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ABSTRACT 

Clustering is an important data analysis technique to find similar data objects in a given dataset. 

It is unsupervised learning and has proven its capability in diverse research fields such as 

medical diagnosis, market segmentation, image segmentation, customer behaviour analysis, 

outlier detection, and feature selection. Clustering aims to determine the set of identical data 

objects and put these data objects into a single cluster. The data objects within the clusters have 

more similar characteristics than other clusters. The research community presents several 

clustering techniques- partitional, hierarchal, model-based, grid-based, density-based, etc. But, 

the popular one is partitional clustering. This thesis work focuses on partitional clustering. In 

partitional clustering, a dataset divides into k number of partitions known as clusters. A distance 

function is utilized for allocating the data objects to clusters based on minimum distance. 

However, the number of clusters (k) should be known in advance. The performances of 

partitional clustering algorithms depend on the selection of initial cluster centroids. Several 

traditional algorithms, like K-Means, K-Mediods, K-Harmonic Mean etc., are successfully 

implemented for solving partitional clustering problems. But, these algorithms have several 

drawbacks, such as being sensitive to initial cluster selection, local optima, convergence rate 

and predefined method for updating cluster centroids. Several researchers explore metaheuristic 

algorithms capabilities to overcome the issues of traditional clustering algorithms. These are 

GA, PSO, ACO, ABC, TS, SA etc., and provide state-of-the-art clustering results for partitional 

clustering problems. However, some issues are also associated with metaheuristic algorithms, 

such as an imbalance in local search and global search mechanisms, population diversity, 

sometimes stuck in local optima, and population generation. This thesis work considers the 

aforementioned problems of metaheuristic algorithms and proposes new algorithms to handle 

the partitional clustering problems efficiently. This thesis presents two new partitional 

clustering algorithms, improved water wave optimization (IWWO) and improved bat (IBAT) 

algorithm for clustering problems. The WWO algorithm is improved using the global best 

direction and decay operator concept. IBAT is an improved variant of the bat algorithm. It is 

seen that several shortcomings are associated with the bat algorithm, such as population 

initialization, local optima and convergence rate. These issues of the bat algorithm are 

successfully resolved in the IBAT algorithm using an enhanced cooperative coevolution 

strategy, an elitist strategy and a neighbourhood-search scheme. The performance is evaluated 

using well-known benchmark clustering datasets and compared with several existing clustering 
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algorithms. A set of performance parameters also validate the results of IWWO and IBAT 

algorithms. Both algorithms successfully overcome the issues related to WWO and BAT 

algorithms. During the experiment, it is seen that a single objective function is considered for 

solving the clustering problems. Still, sometimes, it generates a biased solution due to a single 

objective function for handling clustering problems. The biasing issue can be addressed 

effectively using more than one objective function. This thesis also presents a multiobjective 

clustering algorithm for handling the biasing issue. In multiobjective clustering, two objective 

functions are considered that conflict with each other. In this thesis, Euclidean distance and 

connectedness are objective functions for multiobjective clustering. Further, these functions are 

integrated into the vibrating particle system algorithm, MOVPS. The simulation results of 

MOVPS are compared with several multiobjective and single-objective clustering algorithms. 

The proposed MOVPS achieves far better clustering results than single and multiobjective 

clustering algorithms.           

Keywords: Clustering, Single Objective Optimization, Multiobjective Optimization, Water 

Wave Optimization, Bat Optimization, Vibrating Particle System. 
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CHAPTER 1 
INTRODUCTION 

Digital data is growing day by day due to advancements in technology. Enormous data is 

generated by various sectors such as biology, banking, telecom, scientific experiments in space 

explorations, and business transactions. The internet also produces big data in text, images, and 

multimedia. Such data consist of many undiscovered patterns and information, and these 

patterns can be helpful in several domains for decision-making. The hands-on examination of 

such immense data is quite difficult due to its size and complexity. Therefore, it is time to 

develop new algorithms to handle such massive data for analysis, interpretation and extracting 

the hidden patterns. Data mining is referred to as Knowledge Discovery in Databases (KDD). 

It is the procedure of extracting information from big volumes of data, also considered a step 

in the knowledge discovery process.  

1.1 DATA MINING 

Data mining is a subfield of computer science that applies statistics and machine learning to 

reach the collective goal. Data mining discovers hidden patterns and knowledge from large 

datasets [1]. It helps to analyze and classify data, find the relationship between data and predict 

results from large datasets. The major techniques in data mining are clustering, classification, 

association rule learning, anomaly detection and feature selection. The data mining process is 

described as a three phase process, as shown in Figure 1.1. These phases are mentioned below. 

(i)   Data Pre-processing 

(ii)  Data Extraction 

(iii)  Post-processing 

It is observed that real-world data is inconsistent, incomplete and may contain errors. Such 

concerns are handled through data pre-processing techniques. The first phase of the KDD 

process converts raw data into target data. Various tasks are performed in this phase, such as 

reducing the data size, image enhancement, data blending, normalizing the data, and cleaning 

of data. This phase also determined the features and objects for the second phase of the KDD 

process. In the second phase, patterns are extracted from the pre-processed data. Several data 

mining techniques, such as classification, clustering, and association mining, can be considered 

for pattern extraction. 
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Further, problem specific technique is also adopted for extracting the patterns from the data set, 

and the aim is to determine the pattern from the transformed dataset. The third phase 

corresponds to post-processing. This phase visualizes and validates the discovered patterns. 

Once the patterns are validated, it turns into information. 

 

Figure 1.1: Steps in Data Mining 

Data mining can also be described as descriptive or predictive [2]. Predictive data mining is 

supervised learning in which the target variable value is predicted through historical data. In 

supervised learning, first, a model is developed using the training set (with class labels), and 

further, it is validated through a test set (without class information). Classification is an example 

of a predictive data mining task. While unsupervised learning is descriptive data mining in 

which groups of similar objects are identified from a given dataset. The clustering is an example 

of a descriptive data mining task.   

1.2 DATA CLUSTERING 

Clustering is a well-known data mining technique that can be applied in diverse research 

domains like pattern detection, image segmentation, medical, data mining, etc. The objective 

of clustering is to determine a set of similar data objects from a given dataset, known as clusters. 

The data objects within a cluster have more similar features than other data objects. Various 

distance measures are adopted to determine the group of similar data objects. The complexity 

of the clustering problem increases when the number of clusters is increased. It became an NP-

Hard problem when the number of clusters is more than three [3]. In data clustering, each 

dataset consists of many data objects and several dimensions represented as X = x!, x", … . . x# 
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and, X = x!,!, x!,", … . . x!,%. For i&' data object with j&' dimension, each data object is 

represented as  x(,). The data is represented as  X(,) = x(,!, x(,"…x(,*. . x(,+. The aim is to divide 

the data objects into k cluster centers. The cluster center can be represented as 	C =

[C!, C"………C,]. The aim is to divide the data objects into k cluster centers with minimized 

distance values. The clustering uses different measures such as Euclidean distance, Manhattan 

distance, Minkowski distance, Hamming distance etc. The most widely adopted is the 

Euclidean distance [4, 5]. It is used to calculate the minimum intra-cluster distance. The intra-

cluster distance can be computed using Equation 1.1. 

Intra_Distance(X!, C") = 	345X!#, C"#6
$

%

#&'

																																																																									(1.1) 

Where Intra_Distance(Xi, Ck) denotes the distance between ith data object and kth cluster,   

X(	and	C, indicate ith data object of dataset X and kth cluster of C. The clusters consist of the 

following characteristics:  

• At least one data object should be presented in each cluster.  

• Each data object belongs to a single cluster.    

• Each data object must be allocated to a cluster.  

The clustering can be described as hard clustering and soft clustering. In hard clustering, each 

data object is assigned to the cluster center completely or not. In soft clustering, there is the 

probability of assigning the data objects to the cluster center. K-means is an example of a hard 

clustering algorithm, and fuzzy-C means is an example of soft clustering. 

1.2.1 CLASSIFICATION OF CLUSTERING ALGORITHMS 

The clustering algorithms are classified into the undermentioned key categories [6-9]: 

(i) Partition-based  

(ii) Hierarchical based  

(iii)  Density-based  

(iv)  Grid-based 

The partition-based clustering algorithms divide the dataset into k number of partitions using 

an objective function, whereas k denotes the number of clusters. K-Means is the oldest and 

most popular partition-based clustering algorithm. Hierarchical clustering algorithms group the 

data objects into a tree structure, and further, it can be described as (i) agglomerative clustering 
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algorithms and (ii) divisive clustering algorithms [10]. An agglomerative algorithm is based on 

a bottom-up approach, while a divisive algorithm follows a top-down approach. The popular 

examples of agglomerative algorithms are single [11] and complete linkage [12]. MONA and 

DIANA [12] are examples of divisive clustering algorithms. CURE [13] and BIRCH [14] are 

hierarchical clustering algorithms for handling large-scale data sets. In density-based, clusters 

are described based on density until the density in the neighbourhood exceeds some threshold. 

DBSCAN [15], OPTICS [16] and expectation-maximization (EM) [17] are the popular density-

based algorithms. Grid-based algorithms divide the object space into a predetermined number 

of cells for establishing a grid structure. It helps perform the clustering tasks. STING [18] is an 

example of a grid-based algorithm. However, this research work focuses on the partition-based 

clustering algorithm.  

1.3 METAHEURISTIC ALGORITHM 

This thesis work focuses on the capabilities of metaheuristic algorithms for handling clustering 

problems. The word "metaheuristic" was coined by Fled Grover in 1986 [19]. Metaheuristics 

are the higher-level heuristics or procedures that incline towards providing a relatively noble 

solution for an optimization problem. The metaheuristics strategy helps steer the search process 

towards the global-best solution. Two main tasks of metaheuristics are exploration and 

exploitation. A proper trade-off between the two is necessary for an efficient search process.  

The various features of the metaheuristics are stated as follows [20]: 

• Metaheuristic algorithms are problem-independent. 

• Discover the search space to determine an optimal solution.  

• Different mechanisms for avoiding premature convergence. 

• Support to abstraction level. 

• Memorize the previous search experience using the concept of memory. 

• Adopt heuristics in higher-level strategy. 

• Local search is supported through complex learning techniques. 

• Having the capability of parallel implementation. 

The research community has developed a variety of metaheuristic algorithms to date. Some are 

inspired by biology, and few are based on physics/chemistry concepts. Most of them are 

designed based on animal (particles, bats, ants, bees, herds, swarms, and fish) behaviour. These 
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metaheuristic algorithms have been widely adopted for solving single-objective, 

multiobjective, constrained and unconstrained optimization problems. 

1.3.1 SINGLE OBJECTIVE OPTIMIZATION 

Single objective optimization consists of a single objective function, and it can be described as 

either minimization or a maximization problem. Further, for these problems, a single objective 

function is defined, which is problem-dependent and controlled through a set of variables. A 

group of constraints are also imposed on single objective optimization problems, called 

constrained optimization problems. The mathematical formulation of single objective 

optimization is expressed below. 

Minimize	(z)												F(z)																																																																																	(1.2) 

        Subject to 

g((z) ≤ 0, i = 1,… . . p 

h)(xz) = 0, j = 1,… . . r 

Where equation 1.2, F:ℝ#	to	ℝ denotes the objective function selected for minimization of the 

variable n, g((z)		denotes dissimilarity constraints, and h)(z)	signifies similarity constraints. 

Further,  p ≥ 0	 and r ≥ 0;  if p and r =0, then the problem is an unconstrained optimization 

problem  

1.3.2 MULTIOBJECTIVE OPTIMIZATION 

Multiobjective optimization (MOO) problems consider more than one conflicting objective 

function for solving the problems. In general, two or more objective functions are defined, and 

it is also noticed that these functions are problem-dependent. Mathematically, the 

multiobjective optimization problem is described as follows: 

Minimize/Maximize		(f(Z) = [f!(Z), f"(Z),⋯ f#(Z)]	)																				(1.3) 

                                                                   Subject to Z ∈ U 

Where Z denotes the solution, U represents a feasible set,  n defines the number of objective 

functions and f#(Z)	denotes the nth objective function that can be either minimized or 

maximized.   Sometimes, it becomes difficult for any solution (Z) to optimize all objectives 

simultaneously. 
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Moreover, it is observed that multi-dimensional space comprises objective functions and 

decision variables. Every solution () in the decision variable space corresponds to a point in the 

objective function space. Scalarization and the Pareto method help represent MOO solutions 

[21]. The Scalarization process integrates the scalar function into the fitness function [22]. In 

contrast, the Pareto approach is applied if the performance measure and desired solution differ. 

This approach also generates a set of compromise solutions that can be displayed through the 

Pareto optimal function. The MOO using the Pareto approach is expressed through Equation 

1.4.  

f!,/0& = minf!(Z) 

f",/0& = minf"(Z) 

f*,/0& = minf*(z) 

. 

. 

f#,/0& = minf#(Z)																																																									(1.4) 

Pareto Optimal Solution is the set of all the optimal solutions. During the optimization process, 

initially, the Pareto approach divides the elements of solution space, then computes the set of 

dominated and non-dominated solutions using the dominance concept. MOO determines the 

group of dominated solutions when improvement in one objective function results in 

degradation of another, called Pareto optimality. At the same time, non-dominated solutions 

are also obtained when an improvement in one objective function does not degrade another. 

Such solutions are known as a non-Pareto optimal solutions [23]. It can help to find the Pareto 

Front (PF) or Pareto optimal solution and can be achieved by balancing all objectives. The 

Pareto optimal set represents objective function values and their corresponding decision 

variables. The scope of the Pareto optimal solution is defined through three objective vectors- 

ideal objective, utopian objective and nadir objective vector. 

1.4 MOTIVATION 

Clustering has gained wide attention from the research community in the past few decades. 

It is an unsupervised learning method that contains groups of similar data objects called clusters. 
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The data objects within a cluster have more similar traits than the data objects in other clusters. 

The motive of clustering is organizing the data objects into k clusters such that these are optimal 

in terms of data objects [2-5]. Numerous clustering algorithms have been reported in the 

literature, and these algorithms are classified as partition-based, density-based, hierarchical-

based, and grid-based [13-18]. Further, these clustering algorithms are widely adopted in 

different research areas such as web analysis [24, 30], medical diagnosis [25], marketing [26], 

data science [27, 28], education [31], image segmentation [32], bioinformatics [33], text mining 

[29, 34], financial analysis [35] and business [36]. 

Researchers have recently focused on metaheuristic algorithms to improve clustering results. 

Metaheuristic algorithms contain intelligent paradigms for solving optimization problems and, 

in turn, produce a state of the art results than traditional methods. Some metaheuristic 

algorithms are genetic algorithms (GA) [37], memory-based grey wolf optimizer [38], ant 

colony optimization (ACO) [39], particle swarm optimization (PSO) [40], teacher-learning 

based optimization method (TLBO) [41], artificial bee colony optimization (ABC) [42-43], and 

cat swarm optimization (CSO) [44]. These algorithms are successfully implemented for solving 

clustering problems. It is noticed that the literature also highlights several issues related to 

metaheuristic algorithms. Some metaheuristics like GA and TS are reluctant to find the 

optimum solution. Sometimes, convergence time is an issue in the case of the ACO algorithm 

[45]. The problem dimension also impacts the performance of metaheuristic algorithms; for 

example, the performance of the ABC algorithm is affected due to problem dimension in a few 

cases [46]. GSA algorithms suffer from premature convergence because of their memory-less 

nature [47]. Sometimes, single-objective optimization converges on biased solutions [48-49]. 

Such an issue can be handled through MOO, but it can be suffered with the selection of 

objective function [50]. Evolutionary algorithms like charged system search (CSS), 

magnetically charged system search (MCSS), big bang-big crunch (BB-BC), and black hole 

(BH) are also discussed to solve hard optimization problems [54-57]. These algorithms are also 

hybridized with other existing algorithms, for example, krill herd algorithm with harmony 

search (H-KHA) [61], chaotic teaching learning-based optimization (chaotic TLBO) [51], 

improved cuckoo search and modified PSO with K-Harmonic means (ICMPKHM) [52], PSO 

based Big-bang-big crunch(PSO-BB-BC)[53], memory-enriched big bang-big crunch (MEBB-

BC) [66], cooperative bare bone PSO (CBPSO) [125], improved krill herd (IKH)[131], 

improved cat swarm optimization (ICSO) [132] and modified butterfly optimization algorithm 

(MBOA)[138]. The accuracy issue of metaheuristic algorithms is one of the major concerns of 
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the research community, especially with large datasets [139-140]. In turn, metaheuristic 

algorithms achieve better results and converge on optimal solutions compared to traditional 

methods.  

1.5 OBJECTIVE 
The various clustering algorithms have been presented in the literature. However, it is 

observed that metaheuristic algorithms provide improved results compared to traditional 

algorithms. Although, there exist some issues related to metaheuristic algorithms, for instance, 

trapped in local optima, convergence, quality solutions and partial solutions. These issues have 

also affected the outcome of metaheuristic algorithms. Based on the motivation and limitations 

of clustering algorithms presented in the previous section, the main objectives of this research 

work are highlighted as  

1. Design a metaheuristic algorithm to guide the global search in the optimal direction and 

handle premature convergence issues.  

2. Design a neighbourhood search-based improved metaheuristic algorithm for addressing 

the local optima issue.  

3. Design a multiobjective metaheuristic algorithm to improve the clustering efficiency 

and investigate the biasing issue of single-objective clustering.  

1.6 ORGANIZATION OF THESIS 

The entire thesis is organized into six chapters. The description of these chapters are given as 

follows: 

Chapter 2 reviews the related works in the field of data clustering. It includes single-objective 

and multiobjective clustering algorithms for handling data clustering problems. This chapter 

discusses different metaheuristic algorithms and investigates their performance in solving data 

clustering problems.  

Chapter 3 discusses an improved water wave optimization (IWWO) clustering algorithm for 

obtaining good clustering results. Before implementing the IWWO, several modifications are 

incorporated into the WWO algorithm. These modifications aim to guide solutions in the global 

search direction and handle premature convergence issues.  

Chapter 4 presents an improved bat algorithm for effective cluster analysis. Initially, this 

chapter addresses the issues related to the bat algorithm, such as population initialization, 

convergence rate and local optima. These issues are managed through an enhanced cooperative 
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coevolution strategy, an elitist strategy and a neighbourhood-search scheme. The simulation 

results are discussed using various performance metrics and compared to standard and hybrid 

metaheuristic clustering algorithms. 

Chapter 5 discusses a multiobjective vibrating particle system (MOVPS) for effective 

partitional clustering. This chapter investigates multiobjective optimization's capabilities and 

addresses the biasing issue of single-objective clustering. Further, two objective functions, 

namely, intra-cluster distance and connectedness, are considered for implementing the MOVPS 

algorithm. 

Chapter 6 highlights the outcome of this thesis and the future scope of this research work.   
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CHAPTER 2 

LITERATURE SURVEY 

This chapter presents the related studies of data clustering, emphasis on metaheuristic 

algorithms. It includes single-objective and multiobjective data clustering algorithms. 

2.1 SINGLE OBJECTIVE CLUSTERING ALGORITHM 
The flower Pollination algorithm (FPA) has a strong exploitation ability but a weak exploration 

ability. Moreover, it gets trapped in local optima. To handle these issues of FPA, Wang et al. 

[58] hybridized FPA with bee pollinators (BPA). The aim is to enhance global and local search 

ability. The proposed algorithm utilizes the discard solution operator from the artificial bee 

colony algorithm as the discard pollen operator to enhance the global search ability of FPA. It 

works on discarding the solutions if they are not further improved to find the best global 

solution. Honey-bees utilize levy flight during global search procedure. The proposed 

hybridized algorithm has been evaluated on several standard and artificial datasets. The 

simulation results have been compared to ABC, DE, FPA, CS, PSO clustering algorithms. The 

optimal results in terms of higher accuracy and stability have been provided by the proposed 

hybridized algorithm. The convergence rate is also enhanced.  

A Heuristic Kalman filtering algorithm (HKA) is applied on data clustering to improve the 

accuracy and efficiency of HKA [59]. The Kalman-filtering algorithm is hybridized with K-

mean. The centroid updating step from K-means is adopted for faster convergence and better 

accuracy. The algorithm also considers a conditional restart mechanism. It is applied when the 

solutions are limited to a small region. It helps in avoiding the local optima situation. The 

performance of the proposed algorithm was evaluated on seven benchmark datasets- artset1, 

artset2, iris, wine, CMC, glass, and cancer.  The results have been compared to several other 

metaheuristic algorithms based on ARI, Davies-Bouldin index, Intra and computation time as 

performance metrics. From experimentation results, it is noticed that the Kalman-filtering 

algorithm provides significantly better results and successfully handles the shortcoming of KM.  

Future works consider the hybridization of HKA with other methods.  

A hybridized algorithm K-MWO was proposed by Kang et al. [60]. The authors hybridized K-

Means with the mussel wandering optimization algorithm. The proposed algorithm adopted the 

local search capabilities of K-Means. The algorithm also benefits from mussel wandering 
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optimization for enhancing global search ability. Similarity-based clustering ensemble method 

is adopted. The idea is to change the weights for data objects in each iteration.  The weight 

information has been added in the objective function of the clustering algorithm. Weights are 

increased for the data if it is classified under different classes in different clustering processes.  

The proposed K-MWO algorithm has been tested upon nine datasets iris, wine, glass, cancer, 

banknote authentication, image segment, student evaluation, Landsat satellite, and Pen-based 

digits. The various performance measures used during evaluation are Davies–Bouldin Index 

(DBI), Dunn Index (DI), Calinski–Harabasz (CH), G-mean, F-measure, and Precision. The 

simulation results have been compared to K-PSO and KM algorithms. The results reveal that 

K-MWO is an effective approach for cluster analysis. New rules for updating the weight values 

can be investigated in future. The reasons can be explored for the datasets where the proposed 

algorithm does not perform better. 

Krill herd (KH) gets trapped in local optima and suffers from premature convergence. To solve 

the limitations of KH, Abualigah et al. [61] proposed a hybrid algorithm (H-KHA). The 

proposed algorithm combined KH with harmony search (HS). The proposed H-KHA algorithm 

works in three stages: (i) motion calculation, (ii) genetic operators, and (iii) improvising a new 

solution. From HS, a distance factor is integrated into KH to improve the global search 

mechanism. It is computed through the distance between each location of the data object to the 

best fitness-value. The performance of H-KHA has been evaluated using performance measures 

accuracy and convergence rate. The datasets used in the experimentation were iris, wine, glass, 

seeds, vowel, cancer, CMC. The six text clustering datasets were also used in the experiment. 

The results have been compared to various standard and optimization clustering algorithms. 

From the results, it is observed that H-KHA gives the highest rank in statistical analysis using 

F-measure when compared to other algorithms. The KH algorithm can be hybridized with other 

local search procedures in future. The proposed algorithm can be explored on benchmark 

function datasets. 

