Roll N	lo:			
--------	-----	--	--	--

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- December 2022

B.Tech BI/BT V Semester

COURSE CODE:	18B11BI511
--------------	------------

MAX. MARKS: 35

COURSE NAME: DESIGN AND ANALYSIS OF ALGORITHM

COURSE CREDITS: 03

MAX. TIN

Note: All questions are compulsory. Carrying of mobile phone during examinations treated as case of unfair means.

1. The following is a divide-and-conquer algorithm for finding the winkimum value in an array S[1..n]. The main body of the algorithm consists of a call to maximum (1,n).

function maximum (x, y)**comment** return maximum in S[x..y]

- if $y x \le 1$ then return $(\max(S[x], S[y]))$
- else 2
- $\max 1 := \max \max (x, \lfloor (x +$ 3
- max2:= maximum ([(x +4
- return (max(max1, max2

(a) Prove that algorithm is correct You may assume that n is a power of 2.

(b) Write down a recurrence relation for the worst-case number of comparisons used by maximum (1,n). Solve this recurrence relation. You may assume that n is a power of 2.

(Marks:7) CO-2 (c) What is the running time of maximum (1,n)? Explain your answer.

- a graph G = (V, E), where $V = \{v_1, v_2, ..., v_{100}\}$, Consider $E = \{(v_i, v_j) \mid 1 \le i < j \le 100\}$, and weight of the edge (v_i, v_j) is |i - j|. Calculate the weight of the minimum spanning tree of G.
 - (b) Let G = (V, E) be a weighted undirected graph and let T be a Minimum Spanning Tree (MST) of G maintained using adjacency lists. Suppose a new weighted edge (u, $(v) \in V \times V$ is added to G. Calculate the worst case time complexity of determining if T is still an MST of the resultant graph.

(Marks:7) CO-3

3. Assume that multiplying a matrix G_1 of dimension $p \times q$ with another matrix G_2 of dimension $q \times r$ requires pqr scalar multiplications. Computing the product of nmatrices $G_1G_2G_3...G_n$ can be done by parenthesizing in different ways. Define G_iG_{i+1} as

an explicitly computed pair for a given paranthesization if they are directly multiplied. For example, in the matrix multiplication chain $G_1G_2G_3G_4G_5G_6$ using parenthesization $(G_1(G_2G_3))(G_4(G_5G_6))$, G_2G_3 and G_5G_6 are the only explicitly computed pairs. Consider a matrix multiplication chain $F_1F_2F_3F_4F_5$, where matrices F_1, F_2, F_3, F_4 and F_5 are of dimensions $2 \times 25,25 \times 3,3 \times 16,16 \times 1$ and 1×1000 , respectively. In the parenthesization of $F_1F_2F_3F_4F_5$ that minimizes the total number of scalar multiplications, identify the explicitly computed pairs. (Marks:7)

4. What is Dijkstra algorithm? Given a graph and a source vertex in the graph, find

the shortest paths from the source to all vertices in the given graph.

5. Consider the following instance of knapsack problem:

Item	X1	X2	Х3	X4	X5
Profit	15	12	9	16	17
Weight	2	5	3	4	6

The maximum weight of 12 is allowed in the knapsack. Find the value of maximum profit with the optimal solution of the fractional knapsack problem.

(Marks:7) CO-5