values of the internal blocks of

SFMAC are given in Table 9.

As there are a total of nine clocked blocks in this

architecture, the amount of total delay required is 8 times

1.4 ns (1.4 ns 9 8 = 11.2 ns), which means a set of inputs

Table 4 Comparison of CEC

2017 multi-modal benchmark

functions

CEC2017 benchmark functions AHHO jSO [63] DES [64] TLBO-FL [65] PPSO [66]

CEC2017(F1) 0 0.00E?00 0 3.50E?03 7.48E?02

CEC2017(F2) 8.9401 8.94E?00 5.88E-02 8.50E?16 5.32E?01

CEC2017(F3) 0.000002389 2.3912E-06 0 3.00E?03 1.13E?00

CEC2017(F4) 189.6287 1.90E?02 5.69E?01 9.00E?01 4.39E?01

CEC2017(F5) 43.9065 4.39E?01 4.64E?00 4.00E?01 1.12E?02

CEC2017(F6) 0.000202421 2.0244E-04 3.34E-07 4.90E-01 2.03E?01

CEC2017(F7) 144.897 1.45E?02 3.57E?01 1.40E?02 1.35E?02

CEC2017(F8) 42.151653 4.22E?01 4.55E?00 3.70E?01 8.10E?01

CEC2017(F9) 0.045903546 4.5904E-02 0 3.40E?01 1.36E?03

CEC2017(F10) 9704.36758 9.70E?03 1.39E?02 6.70E?03 3.13E?03

Table 5 Comparison of CEC 2017 hybrid benchmark functions

CEC2017 hybrid benchmark functions AHHO jSO [63] DES [64] TLBO-FL [65] PPSO [66]

Mean value p value

CEC2017(F11) 104.1954 0.0234 1.04E?02 2.73E?01 8.20E?01 8.43E?01

CEC2017(F12) 17,033 0.1746 1.70E?04 1.21E?03 5.70E?04 2.77E?04

CEC2017(F13) 139.57953 0.3258 1.40E?02 4.87E?01 2.00E?04 3.21E?03

CEC2017(F14) 63.84568 0.477 6.39E?01 2.66E?01 7.10E?03 2.32E?03

CEC2017(F15) 164.67964 0.4282 1.65E?02 3.24E?01 2.20E?04 2.13E?03

CEC2017(F16) 1881.6784 0.3794 1.88E?03 7.64E?01 4.90E?02 8.46E?02

CEC2017(F17) 1273.1457 0.4306 1.27E?03 5.54E?01 1.40E?02 3.31E?02

CEC2017(F18) 156.92753 0.0818 1.57E?02 3.51E?01 3.70E?05 6.99E?04

CEC2017(F19) 106.34753 0.233 1.06E?02 1.64E?01 1.10E?04 1.71E?03

CEC2017(F20) 1380.9854 0.3842 1.38E?03 7.06E?01 2.20E?02 3.48E?02

Table 6 Comparison of CEC 2017 composite benchmark functions

CEC2017 composite benchmark functions AHHO jSO [63] DES [64] TLBO-FL [65] PPSO [66]

CEC2017(F21) 263.5572 2.64E?02 2.07E?02 2.30E?02 3.05E?02

CEC2017(F22) 10,661.8733 1.07E?04 1.00E?02 1.00E?02 1.00E?02

CEC2017(F23) 571.18452 5.71E?02 3.50E?02 4.00E?02 6.81E?02

CEC2017(F24) 902.60963 9.03E?02 4.18E?02 4.70E?02 7.39E?02

CEC2017(F25) 761.62537 7.62E?02 3.87E?02 4.00E?02 3.85E?02

CEC2017(F26) 3281.0954 3.28E?03 5.74E?02 1.40E?03 2.04E?03

CEC2017(F27) 586.458356 5.86E?02 5.10E?02 5.30E?02 7.08E?02

CEC2017(F28) 523.664348 5.24E?02 3.18E?02 4.30E?02 3.27E?02

CEC2017(F29) 1237.89454 1.24E?03 4.44E?02 6.20E?02 7.80E?02

CEC2017(F30) 2317.0746 2.32E?03 2.16E?03 2.60E?04 3.32E?03
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latched at time 0 ns is evaluated and produces the output

only after 11.2 ns. Therefore, the clock period is fixed at

12 ns (or 83.333 MHz operational frequency), so the exe-

cution of the last clock and latching on the first clock does

not get overlapped. Figure 6 shows the output waveform of

the proposed SFMAC architecture. The clock in the

SFMAC architecture is applied in a pipelined manner, as

shown in Fig. 14. Figure 14 also indicates input/output

pulses of the proposed SFMAC architecture. The latching

of a new set of exponential input is done in clock 0, by

activating the EA block which provides the NUM (expo-

nential) output.