K-means algorithm is dependent on the initial solution and gets stuck in local optima. Zhou et 

al. [62] inspected these issues and proposed a symbiotic organism search (SOS) algorithm for 

data clustering. The equations of mutualism and commensalism phases have been modified and 

the Parasite vector has been adopted in the parasitism phase. The optimal cluster center of each 

spider individual has been achieved in the SMSSO algorithm. The proposed algorithm has been 

evaluated on ten datasets, namely, artificial set1, artificial set2, Iris, Seeds, Teaching Assistant 

Evaluation (TAE), Haberman’s Survival, Statlog (Heart), Balance, Contraceptive Method 
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Choice (CMC), Wisconsin breast cancer, and Wine.  The results have been compared to several 

other clustering algorithms – ABC, SSO, FPA, CLSPSO, DE, and K-means. It is found from 

the results that the proposed SOS algorithm produces more consistent clustering results. Future 

works consider optimizing the intra-cluster distance, automatically determining the number of 

clusters, and investigating high-dimension problems.   

Nayak et al. [63] considered the sensitivity to the initial selection of cluster centers, premature 

convergence, and local optima. The authors proposed a hybrid technique for effective cluster 

analysis. Fuzzy-C means have been employed in chemical reaction-based metaheuristics. The 

objective is to best cluster centers with improved inter and intra-cluster distance. The chemical 

reaction-based optimization selects the initial cluster centers for FCM. This helps in improving 

the efficiency of the FCM algorithm. The proposed hybrid algorithm has been tested over 

thirteen datasets- iris, lenses, haberman, balance, WBC, CMC, hayesroth, robot navigation, 

heart, wine, glass, lung cancer and artificial dataset. The simulation results have been compared 

to several other clustering algorithms based on the inter and intra-cluster distance, fitness 

metric, number of iterations and error rate. The simulation results show that the proposed 

algorithm proves to be effective for cluster analysis. The proposed algorithm can be 

investigated over complex data using neural networks, and examining it for solving other 

datamining problems. Real-life problems like the agriculture sector, medical etc., can also be 

explored.  

Han et al. [64] investigated the exploration and exploitation mechanism. The modified 

gravitational search algorithm is proposed. The authors' incorporated bird flock behaviour into 

GSA. They have enhanced diversity through three steps: initialization, identification of nearest 

neighbour and orientation change. The candidate solutions are generated in the initialization to 

be passed in the second step. The position of the data object is updated based on nearest 

neighbours. The collective response helps explore the global search space and thus avoids 

entrapment in local optima. Further, the performance evaluation has been done using thirteen 

benchmark clustering datasets. The simulation results have been compared to FA, GSA, ABC, 

PSO, K-Means, K-PSO, NM-PSO, CPSO and K-NM-PSO.  It is observed that the proposed 

algorithm provides significant clustering results in terms of error rate and intra-cluster distance.  

Based on the continuous greedy randomized adaptive search procedure (C-GRASP) approach, 

Queiroga et al. [65] developed the C-GRASP-Clu algorithm. The aim was to resolve issues of 

local optima issue and slow convergence. The C-GRASP-Clu algorithm automatically adjusted 
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the step size during the search procedure. The minimum step size value is used as a stopping 

criterion and is reduced with each iteration. So, a filtering mechanism has been applied to avoid 

unpromising iterations. Nineteen datasets, including benchmark and artificial datasets, have 

been used for experimentation. The experiment results have been compared to various 

clustering algorithms such as K-means, PSO, TS, GA, and C-GRASP. The proposed C-

GRASP-Clu algorithm gives stable clustering results. It can be investigated on different 

clustering problems in future. Also, other local-search procedures and hybridization methods 

can be adopted for further improvements.   

To improve the exploration and exploitation, Bijari et al. [66] presented a clustering algorithm 

using a memory-enriched method in the Big bang-big crunch, named memory-enriched Big 

bang-big crunch (ME-BB-BC). In this study, memory has been used for storing previous and 

newly generated solutions. The centers of masses found in the earlier iterations are stored in the 

limited-size memory. This helps in enhancing the algorithm’s exploitation capability.  After the 

Big-bang Phase, K-means was implemented for generating improved solutions and proposed 

kMEBB. The proposed ME-BB-BC algorithm has been assessed using seven benchmark 

mathematical functions and six clustering datasets. The results have been compared with GA, 

BB-BC, PSO, and GWO. Also, statistical analysis is done through the t-test and Friedman test. 

The results revealed that the proposed ME-BB-BC gives better results for data clustering 

compared to other metaheuristics. In future, the proposed algorithm can be applied to 

multiobjective optimization and used as a parameter-setting method in applications like power 

dispatch systems.   

The issues of lack of diversity in population, local optima, convergence rate and a tradeoff 

between exploration and exploitation in the cat swarm optimization (CSO) algorithm were 

handled by Kumar and Singh [67].  An improved CSO algorithm was proposed. In the tracing 

mode of CSO, a new enhanced velocity equation is devised. Also, an updated equation is given 

for position updating in tracing mode and seeking mode. Additionally, a local search method is 

applied to resolve local optima issues. The proposed ICSO is validated through twelve 

benchmark mathematical functions. The authors have also discussed the application of the 

proposed algorithm in data clustering. The performance evaluation as a clustering algorithm is 

done on the wine, iris, CMC, cancer, and glass datasets. The simulation results have been 

compared with other clustering algorithms such as CSO, K-means, PSO, GA, ACO, and TLBO. 
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The improved CSO yields better-quality clustering results in comparison to the different 

algorithms.  

Das et al. [68] inspected the issues of local optima and convergence rate in clustering algorithms 

and developed a new clustering algorithm based on class topper optimization (CTO). This 

algorithm is inspired by students' intellectual performance in a particular school class. CTO 

works in three levels: class, section, and student. The proposed CTO algorithm uses the class 

topper and section topper information. The section toppers are the best-learned students of the 

different departments, and these students compete with each other for the class topper. The 

section topper also learns from the class topper. In turn, significant improvement was recorded 

in the performance of the section topper. The students' performance were also evaluated through 

examination. The proposed algorithm has been tested on five datasets (iris, wine, cancer, cmc, 

HV). The results have been compared with different metaheuristics and heuristics algorithms. 

The simulation results show that the proposed algorithm gives faster convergence and is not 

stuck in local optima. It is seen that CTO gives better results in terms of average percentage 

error. The proposed algorithm failed to give quality results for non-spherical data, which can 

be explored in the future. The CTO can also be applied to real-world problems. 

Deb at al. [69] presented a new metaheuristic C-ESA by integrating the elephant search 

algorithm (ESA) into K-means. The proposed algorithm C-ESA benefits from the evolutionary 

operations and balance between local and global search. Determining the best centroid locations 

and accuracy improvements are the motives of the proposed C-ESA. The performance 

evaluation of the proposed C-ESA is examined via four benchmark clustering datasets- Mice, 

Gesture, Haberman, Iris, and ten time-series clustering datasets. The simulation results show 

that C-ESA gives quality results compared to other meta-heuristic algorithms for clustering 

based on accuracy. The C-ESA can be improved with modification for clustering. Several 

issues, like computational time, code tuning, and parameter-free mechanism, can be 

investigated. 

Tsai et al. [70] presented coral-reef optimization with substrate-layers (CRO-SL) for clustering 

large data. The clustering results are refined by using the substrate layers concept. It integrates 

PSO and genetic K-means (GKA) algorithm in the substrate layer. These algorithms replace 

the HS, 1-point crossover, DE, and Gaussian mutation. The local-search methods have been 

applied to refine the results. The CRO-SL is used on the cloud platform to reduce response time 

for data analysis, and its performance was tested over seven benchmark datasets and two 
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artificial clustering datasets. The results have been compared with clustering algorithms such 

as K-means, PSO, GKA, PSO and simple coral reef optimization (SCRO). The results show 

that CRO-SL has helped to improve the clustering results and efficiency. The future works 

consider the dynamic adjustment of parameter settings, the use of a graphics processing unit 

for speeding the running time and its implementation to other real-world problems. 

To handle the imbalance between exploration and exploitation, Sharma and Chhabra [71] 

proposed a new clustering algorithm inspired by PSO and polygamous crossover called 

PSOPC. A polygamous-based selection crossover operator is added in PSO to achieve stability 

in exploration and exploitation. Also, inertia weight and alpha values have been added to 

enhance the exploration behaviour. The performance of the proposed PSOPC algorithm is 

assessed over seven benchmark clustering datasets in terms of convergence rate, cluster quality 

and cluster distance. The various other metrics used for evaluation are precision, accuracy, 

sensitivity, and g-measure. The simulation results were compared to several different clustering 

algorithms. It shows that the PSOPC algorithm gives better-quality results. The future 

directions are to propose a multiobjective version of the algorithm, investigate using dynamic 

data and extend it for automatic clustering for applications such as protein synthesis, image 

segmentation etc.  

The issues of exploration, local optima, convergence rate and finding the best solutions were 

examined by Abdulwahab et al. [72]. The authors proposed a Levy Flight Black Hole (LBH) 

clustering algorithm. The proposed algorithm was integrated with the levy flight and blackhole 

optimization algorithm. The black hole algorithm cannot explore search space ahead of the 

current black hole. So, to handle this issue, the levy flight concept has been introduced. With 

this, the step size is increased for the movement of stars and helps to explore large search space. 

Thus, the global search ability of BH is improved and prevents it from getting stuck in local 

optima. Six benchmark datasets have been used for the performance evaluation of LBH and 

compared to several existing clustering algorithms such as ACO, PSO, GWO, GSA, BH, Cat 

Swarm algorithm and three others. It is seen from the results that LBH gives robust results for 

clustering. It can be applied to text clustering in future.  

Mustafa et al. [73] proposed an adaptive memetic differential evolution (ADME) optimization 

algorithm for data clustering to address the issues of exploration and exploitation process in 

clustering algorithms. The proposed algorithm benefits from the memetic and adaptive 

differential evolution (DE) algorithms. A mutation strategy was applied to balance the local 
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and global search. The restart mechanism generated new solutions to achieve population 

diversity and thus prevented the algorithm from premature convergence. It also used an 

approach for clearing the duplicate solutions and adopted a hill-climbing local search 

procedure. The proposed ADME algorithm was tested on six datasets, and the results were 

compared to ME and DE algorithms. From simulation results, it is noticed that ADME gives 

better clustering results compared to other algorithms. Using different objective functions for 

categorical and mixed data and extending it as a multiobjective approach are the future 

perspectives.  

Adaptive differential evolution with neighbourhood search (ADENS) was proposed by 

Tarkhaneh and Moser [74]. Mantegna Levy distribution, Archimedean spiral and 

neighbourhood search were integrated into improved differential evolution (IDE) algorithm. 

The population diversity was also enhanced using a new mutation strategy (DE/Spiral-to-

rand/1). The weak solutions were replaced by new solutions through a neighbourhood strategy. 

It helped to avoid the local optima condition. The initial solutions were also generated through 

Cauchy’s distribution. The six datasets were utilized to examine the ADENS performance.  The 

ADENS algorithm gives superior results compared to other clustering algorithms in terms of 

accuracy and intra-cluster distance. The statistical analysis was also done using Wilcoxon and 

Friedman. The results show that ADENS can be adopted for data clustering. In future, it can be 

improved using chaotic or quantum theory. The work can explore the different real-world 

applications, and a suitable guided method can be employed for exploration.  

The clustering algorithms suffer from the problem of a random selection of initial cluster 

centers and premature convergence. In context to issues mentioned earlier, Agbaje et al. [75] 

proposed a hybrid algorithm using the firefly (FA) algorithm and PSO, called FAPSO. FA was 

implemented for the initial search because of its strong exploitation ability. PSO was adopted 

for finding optimal global solutions in exploration. The inertia-weight, acceleration coefficients 

and velocity parameters of PSO help to balance the exploration and exploitation. The 

performance of FAPSO has been evaluated over twelve standard datasets, and results have been 

compared to traditional clustering algorithms. The results show that FAPSO is advantageous to 

other clustering algorithms in the context of DB and CS index.  The proposed algorithm can be 

enhanced further using Levy flight to reduce the foraging time. It can also be applied to solve 

other complex problems and use different local search methods.   

Kushwaha et al. [76] proposed an electromagnetic clustering algorithm (ELMC) to address the 

choice of initial cluster issue of the k-means algorithm. The proposed algorithm is an improved 
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version of electromagnetic field optimization. It used the attraction-repulsion strategy to 

maintain the diversity of ELMC. The authors conducted a series of experiment for evaluating 

the effectiveness of the proposed ELMC algorithm using two IOT datasets and other standard 

clustering datasets. The fitness of the electromagnetic particle was evaluated using intra-cluster 

distance. The experiment results were compared to different clustering algorithms, like KFCM, 

ACO, KFC, PCM and K-means. The proposed ELMC provides better clustering results in 

contrast to algorithms in comparison based on purity, rand index and normalized mutual 

information. The work can be extended for text clustering and image segmentation.  

Senthilnath et al. [77] applied a flower pollination algorithm (FPA) to address the data 

clustering problems. The objective of the proposed FPA is to compute optimal cluster centres. 

The global search for biotic and cross-pollination was achieved through levy flight. The local 

search was performed through self-pollination and abiotic. Population diversity was maintained 

through reproduction probability. Also, the balance between local and global search was 

handled through the switching probability strategy. Three clustering datasets were used for 

performance evaluation and compared with eight clustering algorithms. From experimentation 

results, it is noticed that FPA gives minimum classification error in context to other algorithms 

in comparison. The statistical analysis shows that FPA can be adopted for data clustering. The 

proposed algorithm can be hybridized to solve different problems.  

Further, to improve the efficacy of data clustering and avoid local optima issues, 

Mangeshkumar et al.  [78] proposed a hybrid algorithm using ant lion optimization (ALO) with 

local search algorithms and ant colony optimization (ACO), named ACO-ALO. The initial 

random solutions were generated using ACO. The number of populations for ants was taken 

the same as ACO and ALO. The pheromone trails help to reach the optimal global solution. 

The authors also applied Cauchy’s mutation operator to prevent local optima issues. The 

performance evaluation of the proposed hybrid ACO-ALO algorithm has been done on four 

datasets and compared to ACO and K-means algorithms. The results show the superiority of 

the clustering results given by the ACO-ALO algorithm over ACO and K-means. Future 

directives show that neural networks can be used in the proposed ACO-ALO to make it more 

independent in setting the parameter values. 

Further, Xie at al. [79] examined the sensitive to initial clusters and trapping in local optima 

issues.  The authors provided two variants of FPA called inward intensified exploration FPA 

(IIEFPA), and compound intensified exploration FPA (CIEFPA) to address the 
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abovementioned problems. The IIEFPA used the randomized control matrix to enhance the 

exploitation ability in neighbourhood search and generating diverse solutions. CIEFPA utilizes 

dispersing mechanism. More similar fireflies are moved to new locations in the neighbourhood 

to explore the search space. The effectiveness of proposed variants of FPA has been assessed 

on fifteen different datasets using different performance metrics such as accuracy, intra-cluster 

distance, specificity, sensitivity, and f-score. The experiment results indicated that FPA variants 

give superior clustering results in terms of minimum distance and provide higher accuracy than 

other algorithms. The proposed variants will be evaluated for different jobs like image 

segmentation, feature selection etc., and other objective functions along with intra and inter-

cluster distance will also be investigated.    

For efficient search and fast convergence, Huang et al. [80] proposed memetic particle 

gravitation optimization (MPGO) algorithm using a memetic clustering algorithm based on 

PSO and GSA. The proposed MPGO works on two hybrid operation mechanisms and enhanced 

diversity mechanisms. After a predefined number of function evaluations, there is an exchange 

of individuals from two subpopulations in a hybrid operation. The diversity enhancement 

mechanism uses an enhancement operator like the crossover process of DE. The selection 

mechanism of individuals uses the roulette-wheel method. Six benchmark clustering datasets, 

along with fifty-two benchmark functions and images, were used for the performance 

evaluation of MPGO. The experimental results were compared to PSO, BH, GSA, K-means 

and WOA algorithms. The MPGO gives significantly better results in terms of fitness function 

and clustering accuracy rate. Future work can be extended for dimension reduction, image 

enhancement, diversity enhancement using levy flight, and application to an automatic object 

tracking system. 

For addressing local optima and slow convergence issues of the clustering algorithm, Dinkar 

and Deep [81] presented an improved ant lion optimization (ALO) algorithm called OB-C-

ALO, and two amendments were proposed. Initially, the algorithm generated the solution from 

the uniform distribution. The first amendment integrated the Cauchy distribution in ALO to 

handle the local optima problem and enhance exploration. The solutions were updated in this 

phase. The second amendment utilized opposition-based learning to control slow convergence. 

An acceleration-coefficient parameter was used for balancing exploration and exploitation. 

When the number of iterations increased, this parameter decreased the exploitation 

convergence. The performance evaluation was evaluated on six datasets and twenty-one 

benchmark functions. The results were compared to AO and C-ALO in terms of standard 
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deviation, average, maximum and minimum fitness values. The results given by the proposed 

OB-C-ALO algorithm are significantly better in terms of distance.  

The critical distance clustering algorithm was designed by Kuwil et al. [82] based on a distance-

based clustering algorithm. The critical distance was computed using Euclidean distance, and 

statistic operations were derived to find the similarity between data. The proposed algorithm 

works on quantitative data only. A study on very weak, weak, good, very good and excellent 

students was considered. The proposed algorithm helped in merging the very weak and weak 

students based on the grades in one cluster. Very good and excellent students were in another 

cluster, and a separate cluster was formed for the good students. The proposed algorithm was 

assessed through twenty-six experiments, and results were compared to DBSCAN, K-means 

and MST-based clustering. The outliers have been handled through this approach successfully. 

A new feature selection will be proposed in future. For improving the speed of the proposed 

algorithm, the distance selected should be considered less than or equal to lambda in the 

enhancement.  

To address issues of slow convergence and local optima, Singh et al. [83] proposed artificial 

chemical reaction optimization (ACRO) for data clustering. The algorithm is constructed on 

chemical reactions and uses reactants as its population. The aim is to find the optimal cluster 

centres with minimized intra-cluster distance. To improve the convergence rate, a position-

based strategy was applied. This strategy was incorporated in the synthesis-reaction step. 

Further, the local optima problem was addressed using neighbourhood strategy. The 

neighbourhood strategy was used to balance the trade-off between different reactants for inter-

reactant collision. Five benchmark datasets and two artificial datasets were used for the 

evaluation of the ACRO algorithm and compared to several other algorithms using performance 

measures average case, best case, standard deviation, intra-cluster distance and f-measure. The 

statistical analysis was validated using Friedman statistical test. The results showed the 

effectiveness of the proposed ACRO algorithm for data clustering.   

An efficient stud krill herd clustering (ESKH-C) algorithm was proposed by Baalamurugan and 

Bhanu [84]. It was used to compute the optimum locations of cluster centers. The stud selection 

and crossover (SSC) operator were integrated through the krill herd clustering algorithm. The 

SSC operator helps in selecting the individuals and taking them forward to the next level.  This 

operator was inspired by the genetic reproduction process that helps in improving the 

convergence rate. The proposed algorithm is also able to search the global search space.  Seven 

experiments were conducted to measure the efficiency of the proposed ESKH-C algorithm. 
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Rand index, Jaccard coefficient, Beta and Distance index were used for correlation analysis 

with other clustering algorithms. It is seen that ESKH-C can work with densities, cluster 

numbers, and multi-dimensional datasets. The proposed algorithm can be extended for web 

applications to discover data cluster groups. It can also be used in the biomedical field for DNA 

sequencing clustering problems.    

For effective data clustering, Singh [85] proposed chaotic harris hawk’s optimization (CHHO). 

The HHO algorithm is based on the cooperative and hunting style of Harris’ Hawks. Harris’ 

hawks represent the candidate solutions. The best solution in each step was selected as the 

intended prey that is nearly the optimum solution. Further,  the escaping energy of the prey 

helped to decide whether candidate solutions will exploit or explore the search domain.  The 

author used a chaotic sequence number instead of random numbers. It was employed for 

guiding the global search. The proposed HHO algorithm was assessed over eight shape datasets 

and four other standard datasets. Its performance was compared with several clustering 

algorithms such as GWO, HHO, BOA and others, using different performance measures and 

statistical analysis. The results showed that HHO algorithm proves to be an effective approach 

for data clustering. The proposed CHHO algorithm can be investigated for other real-world 

problems and can be extended as a multiobjective approach.  

The grey wolf optimizer (GWO) suffers from the issues such as trapping in local optima, and 

premature convergence. To address these issues, Alijarah et al. [86] incorporated the tabu 

search (TS) method in GWO, named TSGWO. The proposed algorithm utilized adaptive 

memory to discover neighbourhood leaders prior to update the locations of the wolves. TS was 

used to update the leader wolves’ positions. TS-based search operator helped find the leader's 

first location during local exploratory search and then searching appealing regions in the 

neighborhood space of the first received location. The tabu list keeps a record of the previously 

visited sites and helps GWOTS to get stuck in local optima and reach the global optimal 

solution. 

Thirteen datasets have been used to evaluate TSGWO and compared to the results of several 

clustering algorithms based on SSE, purity, and entropy performance measures. From the 

results, it is noticed that TSGWO effectively overcomes local optima issues and gives a better 

convergence rate when compared to other clustering algorithms. In future, the GWOTS will be 

investigated over different datasets of arbitrary shapes. It can be implemented in spatial 

applications, and the extension of GWOTS via parallel computing can help reduce computation 

time.  
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Similarly, to address the issues of being stuck in local minima and the accuracy of the bat 

algorithm, Zhu et al. [87] proposed an improved bat algorithm for data clustering. The authors 

incorporated two improvements for improving local and global search. Gaussian-based 

convergence factor and five other convergence factors were used for improving global search. 

It used the convergence factor that decreases with the increase in the number of iterations. 

Initially, the convergence factor with lower degree attenuation moves to a larger amplitude for 

finding the global optimal solution. During the last iterations, with an increase in attenuation of 

D, there is an increase in the span of movement. This helped in finding the optimal solution 

more accurately and balancing the exploitation and exploration abilities. Six convergence 

factors were proposed with the use of cosine, tangent, sine, exponential, and power function. 

Further, the algorithm utilizes the reducing orbiting mechanism based on whale-based 

optimization and the position spiral updating mechanism based on sine and cosine algorithms 

for enhancing the local search. The performance of improved algorithm was assessed on seven 

datasets, and results were compared to various other clustering algorithms based on accuracy, 

ARI, and f-measure.  The experimentation results showed that the improved bat algorithm gives 

significant consequences for accuracy. The proposed algorithm can be further enhanced to 

make it more stable in searching the solution. 

The issues of slow convergence and local optima were investigated by Kaur et al. [88]. The 

authors developed a new clustering algorithm using chaos optimization and flower pollination 

algorithm, named chaotic FPA (CFPA). This work also presented the comparison of standard 

FPA and chaotic variants of FPA, with sine, Chebyshev, dyadic, and circle maps. The best 

chaotic map was used in further investigation of the study. The performance of the proposed 

algorithm was evaluated using sixteen clustering datasets. The experiment results were 

compared to other clustering algorithms in terms of execution time, cluster integrity, and 

iteration needed for convergence. From the experiment results, it is noticed that the proposed 

CFPA algorithm gives stable results. In future, the new nature-inspired approaches can be 

considered for partitional clustering. The constraints handling problems can also be considered, 

and the algorithm can be improved to provide more stable results.  
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Table 2.1: Related works on single objective clustering algorithms 

Author Name 
[ref], year 

Issues Approach Data Sets 

Wang et al. [58], 
2016 

-Sensitive to initial 
selection of cluster 
centers 
-Local Optima 
-Population Diversity 

-FPA using Bee Pollinator was 
presented. 
-Discard-pollen-operator applied 
along with crossover operator for 
diversity enhancement in 
population. 
-Local search enhanced through 
an elite-based-mutation operator. 

