

 e-ISSN: 2289-8131 Vol. 9 No. 3-6 61

Energy-Efficient Performance-Aware Fair Memory

Access Scheduling on Multicore Platform (EEPAF)

Aastha Modgil and Vivek Kumar Sehgal
Department of CSE and IT, Jaypee University of Information Technology Waknaghat, Solan 173234, H.P.,India.

aastha.modgil90@gmail.com

Abstract—In current scenario, energy consumption,

performance and capacity of the main memory system are key

factors that affect the design of a computing system. These days,

computing systems are facilitated with multiple cores. Multicore

system enables simultaneous execution of multiple applications.

These concurrently running applications interfere at main

memory. Main memory is a major resource demanded by

running threads because it stores data structures that are

required for execution of an application. Main memory energy

consumption and performance can be improved by reducing the

number of operations required to access its memory contents

and by limiting the delay to service the memory access. It can be

achieved by intelligently scheduling the memory requests and it

is underlying memory access scheduler that decides the

scheduling of memory accesses. This paper proposes a memory

access scheduling scheme, EEPAF, for reducing the energy

consumption and improving the performance of main memory.

EEPAF, prioritizes reads over writes, exploits row buffer hits,

increases bank level parallelism, implement delayed write drain

policy and ensures fairness among threads. The results quantify

the main memory energy consumption for different workloads

under varied core environment and demonstrate significant

reduction in power consumption, energy-delay product, and

execution time, while improving performance.

Index Terms—Energy Efficiency; Memory Access Scheduler

SDRAM; Thread Fairness.

I. INTRODUCTION

Nowadays, computing devices demand has extended battery

life, while other systems like embedded system also require

reduced power consumption as most of the applications in

embedded systems are memory intensive. Memory access

constitutes a significant part of overall application’s energy

consumption [1]-[2]. From environmental and economic

aspect also, desktop systems should be energy efficient.

Main memory constitutes a major part in overall system’s

power consumption. In [3], authors have reported that in mid-

range IBM eServer Machine, main memory contributed 40%

of the total system’s power consumption. The major

contribution of main memory in total system’s power

consumption motivates researchers to find ways to reduce its

energy consumption. In a modern main memory system

JEDEC-style Dual Data Rate Synchronous Dynamic Random

Access Memory (SDRAM) is used. DRAM’s power

consumption can be divided into two parts, i.e. ,active power

consumption and standby power consumption.By minimizing

active power consumption or standby power consumption,

DRAM’s power consumption can be reduced.DRAM’s active

power consumption is due to memory accesses and it can be

reduced by minimizing the number of operations required to

serve the memory accesses or by reducing read-write

switching. On the other hand, the power consumption made

by DRAM cell when it is in idle state constitutes its standby

power consumption. A DRAM cell is periodically refreshed

even when it is idle to maintain the data stored in it. DRAM’s

standby power consumption can be reduced by employing

strategies like frequency scaling, power down, self-refresh

mode., etc. Hence, systematized reordering of memory

accesses helps to achieve the goal of minimizing active power

consumption.

In addition to energy consumption, issue of fairness among

threads should also be addressed while scheduling memory

accesses. In a multicore environment simultaneously running

threads compete with each other for off-chip memory

bandwidth, as main memory is the key resource shared

among all running threads. The contention among threads

may lead to thread interference. Several prior studies [4]-

[7]have revealed that thread interference can result in

degraded system performance and fairness. This problem

accelerates more with the increase in the number of cores [5].

In embedded systems most of the applications are memory

intensive. Memory intensive applications generate more

frequent memory accesses compared to workload intensive

applications and hence tend to block the reorder buffer head.

It may lead to starvation like situation for requests generated

from workload intensive applications. Unfortunately,

conventional scheduler does not consider the issue of thread

fairness while scheduling memory commands rather they

focuses on improving data throughput of the memory sub-

system, e.g., [8]. Hence, they do not work well in multicore

environment. To solve the problem of unfairness among

threads and a wise main memory access scheduler is required

that fairly provides opportunity for all applications to access

main memory resource.