The Write/Read signal is used for selecting the write or

read operation, which is an active high signal, whereas the

Reset signal is used for force resetting the SFMAC system,

and it is an active low signal. In clock 1, the UCM is

enabled, providing the 16-bit NUM output based on two

8-bit inputs IN1 and IN2. Clock 2 signal is used as a clock

signal for the 16-bit register for the multiplier, and there is

no clock applied to the ECC block, which produces 5-bit

RES output. Clock 3 and RES are applied to the ESC

Table 7 Comparison of CEC 2017 composite benchmark functions for parameters variations and computational time

CEC2017 composite benchmark

functions

Effect of variations of parameters of PSO Computational time (in s)

AHHO (c1 = 2,

c2 = 2)

AHHO (c1 = 0.95,

c2 = 0.89)

hHHO-

PSO

TLBO-FL

[65]

PSO-GWO

[67]

CEC2017(F11) 263.5573 263.560 1.23E?02 1.42E?02 1.57E?02

CEC2017(F12) 10,661.8734 10662.000 1.12E?02 1.31E?02 1.45E?02

CEC2017(F13) 571.1845 571.190 1.24E?01 3.10E?01 4.54E?01

CEC2017(F14) 902.6096 902.610 1.36E?02 1.55E?02 1.69E?02

CEC2017(F15) 761.6254 761.630 1.69E?02 1.87E?02 2.02E?02

CEC2017(F16) 3281.0954 3281.100 1.88E?02 2.07E?02 2.21E?02

CEC2017(F17) 586.4574 586.460 1.95E?02 2.14E?02 2.28E?02

CEC2017(F18) 523.6642 523.670 1.85E?02 2.04E?02 2.18E?02

CEC2017(F19) 1237.8944 1237.900 1.75E?03 1.77E?03 1.78E?03

CEC2017(F20) 2317.0755 2317.100 1.74E?02 1.93E?02 2.07E?02

Table 8 Comparison of CEC 2018 benchmark function for 05, 10 and 15 objectives problems

CEC 2018 benchmark functions No. of objectives = 05 No. of objectives = 10 No. of objectives = 15

AHHO NSGA-IIITS-NL [68] AHHO NSGA-IIITS-NL [68] AHHO NSGA-IIITS-NL [68]

CEC2018 (F01) 9.73E-04 1.00E-03 0.0011078 1.11E-03 0.0014780 1.50E-03

CEC2018 (F02) 8.72E-04 8.72E-04 0.0018785 1.88E-03 0.0027376 2.74E-03

CEC2018 (F03) 1.63E-04 1.63E-04 0.0017698 1.77E-03 0.0020386 2.04E-03

CEC2018 (F04) 2.14E-04 2.14E-04 0.0001768 1.77E-04 0.0004609 4.61E-04

CEC2018 (F05) 1.56E-04 1.56E-04 0.0003370 3.37E-04 0.0006180 6.18E-04

CEC2018 (F06) 1.29E-04 1.21E-04 0.0026696 2.67E-03 0.0037696 3.77E-03

CEC2018 (F07) 1.42E-03 1.43E-03 0.0023589 2.36E-03 0.0023780 2.38E-03

CEC2018 (F08) 4.86E-04 4.86E-04 0.0006467 6.50E-04 0.0015287 1.53E-03

CEC2018 (F09) 2.21E-04 2.11E-04 0.0014178 1.42E-03 0.0013185 1.32E-03

CEC2018 (F10) 2.23E-03 2.24E-03 0.0020657 2.07E-03 0.0027754 2.78E-03

CEC2018 (F11) 3.61E-04 3.62E-04 0.0007388 7.40E-04 0.0013075 1.31E-03

CEC2018 (F12) 4.48E-04 4.47E-04 0.0008578 8.58E-04 0.0020796 2.08E-03

CEC2018 (F13) 4.17E-04 4.19E-04 0.0005488 5.49E-04 0.0012388 1.24E-03

CEC2018 (F14) 3.47E-02 3.49E-02 0.0980867 9.81E-02 0.0680864 6.81E-02

CEC2018 (F15) 1.64E-03 1.67E-03 0.0024560 2.50E-03 0.0080765 8.10E-03
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block, which yields the shifted/non-shifted NUM or pre-