-Iris, Balance, WBC, Seeds, 
CMC, Wine, Statlog (Heart), 
Haberman’s Survival, 
artificial set1 and artificial 
set2.  

Pakrashi & 
Chaudhuri [59], 
2016 

-Exploration ability 
-Premature 
Convergence 

-Heuristic Kalman Algorithm 
(HKA) was introduced. It uses the 
Kalman-filtering approach.  
-Improved hybrid approach is 
given using HKA and K-means.  
- Proposed approach benefits from 
fast convergence of K-Means and 
global-exploration of HKA. 

-Wine, Iris, Glass, CMC, 
Cancer, artset1, artset2 

Kang et al. [60], 
2016 

-Balance between 
local and global 
search 

- Proposed K-MWO. It uses KM 
with mussels-wandering-
optimization (MWO). 
-Local search is improved thru 
KM. Global search is enhanced 
thru MWO. 

-Banknote authentication, 
Iris, Breast cancer, Wine, 
Glass, image segment, 
Landsat satellite, Student 
evaluation, Pen-based digits 

Abualigah [61], 
(2017) 

-Exploration ability 
-Premature 
convergence 

-Proposed H-KHA that combines 
KH and harmony search (HS). 
-Distance factor from HS 
enhances global search ability in 
KH. 

-CMC, Vowel, Cancer, 
Glass, Wine, Iris, Seeds, 
Classic4, Reuters21578, 
20Newsgroup 

Zhou et al. [62], 
2017 

-Sensitive to initial 
choice of cluster-
centers 
-Local Optima issue 
-Convergence-rate 

-Presented SMSSO algorithm. 
-Stochastic variant strategy of the 
original SSO is replaced by 
through the simplex method. 

-New equations have been given 
for the mutualism and 
commensalism phases. 
-Adopted parasite vector in the 
parasitism phase. 

-Iris, Balance, Wine, Statlog, 
Teaching Assistant 
Evaluation, WBC, Seeds, 
Haberman’s Survival, CMC, 
artificial set1 & artificial set2. 
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Nayak et al. 
[63], 2017 

-Sensitive to initial 
selection of cluster 
centers 
-Local Optima 
-Convergence rate 

-Proposed a novel hybrid 
approach of Fuzzy C-Means with 
a chemical reaction-based 
metaheuristic to obtain optimal 
cluster centers.  

-Iris, Balance, Spect heart, 
Lenses, CMC, Haberman, 
Hayesroth, WBC, Wine, 
Robot navigation, Glass, 
Artificial dataset, Lung 
cancer  

Han et al. [64], 
2017 

-Enhancing 
exploration and 
exploitation 

-Introduced bird flock behaviour 
into GSA. 
-Diversity enhancement did thru 
initialization, identifying nearest-
neighbors, and orientation-
change. 

-Balance, E. Coli, Heart, 
Glass, Thyroid, Cancer, 
Cancer-Int, Dermatology, 
Credit, Glass, Diabetes, 
Wine, Horse, Iris 

Queiroga et al. 
[65], 2018 

-Local optima 
-Slow Convergence 

-Proposed C-GRASP-Clu. The 
basis of the algorithm is a 
continuous greedy randomized-
adaptive-search procedure (C-
GRASP). 
-Automatically adjusted the step 
size in the search procedure 
-Applied a filtering mechanism to 
avoid unpromising iterations. 

-Iris, WDBC, Glass, Vowel, 
Wine, Cancer, CMC, 
Ionosphere, Yeast, Crude oil, 
Abalone, a1, D31, s1, 
Unbalance, artset1, artset2, 
artset3, artset4 

Bijari et al. [66], 
2018 

-Local optima 
-Slow Convergence 
-Imbalance between 
exploration and 
exploitation 

-Proposed memory-enriched 
approach.  

-It is based on the big-bang–the 
big crunch algorithm. 

-Iris, Wine, Glass, 
Contraceptive method 
Choice, cancer, Vowel 

Kumar & Singh 
[67], 2018 

-Lack-of-diversity in 
the population 
-Local Optima issue 
-Convergence rate 
-Unbalance between 
exploration and 
exploitation 

-Proposed an improved CSO. 

-Incorporated new search 
equation. 
-Employed Local search method 
to obtain eminence solutions. It 
helps prevent local optima 
conditions. 

-Iris, Wine, CMC, Cancer, 
Glass 

Das et al. [68], 
2018 

-Local Optima 
-Convergence rate 

-Proposed a new class toper 
optimization (CTO) algorithm. 
-It is based on the intelligence 
behaviour of students in a 
particular class of a school. 

-Iris, Wine, Cancer, CMC, 
Hill Valley (HV) 

Deb et al. [69], 
2018 

-Initial cluster 
selection 
-Local Optima 

- Presented C-ESA. 
-Integrated Elephant search 
algorithm into K-means. 
-The algorithms adopted 
evolutionary operations to 
balance local and global search. 

-Gesture, Mice Protein, 
Haberman, Iris 
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Tsai et al. [70] 
(2019) 

-Managing large data 
-Advanced clustering 
result 

-Developed Coral reef 
optimization with substrate 
layers. 
-Integrated substrate-layers into 
PSO & genetic-k-means 
algorithm (GKA). 

-Iris, User Locations, Wine, 
BCW, HTRU2, Abalone 
Spam base, Finland, 
c20d6n2000, & 
c20d6n200000 

Sharma & 
Chhabra [71] 
(2019) 

-Local Optima issue 
-Convergence rate 
-Exploration and 
exploitation tradeoff 

-Proposed PSOPC, a hybrid 
approach.  
-PSO is applied for global search. 
The polygamous approach used in 
crossover to balance tradeoff 
exploration and exploitation. 
-Dynamically tuned the 
parameters to refine the 
optimization process. 

-Wine, CMC, Bhupa Cancer, 
Glass, Haberman, Iris 

Abdulwahab et 
al. [72] (2019) 

-Convergence rate  
-Local Optima issue 

-Presented Levy Flight Black 
Hole for data clustering. 
-Levy flight is combined to the 
Black hole algorithm. 
-Step size generated by Levy 
distribution controls the 
movement of each star.  

-Iris, Vowel, CMC, Glass, 
Wine, Cancer 

Mustafa et al. 
[73] (2019) 

-Exploration and 
exploitation tradeoff 

-Introduced an adaptive memetic 
differential-evolution 
optimization-algorithm. 
-Advanced mutation strategy has 
been used in adaptive DE and 
memetic algorithms. 

-WBC, Glass, CMC, Iris, 
Vowel, Wine  

Tarkhaneh & 
Moser [74] 
(2019) 

-Convergence rate 
-Exploration and 
exploitation tradeoff 

-Presented Adaptive Differential 
Evolution with Neighborhood 
Search approach.  
-Robust solutions are generated 
by using a new mutation strategy 
formed by combining 
Archimedian Spiral with 
Mantegna Levy flight. 
-Self-adaptive strategy is applied 
for tuning control parameters 

-Iris, CMC, WBC,  Yeast, 
Heart, Vehicle, Diabetes, 
Wine, Letters, Liver, 
Ionosphere, and Cars 

Agbaje et al. 
[75] (2019) 

-Premature 
convergence 
-Imbalance between 
local and global 
search 

-Proposed hybrid algorithm using 
firefly algorithm (FA) and PSO 
algorithm, named FAPSO. 
-Initial search performed using 
FA. 
- Optimal solution is reached by 
applying PSO.  

-Breast, Yeast, Path-based, 
Compound, Flame, Spiral, 
Glass, Iris, Two moons, Jain, 
Statlog, Thyroid, Wine 
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Kushwaha et al. 
[76] (2019) 

-Choice of initial 
clusters  
-Issue of Local 
Optima 

-Proposed an enhanced variant of 
electromagnetic field 
optimization.  
-Attraction & repulsion concept 
helps in improving diversity in the 
population of the EFO algorithm. 

-Iris, GAS, CMC, Vowel, 
Crude oil, Thyroid, 
Ionosphere, Human Activity 
Recognition 

Senthilnath et al. 
[77] (2019) 

-Prior info required 
for the number of 
clusters 

-Developed FPA for data 
clustering. 
-Minimized objective function to 
achieve the optimal position of 
cluster centers.  

-Image segmentation, glass, 
vehicle, Crop Type & 
Synthetic datasets 

Mangeshkumar 
et al.  [78] 
(2019) 

-Exploration and 
exploitation tradeoff 
-Entrapping in local 
minima 
-Minimum intra- 
cluster distance 

-Presented hybrid ACO-ALO 
algorithm. 
-Local optima situation avoided 
using Cauchy’s mutation operator 

-Zoo, iris, glass, wine 

Xie et al. [79] 
(2019) 

-Sensitive to initial 
selection 
-Entrapment in Local 
optima 

-Introduced two-variants of FA 
IIEFA and CIEFA. 
-Exploration and exploitation 
enhancement did using Matrix-
based search. 
-Feature reduction handled 
through minimum Redundancy 
Maximum Relevance based 
feature selection method. 

-ALL IDB2 database, , Sonar, 
Thyroid, Iris, Ozone, WBC1, 
Wine, WBC2, Balance, E. 
coli & a skin lesion data set 

Huang et al. 
[80], 2019 

-Clustering accuracy  
-Convergence rate 

-Proposed memetic particle 
gravitation optimization.  
-PSO is employed for the 
exchange of individuals. 
-GSA is applied as an 
enhancement operator to improve 
the diversity of the population. 

-Wine Statlog, Yeast, Iris, 
Breast cancer, and Car 
evaluation, six images in 
image segmentation &52 
benchmark function. 

Dinkar & Deep 
[81], (2019) 

-Local optima 
-Slow convergence 

-Introduced opposition-based 
ALO thru Cauchy distribution. 
-Local optima is handled thru 
random walk based on Cauchy 
distribution. 
-Utilized opposition-based 
learning model and acceleration 
coefficient.  

- Glass, Iris, CMC, Wine, LD, 
WBC & 21 benchmark test-
functions 
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Kuwil et al. [82], 
2019 

-Improving accuracy 
-Optimized Cluster 
numbers 

-Proposed Critical distance 
clustering algorithm.  
-Employed Euclidean distance 
basic statistic operations 

-Conducted 26 experiments 
on real and synthetic datasets 

Singh et al. [83], 
2019 

-Slow Convergence 
-Local Optima 

-Proposed an artificial chemical 
reaction optimization (ACRO)  
-Convergence rate improved 
through the location-based 
method. 
-Neighborhood strategy applied 
for avoiding local optima 

-CMC, Wine, Glass, Iris, 
artset1, artset2 

Baalamurugan 
& Bhanu [84], 
2019 

-Convergence rate 
-Efficiency 

-Developed efficient stud krill 
herd clustering (ESKH-C) 
algorithm. 
-Integrated Stud selection and 
crossover (SSC) operator in krill 
herd clustering algorithm. 

-2D–4C, 10D–4C, Iris, Wine, 
Glass, Zoo, &Ionosphere 

Singh [85], 
(2020) 

-Manage large data  
-Improving the 
performance 
-Dependency on 
random numbers 

-Harris hawk’s optimization 
algorithm is presented. 
-A chaotic sequence of numbers is 
used as an alternative to the 
random numbers. 
- It guides the search-pattern of 
the HHO algorithm. 

-Jain, R15, Flame, 
Compound, Aggregation, 
D31, Spiral, Path-based, 
Wine, Iris, Glass &Yeast 

Aljarah et al. 
[86], (2020) 

-Local optima issue 
-Convergence rate 
-Unbalance within 
exploration and 
exploitation 

-A proposed hybrid approach 
using Tabu search and GWO 
algorithm. 
-Employed TS as an operator in 
GWO. 

-Iris, breast cancer, blood, 
glass, wine, seeds, 
Australian, diabetes, heart, 
liver, Haberman, tic-tac-toe 
& planning index, 

Zhu et al. [87], 
(2020) 

-Caught in local 
optima 
-Clustering accuracy  

-Proposed an improved bat 
algorithm. 
-Gaussian-like convergence-
factor and 5 more convergence-
factors have been designed to 
improve global search. 
-Adopted hunting mechanism 
from WOA.  
- Local search enhanced using the 
sine position updating strategy. 

-Iris, Seeds, Heart statlog, 
Wine, WDBC, Bupa, & WBC 

Kaur et al. [88], 
2020 

-Slow Convergence  
-Local Optima 

- Presented chaotic FPA (CFPA) 
for data clustering. 
-It is based on chaos-optimization 
and FPA thu K-means. 

-Iris, Balance, Glass, E. coli, 
Dermatology, Breast Cancer, 
TAE, Spambase, Haberman, 
Heart, Leaf, LPD, Libras, 
Qualitative Bankruptcy, 
Wine, & Synthetic 
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2.2 MULTI OBJECTIVE CLUSTERING ALGORITHM 
İnkaya et al.[89] proposed a multiobjective clustering method based on ACO and named ACO-

C. The proposed algorithm optimises two objective functions, adjusted compactness and 

relative separation. The clustering solution is evaluated utilizing each objective function and 

neighbourhood information. The proposed algorithm can obtain Pareto-optimal solutions.  The 

algorithm uses two steps during processing. First is neighbourhood construction, and second is 

data-set reduction. The first step extracts the local features of the data object, such as its local 

connectivity, density information, and proximity.  The second step helps to reduce the storage 

and computation time needed for clustering. The proposed algorithm considered conditional 

merging as a local search method to enhance the exploitation ability. The cluster evaluations is 

performed through clustering evaluation comparative to the neighbourhood and weighted 

clustering evaluation close to the neighbourhood. The proposed ACO-C algorithm was tested 

over thirty-two datasets. The results were compared to several algorithms: single- linkage, k-

means, NC closures, DBSCAN, and NOM. The performance measures used for evaluation are 

the Jaccard and the rand indexes.  From the results, it is evaluated that the ACO-C algorithm is 

capable of working on varying densities and can form arbitrary-shaped clusters. In future, the 

proposed algorithm can be improved for outlier detection and reduced processing time.  

Prakash and Singh proposed a multiobjective particle swarm optimization (TSMPSO) for 

solving hard partitional clustering problems[90]. The proposed TSMPSO adopted a two-stage 

diversity mechanism. Two objective functions: the sum of squared error (SSE) and 

connectedness functions, were considered for optimizing the clustering results. The 

homogeneity between the cluster was measured using SSE, whereas the separation was 

evaluated through connectedness. The algorithm initialized the positions of the particles as zero, 

and initial positions determine the personal best. The non-dominated solutions were preserved 

over the iterations, and the best was selected as the leader from the archived set of solutions. 

This further guided the search process. The performance was evaluated using benchmark 

clustering datasets Iris, Vowel, Glass, Wine, Zoo, Wisconsin Breast cancer (WBC), and 

Dermatology. The results given by TSMPSO were improved compared to MOPSO, MOABC 

and NSGA on coverage, distribution, convergence, f-measure and overall Non-dominated 

Vector Generation (ONVG).  

Kishor et al. [91] proposed a new multi-objective optimization algorithm, namely NSABC 

(non-dominated sorting-based multi-objective artificial bee colony algorithm) to address local 

optima, population diversity and biasing issues. The proposed algorithm used Pareto-rank and 
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crowding distance approaches to steer the population towards optimal PF. It was implemented 

as a fitness strategy. The non-dominated solutions were stored on their rank; the best was given 

to rank one, and so on. If the archive reached its maximum capacity, the crowding distance was 

computed, and it helped to push the solutions to non-crowded regions. The authors have 

optimized SSE and connectedness. The performance of NSABC was compared to various 

synthetic benchmark problems and nine standard clustering datasets. The different performance 

measures like accuracy, f-measure, NMI, B-cubed, coverage, convergence, distribution and 

ONVG were utilized. From the results, it is found that NSABC was capable of solving multi-

objective optimization problems. The study will be applied to other multiobjective issues and 

investigated for different parameter settings.  

Armano and Farmani [92] introduced a multi-objective particle swarm optimization (MCPSO) 

for partitional clustering problems. Data connectivity and cohesion were adopted for optimizing 

conflicting objectives. The proposed algorithm used the K-means for generating the initial 

swarm. The max-min strategy was utilized to get the Pareto optimal solutions, which helped 

improve the convergence and diversity of Pareto-optimal solutions. Further, the leader was 

chosen randomly from the top-ranked solutions. The particles used their cognitive and social 

knowledge to update the locations and move back to feasible/viable sites. The performance 

evaluation of the proposed MCPSO algorithm was evaluated using eleven real-life and sixteen 

synthetic datasets. The multiobjective particle swarm optimization (MCPSO) algorithm was 

proved to be an effective algorithm in terms of accuracy compared to other clustering 

algorithms. It is capable of finding the number of clusters automatically. Future works consider 

the enhancement of MCPSO and the investigation of it to high-dimensional datasets. Brain 

parcellation can also be studied using MCPSO from fMRI images.  

Improved multiobjective clustering using an automatic k-determination algorithm (D-MOCK) 

was developed by Fabre et al. [93]. The amendments were regarding the initialization routine, 

efficiency, and reduced length of candidate representation. The algorithm utilized the NSGA-

II-based search strategy during initialization to exploit high-quality partitions. The proposed 

algorithm uses the two reduced-length encodings scheme. The new-reduced length of partitions 

helped shorten large portions of search-space so that the exploration process emphasised the 

most promising solutions. The computational complexity was also reduced with the proposed 

amendments. The proposed algorithm showed improved clustering results by enhancing the 

convergence. The future directive is to develop opportunities for model selection of MOCK 

and D-MOCK in the study.  
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Penaloza et al. [94] contributed to the performance evaluation of four multiobjective approaches 

using an automatic k-determination algorithm that is original MOCK (MOCKPESA-II) and its 

three variants: MOCKMOEA/D, MOCKNSGA-II, and MOCKSPEA-2. Two constraints were 

employed. The first was related to the number of clusters that must be between 1 to 25. The 

second constraint was applied to a set of feasible solutions. Among these solutions, the 

dominating solution was chosen. If mutual solutions are viable and non-dominated by each 

other, randomly select one. If the tie is between one possible solution and the infeasible one, 

then a feasible one is selected.  For the two infeasible solutions, choose the one with the lowest- 

sum-of-constraint violation. The two objective functions, compactness and connectivity, were 

optimized. Two sets of experiments were conducted. The first experiment used hypervolume 

and two-set coverage metrics. The second experiment used f-measure and silhouette 

coefficient. The performance of these algorithms was tested over seven datasets. The study 

revealed that MOCKNSGA-II, performs significantly better than MOCKPESA-II, MOCKSPEA-2 and 

MOCKMOEA/D.  

A multi-objective teaching learning-based optimization algorithm was proposed by Esfahani 

and Saghaeic [95] for cluster analysis. Fuzzy C-means was incorporated as performance 

enhancement. Two objective functions used are degrees of proximity and cluster separation. 

The algorithm used Jm measure to increase the compactness of data in the cluster by minimizing 

the degree of proximity. Partition coefficient and exponential separation (PCAES) were used 

to evaluate the separation between cluster. The larger value indicated that clusters were more 

separated and compact. The different validity measures used during the evaluation of the 

proposed approach were: DB index, PBM, PC and XB index. The performance was evaluated 

on four artificial and four standard datasets. The simulation results were compared to single-

objective algorithms. 

Further, the authors have also evaluated the performance of the proposed algorithm for noise 

and compared it to MOITLBO. The objective function, Jm and XB index were used. The 

experiment results showed that the algorithm performs better with noisy data. Future work will 

investigate the proposed algorithm via different distance measures.   

Zhou and Zhu [96] employed a kernel-based attribute weighting method and proposed a 

multiobjective genetic algorithm. The proposed algorithm optimized two objective functions, 

inter-cluster separation and compactness, to obtain optimal cluster results. The proposed 

algorithm contributed in three aspects. Firstly, the authors introduced multiobjective 

optimization using a feature-weighted-kernel clustering algorithm. Secondly, a new objective 
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function was designed for optimization. In addition to it, the PSVIndex + CE method was 

adopted to handle large datasets. This method helps in achieving the final clustering results. It 

is observed that the proposed algorithm produces more promising results than the other 

competitive multiobjective algorithms. The future directives will consider extending the 

proposed algorithm to reduce computation time, investigate more suitable criteria and develop 

more objective functions.  

Paul and Shill [97] combined fuzzy relational clustering (FRC) and multiobjective GA (NSGA-

II). Two methods were proposed, namely, FRC-NSGA and IFRC-NSGA. The first one was 

used in data clustering and computed PageRank score for every object from every cluster. It 

measured the centrality of every cluster. It worked in two steps: (i) the Expectation step and (ii) 

the Maximization step. These helped in optimizing the cluster membership-values and mixing-

coefficients. The latter was used in NSGA-II for producing initial membership-values of FRC-

NSGA by reducing the randomness of the initial membership-values. The proposed algorithm 

optimized objective functions, cohesion and separation effectively. Further, FRC and IFRC 

were employed to handle various clustering problems, such as being stuck in local optima, 

overlapping clusters, and complexity in automatic clustering. Different benchmark datasets, 

including the gene-expression dataset and non-gene-expression dataset, were considered for 

experimentation. The experimentation results were compared to various other single and 

multiobjective classes of algorithms. The results show that the proposed methods successfully 

achieve stable, well-separated clusters and work with complex data. In future, the proposed 

methods will be employed for different real-world problems, like image segmentation, outlier 

detection, medical analysis and text mining.  

Liu et al. [98] proposed a multi-objective clustering approach for novel multiple-distance 

measures. The improvements were made in terms of initial, crossover and mutation operator, 

and objective function design. The initial population was generated through NCUT pre-

clustering method. The crossover operator selected the individual to produce some probability. 

For the selection of crossover individuals, it followed two strategies. The first strategy 

considered all individuals from the population. In contrast, the second utilized non-dominated 

individuals. But at once, only one crossover strategy can be applied. It is observed that the first 

strategy helped in achieving the diversity of new solutions. The latter strategy helped the 

algorithm to reach a globally optimum solution. Further, the mutation operator was also 

implemented in two ways for the crossover operator. This helped in increasing the diversity of 

the population. Additionally, the selection operator from NSGA-II was employed to select the 
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individuals with the best fitness and reject those having low fitness values. Two objective 

functions were designed based on the modularity method from the literature. To find the Pareto-

set, both objective functions need to be minimized.  The performance evaluation was done 

through different standard datasets based on the f-measure and rand index. The proposed 

algorithm was able to determine an optimal number of clusters. The proposed algorithm can be 

improved to automatically choose the best individual from the nondominated set and reduce 

the computation time.  

Wang et al. [99] proposed the posterior EMO-KC method to determine the number of clusters. 