In this paper, we propose a memory access scheduler that

reorders the memory accesses and schedules them to achieve

increased performance and improved energy consumption by

employing policies like delayed write drain,selecting reads

over writes and prioritizing row hits. In addition to improved

energy consumption and performance proposed scheduler

also ensures fairness among simultaneously running threads

and increases bank level parallelism.In this work, we evaluate

proposed scheduler against four previously proposed memory

schedulers across a wide variety of workloads in terms of

power consumption, energy-delay product, total execution

time and fairness among threads.

The rest of the paper is organized under following sections,

Section II, gives brief introduction about DRAM architecture,

memory access scheduling and DRAM power model. Section

III, elaborates pertinent details about the proposed scheduling

mechanism. In Section IV, system configuration and

performance metrics used for simulation and evaluation are

described. Section V, highlight the evaluated results. In

Journal of Telecommunication, Electronic and Computer Engineering

62 e-ISSN: 2289-8131 Vol. 9 No. 3-6

Section VI, we conclude the paper and provide future scope.

II. BACKGROUND

In this section we first briefly discusses DRAM main

memory system. Then we provide an overview on previous

memory access scheduling policies and DRAM power model.

A. DRAM Architecture

In DRAM main memory system, channels, ranks and banks

are organized in hierarch manner. Channels are independent

of each other and can be accessed in parallel. A channel is a

collection of ranks (typically 1-4). All ranks within a channel

shares common (channel’s) data bus, command bus and

address bus. A rank further consists of banks that can operate

concurrently sharing a common data bus, command bus and

address bus. Each bank is a collection of rows and columns

arranged as a two-dimensional array. To service a memory

access (read/write), firstly activates command is issued to

bring the row containing data to sense amplifier. If

consecutive memory access is also made to same row, then

this scenario results in row hit. In this scenario, there is no

need to issue the activate command first as requested row is

already present in sense amplifier. Whereas if consecutive

memory access is intended to some other row, then this

situation leads to row miss or row conflict. Time to serve a

memory request and energy consumed while serving the

request depends on whether a memory access is leading to

row hit or miss/conflict. Row hit memory accesses are served

~2-3x faster than a row miss/conflict accesses [9] and

consumes lesser energy too. [10]-[13] have provided detailed

information about DRAM operations.

B. State-of-the-art Memory Access Scheduling

The effect of memory access scheduling on the system’s

performance and energy consumption has been testified in

many previously conducted studies [6]-[8], [14]-[18].

Numerous work has been done to improve the energy

consumption and performance of the main memory system.

In [8], proposed FRFCFS (First Ready First Come First

Serve) memory scheduler that prioritized new row hits over

pending row miss requests to achieve improved performance

and energy consumption compared to the FCFS scheduling

policy. In FRFCFS fairness constraint does not take care of

while issuing commands. FCFS scheduler schedules

commands in the order of their arrival time. A variant of

FCFS policy schedules requests as per their arrival time in the

ready queue. The ready queue is then sequentially scanned to

find out request that can be served in the current cycle. Stall

Time Fair Memory Scheduler proposed in [6], keeps track of

all executing threads in terms of their maximum slowdown

time. The threads experiencing maximum slowdown are

prioritized over others. Scheduler PRWL proposed in [19],

pre-issues some non-conflicting read commands during write

mode and write command during read mode. In [20],

researches have presented a memory scheduler (ATLAS) that

prioritizes threads having least service time in previous

epochs. In [21], the authors have proposed Row Locality

Based Drain policy that allows read-write swapping only

when all read hits or write hits are exhausted while executing

in read mode or write mode respectively. PBFS (Priority

Based Fair Scheduler) [22], addresses the issue of starvation

by periodically accessing the behavior of thread’s memory

accesses. In [23], Fang et al. presented a scheduler named

Thread-Fair Memory Request Reordering that gives

preference to oldest request generated from each executing

thread. In [24], authors investigated the role of memory

access scheduling in resolving conflicts generated by multi-

threaded workloads. In basic close page policy precharge

command is issued immediately after serving the read/write

command. In another variant of close-page policy, the

scheduler issues precharge command to last serviced memory

address on finding idle cycle.