vious output. Parallelly, the same clock is applied to the 2:1

MUXs for updating the select line of the 16-bit 2:1 MUXs

to update the true or complemented NUM or previous

output. Clock 4 is applied to the 16-bit 2:1 MUXs to update

the true or complemented NUM/previous output. On the

Fig. 14 The simulation

waveform of the SFMAC

architecture

Table 9 Propagation delay of the internal blocks of SFMAC architecture

Block Delay

(ps)

Inference

UCM 433.7 The maximum delay from A0 to P15, considering all inputs as high

Register 123.6 Delay from the positive edge of the clock to any bit of the output

Full adder 22.4 Delay from A0 to OUT15, considering all inputs as high

ESC block (along with

ECC block)

1367.5 With same sign bits of both the exponents (as negative or positive) in the EA and ECC block and

maximum bit shift in the ESC block

2:1 MUX 12.6 With the critical path from ‘s’ to ‘y’

4:1 MUX 18.9 The maximum delay occurred either in ‘s0’ to ‘y’, ‘s1’ to ‘y’ or ‘s2’ to ‘y’

Table 10 The operation of the 16-bit 4:1 MUX based on the two select lines

XOR of the sign bit of the inputs The sign bit of the previous output Operation

0 0 No change or true form

0 1 Pass the output of the 16-bit 2:1 MUX as such

1 0 Pass the output of the 16-bit 2:1 MUX as such

1 1 2’s complement
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other hand, for adding the true or 2’s complement form of

shifted/non-shifted 16-bit inputs, clock 5 is applied. The

16-bit 2:1 MUX block is activated on the edges of clock 6,

which choose between the true/2’s complement value of

the full adder output. The carry bit of the output of the full

adder is applied as the select line. The overall output of the

MAC block is based on the selection of XOR of the sign bit

of the inputs and the sign bit of the previous output. The

input for the 16-bit 4:1 MUX is the output of the 16-bit 2:1

MUX. The inputs for the 16-bit 4:1 MUX are latched at the

positive edges of clock 7. The operation of the 16-bit 4:1

MUX is explained in Tables 9, 10. Finally, a 16-bit register

is used at the output so that the internal glitches do not

change the output value. The 16-bit register block is

enabled with clock 8, which yields the OUT (SFMAC

output), OUT (output exponent), and C2 (sign bit of the

output).

Table 11 shows a power comparison of SFMAC archi-

tecture at different CMOS technologies in a specific input

vector. The simulation period is kept as 40 ns because:

a. The reset signal (active low) is low till 10.8 ns and

b. The clock signals have a period of 12 ns

Therefore, until 23.2 ns, the output signal remains at ‘0’.

The SFMAC architecture is not only implemented in

GPDK 90 nm but also TSMC 130 nm CMOS technology.

The power consumption of the implemented designs is

calculated using Cadence Spectre Tool. Figure 15 shows

the graphical analysis of the static power, average power

and area of SFMAC in CMOS GPDK 90 nm and TSMC

130 nm technology. The static power is evaluated for 2 V

supply voltage, whereas the average power is measured for

a simulation period of 40 ns and at a frequency of

83.33 MHz. The average dynamic power consumption of

the SFMAC in TSMC 130 nm is higher than GPDK 90 nm

as the transistor sizing is higher in 130 nm technology,

which affects the load capacitance Cload. Similarly, the

static power consumption is also a function of device

geometry. Therefore, a circuit consisting of a higher device

dimension has higher static power consumption. The

average dynamic power of a CMOS circuit is given by

Eq. (21).