For multi-clustering, the authors have investigated the use of EMO. The bi-objective model 

was developed. This model considered the sum of squared distance (SSD) and the number of 

clusters. Further, a new transformation strategy has been applied to SSD to ensure that the two 

objectives are conflicting. The model is then solved through EMO. The proposed algorithm 

employed parallelism as a feature in multiobjective evolutionary optimization (EMO). The 

performance of the proposed EMO-KC has been evaluated using three datasets and compared 

to NSGA-II and EMO algorithm. The EMO-KC gives better clustering results for multiple k 

values during a single run. The future directives will consider the proposed approach on other 

complicated datasets, using other validity indices as objective functions. Other transformation 

strategies will be explored to develop more efficient algorithms for large-scale optimization.  

Liu et al. [100] proposed a local search reference vector-based method. The proposed method 

optimizes multiple clustering criteria simultaneously. The proposed algorithm generated 

reference vectors uniformly distributed over the objective space. The objective function was 

computed for each solution. Crossover and mutation operators were adopted from the NSGA-

III algorithm to develop offspring solutions. Further, the algorithm used a local-search method 

for fast convergence. Environmental selection of NSGA-III was used for updating the 

population. The final selection was made through a knee-pruning fuzzy ensemble method. The 

proposed method was tested over fifteen datasets. The results were evaluated based on rand 

index, f-measure and NMI.  From the experimental result, it is found that the proposed method 

helps in achieving robust and accurate clustering results. The proposed algorithm can be 

extended for categorical data and can be investigated in real-world clustering applications.  

Prakash and Singh [101] proposed a multiobjective algorithm named IMBGSAFS. A genetic 

crossover operator was employed to improve the convergence and diversity in the MBGSAFS. 

The genetic crossover operator was introduced for enhancing diversity in binary gravitational 

search algorithm (BGSA) multi-objective optimization and named an improved multi-objective 
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BGSA for feature selection (IMBGSAFS). An unsupervised feature-selection approach was 

used in which no prior class information was needed. Two conflicting objectives optimized the 

silhouette index and feature cardinality. The Pareto-based method was used for obtaining 

diverse solutions and its performance was evaluated on eleven datasets. The results were  

compared to MBGSAFS, NSGA-II, MOPSO, and FM-CC based on coverage, convergence, 

distribution and ONVG. F-measure was used for finding single solution from pareto-solutions. 

The proposed IMBGSAFS proved to an efficient approach for feature selection and provided 

better clustering results. The work will be extended for text clustering.  

An improved multi-objective artificial immune algorithm (KIFCM-IMOIA) using kernel-based 

intuitionistic fuzzy C-means clustering was proposed by Zang et al. [102]. Two optimised 

objective functions were intuitionistic fuzzy entropy (IFE) and kernel trick. The local optima 

issue was handled through an improved multi-objective optimization immune algorithm 

(IMOIA). A new active antibody selection strategy, a hybrid evolution strategy and an adaptive 

mutation operator were utilized in the proposed algorithm. The grid-based selection method 

was applied for selecting the active antibodies instead of crowding distance. The hybrid 

evolution strategy uses rand/1/bin and best/1/bin strategies. The first one helped improve the 

diversity of the population, and the latter helped enhance the convergence speed. The 

performance was evaluated using fourteen datasets. The experimental results were compared 

to six other clustering algorithms using accuracy, adjusted rand index, and normalized mutual 

index. The proposed algorithm has helped to achieve better convergence and provide quality 

clustering results.  

Further, for handling the dynamic clustering problems and biasing issue of the single objective 

function, Prakash, Singh and Kishor [103]  developed multiobjective particle swarm 

optimization (MOPSO) algorithm using a fitness operator named FPO-MOPSO. The proposed 

algorithm optimized the conflicting objective functions, the sum of squared error and 

connectedness. Thus, it applied the Pareto-based approach to generate different trade-off 

solutions. To handle the problem of local optima, a fitness predator optimizer (FPO) was 

introduced that enhances the diversity within PSO in multi-objective optimization scenarios. 

Additionally, a dynamic clustering method was presented that decides an optimum number-of-

clusters in the range of 2 to √N, where N denotes the number of data objects present in the data 

set. MABC, NSGA-II and MOPSO have been considered for performance evaluation and 

evaluated results regarding the rand index, f-measure, convergence, diversity, coverage, and 

ONVG. The simulation results given by the FPO-MPSO are superior to algorithms in 
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comparison. The proposed algorithm can be considered for application to document clustering 

in future.  

A new hybrid partition selection algorithm (HSA) was proposed by Antunes et al. [104] to 

select the partitions. Variance and connectivity have been optimized together with the Pareto 

Front approximation algorithm. The aim was to divide regions with high-quality partitions. The 

proposed algorithm worked on a diverse set of partitions generated by other clustering 

algorithms having different purposes and biases. The HSA algorithm returned the reduced set-

of-partitions. It was a three-step procedure- (i) the first step contained the PF for a set of base 

partitions using the multiobjective algorithm, (ii) the solutions from the PF were divided into 

several regions in the second step, and (iii) the third step used the ARI to select a solution from 

each region. The performance was evaluated on nine artificial and six real-life datasets. The 

simulation results were compared to Multi-Objective Clustering with automatic K-

determination (MOCK) and Multi-Objective Clustering Ensemble algorithm (MOCLE). It is 

seen that HSA preserves the quality results by reducing the number of solutions. The future 

directives of the HSA algorithm will consider its application on other datasets and study its 

impact on the selection strategy.  

Kuo and Zulvia [105] developed original gradient evolution (GE) algorithm for multi-objective 

clustering using k-means.  It optimized two objective functions, namely, (i) sum of squared 

error between clusters (SSB) and (ii) the sum of distance within the cluster (SSW). The authors 

applied GE to the multiobjective problem. GE computed the initial centroids for K-means. The 

improvement was made in terms of vector updating. The Pareto rank assignment sorted the 

vectors based on their fitness value. Further, the authors applied the K-means algorithm for the 

final clustering result. The proposed GE-based K-means algorithm was tested over iris, wine, 

glass, yeast, Libras movement, Aggregation, Banknote Authentication, user knowledge, R15, 

and D31 datasets. The experimental results were compared to multiobjective clustering 

algorithms, namely, PSO, ABC, DE, GA and ABC. The results reveal that the proposed 

algorithm gives better results than other multiobjective metaheuristic-based algorithms. The 

proposed algorithm can be improved further to generate more diverse solutions.  

For dimensionality reduction and multiobjective clustering, Liu et al. [106] developed an 

evolutionary algorithm named PCA-MOEA. The proposed algorithm uses the decision 

variables related to convergence and diversity. Diversity variables were initialised through a 

uniform sampling technique, and variables were converged randomly. For the convergence 

variable, PCA was applied to attain a lower representation. The decision variables count 
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controlled the variance percentage. The inter-dependence analysis after this step helps find the 

relationship among convergence variables. The co-operative co-evolution frame was used to 

generate the population. The experiment was conducted using UF and WFG test suites through 

thirty variables. Problems with 200 and 1000 variables were considered in the experimentation. 

The performance measure used is Inverted generational distance (IGD), and it measures 

convergence and uniformity at once. The results of the PCA-MOEA  were compared to several 

multiobjective approaches, namely, MOEA/D, MOEA/DVA, LMEA and MOEA/D-RGD. The 

only disadvantage is the extensive use of computing resources while grouping variables.  

A new multiobjective differential evolution approach for simultaneous clustering and feature 

selection was developed by Hancer [107], named MODE-CFS. A variable string-length 

encoding scheme was employed to signify the promising solutions in the population. The 

encoding scheme uses a set of real numbers (in the range of [−1,1]) that represent locations of 

likely cluster-centroids and a set of activation codes (in the range of [0,1) that represent the 

likely feature subset. The proposed algorithm used the centroid-based and feature-based 

mutation approaches for search space. The Pareto-optimal solutions were obtained using rank 

and crowding distance measures. The objective functions used in the algorithm are the 

Silhouette index, WB index and the number of features. The performance of the proposed 

algorithm was assessed using fourteen real-life and six synthetic datasets. The results showed 

that the proposed approach competes with various other clustering algorithms to improve the 

clustering performance and reduce dimensionality. The algorithm can be extended by 

investigating different objective functions and improving the efficiency of the proposed 

algorithm.  

Further, single-objective/ multiobjective cat swarm optimization was proposed by Yan et al. 

[108]. The algorithm works in two modes- seeking mode and tracing mode. The cat position 

was updated using the simulated annealing method at some probability. In contrast, the quantum 

model was used in tracing mode to update the positions of cats in the global search space. The 

single-objective proposed method used the kernel method for cohesion-of-clustering. The 

multiobjective method utilized two objective functions, connectivity and cohesion, to discover 

the diverse set of solutions. Pareto optimization was applied to balance the conflicting 

objectives. The performance was evaluated on eight datasets, including one field dataset, four 

datasets from UCI, and three artificial datasets. The experiment results showed that the 

proposed multiobjective gives the highest accuracy and performs better than algorithms. The 
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computation speed is affected during the iterations. Further, improvements may be made in this 

regard.  

Chen et al. [109] introduced a multiobjective approach inspired by pigeon optimization, named 

combinatorial multi-objective pigeon-inspired optimization (CMOPIO). The proposed 

CMOPIO utilized the delta-locus encoding scheme for encoding pigeons. The dimensions of 

search space and length of pigeon representation were reduced in the proposed algorithm. It 

helped to reduce computational time. The proposed algorithm also used index-based ring 

topology to maintain diversity in the population. The performance was evaluated using various 

benchmark datasets, and results were compared to single-objective algorithms (K-means, K-

medoids) and multiobjective algorithms (NSGA-II). It is noticed that the proposed CMOPIO 

algorithm is effective for obtaining optimal clusters.  

Quality metrics along with ensemble strategy were integrated by Zhu et al. [110], and proposed 

enhanced EMO-based automatic clustering. Two encoding schemes were presented: (i) 

MOAC-L and (ii) MOAC-C. The authors contributed a new mating selection strategy from the 

neighbourhood. The reproduction strategy of MOAC-L included (i) a genetic operation that 

considered the entire population in the evolution process and (ii) a local search strategy applied 

to each solution. In comparison, MOAC-C used the centroid-based reproduction scheme. It 

makes use of simulated-binary-crossover and polynomial-mutation. The simulation was 

conducted using several real-life and synthetic datasets. From the results, it is observed that 

computational cost time was considerably decreased with proposed schemes as compared with 

state-of-art algorithms.  The proposed algorithm did not require the prior information for cluster 

numbers to divide the data into clusters. A superior mechanism was required To represent 

chromosomes more effectively for unbalanced data, high-density regions etc.  
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Table 2.2: Related works on multiobjective clustering algorithms 

Author 
Name [Ref], 

year 
Issues Approach Data Sets 

İnkaya et al. 
[89], 2015 

-Prior information 
for the number of 
clusters 

-Local search 
ability 

-Biased solutions 

-Developed ACO-C 
multiobjective algorithm for 
clustering.  

-Optimized two objective 
functions: adjusted compactness 
and relative separation 

- Thirty-two datasets of 2 and 
higher dimensions with 
different shapes and densities 

Prakash & 
Singh [90], 
2015 

-Population 
diversity 
-Local Optima 
-Biased solutions 

-Proposed multiobjective particle 
swarm optimization (TSMPSO).  
-Optimized connectedness and 
sum of squared error. 

-Iris, Glass, Vowel, Wine, 
WBC, Zoo, Dermatology 

Kishor et al. 
[91], 2016 

-Population 
diversity 
-Local Optima 
-Convergence rate 
-Biased solutions 

-Proposed NSABC (non-
dominated sorting-based multi-
objective ABC) algorithm. 
-Employed fitness strategy for 
guiding the search 
-Optimized SSE and 
connectedness 

-Iris, Glass, Vowel, Wine, 
Dermatology, CMC, Yeast, 
Segmentation, Wisconsin 
breast cancer (WBC) 

Armano & 
Framani [92], 
2016 

-Biased Solution 
-Diversity 

-Presented multi-objective PSO 
for data clustering. 
-Connectivity and cohesion were 
used as objective functions. 

-Jain, Flame, Thyroid, Path-
based, Spiral, WDBC, 
Compound, Aggregation, 
Unbalance, Glass, Yeast and 
16 synthetic datasets 

Fabre et al. 
[93], 2017  

-Improve the 
scalability of the 
MOCK algorithm 

-Proposed an improved version of 
the multiobjective clustering with 
an automatic k-determination 
algorithm. 
-Incorporated changes through a 
specialized initialization routine 
and two alternative reduced-
length representations. 

-Eight large datasets from 
street-level crime named as: 
UKC1, UKC2, UKC3, 
UKC4, UKC5, UKC6, 
UKC7, UKC8; 350 problems 
are synthetic datasets 

Penaloza et 
al. [94], 2017  

-Initial number of 
clusters 
-Local Optima 
-Biased Solution 

-Compared performance of three 
algorithms for multiobjective 
problems 
-Optimized connectivity and 
compactness 

-Wine, Dermatology, 
Wisconsin, Yeast, Iris, Seeds, 
User Knowledge Modeling 
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Esfahani & 
Saghaei [95], 
2017  

-Efficient cluster 
analysis 

-Proposed multiobjective fuzzy-
based clustering approach based 
on (multi-objective improved 
teaching-learning–based 
optimization) MOITLBO. 
- It helped in dynamically finding 
a number of clusters and 
exploring solution search space. 
'-Optimized two functions Jm and 
VPCAES index 

-Artificial dataset1, artificial 
dataset2, artificial dataset3, 
artificial dataset4, Iris, Wine, 
Thyroid, & Red Wine 

Zhou & Zhu 
[96], 2018  

-Reduce 
computing time for 
large data sets 

-Introduced multiobjective 
kernel-based clustering algorithm 
with attribute-weighted. 
-Utilized two objective functions- 
compactness (intracluster) and 
separation. (intercluster).  
-For quality clustering solutions, 
included sampling-operation and 
clustering ensemble-method 
accompanied by the projection-
similarity-validity-index method.  

-Iris, Wine, New thyroid, 
Breast, Image, Vertebral, 
WDBC, Bupa, & Seismic 

Paul & Shill 
[97], 2018  

-Problem of local 
optima 
-Number of 
clusters in advance 

-Proposed two multiobjective 
algorithms as, FRC-NSGA and 
IFRC-NSGA.   
-FRC deals with coinciding issues 
of clusters. 
-NSGA-II generates initial values 
for FRC-NSGA in IFRC-NSGA. 
-Two objective functions 
considered are: Fuzzy 
compactness and overlap-
separation 

-AD_5_2, AD_10_2, Square-
1, Square-4, Long-1, Glass, 
Wine, Iris, Liver Disorders, 
Leukemia, Lymphoma, 
Prostate tumour, Colon 

Liu et al. 
[98], 2018 

-Diversity  
- Initial number of 
clusters 

-Based on different distance-
measures, developed a multi-
objective evolutionary algorithm. 
-The proposed algorithm 
integrated different distance 
measures using compactness. 
-Separation objective function 
helped find the appropriate 
number of clusters.  
-Optimized two objective -
functions: Compactness and 
Separation 

-Data_separated1 & 2, 
Data_connected1 & 2, 
Data_rect, Data_spiral, 
Data_circle1 & 2 R15, Jain, 
Pathbased, Iris, Spiral2, 
Wine, Soybean, & Glass 
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Wang et al. 
[99], 2018  

-Initial number of 
clusters 

-Presented EMO-k-clustering 
algorithm. 
-NSGA-II implemented for 
optimizing the objective 
functions.  
-Considered objective functions 
are sum-of-squared and the 
number of clusters. 

-DS_100_4, DS_500_6, 
DS_900_7 

Liu at al. 
[100], 2019  

-Inaccurate 
Clustering results 
-Convergence rate 

-Proposed a multi-objective 
evolutionary algorithm without 
any predefined coefficients.  
-Designed a local-search 
approach using reference-vectors 
to accelerate convergence.  
-Developed a knee-pruning 
fuzzy-ensemble method to 
choose the conclusive solution. 
-Optimized intra-cluster 
dispersion, inter-cluster 
separation, & negative Shannon-
entropy of dimension-weights 

-CNS tumours, Leukaemia, 
Lung Cancer, Normal, 
Novartis, St. Jude 

Prakash & 
Singh [101], 
2019  

-Local Optima 
trapping  
-Feature-subset 
choice 
-Prior knowledge 
of class-info 

-Proposed improved 
multiobjective approach for data 
clustering called IMBGSAFS. 
-Algorithm adopted: (i) 
unsupervised feature-selection 
method, (ii) Pareto-based method 
to attain diverse trade-off solution 
and (iii) genetic crossover-
operator for improving diversity 
-Optimized Silhouette index and 
Feature cardinality 

-Dermatology, Libras 
movement, Ionosphere, Heart 
Disease (HDD), Sonar, 
Parkinson, Vehicle, Sonar, 
Wisconsin breast (WPBC), 
Soybean Small, 
LSVT_voice_rehabilitation 
(LSVT-VR) 

Zang et al. 
[102], 2019  

-Local optima 
-Robustness 
against noise 

-Presented KIFCM-IMOIA. 

-It is an improved multi-objective 
artificial-immune algorithm that 
utilizes kernel-based-
intuitionistic fuzzy C-means 
clustering. 
-Hybrid DE -strategy and 
mutation-operator utilized in 
reaching an optimal solution and 
preventing local optima. 
-Optimized two objective 

-Hayes-Roth, Haberman's 
Survival Data, Seeds, Glass 
Identification, E.coli, Balance 
Scale, Optical Recognition of 
Handwritten digits, CMC, 
Skin Segmentation, Letter 
Recognition (A/B) & (C/D), 
Shuttle, Occupancy 
Detection, & Electrical-Grid 
Stability-Simulated Data. 
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functions: Compactness and 
Separation 

Prakas, Singh 
& Kishor 
[103], 2019 

-Local optima 
-Lack of balance 
between 
exploration and 
exploitation 
-Prior information 
regarding the 
number of clusters 
-Premature 
convergence 
-Choice of the 
objective function 
-Biased Solution 

-Proposed FPO-MOPSO. 

-Pareto-based methodology is 
adopted for finding diverse trade-
off solutions.  
-To handle premature 
convergence of PSO, introduced 
fitness predator optimizer (FPO) 
in multi-objective optimization.  
-Optimized sum-of-squared-error 
& connectedness. 

-Iris, Vowel, Wine, LD2, 
Parkinson’s, Sonar, Vehicle, 
WPBC, Size5, Square1 

Antunes et al. 
[104], 2020 

-Local Optima 
-Biased solution 

-Proposed new multiobjective 
clustering technique 
-Two objective functions, 
connectivity and variance, are 
used for dividing the dataset into 
partitions. 

-Aggregation, chainlink, 
compound, monkey, R15, 
ds2c2sc13, spiral, 
spiralsquare, two diamonds, 
dyrskjot, eTongueSugar, 
glass, golub, iris, leukemia 

Kuo & 
Zulvia [105], 
2020 

-Biased solution 
-Local Optima 
-Diversity 

-Proposed a new GE-based k-
means multiobjective algorithm. 
-Optimized sum-of-squared-error 
between clusters & sum-of-
distance-within-cluster 

-Iris, Wine, 
Glass, R15, D31, Libras 
movement, Bank note 
authorization, User 
knowledge modelling, Yeast, 
Aggregation." 

Liu et al. 
[106], 2020 

-Enhancing 
convergence  
-Population 
diversity 
-Biased Solution 

-Developed PCA-MOEA 
-Adopted clustering approach: 
one correlated with convergence, 
and the other connected with 
diversity using a uniform 
sampling technique. 
-Optimized average squared error 
(ASE), the covariance matrix 

-UF1–UF9, WFG1–WFG9 
test problems 

Hancer 
[107], 2020 

-Reduce 
dimensionality 
-Optimal Solution 

-Introduced a new multi-
objective DE approach. 

-It helps generate homogeneous 
clusters. 
-Number-of-clusters are evolved 
automatically & reduce-
dimensionality.  

-Liver disorder, E-coli, 
Appendicitis, Pima, Iris, 
WBCD, Ionosphere, Sonar, 
Thyroid, Wine, UKM, 
Dermatology, Breast-tissue, 
& D10CB, D10C10, D50C10, 
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-Optimized Silhouette-index, 
WB-index and feature-subset-
size functions 

D50C20, D100C10, 
D100C20 

Yan et al. 
[108], 2020  

-Optimal Solution 
-Improving 
accuracy 

-Proposed single objective cat 
swarm optimization by 
optimizing cohesion, adopted 
kernel method. 
-Multi-objective CSO considers 
cohesion and connectivity. 
-Pareto-optimization is used for 
balancing the contradicting 
objectives.  

-DS1, DS2 & DS3, Iris, 
WDBC, WCDS, Wine & 
BCW 

Chen et al. 
[109], 2020 

-Computational 
load 
-Population 
diversity 

-Proposed combinatorial multi-
objective pigeon-inspired 
optimization with ring-topology. 
-Employed delta-locus-based 
coding for encoding pigeons.  
-Reduces length of pigeon 
representation and search space 
dimensions.  
-Optimized connectivity and 
compactness 

-Smile, Spiral, The first 
square, The second square, 
The third square 

Zhu et al. 
[110], 2020 

-Prior information 
for the number of 
clusters 

-Proposed EMO-based automatic 
clustering algorithm. 

-Enhanced using two schemes- 
MOAC-L and MOAC-C 

-Iris, Thyroid, Wine, Spiral, 
Flame, Aggregation, Path-
based, 20d-10c, 50d-10c, 
100d-10c, & 200d-10c 
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CHAPTER 3 

IMPROVED WWO ALGORITHM FOR PARTITIONAL 

CLUSTERING 
This chapter adopts a water wave optimization (WWO) algorithm for solving the partitional 

clustering problems. To date, different metaheuristic algorithms have been developed for 

solving the clustering problems for solving clustering problems. As per the no free lunch 

theorem, there is not a single metaheuristic algorithm that can be applied to a variety of datasets 

and also produces optimal clustering solutions. Hence, there is a scope to develop a new 

algorithm that can effectively solve optimization problems. This chapter investigates the 

capability of the water wave optimization algorithm for solving clustering problems. Before 

implementing the WWO algorithm, it was noticed that several shortcomings are associated with 

the WWO algorithm, like lack of global information, premature convergence, and imbalance 

between local and global search. First, these shortcomings are addressed through two 

amendments- the global best information component and decay operator. A detailed description 

of these amendments is explained in subsections 3.3.1-3.3.2. Further, the competency and 

effectiveness of the WWO are evaluated using benchmark clustering problems, and the 

simulation results are compared with several standards and hybrid metaheuristic clustering 

algorithms.    

3.1 CONTRIBUTION 

The main contributions of this chapter are given below: 

• A global best information component is integrated into the search mechanism of the 

WWO algorithm to guide the search in the optimal direction.   

• The premature convergence problem is handled through the decay operator. 

• Eight benchmark clustering datasets are considered to evaluate the competency of the 

WWO algorithm.   

3.2 FUNDAMENTAL OF WATER WAVE OPTIMIZATION 

The WWO algorithm is inspired by shallow water wave theory and applied to solve global 

optimization problems [111]. The WWO algorithm denotes the solution search space in the 

seabed area. It represents the solution in terms of through waves, and a wave contains two 

components - height (h) and wavelength (l). Further, each wave has a maximum height, 
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denoted by hmax, and the wavelength of a wave is set to 0.5. The fitness of a wave fitness is 

assessed through seabed depth. The waves with higher fitness have a smaller distance to the 

stagnant water level. In WWO, three operations are defined at each iteration to achieve the 

optimal global solution. These operations are propagation, refraction and breaking. The 

propagation operation generates a new wave (X1) corresponding to wave (X) with displacement 

at each dimension (d). If the fitness of the new wave is better than an old wave, it replaces the 

old wave and sets the height of wave hmax; otherwise, wave height is decremented by one. The 

solutions search equation for WWO is expressed in equation 3.1. 