C. DRAM Power Model

In this section, we describe the power model used to

calculate memory system power consumption. DRAM power

consumption can be divided into two components consumed

by memory elements (core power consumption) [25], and

power consumed while driving data into or out of the data bus

(I/Opower consumption). Power consumed by memory

elements, i.e., core power consumption comprised of three

main elements; i) Average power consumption when the

memory is in idle state (base power consumption), is the sum

of power consumed in standby mode and during refresh

operation ii) Power consumption when DRAM is active

(active power consumption) and iii) Power consumption

while servicing read/write requests. The equations used for

power modeling are based on Micron Memory System Power

Technical Note [26] and Micron power calculator [27]. For

better assimilation, P(XX) is used to denote power consumed

by XX sub-component. Total power consumed by DRAM

chip is calculated as

)()min(

)()()()()(

refreshateter

backgroundactivatewritereadDRAM

PP

PPPPP

(1)

To calculate total memory system power consumption,

DRAM chip power is multiplied by number of DRAM chip.

III. PROPOSED MECHANISM

In this section we provide details of our proposed memory

access scheduling policy. The key features of the EEPAF

policy area) preferred read requests overwrites ii) prioritized

row buffer hits iii) delayed write drain iv) thread fairness and

v) bank level parallelism.

The proposed scheduling policy gives preference to

memory read requests over write requests as memory reads

significantly affects the system’s performance. When the

processor generates a memory read request, it stalls its

execution while waiting for reply from memory (content

requested). The processor stops its execution till generated

read request is serviced by the memory sub-system. This halt

in execution results in increased execution time for an

application. Whereas memory write request does not stall the

processor. Hence, in our proposed scheduler we prioritize

read requests overwrites, resulting in decreased halting time

of processor that further lead to decreased execution time of

application. Decreased execution time may help in reducing

the energy consumption of the system.

Another feature that we have employed in our proposed

scheduling algorithm is prioritized row buffer hit requests

over other requests. A row buffer hit is a condition in which

the address which is being addressed is already present in the

sense amplifier, so in order to perform read or write on

specified memory address only column-read or column-write

is required, respectively. Whereas in the row buffer miss

Energy-Efficient Performance-Aware Fair Memory Access Scheduling on Multicore Platform (EEPAF)

 e-ISSN: 2289-8131 Vol. 9 No. 3-6 63

situation column read or column write command should be

preceded by precharge command and activate command. The

least number of commands are required to be issued in row

hit situation and hence the least amount of energy is

consumed. The dynamic energy consumed to perform

column read command (to read data from cell) on a DRAM

memory cell is given by:

dataNDDRD TVIIE *)(3DD4R (2)

where: IDD4R denotes current withdrawn to perform column

read and corresponds to current withdrawn in active standby

mode. Time taken to transfer data in M column accesses is

represented by Tdata and is given by (3).

burstdata TMT (3)

Tburst represents a data transfer latency and is given by (4).

2
clk

burst

t
BLT

(4)

Along with ERD additional dynamic energy (EDQ) is also

expanded to read data out from DRAM cell, given by (5).

dataDQSDQRDQDQ TNNPE)()(
(5)

where, PDQ(R) represents the power consumed per pin while

extracting output [28]. NDQ(R) denotes number of data pins and

NDQS corresponds to number of strobe pins.

When writing data into DRAM cell, dynamic energy EWR

is expanded and is given by (6).

dataNDDWDDWR TVIIE)(34

(6)

where, IDD4W and IDD3N represents write current drawn and

standby current drawn during Tdata.