Pavg ¼ aTCloadV
2
DDfclk ð21Þ

7.2 Comparison with existing architectures

The comparison in terms of power consumption of the

proposed MAC architectures with the existing MAC

architecture is shown in Table 12. It is challenging to

compare the proposed SFMAC architectures with those

already available in the literature because most of the

possible architectures in the literature have used the HDL-

based approach. On the other hand, the proposed archi-

tectures are implemented in Cadence Virtuoso 90 nm

environment. Moreover, almost 99% of the architectures

available in the literature have neither implemented for

signed operation nor floating-point designs. Though some

architectures in the literature have used the clocking signals

for the accumulation of data only (in the register or accu-

mulator), most of the architectures have not used any

clocking signal. Any circuit in asynchronous mode cannot

be implemented in a real-time application. Therefore, the

practical applicability of such architecture needs to be

further tested. Most of the architectures explained in

Table 12 are implemented for unsigned fixed-point MAC

operation, and only one architecture (i.e. Zhang et al. [69])

was implemented for floating-point signed operation.

Table 11 Comparison of SFMAC at supply voltage 2 V and simulation period 40 ns in CMOS GPDK 90 nm and TSMC 130 nm technologies

Architecture Static power in lW (for

VDD = 2 V)

Average power in lW (for VDD = 2 V and simulation

period = 40 ns)

Area (total number of

transistors)

SFMAC (TSMC

130 nm)

2398.76 25,990 25,783

SFMAC (GPDK

90 nm)

476.94 7980 25,783

Fig. 15 Graphical comparison of SFMAC in TSMC 130 nm and

GPDK 90 nm
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The differences are visible from Table 12 that the per-

formance of [15, 70, 71] has a significantly higher static as

well as average power (in mW) than proposed SFMAC

architecture. The performance of [72, 73] is evaluated in

90 nm and 180 nm technologies for 16-bit operations at

1 V and 8-bit operations 1.8 V, respectively. The power

consumptions of the existing work mentioned in [72, 74]

are lesser than proposed SFMAC architecture (the existing

circuit’s performance analysis is performed in supply

voltage lower than 2 V, whereas for the SFMAC the supply

voltage is 2 V), but these two current architectures are

capable of performing the MAC operation on fixed-point

unsigned number only. Therefore, the existing MAC in

serial number [72, 73] has limited scope. Though the

architecture is mentioned in [73] implemented in 180 nm

technology and 1.8 V supply voltage for 16-MAC opera-

tion, the power consumption is way more than the SFMAC

architecture. For the architecture mentioned in [75], the

implementation is done for 1-bit unsigned fixed-point

MAC operation in 32 nm CMOS and CNTFET technology,

and hence, comparison with 8-bit SFMAC is not relevant.

Though, the architecture mentioned in [69] is the only

existing MAC architecture capable of performing on

signed floating-point input, the comparison analysis with

proposed SFMAC shows that the performance of SFMAC

is much better in terms of power consumption.

Table 12 Performance comparison of proposed MAC architecture with existing architectures

Sl

no.

Author Existing architecture description Implementation on Power consumption

1. Shanthala et al. 2009 [70] Pipelined Multiply Accumulate Unit

(without synchronization) in 180 nm

technology, 1.8 V at 83.3 MHz and

8 9 8 bit operation

Cadence Virtuoso 50.26 mW

2. Jagadees et al. 2013 [15] Multiply Accumulate Unit (without

synchronization) in 180 nm technology,

1.8 V at 217 MHz and 64 9 64 bit

operation

Verilog HDL 177.732 mW

3. Hoang et al. 2010 [71] Pipelined Multiply Accumulate Unit

(without synchronization) in 65 nm

technology, 1.1 V at 591 MHz and

16 9 16 bit operation

VHDL 8.2 mW

4. Esmaeili et al. 2012 [72] Multiply Accumulate Unit (without

synchronization) in 90 nm technology,

1 V at 100 MHz and 16 9 16 bit

operation

HDL in Cadence’s

HSPICE simulator

1.506 mW

5. Akbarzadeh et al. 2015 [74] Pipelined Multiply Accumulate Unit

(without synchronization) in 180 nm

technology, 1.8 V and 8 9 8 bit

operation

HDL in Synopsys

Design Compiler

Dynamic

Power

Static Power

3.627 mW 2.010 mW

6. Rahul Narasimhan et al.

2015 [73]