X1 	= 		X	 + 	𝑟𝑎𝑛𝑑	(−1, 1) × λ × L%																																																																		(3.1)  

Where rand generates random numbers between [-1, 1], Ld indicates length for dth dimension 

in search space.  

It is assumed that deep water waves contain higher wavelengths but lower heights. In 

comparison, shallow water waves have higher wave heights but lower wavelengths. The 

wavelength is decreased whenever a wave moves from deep to shallow water. This decrement 

of wavelength is computed using equation 3.2. 

λ = λ × α
2(4(5)247(#89)
					(47;<247(#89)																																																																																						(3.2) 

Where f7;<denotes the maximum fitness value,  f7(#	indicates the minimum fitness value of 

the current population, and α is the wavelength reduction-coefficient parameter. A small 

constant ε is used to prevent divide-by-zero, and f(X) denotes the fitness of the wave. When the 

wave height tends to zero, the refraction operator is applied. The new wave (X1) is computed 

using equation 3.3.  

X1 = Gaussian(µ,s)																																																																																												(3.3) 

Mean (µ), and standard deviation (s) are calculated using equations 3.4-3.5, respectively.  

µ =
	𝑋=>?@A +	𝑋A 	

2 																																																																																														(3.4) 

s = 	
	𝑋=>?@A − 𝑋A 	

2 																																																																																														(3.5) 

µ is calculated using existing wave (Xd) and best wave (Xbestd).  s is an average difference 

between the best wave (Xbestd) and the existing wave (Xd). The wavelength is computed through 

equation 3.6.  
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l1 = l
f(X)
	f(X1)																																																																																																						(3.6) 

In equation 3.6, l1 denotes the wavelength of the next wave, f(X1) represents the fitness of the 

new wave (X'),  f(X) denotes the fitness of the old wave, and its wavelength is denoted by	l.  

The breaking operator is applied to break the wave (X) when a wave obtains a better local best 

solution to the current best solution (Xbest). The functionality of the breaking operator to 

generate a new wave (X') is summarized in equation 3.7.  

X1 = 	X	 + 	Gaussian(0, 1) × Ld	 × 		β																																																										(3.7) 

Where β indicates the breaking coefficient, Gaussian(0, 1) generates a random number 

between 0 and 1. If the wave X1 is found better than	X; X1 replaces the old wave	X.  

The algorithmic steps of the basic WWO algorithm are mentioned in Algorithm 3.1 

Algorithm 3.1: Steps of WWO algorithm 

Step 1: Set initial population of P of n waves (solutions) 

Step 2: While (stopping criteria not met), do the following 

Step 3: For each wave X ∈ P  

Step 4: Propagate the wave	(X) to a new position X1 using equation 3.1.   

Step 5: If f(𝑋1) > f(X), then 

Step 6:  If f(X1) > f(X∗), then 

Step 7:   Break the wave X1 using equation 3.7. 

Step 8:   Update the X∗ with X1 

Step 9:  Replace X with X1.   

Step 10: Else, reduce wave (X).h by 1 

Step 11: If wave(X).h=0, then  

Step 12: Refract the wave (X) to new X1 using equations 3.3 and 3.6. 

Step 13: Update the wavelength via equation 3.2.  

Step 14: End while 

Step 15: Return best position of waves 
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3.3 PROPOSED IMPROVED WWO FOR PARTITIONAL CLUSTERING 

This subsection presents an improved WWO algorithm for solving clustering problems called 

IWWO. It is noticed that the local search mechanism of the WWO algorithm is powerful, but 

the global search mechanism is weak [112]. So, due to a weak global search mechanism, 

sometimes the WWO algorithm does not converge on an optimal global solution. The literature 

shows that the PSO algorithm has a strong global-search procedure [113-114]. Hence, the 

weakness of the WWO algorithm is reduced through the global search process of the PSO 

algorithm. In WWO, the propagation phase is responsible for the global search mechanism, but 

the search equation lacks the global best component. Hence, a modified search equation is 

designed for the propagation phase inspired by the global search procedure of the PSO 

algorithm. WWO also suffers from premature convergence issues [115]. In the refraction phase, 

sometimes, wave height drastically decreases, in turn, tends to zero, and the algorithm 

converges without finding an appropriate solution, called premature convergence. This problem 

of the WWO algorithm is handled through a decay operator. It is integrated into the refraction 

operation phase of the WWO algorithm. 

3.3.1 GLOBAL BEST INFORMATION COMPONENT 

This subsection presents the proposed global best information component for the WWO 

algorithm. As discussed earlier, the WWO algorithm has a weak global search mechanism, so 

the WWO algorithm needs to get the optimal solution for fewer problems. Hence, to address 

this issue of WWO, an updated solution search equation is designed, which is inspired by the 

global search procedure of the PSO algorithm. The original global solution search equation is 

expressed in equation 3.1. It is seen that a new wave is produced without the support of the 

global-best and local-best information of the previous wave. The lack of information on global-

best and local-best, in turn, affects the global search capability of WWO. Hence, to improve 

the global solution search mechanism of WWO, a global best information component is 

integrated into the solution search equation, inspired by the PSO algorithm's search mechanism. 

The updated solution search equation is mentioned in equation 3.8. 

X1 	= 	X + CCDE& + rand(−1,1). L(d) × λ																																																																	(3.8)     

3.3.2 DECAY OPERATOR 

In refraction operation, wave height is uninterruptedly decreased and suddenly tends to zero. In 

turn, the algorithm converges without finding the optimal solution, called premature 
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convergence. The solution to this problem is to decrease the wavelength gradually in a stepwise 

manner. Hence, a decay operator is inculcated into the refraction operation to reduce the 

wavelength gradually. An updated search equation to determine the location of the wave using 

the decay operator is expressed in equation 3.9.  

X1 = Nb
X∗ 	+ 	X

2 ,
|X∗ 	− 	X|

2 		d × [(1 − ρ) + ∆X	]																																												(3.9) 

In equation 3.9, ρ signifies the decay operator. It is defined as ρ ∈ [0,1]. ∆X denotes the 

difference between two consecutive waves; X denotes the current wave, whereas X∗ denotes 

the current-best wave.    

3.3.3 STEPS FOR IMPROVED WWO ALGORITHM  

Algorithm 3.2 presents the step-by-step working of the proposed improved WWO algorithm. 

The flow diagram of the proposed improved WWO algorithm is explained in Figure 3.1. 

Algorithm 3.2: Steps of Improved WWO algorithm 

Step 1: Set the initial population of wave (C), such as C) ∈ (j = 	1, 2, . . . , n) 

Step 2: Compute the objective-function value via equation number 1.1.  

Step 3: Consign the data objects to different waves based on minimum objective-

function value.  Find the best wave (CCDE&). 

Step 4: While (the stopping condition is not met), do the following 

Step 5: For each wave X ∈ C 

Step 6: Propagate the wave	(X) to a new position X1 using equation 3.8.   

Step 7: If f(X1) > f(X) then 

Step 8:  If f(X1) > f(X∗) 

Step 9:   Break the wave X1 using equation 3.7. 

Step 10:   Update the X∗ with X1 

Step 11:  Replace X with X1.   

Step 12: Else, Refract the wave (X) to new X1 using equations 3.9 and 3.6. 

Step 13: Update the wavelength using equation 3.2.  

Step 14: Determine the best wave (CCDE&) 
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Step 15: End while 

Step 16: Achieved the best position of waves (cluster centers) 

3.4 EXPERIMENTAL RESULTS 

This section presents the experimental results of the IWWO algorithm. The efficacy of the 

proposed IWWO algorithm is tested over eight datasets, namely, Glass, Vowel, Wine, Balance, 

Thyroid, Iris, Liver disorder (LD), and Contraceptive Method Choice (CMC). These well-

known benchmark clustering datasets are downloaded from the UCI repository. The proposed 

improved WWO algorithm is evaluated over these eight standard clustering datasets. Table 3.1 

gives information on standard clustering datasets used in this work. The proposed IWWO 

algorithm is implemented in MATLAB tool with window operating system on a corei5 

processor with 8 GB.  

3.4.1 PARAMETER SETTING 

The user-defined parameter settings of IWWO are given as  h7;< =12, α=1.0026, k7;<=12, β 

linearly decreasing from 0.25 to 0.001 and n=10. The parameter settings of other algorithms 

are considered the same as described in the corresponding literature. The simulation results of 

IWWO are described as the average results of thirty independent runs.  

Table 3.1: Standard clustering datasets description 

Sr. No. Dataset Clusters Dimension Instances 

1 Glass 7 9 214 

2 Vowel 6 3 871 

3 Wine 3 13 178 

4 Thyroid 3 5 215 

5 Balance 3 4 625 

6 Iris 3 4 150 

7 CMC 3 9 1473 

8 LD 2 6 345 
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Figure 3.1: Flow diagram of proposed improved WWO algorithm 
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3.4.2 PERFORMANCE MEASURES 

The various performance measures are applied to evaluate the simulation results of the IWWO 

algorithm. The description of these performance measures is given as  

(i) Accuracy: The acceptability of an algorithm concerning actual class labels is delivered 

through accuracy. It is measured by mapping the actual label of an object "O" to cluster 

"c". The higher the value given, denotes more accurate the clustering results are. It is 

represented using equation 3.10. 

Accuracy	 = ∑ δ(Actual_Label,map(c))/n#
FG! 																																						(3.10)   

(ii) Intra-cluster distance: It is calculated using the sum of-squared Euclidean distance 

between the cluster center and other data objects of the respective cluster. Minimum 

intra-cluster distance gives a better solution. It is computed through equation 1.1 given 

in Chapter 1. 

(iii)  F-measure: It is computed via precision and recall. The precision is the number of true 

positive results divided by the number of all true positives. In contrast, recall is the 

number of true positives divided by the number of all relevant results. For finding the 

value of F–measure, every cluster defines a query's outcome, and every class is 

represented through a set of permissions for a query. Thus, if each cluster “c” consists 

of a set of “nc” data objects as an outcome of a query, and each class “p” consists of a 

set of “np” data objects needed for a query, then “np,c” gives the number of instances of 

class “p” within cluster “c”. The recall and precision for each cluster “c” and class “p” 

is computed as equations 3.11 and 3.13, respectively. 

Recall	rR(p, c)s =
n0,H
n0

																																																													(3.11) 

and			Precision	rP(p, c)s =
n0,H
nH

																																																	(3.12) 

Therefore, the f-measure is computed using equation 3.13.  

F − measure = 2 ∗ b
P(p, c) ∗ R(p, c)
P(p, c) + R(p, c)d																																							(3.13) 

3.4.3 RESULTS AND DISCUSSION 

This subsection discusses the simulation results of the proposed IWWO algorithm and other 

standard and hybrid clustering algorithms. The simulation results are evaluated using three 
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well-known performance measures – accuracy, intra-cluster distance and f-measure. For a fair 

comparison, eight standard benchmark clustering algorithms widely adopted in literature are 

selected for comparative analysis. These algorithms are K-Means, GA, BAT, DE, ABC, PSO, 

BB-BC, and ACO. Despite this, several popular hybrid clustering algorithms are also chosen 

from the literature to compare the simulation results of the proposed IWWO clustering 

algorithm. These algorithms are the Modified Butterfly Optimization Algorithm (MBOA), 

Chaotic Teaching Learning Based Optimization (Chaotic TLBO), Improved Cat Swarm 

Optimization (ICSO), Krill-Herd algorithm with Harmony search (H-KHA), Memory-enriched 

Big bang-big crunch (MEBB-BC), Improved Krill-Herd (IKH), Improved Cuckoo search and 

modified PSO with K-Harmonic means (ICMPKHM), PSO based Big bang big crunch (PSO-

BB-BC), and Cooperative bare bone PSO (CBPSO). 

3.4.3.1 COMPARISON WITH STANDARD CLUSTERING ALGORITHMS  

This subsection discusses the simulation results of the proposed IWWO algorithm and other 

standard clustering algorithms.  The simulation results of the proposed IWWO algorithm and 

standard clustering algorithms using accuracy measures are reported in Table 3.2. The proposed 

IWWO algorithm provides more accurate results than other algorithms except for the balance 

dataset. In the case of the balance dataset, the PSO algorithm achieves a better accuracy rate, 

i.e. 89.76%. In contrast, the accuracy rate of the proposed IWWO algorithm is 88.78% for the 

balance dataset, which is the second highest among all other algorithms. It is stated that IWWO 

algorithms give more accurate clustering results with all datasets except balance. In the case of 

the balance dataset, it is also said that the proposed IWWO is a competitive algorithm compared 

to others.      

Table 3.2: Accuracy measure results of proposed improved WWO and standard clustering algorithms 

Dataset 

Standard Clustering Algorithms 

K-means PSO ACO ABC DE GA BB-BC BAT Improved 
WWO 

CMC 39.69 44.1 36.89 40.06 39.58 43.3 44.67 42.62 48.23 

LD 52.16 54.05 52.89 49.89 52.01 49.28 50.2 53.07 96.51 

Thyroid 63.76 68.93 64.87 64.39 65.76 63.2 63.86 63.82 90.23 

Iris 82.33 84.13 72.87 89.03 88.37 78.34 83.25 90.5 93.21 
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Glass 51.87 53.73 37.36 48.43 48.48 48.97 55.53 48.76 68.81 

Wine 67.53 67.94 59.21 70.34 71.1 65.73 66.43 65.48 74.63 

Vowel 51.16 84.04 51.69 56.31 53.41 84.7 84.32 57.21 89.47 

Balance 84.99 89.76 74.28 76.67 74.96 78.01 79.69 86.75 88.78 

The intra-cluster distance measure is also adopted for evaluating the results of the proposed 

IWWO concerning standard clustering algorithms. Table 3.3 demonstrates the intra-cluster 

distance results of the proposed IWWO algorithm and other standard clustering algorithms. 

From the results, it is seen that the proposed IWWO algorithm gives minimum intra-cluster 

distance for datasets- thyroid (1.04E+03), wine (1.63E+04), balance (5.22E+04) and vowel 

(1.53E+05). While IWWO also competes with the other standard clustering algorithms for the 

rest of the datasets.  

Table 3.3 Intra-cluster distance measure results of improved WWO and other standard clustering algorithms 

Datasets 

Standard Clustering Algorithms 

K-means PSO ACO ABC DE GA BB-BC BAT 
Improved 

WWO 

CMC 5.59E+03 5.85E+03 5.83E+03 5.94E+03 5.95E+03 5.76E+03 5.71E+03 5.79E+03 5.75E+03 

LD 1.17E+04 2.39E+02 2.41E+03 9.85E+03 1.15E+04 5.44E+03 2.32E+02 2.36E+02 1.13E+03 

Thyroid 2.39E+03 1.11E+04 1.99E+03 1.98E+03 2.96E+03 1.22E+04 1.94E+03 1.39E+03 1.04E+03 

Iris 9.20E+01 9.86E+01 1.01E+02 1.08E+02 1.21E+02 1.25E+02 9.68E+01 1.15E+02 9.30E+01 

Glass 3.79E+02 2.76E+02 2.19E+02 3.29E+02 3.62E+02 2.82E+02 6.64E+02 3.75E+02 2.37E+02 

Wine 1.81E+04 1.64E+04 1.64E+04 1.69E+04 1.68E+04 1.65E+04 1.67E+04 1.71E+04 1.63E+04 

Vowel 1.60E+05 1.58E+05 1.89E+05 1.70E+05 1.81E+05 1.59E+05 1.94E+05 1.96E+05 1.53E+05 

Balance 1.20E+05 6.20E+04 5.94E+04 6.61E+04 6.78E+04 6.91E+04 5.96E+04 6.02E+04 5.22E+04 
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Table 3.4 shows the results of IWWO with respect to standard clustering algorithms using f-

measure. It is revealed that the proposed IWWO obtains a higher F-measure rate than other 

algorithms except for the wine dataset. For the wine dataset, BB-BC archives a higher f-

measure rate, i.e. 0.566, while the proposed IWWO achieves a second higher f-measure rate, 

i.e. 0.531. The results show that IWWO gives better f-measure rates and a competitive 

algorithm for clustering problems. 

Table 3.4: Demonstrate F-measure results for improved WWO algorithm and other standard clustering  

                  algorithms 

Dataset 
Standard Clustering Algorithms 

PSO GA K-means ACO ABC DE BB-BC BAT IWWO 

CMC 0.331 0.324 0.334 0.328 0.428 0.343 0.446 0.462 0.509 

LD 0.493 0.482 0.467 0.487 0.508 0.485 0.524 0.536 0.585 

Thyroid 0.778 0.763 0.731 0.783 0.796 0.768 0.784 0.789 0.812 

Iris 0.782 0.778 0.78 0.779 0.783 0.773 0.781 0.782 0.793 

Glass 0.412 0.561 0.426 0.402 0.411 0.406 0.462 0.431 0.611 

Wine 0.518 0.515 0.521 0.522 0.519 0.518 0.566 0.529 0.531 

Vowel 0.648 0.647 0.652 0.649 0.638 0.645 0.641 0.645 0.655 

Balance 0.726 0.716 0.724 0.741 0.743 0.730 0.739 0.740 0.744 

 

3.4.3.2 COMPARISON WITH HYBRID CLUSTERING ALGORITHMS 

The comparative analysis of simulation results of the IWWO algorithm and other hybrid 

clustering algorithms based on accuracy measure is presented in Table 3.5. It is revealed that 

the proposed IWWO algorithm obtains better accuracy results for most of the datasets except 

the iris, glass, balance, and wine datasets. It is seen that MBOA gives a better accuracy rate for 

the iris (95.43), whereas improved WWO gives an accuracy rate of 93.21%. For the glass 

dataset, Chaotic TLBO obtains a higher accuracy rate of 69.52%, whereas improved WWO 
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offers 68.81%. Similarly, for the wine dataset, H-KHA gives an accuracy rate of 75%, and 

improved WWO attains 74.63% of accuracy. The PSO-BB-BC provides higher accuracy of 

89.21% for the balance dataset, whereas the improved WWO gives 88.78%. However, it is also 

stated that the proposed IWWO algorithm achieves comparable performances for most datasets 

and obtains either the second or third-highest results among all algorithms.  

Table 3.5: Illustrates accuracy results of the proposed IWWO algorithm and hybrid clustering algorithms 

Dataset 

Hybrid Clustering Algorithms 

MBOA ICSO Chaotic 
TLBO H-KHA MEBB-

BC IKH ICMPKHM PSO-BB-
BC CBPSO IWWO 

CMC 44.23 46.78 46.54 47.45 46.58 46.63 46.69 47.61 39.58 48.23 

LD 50.67 53.02 53.12 51.91 49.86 52.96 52.15 52.17 53.65 96.51 

Thyroid 59.36 68.24 67.38 65.4 65.22 66.91 66.82 56.83 72.21 90.23 

Iris 95.43 91.35 91.19 89.24 90.02 89.87 92.44 90.52 90.79 93.21 

Glass 58.73 69.06 69.52 58.89 58.73 68.39 69.02 69.52 51.92 68.81 

Wine 70.31 73.24 72.53 75 72.63 72.37 72.88 73.58 71.31 74.63 

Vowel 56.92 65.28 64.91 66.98 59.21 61.76 59.65 60.18 51.72 89.47 

Balance 71.95 78.61 81.04 75.42 68.42 76.42 77.42 89.21 76.62 88.78 

The simulation results of the proposed IWWO algorithm are also compared to other hybrid 

clustering algorithms using intra-cluster distance. The comparison of simulation results using 

intra-cluster distance measure is reported in Table 3.6. It is noticed that the IWWO algorithm 

gives minimum intra-cluster distance for the iris (9.30E+01), wine (1.63E+04) and balance 

(5.22E+04) datasets. For the CMC dataset, MBOA obtains minimum intra-cluster distance with 

a value of 5.21E+03, while improved WWO gives 5.75E+03. Similarly, for the LD dataset, 

ICSO gives a minimum intra-cluster value of 4.09E+02 and IWWO attains 1.13E+03 value. 

PSO-BB-BC gives a minimum intra-cluster of 9.82E+02 whereas improved WWO obtains 

1.04E+03 minimum intra-cluster distance value for dataset thyroid. Further, it is perceived that 
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ICMPKHM gets minimized intra-cluster distance values for glass (1.99E+02) and vowel 

(1.47E+05) dataset, whereas improved WWO gives 2.37E+02 and 1.53E+05 for glass and 

vowel dataset respectively. 