While writing data, write termination energy is also spent

to write (7).

dataDMDQSDQWDQterm TNNNPE)()(
(7)

In Equation (7), NDM represents the number of data mask

pins and NDQ(M) denotes power per pin during write

termination.

Equation (8) and (9) gives dynamic energy consumption

during read miss and write miss.

DQRDDDreadmissDRAM EEEE 0)(
 (8)

termWRDDwritemissDRAM EEEE 0)((9)

where,

rcRASrc

NDDRASNDD
rc

DDDD

tVtt

ItI
t

IE

)(

(1(2300

 (10)

where, IDD0 is the average current drawn during issuing

activate command. trc is delay between two activate

command. After a delay of tras activate command is preceded

by precharge command.

Dynamic energy spent in a row hit situation, i.e.,read hit

and write hit, is in the form of dynamic energy consumed to

perform read column access and write column access,

respectively.

Dynamic energy consumed in read hit access and write hit

access is given by (11) and (12).

DQRDreadhitDRAM EEE)((11)

termWRwritehitDRAM EEE)((12)

By analyzing the Equation (8), (9), (11) and (12), it is

clearly revealed that row buffer hits require a lesser number

of operations to access the desired page.

EEPAF also employ delayed write drain policy to further

prioritize read request and to exploit row buffer hit. In

conventional scheduling policies once all read requests are

served, i.e. ,read queue gets empty, the scheduler enters into

write drain mode. In proposing scheduler instead of

immediately entering into write mode, scheduler delays

entering in write drain mode and waits for incoming read

requests. Delayed write drain is applied only when memory

traffic is not heavy otherwise conventional drain policy is

employed. So, by extending read drain mode EEPAF

prioritizes read requests and further more read hits can be

achieved. Delayed write drain policy enhanced the

scheduler’s ability to reduce energy consumption and

performance.

In addition to rationalizing energy consumption, proposed

scheduler also provides fairness among threads and bank

level parallelism. In order to ensure fairness, EEPAF is based

on following idea. Concurrently executing applications on

multiple cores contend with each other for main memory

resource causing inter-thread interference. Interference

among threads results in increased wait time for some

threads. The increased stall time of a thread is because of two

factors, i.e., when other thread’s requests are prioritized

Tinterf(others) and stall time due to conflicts generated from same

thread Tinterf(own).

)(int)(intint ownerfotherserferf TTT (13)

Tinterf(others) is further due to two factors, i.e., Tinterf(bus),

interference due to wait time in bus and halt time if

interference occurs in DRAM bank, Tinterf(bank).

)(int)(intint)(buserfbankerferf TTothersT (14)

Every read or write request is sent to DRAM bank through

DRAM bus. The DRAM bus remains unavailable for other

requests during this transfer period (Tbus cycles). The value

Tbus depends on type of DRAM used in memory subsystem.

Tbusvalue for DDR2 SDRAM is given by:

2
BLTbus (15)

EEPAF reduces a thread’s interference caused due to other

threads. Memory intensive threads tend to access main

memory sub system more frequently and hence block the

reorder buffer head. Our scheduler prioritizes service requests

generated from the reorder buffer so other requests (generated

from load intensive threads) that were starved due to blocked

reorder buffer gets equal opportunity to be served.

Bank level parallelism is achieved by interleaving doable

reads and writes. In write drain mode on finding idle cycle

EEPAF issues non-conflicting read commands opening the

sense amplifier for upcoming read requests. This write-read

interleaving helps to exploit bank level parallelism and also

Journal of Telecommunication, Electronic and Computer Engineering

64 e-ISSN: 2289-8131 Vol. 9 No. 3-6

increases read hits for upcoming read requests.

Flow chart of our implemented scheduling policy is given

in Figure 1.