Multiply Accumulate Unit (without

synchronization) in 180 nm technology,

1.8 V at 5 MHz and 16 9 16 bit

operation

Verilog HDL MAC using

Booth

MAC using

Vedic

493.648 mW 1765.241 mW

7. Karthikeyan et al. 2016 [75] Multiply Accumulate Unit (without

synchronization) in 32 nm CMOS and

CNTFET technology and 1 9 1 bit

operation

– CMOS Tech CNTFET Tech

0.9902 mW 0.6335 mW

8. Zhang et al. 2018 [69] Fixed/Floating-Point Multiply

Accumulate Unit (without

synchronization) in 90 nm technology

for 16-bit half-precision multiplication

VHDL 14.07 mW

9. Proposed SFMAC using

AHHO

Signed floating-point MAC architecture

in 90 nm tech., 2 V at 83.33 MHz and

8 9 8 bit operation

Cadence Virtuoso

90 nm CMOS

Static Power Average Power

0.476 mW 7.98 mW
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8 Conclusion

In the proposed research, the phase of exploitation of the

existing Harris Hawks optimizer has been upgraded suc-

cessfully using a particle swarm optimization algorithm.

The proposed hybrid HHO-PSO algorithm has been suc-

cessfully tested for highly constrained, nonlinear and non-

convex optimization problems. The objective of this

research paper was to design suitable low-power high-

speed MAC units for signed floating operation. To achieve

the said objective, different MAC architectures, which

were already existing in the literature, were studied. It was

observed that signed floating-point MAC architecture using

basic 2:1/4:1 multiplexer was never proposed in the liter-

ature. As the multiplier is the core component of any MAC

unit, a high-speed UCM is used to design and implement

the novel SFMAC architecture. The step-by-step elabora-

tion of the architecture design is explained in this paper.

For design and implementation, the Cadence Spectre tool is

used at CMOS 90 nm as well as TSMC 130 nm tech-

nologies. The results have proved that the proposed

SFMAC architecture consumes less power and a tolerable

amount of worst-case delay. Therefore, it has applicability

in low-power high-speed DSP architectures.
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Appendix 1: Test data for unimodal
benchmark functions

Appendix 2: Test data for multi-modal
benchmark functions

Benchmark functions Dimensions Range fmin

F1 gð Þ ¼
Pz

_m¼1

g2m
30 [- 100,

100]
0

F2 gð Þ ¼
Pz

_m¼1

gmj j þ
Q2

m¼1 gmj j 30 [- 10, 10] 0

F3 gð Þ ¼
Pz

_m¼1

ð
Pm

n�1

gnÞ2
30 [- 100,

100]
0

F4 gð Þ ¼ maxmf gmj j; 1� m � zg 30 [- 100,
100]

0

F5 gð Þ ¼
Pz�1

_m¼1

½100ðgmþ1 � g2mÞ
2 þ ðgm � 1Þ2�

30 [- 38, 38] 0

F6 gð Þ ¼
Pz

_m¼1

ð½gm þ 0:5�Þ2 30 [- 100,
100]

0

F7 gð Þ ¼
Pz

_m¼1

mg4m þ random 0; 1½ � 30 [- 1.28,
1.28]

0

Benchmark functions Dim Range fmin

F8 gð Þ ¼
Pz

_m¼1

�gm sinðp gmj jÞ

30 [- 500,

500]

- 418.98295

F9 gð Þ ¼
Pz

_m¼1

½g2m
�10 cosð2pgmÞ þ 10�

30 [- 5.12,

5.12]

0

F10 gð Þ ¼ �20 exp

�0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
z

Pz

_m¼1

g2m

� �s !

� expð1z
Pz

_m¼1

cos 2pgmð Þ

þ20þ d

30 [- 32,32] 0

F11 gð Þ ¼ 1þ
Pz

_m¼1

g2m
4000

�pzm¼1 cos
gmffi
i

p

30 [- 600, 600] 0

F12 gð Þ ¼ p
z f10 sinðps1Þ

þ
Pz�1

_m¼1

ðsm � 1Þ2

1þ 10 sin2 psm þ 1ð Þ
� 	

þ sz � 1ð Þ2

þ
Pz

_m¼1

uðgm; 10; 100; 4Þ

30 [- 50,50] 0

F13 gð Þ ¼ 0:1fsin2ð3pg1Þ
þ
Pz

_m¼1

ðgm � 1Þ2

½1þ sin2ð3pgm þ 1Þ�
þðgz � 1Þ2

½1þ sin2ð2pgzÞ�g

30 [- 50,50] 0
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Appendix 3: Test data for fixed dimensions
benchmark functions
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