Table 3.6: Intra-cluster distance results of improved WWO and other hybrid clustering algorithms 

Datasets 

Hybrid Clustering Algorithms 

MBOA ICSO 
Chaotic 

TLBO 
H-KHA MEBBC IKH ICMPKHM 

PSO-BB-

BC 
CBPSO IWWO 

CMC 5.21E+03 5.32E+03 5.53E+03 5.60E+03 5.53E+03 5.69E+03 5.70E+03 5.57E+03 5.54E+03 5.75E+03 

LD 1.32E+03 4.09E+02 4.98E+02 3.14E+03 1.36E+03 3.11E+03 3.09E+03 9.98E+03 1.00E+04 1.13E+03 

Thyroid 2.16E+03 9.90E+02 1.08E+03 1.80E+03 1.26E+03 1.77E+03 1.39E+03 9.82E+02 1.86E+03 1.04E+03 

Iris 9.83E+01 9.57E+01 9.69E+01 9.65E+01 9.68E+01 9.71E+01 9.58E+01 9.60E+01 9.69E+01 9.30E+01 

Glass 2.31E+02 2.26E+02 2.38E+02 2.16E+02 2.27E+02 2.23E+02 1.99E+02 2.19E+02 2.13E+02 2.37E+02 

Wine 1.71E+04 1.69E+04 1.68E+04 1.66E+04 1.68E+04 1.65E+04 1.67E+04 1.63E+04 1.64E+04 1.63E+04 

Vowel 1.61E+05 1.59E+05 1.55E+05 3.52E+05 1.57E+05 1.56E+05 1.47E+05 1.55E+05 1.51E+05 1.53E+05 

Balance 5.96E+04 5.39E+04 5.36E+04 6.78E+04 5.83E+04 6.01E+04 6.26E+04 6.19E+04 6.20E+04 5.22E+04 

The experimental results of the proposed IWWO and other hybrid clustering algorithms using 

f-measure are illustrated in Table 3.7. The IWWO attains higher f-measure values for CMC, 

LD, Thyroid, Iris, and Glass datasets than other standard clustering algorithms. Whereas it also 

competes with the rest of the datasets. The ICMPKHM gives a higher f-measure value (0.558) 

for the wine dataset, whereas the f-measure rate of the IWWO algorithm is 0.531. H-KHA give 

the higher f-measure value (0.671) vowel dataset; for the same, IWWO achieves 0.655 f-

measure rates. For the balance dataset, chaotic TLBO gives a higher f-measure rate (0.792), 

while IWWO obtains 0.744 f-measure rates. The experimental results show that IWWO is a 

competitive and efficient algorithm for clustering tasks.  
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Table 3.7: Illustrates F-measure results of proposed improved WWO algorithm and hybrid clustering algorithms 

Dataset 
Hybrid  Clustering Algorithms 

MBOA ICSO 
Chaotic 

TLBO 
IKH H-KHA 

PSO-BB-

BC 
MEBBC CBPSO ICMPKHM IWWO 

CMC 0.435 0.339 0.345 0.457 0.443 0.461 0.438 0.389 0.456 0.509 

LD 0.498 0.528 0.517 0.519 0.512 0.506 0.483 0.534 0.521 0.585 

Thyroid 0.576 0.668 0.698 0.658 0.634 0.549 0.649 0.704 0.641 0.812 

Iris 0.79 0.784 0.786 0.783 0.787 0.784 0.782 0.787 0.791 0.793 

Glass 0.574 0.427 0.434 0.459 0.462 0.471 0.476 0.421 0.466 0.611 

Wine 0.524 0.526 0.528 0.543 0.546 0.528 0.532 0.526 0.558 0.531 

Vowel 0.634 0.646 0.635 0.663 0.671 0.652 0.648 0.651 0.649 0.655 

Balance 0.704 0.767 0.792 0.736 0.739 0.764 0.687 0.734 0.741 0.744 

 

3.4.3.3 CONVERGENCE BEHAVIOUR OF IMPROVED WWO 

The convergence behaviour of the proposed IWWO and other standard algorithms like K-

means, GA, BB-BC, BAT, ACO, PSO, ABC, and DE clustering algorithms is shown in Figure 

3.2 (a-h). The X-axis denotes the number of iterations, and Y-axis represents the intra-cluster 

distance. It is concluded that the proposed IWWO algorithm gives a better convergence rate for 

most datasets. It is also stated that the proposed IWWO algorithm competes with well-known 

clustering algorithms and yields better clustering results. 
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Figure 3.2 (a): Balance Dataset 

 

 

Figure 3.2 (b): CMC Dataset 

 

 

 

 

 

 

 

 

 

Figure 3.2 (c): Vowel Dataset 
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Figure 3.2 (d): LD Dataset 

 

Figure 3.2 (e): Thyroid Dataset 

 

Figure 3.2 (f): Iris Dataset 
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Figure 3.2 (g): Glass Dataset 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 (h): Wine Dataset 

Figure 3.2 (a-h): Convergence behavior of IWWO and standard clustering algorithms based on intra-cluster 
distance  

3.5 SUMMARY 

This chapter presents an IWWO clustering algorithm for effective cluster analysis. In the 

proposed IWWO algorithm, two amendments are recommended to improve the performance 

of the WWO algorithm. These amendments are (i) an updated global search mechanism and 

(ii) a decay operator. The first amendment is an updated global search equation based on PSO, 

and this amendment aims to improve the global search mechanism of the WWO algorithm. The 
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second amendment corresponds to the inclusion of a decay operator, and this amendment seeks 

to handle the premature convergence issue of the WWO algorithm. The well-known eight 

benchmark datasets are considered for evaluating the performance of IWWO and tested over 

the accuracy, intra-cluster distance, and f-measure. Further, the results of the proposed IWWO 

clustering algorithm are compared with several popular standards and hybrid clustering 

algorithms. The results showed that the proposed IWWO clustering algorithm achieves an 

average higher accuracy of 12.90 % and 12.96 % for standard and hybrid clustering algorithms, 

respectively. The improvement in F-measure is an average of 1.7% and 5.2% in contrast to 

standard and hybrid clustering algorithms. On the analysis of the intra-cluster parameter, it is 

found that IWWO obtains minimum intra-cluster distance with most of the datasets in contrast 

to other algorithms. Hence, it is said that the IWWO algorithm is capable of performing 

clustering effectively.  
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CHAPTER 4 

IMPROVED BAT ALGORITHM FOR PARTITIONAL 

CLUSTERING 
This chapter presents an improved bat (IBAT) algorithm for solving partitional clustering 

problems. In literature, the bat algorithm (BA) is adopted for solving various optimization 

problems and provides competitive results compared to the same class of algorithms. But, 

several issues have affected the performance of the bat algorithm, such as lack of population 

initialization/selection methods, convergence rate, and trapped in local optima. This chapter 

addresses the issues mentioned above about the bat algorithm and provides viable solutions for 

improving the performance of the bat algorithm. An improved variant of the bat algorithm is 

developed after fixing all these issues called the IBAT algorithm. The performance of the 

proposed IBAT algorithm is tested on several clustering problems, and results are compared 

with popular standard and hybrid clustering algorithms.  

4.1 CONTRIBUTION 

This section highlights the contribution of this chapter. In the literature, it is found that several 

issues affect the outcome of the bat algorithm [116-118]. These issues can be summarized as a 

lack of population initialization concepts [118-119], trapped in local-optima in the last 

iterations [120-121], imbalance search mechanisms [121-122] and convergence speed [122-

123]. The bat algorithm converges on near-optimal solutions rather than optimal solutions 

sometimes. The main contribution of this chapter is given below.     

• To develop an enhanced co-operative co-evolution method for handling the initialization 

issue of the bat algorithm. 

• To design an elitist strategy for improving the convergence rate. 

• To develop a neighbourhood search mechanism for discovering optimal candidate 

solutions and also handling local optima.   

4.2 BAT ALGORITHM 

This section discusses the basic bat algorithm. The bat algorithm is inspired by the echolocation 

behaviour of micro-bats, especially prey detection and avoiding obstacles [125]. The micro-bat 

emits a short pulse in search of prey and also considers the echo of objects near to find the shape 
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and size of prey. These characteristics of micro-bats can be defined as loudness and emission 

rate and can be computed using equations 4.1-4.2. 

A(&8! = α(A(&)																																																																																																												(4.1) 

r(&8! = [1 − exp(−α)]																																																																																										(4.2) 

Here,  A(& denotes loudness,	r(& indicates pulse-emission rate, and	α	 is the user-defined variable 

whose value is in the range of 0 and 1. Further, another parameter, called frequency, is also 

described for the bat algorithm and computed using equation 4.3.  

f(& = f7(#& +	(f7;<& – f7(#& )rand()																																																																					(4.3) 

Where, f7(#&  is the lowest frequency and	f7;<&  denotes the highest frequency at the time stamp 

t,	and rand() generates a random number in between [0-1]. The velocity of bats is computed 

through equation 4.4. 

v(& =	v(&2! + (x(& − x∗)f(&																																																																																							(4.4)	 

Where, v(&2! denotes the initial velocity,	x(& represents the current position. 	x∗ corresponds to 

the current best position. Thus, updated positions of bats are given through Equation nos. 4.5-

4.6. 

x(&8! = X#DI +	v(&																																																																																																				(4.5) 

X#DI = x(& + randi[−1,1]A(&																																																																																			(4.6) 

Here, 	X#DI corresponds to the new position, and the final updated position is denoted by 

	x(&8!. The algorithmic steps of the bat algorithm are given in algorithm 4.1. 

Algorithm 4.1: Bat algorithm  

Step 1: Specify the objective function f(x). 

Step 2: Initialize bat population (x() and velocity (v() (i= 1 to n). 

Step 3: Initialize loudness (A(),  pulse rates (r(), and initial  

      frequency	(f()	using equations 4.1 to 4.3. 

Step 4: While(t < t7;<), do the following: 

Step 5: Vary r(	and	A(. 

Step 6: New solutions are generated by adjusting frequencies. 
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Step 7: Update (v() and position using equations 4.4 to 4.6. 

Step 8: if (rand >r()      

  Accept solution	 from the best solutions and generate local  

  solution from selected best solutions. 

Step 9: End if 

Step 10: Generate new solutions randomly 

Step 11: If (rand >A() and f(x() > 	 f(x)), then 

Step 12: Accept the new solution. 

Step 13: Rank the bats and find the current best solution. 

Step 14: Check for termination conditions. 

Step 15: Obtain optimal location of bats.  

4.3 IMPROVED BAT ALGORITHM FOR CLUSTERING 
The three improvements are recommended in the bat algorithm for improving its performance. 

These improvements are summarized as 

(i)  Population initialization issues are handled through enhanced cooperative co- 

    evaluation.  

(ii)  An elitist strategy is designed for better trade-offs between search mechanisms and  

    convergence rate. 

(iii)  Local optima issues and good candidate solutions are handled through a  

    neighborhood strategy.  

4.3.1 POPULATION INITIALIZATION 

This subsection describes the population initialization issue. It is studied that the choice of 

initial cluster points greatly influences the efficiency of the clustering algorithm [118, 121]. 

Many studies are reported on initialization strategies and provided good solutions for the initial 

cluster selection problem [126-129]. An enhanced cooperative co-evolution strategy is 

developed to select initial cluster centers to improve the bat algorithm's performance.  The 

proposed method follows the divide and conquer paradigm. It divides the dataset into sub-

datasets. Further, sub-datasets are considered one by one for resolving the cluster center 

selection issue. The final solution is the outcome of each sub-dataset solution. Thus, the 

proposed cooperative co-evolution method is based on the centroid-selection mechanism. It 
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considers three norms: (i) the number of partitions, (ii) partition size, and (iii) the choice of 

criteria for population initialization. The population can be described in terms of data instances, 

and it is divided among pre-defined partitions. Partitions for a given dataset are set to K number 

of clusters as shown in equation 4.7. 

p# ∝ K																																																																																																								(4.7) 

Where p# indicates the number of partitions. K represents the number of clusters. The 

subpopulation size is computed using equation 4.8.  

pE =	TP K⁄ 																																																																																																	(4.8) 

Where TP denotes the total size of the population (i.e., data instances in a dataset), K 

corresponds to the number of clusters and pE denotes subpopulation size. The number of 

subpopulations is calculated via equation 4.9. 

⎩
⎪⎪
⎨

⎪⎪
⎧

pE! = 1	to	⌈pE⌉
pE" = ⌈UL(pE!) + 1⌉…… . . to……… . ⌈pE! + pE⌉

………………………
pE(#2!) = �UL(pE(#2")) + 1�		to. . . +⌈pE"⌉ + ⌈pE!⌉ + ⌈pE⌉

pE# = �UL(pE(#2!)) + 1� +�⌈pE⌉
J2!

#GK

n = 	 {1, 2, 3……K}		(4.9) 

Where, pE!, pE", … pE#	denotes subpopulations, and UL denotes the upper limit in a sub-

population. Further, a suitable centroid is chosen for each sub-population using equation 4.10.  

	C,# = min	(pE#) + (max	(pE#) − min	(pE#)) ∗ rand(0,1);	Where	n = 1	to	K										(4.10) 

Here, C, specifies kth cluster-center, min	(p#)	 is minimum and max	(p#) is the maximum 

value of each nth subpopulation (pE#). rand () is a random number generator. 

4.3.2 ELITIST STRATEGY 

The convergence speed is another essential element for achieving good performance, especially 

for effective cluster analysis. The convergence rate depends on the search pattern of an 

algorithm to determine the optimal solutions.  In this work, an advanced elitist strategy is 

designed to improve the convergence rate of the bat algorithm. This strategy considers the best 

position of the previous iteration, and this best position passes to subsequent iterations until it 

cannot become the second best.   The elitist approach comprises two phases- (i) the evaluation 

phase and   (ii) updating phase. The evaluation phase determines the personal best (	XLCDE&) and 

global-best positions (XMCDE&). These positions i.e. XMCDE& and 	XLCDE& are computed using the 
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comparison operator described in equations 4.11-4.12.  

XLCDE& = min(fitness	value)																																																																																				(4.11) 

XMCDE& = min	(distance	value)																																																																															(4.12) 

Further, a fitness function is used for obtaining the personal best (XLCDE&) and it is mentioned 

in equation 4.13. 

F(CJ) =�
SSE(CJ)

∑ SSE(CJ)J
JG!

J

J∈!

																																																																				(4.13) 

Here, SSE represents the sum-of-square error. CJ		denotes to	K&'centroid object, global best 

position (XMCDE&) is described using the minimum value of the distance function or objective 

function, and the personal best position (XLCDE&) is described using the minimum value of the 

fitness function.  

Updating phase considers the personal and global best positions of the evaluation phase and 

updates the frequency, velocity, and position of the bat using the current best positions. A 

comparison between the current and previous best positions is done, and choose the best one. 

The process of comparison is summarized in equations 4.14-4.15.   

XLCDE& = �
XLCDE&&2! = X0CDE&& 										fit(t) <= fit(t − 1)
XLCDE&& = X0CDE&&2! 										fit(t) >= fit(t − 1)

																									(4.14) 

XMCDE& = �
XMCDE&&2! = XMCDE&& 																					s(t) ≤ s(t − 1)
XMCDE&& = XMCDE&&2! 																					s(t) ≥ s(t − 1)

																					(4.15) 

Further, the bat algorithm's frequency, velocity, and search equations are updated using 

equations 4.16-4.19.   

f(& =
min(XMCDE&& ) + (max(XMCDE&& ) − min	(XMCDE&& ))β

max	(XLCDE&& )
																															(4.16) 

v(& = v(&2! + (XMCDE&& − XLCDE&& )f(&																																																																					(4.17) 

X#DI =	XMCDE&& + randi[−1,1]																																																																							(4.18) 

X(& = �
XMCDE&																															if	rand > r(
X#DI + v(&																									otherwise

																																																				(4.19) 
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where, f(&, v(&	and		X(&		denotes the frequency, velocity and position of i&' bat, 

min(XMCDE&& )	denote minimum and max(XMCDE&& ) represents the maximum value of sum-

function linked with XMCDE&&  position. max(XLCDE&& ) represents the maximum value of the fitness 

function associated with the personal best position.  β	denotes random value within 0 and 1. 

4.3.3 NEIGHBORHOOD SEARCH MECHANISM  

This subsection describes the Q-learning-based approach as a neighbourhood search 

mechanism for avoiding the local optima problem of the bat algorithm. It is seen that the 

performance of the clustering algorithm is degraded when an algorithm is trapped in local 

optima [130]. Researchers have developed different strategies to deal with local optima issues 

[131-132]. It is also handled through a Q-learning-based neighbourhood-search mechanism 

[133]. It consists of two steps – (i) identification and (ii) evaluation. Identification corresponds 

to determining neighbouring data objects and neighbourhood boundaries.  Further, the Q-

learning-based concept is applied to update the positions of initial cluster points. The Q-

learning-based neighbourhood search mechanism is illustrated in Figure 4.1(a-c).   

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 4.1 (a-c): Illustrate Neighbourhood Search Mechanism based on Q-learning 

Initial Cluster Point 

Figure 4.1(a): Data Objects and Initial cluster 
points 

Neighbourhood Boundary  

Figure 4.1(b): Neighbourhood Boundary and neighbouring 
data   

Updated Cluster Point  

Figure 4.1(c): Evaluate new cluster point using Q-Learning 
concept 
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In evaluating phase, neighbouring data objects are determined using Euclidean distance 

measure.  In this work, the neighbouring boundary is restricted to five data objects (minimum 

Euclidean distance from cluster points), and this process is illustrated in Figure 4.1(b). Let X( 

corresponds to i&' cluster center and	X(,#D(O' represents a set of neighbouring data objects of 

i&'cluster center. X(,#D(O' is described as X(,#D(O' = {X(,!, X(,", ……X(,P} where neigh=1 to 5.    

The updated position of initial cluster points is also computed in the evaluation step shown in 

Figure 4.1(c). A Q-learning mechanism is applied to calculate the positions of neighbourhood 

data objects and update the cluster points. So, firstly, the Q-table is calculated, followed by 

action.  The rewards are measured and based on the reward Q-table are updated. This process 

is summarized using equation 4.20. 

Q′(s, a) 		= 	Q(s, a) 	+ α ∗ [R(s, a) + γ ∗ maxQ1(s1 + a1) − Q(s, a)]						(4.20) 

In equation 4.20, the new Q-value for the state (s) and action (a) is represented by Q′(s, a), the 

current value is given by Q(s, a), α denotes the learning rate. The reward for action for given 

state a is represented as R(s, a), γ signifies the discount rate. The maximum expected future 

reward is denoted as the maxQ1(s1 + a1).  

4.3.4 STEPS OF IMPROVED BAT ALGORITHM FOR CLUSTERING 

Algorithm 4.2 explains the step-by-step procedure of an improved bat algorithm for effective 

clustering.  

Algorithm 4.2: Improved Bat algorithm for clustering 

Step 1: Upload the dataset, and specify the number of clusters  	

	K( ∈ (i = 	1, 2, . . . , n) 

Step 2:  Choose initial cluster locations using enhanced cooperative co-  

        evolution strategy equations (4.7 to 4.10) 

Step 3:  Initialize pulse rates (r(), loudness (A(), and initial velocity	(v()	using    

 equations 4.1-4.2 

Step 4:  Evaluate the objective function using equation 1.1 and assign objects  

  to clusters with minimized objective function values  

Step 5: Apply neighbourhood strategy to determine ( X#D(O') position using  

     equation 4.20 

Step 6:  Apply elitist strategy to calculate XLCDE& and XMCDE&  positions using  



 66 

      equations 4.11-4.12 

Step 7: While (t < max_number_iterations), do following 

Step 8:  Calculate pulse frequency (f(&) and velocity (v(&) using equations 4.16- 

       4.17 

Step 9:  If (rand >r()      

          Accept X# position as solution 

             Else   

                Update the position using Equations	(4.18-4.19) 

         Increase r(	and reduce A( 

          Accept the new solution 

Step 10: Recalculate the objective function and assign items with the minimum  

         objective function values 

Step 11: Update XLCDE& and XMCDE& using Equations 4.14 and 4.15, respectively 

Step 12:  Apply neighbourhood strategy 

Step 13: Memorize the result and store it in the memory pool t=t+1; 

Step 14: Check termination Condition 

Step 15: Obtain a global optimal solution  

Figure 4.2 illustrates the flow diagram of the proposed IBAT algorithm, and its working is 

divided into three phases: initialization, evaluation and updating. In the initialization phase, 

user-defined parameters are initialized. This phase also contains the enhanced cooperative co-

evolution strategy for the selection of initial centroids. The evaluation phase computes the 

objective function described in terms of Euclidean distance.  Further, the data objects are 

assigned to clusters with minimum objective function values. This phase also includes a Q-

learning-based neighbourhood strategy to prevent local optima. If the candidate solution is not 

improved, it invokes the neighbourhood search mechanism.  In the updating phase, the bats' 

position is updated through local and global search mechanisms. Further, the emission rates of 

the bat algorithm are compared with a random number [0, 1]. The neighbouring solution is 

accepted if the emission rate is higher than the random number. Otherwise, some variations are 

made in emission rate and loudness to compute a new value for the solution. The evaluation 

and updating phases are repeated until the criteria are not met. 
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Figure 4.2: Flow diagram of improved Bat algorithm for clustering 



 68 

4.4 EXPERIMENTAL RESULTS  

This section presents the simulation results of the IBAT algorithm and other popular clustering 

algorithms. The performance of IBAT is assessed over eight well-known clustering datasets, 

and details of these datasets are mentioned in Table 3.1 of chapter 3.  The proposed IBAT 

algorithm is implemented in MATLAB using Window OS, a corei5 processor with 8GB RAM. 

These well-known performance measures (accuracy, intra-cluster distance and f-measure) are 

considered for evaluating the performance of the IBAT algorithm. The IBAT algorithm 

simulation results are compared with several standards and hybrid metaheuristic clustering 

algorithms. The standard benchmark clustering algorithms are K-Means, GA, BAT, DE, ABC, 

PSO, BB-BC, and ACO, while the hybrid clustering algorithms are MBOA, Chaotic TLBO, 

ICSO, H-KHA, MEBB-BC, IKH, ICMPKHM, PSO-BB-BC and CBPSO. 

4.4.1 PARAMETER SETTING 

The parameter setting of the proposed IBAT algorithm is given below: population= K * d, 

loudness(A()  ∈ (0.1, 0.9)	, the initial velocity is set to 0.1, the value of a is 0.5, max_iterations 

are set to 100, and the number of partitions is considered as K.   

4.4.2 RESULTS AND DISCUSSION 

This subsection discusses the simulation results of the proposed IBAT and other popular 

clustering algorithms. The efficacy of the proposed IBAT algorithm is tested over eight 

clustering datasets and evaluated using accuracy, f-measure, and intra-cluster distance 

measures.  

4.4.2.1 COMPARISON WITH STANDARD CLUSTERING ALGORITHMS 

This subsection presents the simulation results of the proposed IBAT algorithm and standard 

clustering algorithms. The experimental results of the proposed IBAT and other standard 

clustering algorithms using accuracy are illustrated in Table 4.1. It is seen that the proposed 

IBAT algorithm obtains more accurate results for LD, thyroid, glass, iris, wine and CMC 

datasets. The accuracy rates of the IBAT algorithm for these datasets are 54.02%, 79.98%, 

69.17%, 93%, 76.01%, and 48.21, respectively. For the Vowel dataset, GA achieves more 

accuracy, i.e. 84.7 %, while for the Balance dataset, PSO provides more accurate results, i.e. 

89.76%. Table 4.2 presents the simulation results of the proposed IBAT and standard clustering 

algorithms using intra-cluster distance. The simulation results showed that the proposed IBAT 

algorithm achieves minimum intra-cluster distance with most datasets except for LD. It is seen 

that the BB-BC algorithm obtains minimum intra-cluster distance (2.32E+02) for the LD 
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dataset, while the IBAT algorithm gets the intra-cluster distance (1.23E+03). Overall, it is said 

that IBAT is an efficient algorithm for data clustering.   

Table 4.1: Accuracy results of proposed IBAT and standard clustering algorithms 

Dataset 
Simple Clustering Algorithms 

K-means PSO ACO ABC DE GA BB-BC BAT IBAT 

CMC 39.69 44.1 36.89 40.06 39.58 43.3 44.67 42.62 48.21 

LD 52.16 54.05 52.89 49.89 52.01 49.28 50.2 53.07 54.02 

Thyroid 63.76 68.93 64.87 64.39 65.76 63.2 63.86 63.82 79.98 

Iris 82.33 84.13 72.87 89.03 88.37 78.34 83.25 90.5 93 

Glass 51.87 53.73 37.36 48.43 48.48 48.97 55.53 48.76 69.17 

Wine 67.53 67.94 59.21 70.34 71.1 65.73 66.43 65.48 76.01 

Vowel 51.16 84.04 51.69 56.31 53.41 84.7 84.32 57.21 67.11 

Balance 84.99 89.76 74.28 76.67 74.96 78.01 79.69 86.75 88.92 

 

Table 4.2: Results of intra-cluster distance measure of proposed IBAT and standard clustering  

Datasets 
Simple Clustering Algorithms 

K-means PSO ACO ABC DE GA BB-BC BAT IBAT 

CMC 5.59E+03 5.85E+03 5.83E+03 5.94E+03 5.95E+03 5.76E+03 5.71E+03 5.79E+03 5.52E+03 

LD 1.17E+04 2.39E+02 2.41E+03 9.85E+03 1.15E+04 5.44E+03 2.32E+02 2.36E+02 1.23E+03 

Thyroid 2.39E+03 1.11E+04 1.99E+03 1.98E+03 2.96E+03 1.22E+04 1.94E+03 1.39E+03 1.25E+03 

Iris 9.20E+01 9.86E+01 1.01E+02 1.08E+02 1.21E+02 1.25E+02 9.68E+01 1.15E+02 9.16E+01 
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Glass 3.79E+02 2.76E+02 2.19E+02 3.29E+02 3.62E+02 2.82E+02 6.64E+02 3.75E+02 1.96E+02 

Wine 1.81E+04 1.64E+04 1.64E+04 1.69E+04 1.68E+04 1.65E+04 1.67E+04 1.71E+04 1.61E+04 

Vowel 1.60E+05 1.58E+05 1.89E+05 1.70E+05 1.81E+05 1.59E+05 1.94E+05 1.96E+05 1.51E+05 

Balance 1.20E+05 6.20E+04 5.94E+04 6.61E+04 6.78E+04 6.91E+04 5.96E+04 6.02E+04 5.01E+04 

Further, the simulation results of the proposed IBAT and other standard clustering algorithms 

using F-measure are presented in Table 4.3. The proposed IBAT algorithm gives a higher f-

measure rate among all datasets except the wine dataset. For the wine dataset, BB-BC shows a 

higher f-measure rate (0.566), while IBAT has an f-measure rate of 0.564. Hence, it is 

concluded that the IBAT algorithm is more competitive and proficient for solving clustering 

problems and provides state-of-art clustering results.   

Table 4.3: Experimental results of proposed IBAT and standard clustering algorithms using f-measure.  

Dataset 

Simple Clustering Algorithms 

PSO GA K-means ACO ABC DE BB-BC BAT IBAT 

CMC 0.331 0.324 0.334 0.328  0.428 0.343  0.446  0.462  0.501 

LD 0.493 0.482 0.467 0.487 0.508  0.485  0.524  0.536  0.529 

Thyroid 0.778 0.763 0.731 0.783 0.796  0.768  0.784  0.789  0.79 

Iris 0.782 0.778 0.78 0.779 0.783 0.773 0.781 0.782 0.788 

Glass 0.412 0.561 0.426 0.402 0.411 0.406 0.462 0.431 0.635 

Wine 0.518 0.515 0.521 0.522 0.519 0.518 0.566 0.529 0.564 

Vowel 0.648 0.647 0.652 0.649 0.638 0.645 0.641 0.645 0.653 

Balance 0.726 0.716 0.724  0.741 0.743  0.730  0.739 0.740  0.794 
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4.4.2.2 COMPARISON WITH HYBRID CLUSTERING ALGORITHMS  

The performance of the proposed IBAT algorithm is also compared with hybrid clustering 

algorithms. The simulation results of IBAT and other hybrid clustering algorithms using 

accuracy are presented in Table 4.4. It is analysed that the proposed IBAT algorithm has more 

accurate results in the context of hybrid clustering algorithms. The accuracy rate of the proposed 

IBAT for LD, CMC, thyroid, wine and vowel datasets are 54.02%, 48.21%, 79.98%, 76.01%, 

and 67.11%, respectively.  It is seen that MBOA gives higher accuracy (95.43%) for the iris 

dataset, while IBAT obtains a 93% accuracy rate for the same. In the context of glass and vowel 

datasets, the PSO-BB-BC algorithm achieves a higher accuracy rate of 69.52% and 89.21%, 

respectively, while IBAT obtains 69.17% and 88.92%.  

Table 4.4: Accuracy results of proposed IBAT and hybrid clustering algorithms  

Dataset 

Hybrid Clustering Algorithms 

MBOA ICSO Chaotic 
TLBO 

H-KHA MEBBC IKH ICMPKHM PSO-BB-BC CBPSO IBAT 

CMC 44.23 46.78 46.54 47.45 46.58 46.63 46.69 47.61 39.58 48.21 

LD 50.67 53.02 53.12 51.91 49.86 52.96 52.15 52.17 53.65 54.02 

Thyroid 59.36 68.24 67.38 65.4 65.22 66.91 66.82 56.83 72.21 79.98 

Iris 95.43 91.35 91.19 89.24 90.02 89.87 92.44 90.52 90.79 93 

Glass 58.73 69.06 69.52 58.89 58.73 68.39 69.02 69.52 51.92 69.17 

Wine 70.31 73.24 72.53 75 72.63 72.37 72.88 73.58 71.31 76.01 

Vowel 56.92 65.28 64.91 66.98 59.21 61.76 59.65 60.18 51.72 67.11 

Balance 71.95 78.61 81.04 75.42 68.42 76.42 77.42 89.21 76.62 88.92 

The simulation results of IBAT and other hybrid clustering algorithms are also evaluated using 

intra-cluster distance. Table 4.5 presents the simulation results of intra-cluster distance. It is 

observed that the proposed IBAT algorithm gives minimum intra-cluster distance for glass 
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(1.96E+02), balance (5.01E+04), wine (1.61E+04), and iris (9.16E+01) datasets. In contrast, 

the MBOA algorithm has a minimum intra-cluster distance (5.21E+03) for the CMC dataset. 

But, IBAT is also a competitive algorithm as it obtains the second minimum intra-cluster 

distance (5.52E+03) for the CMC dataset. For the LD dataset, ICSO achieves a minimum value 

of intra-cluster distance (4.09E+02), while IBAT obtains 1.23E+03 for the same. In the context 

of the thyroid dataset, the PSO-BB-BC algorithm achieves minimum intra-cluster distance, i.e. 

9.82E+02, and IBAT has 1.25E+03 as minimum intra-cluster distance. In the case of the vowel 

dataset, ICMPKHM gives a minimum intra-cluster distance (1.47E+05), while for the same, 

IBAT achieves 1.51E+05 as the minimum intra-cluster distance. Overall, it is analysed that the 

proposed IBAT achieves minimum intra-cluster distance with most datasets, but for few 

datasets, it achieves second and third minimum intra-cluster distance.     

Table 4.5: Intra-cluster distance results of proposed IBAT and hybrid clustering algorithms 

Datasets 
Hybrid Clustering Algorithms 

MBOA ICSO 
Chaotic 

TLBO 
H-KHA MEBBC IKH 

ICMPKH

M 
PSO-BB-BC CBPSO IBAT 

CMC 5.21E+03 5.32E+03 5.53E+03 5.60E+03 5.53E+03 5.69E+03 5.70E+03 5.57E+03 5.54E+03 5.52E+03 

LD 1.32E+03 4.09E+02 4.98E+02 3.14E+03 1.36E+03 3.11E+03 3.09E+03 9.98E+03 1.00E+04 1.23E+03 

Thyroid 2.16E+03 9.90E+02 1.08E+03 1.80E+03 1.26E+03 1.77E+03 1.39E+03 9.82E+02 1.86E+03 1.25E+03 

Iris 9.83E+01 9.57E+01 9.69E+01 9.65E+01 9.68E+01 9.71E+01 9.58E+01 9.60E+01 9.69E+01 9.16E+01 

Glass 2.31E+02 2.26E+02 2.38E+02 2.16E+02 2.27E+02 2.23E+02 1.99E+02 2.19E+02 2.13E+02 1.96E+02 

Wine 1.71E+04 1.69E+04 1.68E+04 1.66E+04 1.68E+04 1.65E+04 1.67E+04 1.63E+04 1.64E+04 1.61E+04 

Vowel 1.61E+05 1.59E+05 1.55E+05 3.52E+05 1.57E+05 1.56E+05 1.47E+05 1.55E+05 1.51E+05 1.51E+05 

Balance 5.96E+04 5.39E+04 5.36E+04 6.78E+04 5.83E+04 6.01E+04 6.26E+04 6.19E+04 6.20E+04 5.01E+04 

The simulation results of the proposed IBAT algorithm and other hybrid clustering algorithms 
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are also compared using f-measure. Table 4.6 illustrates the simulation results of all clustering 

algorithms using the f-measure parameter. It is analysed that the proposed IBAT algorithm has 

higher f-measure rates with most datasets.  It is also revealed that CBPSO achieves a higher f-

measure rate (0.534) for the LD dataset, while IBAT obtains a 0.529 f-measure rate for the 

same. Moreover, the ICMPKHM algorithm gets a higher f-measure rate (0.791) among all 

algorithms for the iris dataset, while IBAT achieves 0.788 as the f-measure rate. The H-KHA 

algorithm achieves a higher f-measure rate (0.671) for the vowel dataset, and the IBAT 

algorithm obtains 0.653 as the f-measure rate. Hence, it is perceived that the IBAT algorithm 

provides a competitive f-measure rate compared to ICMPKHM, H-KHA, and CBPSO 

algorithms for a few datasets. Thus, it stated that the proposed IBAT algorithm is a competitive 

algorithm for solving clustering problems and provides superior results with most datasets in 

terms of intra-cluster distance, accuracy and f-measure.    

Table 4.6: F-measure results of proposed IBAT and hybrid clustering algorithms  

Dataset 

Hybrid Clustering Algorithms 

MBOA ICSO 
Chaotic 
TLBO IKH H-KHA 

PSO-BB-
BC MEBBC CBPSO ICMPKHM IBAT 

CMC 0.435 0.339 0.345 0.457 0.443 0.461 0.438 0.389 0.456 0.501 

LD 0.498 0.528 0.517 0.519 0.512 0.506 0.483 0.534 0.521 0.529 

Thyroid 0.576 0.668 0.698 0.658 0.634 0.549 0.649 0.704 0.641 0.79 

Iris 0.79 0.784 0.786 0.783 0.787 0.784 0.782 0.787 0.791 0.788 

Glass 0.574 0.427 0.434 0.459 0.462 0.471 0.476 0.421 0.466 0.635 

Wine 0.524 0.526 0.528 0.543 0.546 0.528 0.532 0.526 0.558 0.564 

Vowel 0.634 0.646 0.635 0.663 0.671 0.652 0.648 0.651 0.649 0.653 

Balance 0.704 0.767 0.792 0.736 0.739 0.764 0.687 0.734 0.741 0.794 
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4.4.2.3 CONVERGENCE BEHAVIOUR OF IBAT 

The convergence behaviour of the proposed IBAT, GA, BB-BC, BAT, K-means, ACO, ABC, 

PSO and DE clustering algorithm is shown in Figure 4.3(a-h). The X-axis denotes the number 

of iterations, while Y-axis denotes intra cluster distance achieved by each algorithm. It is 

analysed that the proposed IBAT algorithm converges on minimum values except the LD 

dataset. The proposed IBAT algorithm gives most datasets a better convergence rate than 

compared algorithms. Therefore, it is said that the proposed IBAT algorithm is one effective 

and efficient clustering algorithm and provides better clustering results. 

 

Figure 4.3 (a):  Iris dataset 

 

 

               Figure 4.3 (b): Glass dataset                  
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           Figure 4.3 (c):  Wine dataset                                   

 

 

 Figure 4.3 (d): Thyroid dataset 

  
 

Figure 4.3 (e): CMC dataset                    
 

 



 76 

 
 

Figure 4.3 (f): Vowel dataset      
 

              
Figure 4.3 (g): Balance dataset 

 

Figure 4.3 (h): LD dataset       

Figure 4.3 (a-h): Convergence behavior of IBAT and standard clustering algorithms based on intra-cluster 
distance  
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4.5 SUMMARY 

This chapter discusses an improved bat algorithm for partitional data clustering problems. The 

proposed IBAT algorithm addresses three well-known issues- initial population selection, local 

optima, and unbalanced search mechanism. The choice of initial population issue is resolved 

through an enhanced cooperative co-evolution method.  The unstable search mechanism (local 

and global searches) issue is addressed through an elitist strategy.  Further, the local optima 

issue is handled through a neighbourhood search mechanism. The performance of the proposed 

IBAT algorithm is tested over a well-known clustering dataset and compared with several 

popular clustering algorithms. The simulation results showed that the proposed IBAT algorithm 

achieves state-of-art clustering results in terms of accuracy, intra-cluster distance, and f-

measure. The proposed IBAT algorithm achieves higher accuracy, an average of 3.73% and 

3.77%, and improvement in F-measure results in an average of 1.9% and 5.4% compared to 

standard and hybrid clustering metaheuristic algorithms. Hence, it is stated that the proposed 

IBAT algorithm is an efficient algorithm for performing data clustering tasks.  
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CHAPTER 5 

MULTIOBJECTIVE VIBRATING PARTICLE SYSTEM FOR 

CLUSTERING 

This chapter presents a multi-objective vibrating particle system (VPS) algorithm for solving 

partitional data clustering problems. In literature, it is found that sometimes single objective 

clustering algorithms produce biased solutions because a single objective function is applied to 

solve the clustering problems. This problem can be resolved using more than one objective 

function for solving clustering problems. But, another issue regarding the selection of objective 

function is came into existence. However, it is found that the selecting objective functions are 

conflicting in nature. Hence, this chapter addresses the biasing issue of single-objective 

clustering through a multi-objective approach. A vibrating particle system algorithm with two 

objective functions is proposed for effective data clustering called the MOVPS algorithm. In 

the proposed MOVPS algorithm, intra-cluster distance and connectedness are two conflicting 

objective functions. Further, the efficacy of the proposed MOVPS is evaluated using eight 

standard clustering datasets, and simulation results are compared to several single and multi-

objective clustering algorithms, including standard and hybrid clustering algorithms.  

5.1 CONTRIBUTION 
The section presents the contribution of the work. This chapter extends the vibrating particle 

system as multi-objective algorithms. Further, two objective functions (compactness and 

connectedness) are integrated into the VPS algorithm for solving the clustering problems 

effectively. MOVPS aims to optimize the two contradicting objective functions and provides 

the optimum clustering results. The intra-cluster variance is described as compactness. It is 

calculated as the distance between data objects to respective cluster centres. In contrast, 

connectedness investigates the neighbouring data elements and their connectivity to the cluster 

centres. The major contributions of the work are given as follows:  

•  A multi-objective vibrating particle system (MOVPS) algorithm is proposed for handling 

the biasing issue of single-objective clustering. 

• Selection of objective functions to get more optimal clustering results. In turn, intra-

cluster distance and connectedness functions are chosen in this work. 
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• Eight well-known clustering datasets are selected to evaluate the proposed MOVPS 

algorithm's performance.  

•  Simulation results are compared with several multi-objective and single-objective 

clustering algorithms.   

5.2 ORIGINAL VIBRATING PARTICLE SYSTEM 

This section discusses the basic vibrating particle system (VPS) algorithm. Kaveh and Ghazaan 

developed a metaheuristic algorithm inspired by the concept of free vibrations called the VPS 

algorithm [134]. Further, vibration can be categorized into free and forced vibration [134-136].  

In VPS, the particles are described as candidate solutions, and the population is defined in terms 

of particles. These particles are randomly initialized in d- dimensional search space, and the 

aim of these particles is to achieve the equilibrium position gradually. The algorithmic steps of 

the VPS algorithm are discussed below.   

(i) Initialization: This step corresponds to initialising the various user-defined parameters, 

population initialization, upper bound and lower bound of the optimization problems.  The 

population of the VPS algorithm is described through particles. Hence, the initial position 

of particles in k-dimensional search space is computed using equation 5.1. 

X) = 𝑋7(# + rand() × (X7;< − X7(#)																																									(5.1) 

Where, X) corresponds to jth particle, X7(#	represents the minimum and X7;<  the maximum 

value of each dimension and random numbers are generated via the rand () function. 

(ii) Evaluate the candidate solutions: A problem-dependent objective function is defined, and 

the aim of particles compute the objective function for getting optimal results.  

(iii) Update the particle positions: The position of particles are updated by considering the three 

position of particles in the previous iteration. These are described as (a) historical best 

(HB), the best position of a particle in the entire population, (b) Good Particle (GP), and 

(c) Bad Particle (BP). For selecting the position of GP and BP, first arrange the current 

population in ascending order based on objective function values, then select the GP from 

the first half and BP from the rest of the parts in random order. The updated position of 

particles is computed using equations 5.2-5.5.   

X#,)*+ = w' ×	[D × 	A × rand1 + HB] + w$ × [D × A × rand2 + GP] + w$ × [D × A × rand3 +

BP]				 (5.2) 
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	A = Gw' × 5HB − X#,,-.6I + Gw$ × 5GP − X#,,-.6I + Gw/ × 5BP − X#,,-.6I														(5.3) 

D = J	
iter

iter012
K
34
																																																			(5.4) 

w! +w" +w* = 1																																																																								(5.5) 

Where the new position of jth particle is denoted by X),#DI ; w1, w2 and w3 assess the relative 

significance of HB, GP, and BP, respectively; rand1, rand2, and rand3 are uniformly distributed 

random numbers in the range of [0,1].  The current position of jth particle is represented using  

X),/Q%. D is descending function. It is defined as proportional to the number of iterations. iter 

denotes the current iteration, iter7;< signifies the maximum number of iterations, and α 

symbolizes a constant value.    

Further, to examine the impact of BP in the position updating process, another parameter, p is 

defined in the range of [0, 1]. A comparison between parameter p and rand () function is 

performed for each particle. If, (p < 	rand()), then w* is set to 0 and  w" is computed 

using	w" = 1 − w!. The above process invokes the impact of BP on the position updating 

whether BP actively participated in updating process or not.  The algorithmic steps of VPS are 

mentioned in algorithm 5.1. 

Algorithm 5.1: Vibrating Particle System 

Step 1: Initialize the various parameters of VPS such as population in terms of 

vibration particles, lower and upper constraints, max_iterations  

Step 2: Select initial position of particles in randomly using equation 5.1 

Step 3: Compute objective function values and store HB  

Step 4: While (max_iterations) 

Step 5: For each vibrating particle, do 

Step 6: Choose good particle and bad particle  

Step 7: If P < rand	 then 

Step 8: Set w* = 0 and compute w" using equation 5.5 

Step 9: End if 

Step 10: For each vibrating particle,  

Step 11: Obtain new location of particle through equations 5.2 - 5.4 
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Step 12: End For 

Step 13: If (violation of lower and upper constraints?) 

Step 14: Apply Harmony search to update vibrating particle position 

Step 15: End If 

Step 16: End For 

Step 17: Compute the objective function and update value of HB 

Step 18: End While 

Step 19: Obtain the optimal position of vibrating particles 

5.3 MULTI-OBJECTIVE VIBRATING PARTICLE SYSTEM   
ALGORITHM  

To handle the biasing issue of single objective clustering algorithm, multi-objective vibrating 

particle system algorithm is developed for effective cluster analysis. This section explains the 

multi-objective vibrating particle system (MOVPS) algorithm. In the multi-objective approach, 

more than one objective function is considered to eliminate the biasing effect of a single 

objective. It also ensures that both objective functions are conflicting in nature.   Thus, the 

proposed MOVPS algorithm also considers the two conflicting objective functions. A detailed 

description of the MOVPS algorithm is given below.   

5.3.1 POPULATION INITIALIZATION  
The starting step of the MOVPS clustering algorithm is to initialize the population. The 

population of the algorithm is defined in terms of vibrating particles. These particles are defined 

in terms of the number of clusters present in the given dataset. Further, the initial position of 

vibrating particles is computed from the dataset in random order. A randomsample () function 

is applied to calculate the index of data objects for a given dataset. The selected data objects 

serve as the VPS algorithm's initial cluster centres/ positions.   

5.3.2 OBJECTIVE FUNCTIONS 
The selection of objective functions, especially in multi-objective approaches, significantly 

impacts the algorithm's performance. It is analyzed that every dataset is different in terms of 

distribution, dimension and characteristics. So sometimes, it is a tough task to achieve good 

quality results using the single objective function. Through literature, it is also found that a 

single objective function sometimes converges on biased solutions. This problem can also get 
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rid off by using multiple objective functions. But, it is also challenging to choose the appropriate 

objective functions to obtain the optimal solution.  It is also seen that if two or more objective 

functions are simultaneously optimized, a significant improvement can be achieved. Hence, 

this work considers two contradicting objective functions for achieving optimal clustering 

results. The objective functions are intra-cluster variance and connectedness. Intra-cluster 

variance is applied for allocating the data objects to respective cluster centers, and it is 

computed using equation 1.1 mentioned in Chapter 1. While compactness measures the quality 

of cluster. It gives information about the neighbourhood structure. For each data object, a 

penalty function is computed. The penalty is set to zero if the neighbouring data object stays in 

same cluster. Otherwise, it is computed using jth nearest neighbour of mth data object, which is 

provided as	�1 j� �. Connectedness is computed using equation number 5.7.  

connectedness	(M) = � ��X7,#D(O!()) p⁄
L

)G!

�
R

7G!

			such	that	 �1∃	C,: m, neig ∉ C,0, otherwise			 				(5.7) 

where M denotes the connectedness function, jth nearest neighbour of data object m, is 

represented by neigS(j)  for a given dataset. The number of neighbours is denoted by P, and N 

denotes the total number of data objects.  The value of connectedness (M) lies between 0 and 

1.  

5.3.3 FITNESS FUNCTION 

This subsection describes the significance of fitness function. Every metaheuristic algorithm 

initialises a population before starting the algorithmic procedure. It is also seen that a good 

population can be selected for computing the optimal solution to each metaheuristic algorithm. 

So, a fitness function is designed to choose a good population, and it can be described as a 

heuristic function that can evaluate the goodness of the population. Further, this function also 

determines the local best population, global best population and bad population for the 

metaheuristic algorithms. Hence to pick the GP, BP and HB particles, a fitness function is 

designed based on density (𝜓), and distance (∆) [137]. It associates a probability to each 

particle, whether it may act as cluster centres or not. The fitness of a particle is computed using 

equation 5.8-5.9.    

Frd),s =
!

T×∆
																																																																																																											(5.8)    
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																																																																																																									(5.9) 

Where in equation 5.9, d), is the Euclidean distance between jth data object and kth particle; dH 

is the minimum significant distance and ∆ represents	the	min	rd),s	. The smaller the value of 

Frd),s, having more chances to be chosen as a cluster center.   

5.3.4 PROPOSED MULTI-OBJECTIVE VPS CLUSTERING ALGORITHM 

This subsection discusses the proposed multi-objective VPS clustering algorithm. The proposed 

multi-objective VPS algorithm is also considered the Pareto optimality. It is applied to explore 

the solution space and determine optimal candidate solutions presented in the search space. 

Further, Pareto optimality generates multiple non-dominating solutions instead of a single 

solution, as in single objective clustering. In addition, two conflicting objective functions are 

integrated into MOVPS to find the optimal partitioning for the dataset. The MOVPS algorithm 

starts with initializing the initial position of particles in a d-dimensional search space. The 

compactness among data objects is identified using Euclidean distance. Further, the 

neighbouring structure of data objects is revealed through the connectedness function. This 

function also computes a penalty function if data objects do not belong to the same cluster.  A 

fitness function is associated with each particle and can measure the particles' goodness. Based 

on the fitness function, GP, BP and HB particles are selected. Moreover, the position of particles 

is updated using the position updating mechanism, but it also ensures that the updated position 

of particles does not violate boundary constraints. A set of non-dominating solutions are also 

generated, and these solutions are stored in an external archive.  

5.3.4.1 STEPS OF MOVPS FOR CLUSTERING 

The algorithmic steps of the proposed MOVPS are mentioned in algorithm 5.2, and the flow 

diagram is shown in Figure 5.1. 

Algorithm 5.2: MOVPS Clustering Algorithm 

Step 1: Initialize the population of MOVPS algorithm in terms of vibration 

particles i.e., pop_size, number of clusters (K), max_iter, 

neigh_particle, lower and upper constraints. Determine the initial 

position of random particles in random order. 
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Step 2: Create an external archive i.e., list to store the non-dominating 

solutions. Initially, list is empty. 

Step 3: While (i<max_iter) 

Step 4: For each vibrating particle, do 

Step 5: Compute the objective function_1 i.e., intra cluster variance using 

equation 5.6.  

Step 6: Allocate the data objects to nearest cluster (particle) using minimum 

variance value. 

Step 7: End For 

Step 8: For each data object, do 

Step 9: Compute the objective function_2 i.e., connectedness using equation 

5.7 and determine the penalty function and associate it with data 

objects. 

Step 10: End For 

Step 11: Determine the penalty of clusters (particles) using average penalty of 

data objects. 

Step 12: For each vibrating particle, do 

Step 13: Compute the fitness function of particle using equations 5.8-5.9. 

Step 14: End For 

Step 15: Determine the HB, BP and GP using fitness of particles. 

Step 16: For each vibrating particle, do 

Step 17: Compute the values of w2 and w3 using random function and these 

values satisfy equation 5.5. 

Step 18: Update the position of vibration particles using equations 5.2-5.4.  

Step 19: If (lower and upper constraints are violated) 

Step 20: Generate new particle with in lower and upper constraints in random 

order.   

Step 21: End If 

Step 22: End For 
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Step 23: Stored the non-dominating solution in external archive (E). 

Step 24: Update the list according to best non-domination solutions. 

Step 25: i++ 

Step 26: End While 

Step 27: Obtain the appropriate partitioning of data objects 

5.4 EXPERIMENTAL RESULTS 
This section presents the simulation results of the proposed MOVPS and other clustering 

algorithms. The efficacy of the proposed MOVPS algorithm is tested over eight well-known 

clustering datasets, and the simulation results are compared with several single and multi-

objective clustering algorithms. The simulation results are evaluated using three well-known 

performance measures (accuracy, intra-cluster distance and f-measure). The Pareto front is also 

adopted as a performance measure for multi-objective clustering algorithms. The proposed 

MOVPS algorithm is implemented in MATLAB using Window OS, 8GB RAM and a corei5 

processor.  

5.4.1 PARAMETER SETTING 

This subsection discusses the parameter settings of the proposed MOVPS algorithm. It is 

observed that optimal parameter setting of user-defined parameters can improve the final 

outcome of an algorithm and can be selected. The population of MOVPS is described as 

vibrating particles equal to the number of clusters present in the given dataset. The value of α 

= 0.2, neigh_particle is set to 5, and the size of external_archive is chosen to be 50. Further, the 

algorithm is run thirty independent times, and simulation results have presented an average of 

thirty separate runs. The parameter setting of other algorithms is similar, as reported in the 

literature.  
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Figure 5.1: Flow diagram of MOVPS algorithm for clustering 
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5.4.2 RESULT AND DISCUSSION 

The capability of the proposed MOVPS is tested on eight benchmark clustering datasets. The 

results are compared with standard, hybrid, and multi-objective clustering algorithms based on 

accuracy, intra-cluster distance, f-measure and Pareto fronts. This subsection discusses the 

simulation results of the proposed MOVPS and other algorithms being compared.  

5.4.2.1 COMPARISON WITH STANDARD CLUSTERING ALGORITHMS 

The experimental results of the proposed MOVPS and other standard clustering algorithms 

based on accuracy are illustrated in Table 5.1. It is noticed that the proposed MOVPS achieves 

a higher accuracy rate for CMC, LD, thyroid, iris, glass, wine, vowel and balance datasets in 

comparison to other standard clustering algorithms. The accuracy rate of MOVPS for the 

datasets mentioned above is 64.53%, 91.26%, 93.09%, 96.28%, 73.81%, 78.43%, 92.04% and 

92.87% for balance datasets.  

Table 5.1: Accuracy results of proposed MOVPS and other standard clustering algorithms 

Dataset 
Standard Clustering Algorithms 

K-means PSO ACO ABC DE GA BB-BC BAT MOVPS 

CMC 39.69 44.1 36.89 40.06 39.58 43.3 44.67 42.62 64.53 

LD 52.16 54.05 52.89 49.89 52.01 49.28 50.2 53.07 91.26 

Thyroid 63.76 68.93 64.87 64.39 65.76 63.2 63.86 63.82 93.09 

Iris 82.33 84.13 72.87 89.03 88.37 78.34 83.25 90.5 96.28 

Glass 51.87 53.73 37.36 48.43 48.48 48.97 55.53 48.76 73.81 

Wine 67.53 67.94 59.21 70.34 71.1 65.73 66.43 65.48 78.43 

Vowel 51.16 84.04 51.69 56.31 53.41 84.7 84.32 57.21 92.04 

Balance 84.99 89.76 74.28 76.67 74.96 78.01 79.69 86.75 92.87 

Further, the experimental results of proposed MOVPS and other algorithms using intra-cluster 

distance are reported in Table 5.2. It is observed that the proposed MOVPS obtains minimum 

intra-cluster distance for CMC (5.05E+03), thyroid (8.98E+02), glass (2.05E+02), wine 

(1.25E+04), vowel (1.47E+05), and balance (4.92E + 04) datasets. For the LD dataset, the BB-

BC algorithm achieves minimum intra-cluster distance, i.e. 2.32E+02, While MOVPS achieves 
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9.24E+02 as intra-cluster distance. For the iris dataset, the K-Means algorithm has a minimum 

intra-cluster distance (9.20E+01), and MOVPS achieve 9.41E+01 as the intra-cluster distance 

for the same. Hence, simulation results indicate that MOVPS performs significantly superior to 

other single objective standard clustering algorithms in the intra-cluster distance. 

Table 5.2: Intra-cluster distance results of proposed MOVPS and standard clustering algorithms 

Datasets Standard Clustering Algorithms 

 K-means PSO ACO ABC DE GA BB-BC BAT MOVPS 

CMC 5.59E+03 5.85E+03 5.83E+03 5.94E+03 5.95E+03 5.76E+03 5.71E+03 5.79E+03 5.05E+03 

LD 1.17E+04 2.39E+02 2.41E+03 9.85E+03 1.15E+04 5.44E+03 2.32E+02 2.36E+02 9.24E+02 

Thyroid 2.39E+03 1.11E+04 1.99E+03 1.98E+03 2.96E+03 1.22E+04 1.94E+03 1.39E+03 8.98E+02 

Iris 9.20E+01 9.86E+01 1.01E+02 1.08E+02 1.21E+02 1.25E+02 9.68E+01 1.15E+02 9.41E+01 

Glass 3.79E+02 2.76E+02 2.19E+02 3.29E+02 3.62E+02 2.82E+02 6.64E+02 3.75E+02 2.05E+02 

Wine 1.81E+04 1.64E+04 1.64E+04 1.69E+04 1.68E+04 1.65E+04 1.67E+04 1.71E+04 1.25E+04 

Vowel 1.60E+05 1.58E+05 1.89E+05 1.70E+05 1.81E+05 1.59E+05 1.94E+05 1.96E+05 1.47E+05 

Balance 1.20E+05 6.20E+04 5.94E+04 6.61E+04 6.78E+04 6.91E+04 5.96E+04 6.02E+04 4.92E+04 

The simulation results using the f-measure rate of proposed MOVPS and other standard 

clustering algorithms are presented in Table 5.3. It is observed that the proposed MOVPS 

achieves f-measure rates 0.614, 0.693, 0.885, 0.947, 0.683, 0.739, 0.692 and 0.816 for CMC, 

LD, thyroid, iris, glass, wine, vowel, and balance dataset. So, it is stated that MOVPS provides 

superior clustering results than standard clustering algorithms in terms of accuracy, intra-cluster 

distance and f-measure rate.   
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Table 5.3: F-measure results of proposed MOVPS and other standard clustering algorithms 

Dataset 
Standard Clustering Algorithms 

PSO GA K-means ACO ABC DE BB-BC BAT MOVPS 

CMC 0.331 0.324 0.334 0.328  0.428 0.343  0.446  0.462  0.614 

LD 0.493 0.482 0.467 0.487 0.508  0.485  0.524  0.536  0.693 

Thyroid 0.778 0.763 0.731 0.783 0.796  0.768  0.784  0.789  0.885 

Iris 0.782 0.778 0.78 0.779 0.783 0.773 0.781 0.782 0.947 

Glass 0.412 0.561 0.426 0.402 0.411 0.406 0.462 0.431 0.683 

Wine 0.518 0.515 0.521 0.522 0.519 0.518 0.566 0.529 0.739 

Vowel 0.648 0.647 0.652 0.649 0.638 0.645 0.641 0.645 0.692 

Balance 0.726 0.716 0.724  0.741 0.743  0.730  0.739 0.740  0.816 

 

5.4.2.2 COMPARISON WITH HYBRID CLUSTERING ALGORITHMS 

This subsection presents the simulation results of the proposed MOVPS and hybrid clustering 

algorithm. Table 5.5 shows the simulation results of MOVPS and hybrid single-objective 

clustering algorithms using accuracy measures. It is analyzed that the proposed MOVPS 

achieves more accurate results for all datasets as compared to other algorithms. The simulation 

results using intra-cluster distance are presented in Table 5.5. It is revealed that MOVPS obtains 

minimum intra-cluster distance for CMC, thyroid, iris, wine, vowel, and balance datasets. 

While, for LD and glass datasets, ICSO and ICMPKHM obtain minimum intra-cluster distances 

(4.09E+02, 1.99E+02), respectively, the proposed MOVPS achieves 9.24E+02 and 2.05E+02 

as intra-cluster distances for the same. Further, the simulation results are also evaluated using 

the f-measure parameter. These results are reported in Table 5.6.  It is analyzed that the 
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proposed MOVPS achieves high f-measure rate than hybrid clustering algorithms for all 

datasets. 

Table 5.4: Accuracy results of proposed MOVPS and other hybrid clustering algorithms 

Dataset 

Hybrid Clustering Algorithms 

MBOA ICSO 
Chaotic 
TLBO H-KHA MEBBC IKH ICMPKHM PSO-BB-BC CBPSO MOVPS 

CMC 44.23 46.78 46.54 47.45 46.58 46.63 46.69 47.61 39.58 64.53 

LD 50.67 53.02 53.12 51.91 49.86 52.96 52.15 52.17 53.65 91.26 

Thyroid 59.36 68.24 67.38 65.4 65.22 66.91 66.82 56.83 72.21 93.09 

Iris 95.43 91.35 91.19 89.24 90.02 89.87 92.44 90.52 90.79 96.28 

Glass 58.73 69.06 69.52 58.89 58.73 68.39 69.02 69.52 51.92 73.81 

Wine 70.31 73.24 72.53 75 72.63 72.37 72.88 73.58 71.31 78.43 

Vowel 56.92 65.28 64.91 66.98 59.21 61.76 59.65 60.18 51.72 92.04 

Balance 71.95 78.61 81.04 75.42 68.42 76.42 77.42 89.21 76.62 92.87 

Table 5.5: Intra-cluster distance results of proposed MOVPS and other hybrid clustering algorithms 

Datasets 

Hybrid Clustering Algorithms 

MBOA ICSO Chaotic 
TLBO H-KHA MEBBC IKH ICMPKHM PSO-BB-

BC CBPSO MOVPS 

CMC 5.21E+03 5.32E+03 5.53E+03 5.60E+03 5.53E+03 5.69E+03 5.70E+03 5.57E+03 5.54E+03 5.05E+03 

LD 1.32E+03 4.09E+02 4.98E+02 3.14E+03 1.36E+03 3.11E+03 3.09E+03 9.98E+03 1.00E+04 9.24E+02 

Thyroid 2.16E+03 9.90E+02 1.08E+03 1.80E+03 1.26E+03 1.77E+03 1.39E+03 9.82E+02 1.86E+03 8.98E+02 

Iris 9.83E+01 9.57E+01 9.69E+01 9.65E+01 9.68E+01 9.71E+01 9.58E+01 9.60E+01 9.69E+01 9.41E+01 
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Glass 2.31E+02 2.26E+02 2.38E+02 2.16E+02 2.27E+02 2.23E+02 1.99E+02 2.19E+02 2.13E+02 2.05E+02 

Wine 1.71E+04 1.69E+04 1.68E+04 1.66E+04 1.68E+04 1.65E+04 1.67E+04 1.63E+04 1.64E+04 1.25E+04 

Vowel 1.61E+05 1.59E+05 1.55E+05 3.52E+05 1.57E+05 1.56E+05 1.47E+05 1.55E+05 1.51E+05 1.47E+05 

Balance 5.96E+04 5.39E+04 5.36E+04 6.78E+04 5.83E+04 6.01E+04 6.26E+04 6.19E+04 6.20E+04 4.92E+04 

Table 5.6: F-measure results of proposed MOVPS and other hybrid clustering algorithms 

Dataset 

Hybrid Clustering Algorithms 

MBOA ICSO Chaotic 
TLBO 

IKH H-KHA PSO-BB-BC MEBBC CBPSO ICMPKHM MOVPS 

CMC 0.435 0.339 0.345 0.457 0.443 0.461 0.438 0.389 0.456 0.614 

LD 0.498 0.528 0.517 0.519 0.512 0.506 0.483 0.534 0.521 0.693 

Thyroid 0.576 0.668 0.698 0.658 0.634 0.549 0.649 0.704 0.641 0.885 

Iris 0.79 0.784 0.786 0.783 0.787 0.784 0.782 0.787 0.791 0.947 

Glass 0.574 0.427 0.434 0.459 0.462 0.471 0.476 0.421 0.466 0.683 

Wine 0.524 0.526 0.528 0.543 0.546 0.528 0.532 0.526 0.558 0.739 

Vowel 0.634 0.646 0.635 0.663 0.671 0.652 0.648 0.651 0.649 0.692 

Balance 0.704 0.767 0.792 0.736 0.739 0.764 0.687 0.734 0.741 0.816 

 
5.4.2.3 CONVERGENCE BEHAVIOUR OF MOVPS 

The convergence behaviour of the proposed MOVPS algorithm and standard clustering 

algorithm is reported in Figure 5.2 (a-h).  The X-axis denotes the number of iterations in each 

run, while Y-axis represents the intra-cluster distance. It is noticed that the proposed MOVPS 

algorithm converges on minimum intra-cluster distance with most datasets. For a few datasets, 

it is not converged on minimum intra-cluster distance, but it provides more stable results in 

early iterations.  Hence, it is worth mentioning that the proposed MOVPS is a more competitive 

clustering algorithm than other clustering algorithms. 
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Figure 5.2 (a):  Vowel dataset 

 

Figure 5.2 (b):  Wine dataset 

 

Figure 5.2 (c):  Balance dataset 



 93 

 

Figure 5.2 (d):  CMC dataset 

 

Figure 5.2 (e):  LD dataset 

 

 

Figure 5.2 (f):  Thyroid dataset 
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Figure 5.2 (g):  Iris dataset 

 

 

Figure 5.2 (h):  Glass dataset 

Figure 5.2 (a-h): Convergence behaviour of MOVPS and standard clustering algorithms based on intra-cluster 
distance  

 

5.4.2.4 COMPARISON WITH PARETO FRONT RESULTS  

This subsection presents the Pareto front results of the proposed MOVPS algorithm and other 

multi-objective clustering algorithms. The Pareto Front (PF) can be described as a set of all 

optimal solutions achieved by an algorithm, especially in multi-objective optimization. It was 

also stated earlier that the proposed MOVPS algorithm simultaneously optimizes two 

conflicting objectives, i.e.  Connectedness and Intra-cluster distance. Hence, the PF is 

considered an effective performance measure to examine the efficacy of the proposed MOVPS 

compared to other multi-objective clustering algorithms. The results of Pareto-fronts of 
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proposed MOVPS and different multi-objective clustering algorithms like TSMPSO, NSGA-

II, MOPSO and MABC are illustrated in Figure 5.3 (a-h) using eight benchmark datasets. The 

PF results show that MOVPS is an efficient algorithm for finding optimal solutions compared 

to other multiobjective algorithms. The PFs is also validated the effectiveness and competence 

of the proposed MOVPS algorithm.  

 
Figure 5.3 (a):  Pareto front using Iris dataset 

 

Figure 5.3 (b): Pareto front using Glass dataset 

 

 

Figure 5.3 (c): Pareto front using Vowel dataset 
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Figure 5.3 (d): Pareto front using Balance dataset 

 

Figure 5.3(e): Pareto front using Wine dataset 

 

Figure 5.3 (f): Pareto front using Thyroid dataset 
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Figure 5.3(g): Pareto front using CMC dataset                   

 

   Figure 5.3(h): Pareto front using Liver Disorder dataset 

Figure 5.3(a-h): Demonstrates Pareto-front of the non-dominating solution obtained through proposed MOVPS 
and other multiobjective algorithms 

5.4 SUMMARY 
This chapter presents a multiobjective vibrating particle system algorithm (MOVPS) for 

effective clustering. The MOVPS algorithm optimized two objective functions, namely, intra-

cluster distance and connectedness, for optimal solutions. Also, the Pareto Front is considered 

for improving clustering results through MOVPS. A fitness function is also designed to assist 

in each particle's fitness evaluation. The fitness function helps in the assessment of the historical 

best position, bad particles, and good particles.  Further, the best particle is considered in the 

particle's position updating. Eight standard datasets are used for the performance evaluation of 

MOVPS. The various performance measures for assessing results are accuracy, intra-cluster 

distance and f-measure. The experimental results of MOVPS are contrasted to single objective 

clustering algorithms consisting of standard and hybrid clustering algorithms. From the results, 

it is stated that MOVPS achieves high-quality results in comparison to single objective 
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algorithms (standard and hybrid). For each multiobjective clustering algorithm, the Pareto 

solutions are also computed. These solutions also prove the capability of the proposed MOVPS 

algorithm for solving clustering problems. The MOVPS clustering algorithm achieves higher 

accuracy, an average of 16.95% and 17.01%. In contrast to standard and hybrid clustering 

algorithms, the results of the f-measure parameter have improved by an average of 12.1% and 

15.6%. Also, minimum intra-cluster distance is achieved for most of the datasets. Therefore, it 

is stated that the proposed MOVPS algorithm is a robust and effective multiobjective clustering 

algorithm.  
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CHAPTER 6 

CONCLUSION AND FUTURE SCOPE 

6.1 CONCLUSION 

This thesis work presents three metaheuristic algorithms for solving the partitional clustering 

problems. This thesis work discusses the capabilities of single and multiobjective clustering 

algorithms for handling partitional clustering problems. In this thesis, two single-objective and 

one multiobjective clustering algorithm are developed for effective cluster analysis.   

Furthermore, this thesis is organized into six chapters. Chapter 1 gives a brief introduction to 

clustering problems. It also includes single-objective and multiobjective optimization 

problems. Further, the applicability of metaheuristic algorithms is also discussed in this chapter. 

It also highlights the motivation for the work and research objectives. Chapter 2 presents in-

depth details on partitional clustering algorithms. It is divided into two sections- the first section 

describes the details of recent and popular single objective metaheuristic algorithms for cluster 

analysis, including its pros and cons. In contrast, the second section presents the multiobjective 

partitional clustering algorithm. It also discussed its capability, need, and reason for moving 

from single-objective to multi-objective clustering. Chapter 3 discusses an improved water 

wave optimization algorithm for data clustering. Before implementing the WWO algorithm, 

two modifications are inculcated into WWO to make it more capable and enhance the search in 

the optimal direction. These modifications are summarized as PSO-based solution search 

equation and decay operator. The first modification aims to improve the tracking of WWO in 

the optimal direction. In contrast, the second modification handles the premature convergence 

issue of WWO. A well-known benchmark clustering dataset is considered for evaluating the 

proposed IWWO algorithm performance. The results are compared with existing popular 

single-objective clustering algorithms regarding intra-cluster distance, accuracy and f-measure. 

The results showed that the proposed IWWO algorithm significantly improves the quality of 

clustering results. 

Chapter 4 proposes an improved bat (IBAT) algorithm for effective data analysis. It is noticed 

that several performance issues are associated with the bat algorithm, such as population 

initialization, convergence rate and local optima. These issues significantly impact the outcome 

of the bat algorithm, especially with clustering problems. Hence, to get rid of the issues 

mentioned above in the bat algorithm, three improvements are proposed. These improvements 
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are summarized as an enhanced cooperative co-evolution method, an elitist strategy and a Q-

learning-based neighbourhood mechanism, respectively. The IBAT algorithm's performance is 

tested over a well-known clustering dataset and compared with several popular clustering 

algorithms. It is seen that the IBAT algorithm achieves more accurate results in terms of intra-

cluster distance, accuracy and F-measure.             

This thesis also highlights the efficacy of multiobjective clustering algorithms as it is noticed 

that sometimes single-objective clustering algorithms provide a biased solution because of one 

objective function. Hence, chapter 5 of this thesis presents a multiobjective vibrating particle 

system algorithm (MOVPS) for effectively clustering data. The problem of bias is handled 

through two objective functions. In multiobjective optimization, more than one objective 

function is designed to get the optimal solution for problems. It is also remembered that selected 

objective functions conflict with each other. Hence, for MOVPS, two conflicting objectives are 

designed-Euclidean distance and connectedness. Further, the performance of MOVPS is tested 

over a set of well-known clustering datasets. Simulation results are compared with several 

single and multi-objective clustering algorithms with many performance parameters. The 

simulation results stated that the proposed MOVPS provides state-of-the-art clustering results 

compared to single and multiobjective clustering algorithms. In short, this thesis work presents 

two single-objective clustering algorithms (IWWO and IBAT) and one multiobjective 

clustering algorithm (MOVPS) for effective data clustering. The simulation results analysis 

found that the MOVPS clustering algorithm provides better clustering results than IWWO and 

IBAT because of two objective functions. These functions are also problem depended and can 

be optimized simultaneously. It is also seen that single-objective algorithms exhibit biased 

solutions for a few datasets and can get rid of multiobjective optimization. In the context of 

single objective algorithms, it is stated that the overall performance of the IBAT algorithm is 

superior to the IWWO algorithm. The performance of the IBAT algorithm is also improved due 

to the inclusion of a neighbourhood search mechanism. It is also concluded that neighbourhood 

strategy can significantly improve the clustering results.      

6.2 FUTURE SCOPE 

This research work focused on partitional clustering problems. In future, the work will be 

extended to solving other clustering problems like model-based clustering, grid-based 

clustering etc. In future, the proposed clustering techniques will be implemented on the real-

life datasets. The sensitivity analysis is also an important measure for evaluating the 
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performance of the meta-heuristic algorithm. It will be utilized for the evaluation of meta-

heuristic algorithms in future work.  It is also observed that multiobjective clustering algorithms 

provide superior results than single-objective clustering algorithms. So, in future, more 

metaheuristic algorithms will be explored for multiobjective clustering. One of the challenging 

issues in the case of a partitional clustering problem is prior knowledge of the number of 

clusters. This issue of clustering will be addressed through dynamic clustering in the future, 

which computes the number of clusters from the dataset automatically. Moreover, effective 

neighbourhood strategies will be designed to get optimal solutions. Future work can also 

consider graph clustering and parallel clustering method.  
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