Figure1: Flow Chart of EEPAF

IV. METHODOLOGY

In this section we first briefly describe the system

configuration and workloads used for evaluating the

performance of proposed scheduler. Then we present the

performance metrics used for conducting quantitative

analysis of EEPAF.

A. System Configuration and Workloads

We build our proposed scheduler on simulator named

USIMM [29], that issues device level memory command

based on current memory status. To evaluate proposed

scheduler experiments are run using two memory

configurations, Table 1 provides details of both memory

configurations. In simulator power related calculations are

made on the bases of micron’s power calculation

methodology.

We evaluate the performance of EEPAF in multicore

environment varying from 1, 2, 4, 8 and 16 cores for varied

variety of workloads. Multithreaded workloads from

commercial transaction processing (e.g., comm1 and comm2)

and PARSEC (e.g., black, face, ferret, fluid, freq, stream,

swapt, MT*-canneal) [30] are used for simulation. Using

before mentioned trace files ten different workload

combinations are made and simulated for both memory

combinations in the varied core environment.

B. Metrics

We quantitatively compare EEPAF with four previously

proposed memory access schedulers, i.e., FCFS, close, RLDP

and PBFS. The comparison is conducted in terms of power

consumption, fairness and performance. We use energy-delay

product to capture the goal of improved performance at

reduced energy consumption or same energy consumption

[31]. To measure unfairness among threads, maximum

slowdown time performance metric is used [32]. Total

memory system power consumption is used to calculate

power consumed in memory system. In addition to before

mentioned metrics, total execution time performance metric

is used to measure the thread’s execution time.

Table 1

Memory Configurations

Parameters Configuartion-1 Configuration-2

Processor clock speed 3.2GHz 3.2GHz
Processor ROB size 128 160

Memory bus speed 800 MHz (plus DDR) 800 MHz (plus DDR)

Memory channels 1 4

Ranks per channel 2 2

Banks per Rank 8 8

Cache lines per row 128 128

V. EVALUATION

We evaluated the sensitivity of proposed scheduler

EEPAF, to varying core count and memory configuration.

For analyzing the impact of memory configuration, we run

experiments using both two memory configurations, i.e.,

configuration-1 and configuration-2 (details in Table 1).

Sensitivity to core count is evaluated by varying number of

cores using simulation. For quantitative analysis, we

evaluated EEPAF in comparison to four previously proposed

schedulers (FCFS, Close, RLDP and PBFS) in terms of

Memory system power consumption, Energy Delay Product,

Total Execution Time and Maximum Slowdown Time.

A. Memory System Power Consumption

In terms of memory system power consumption, proposed

scheduling policy outperforms all simulated policies for both

memory configurations under multi-core environment. Here

the exception is FCFS scheduling policy. The performance of

FCFS scheduling policy is better than EEPAF in terms of

memory system power consumption because FCFS employs

a simple mechanism and does not exhaust power to limit other

factors. On analyzing the simulation trend we find that there

is an increase in FCFS power consumption as core count

increases. For 4-core environment FCFS power consumption

is greater than EEPAF. This because of the fact that FCFS

does not work well in multicore environment due to thread’s

interference. Figure 2, depicts the performance of EEPAF in

comparison to all simulated scheduling policies for both

memory configurations and varied core count.

B. Energy Delay Product

The results shown in Figure 3, for Energy Delay Product

reveals that EEPAF performed best among all simulated

memory access scheduling policies for both memory

configurations. Using configuration-2, in comparison to

PBFS, RLDP, Close and FCFS, EEPAF reduced energy delay

product by 3.5%, 0.41%, 10.16% and 21.05% respectively.

Energy-Efficient Performance-Aware Fair Memory Access Scheduling on Multicore Platform (EEPAF)

 e-ISSN: 2289-8131 Vol. 9 No. 3-6 65

Figure 2: (a) Comparison based on Memory System Power Consumption

using memory configuration-1, (b) Comparison based on Memory System

Power Consumption using memory configuration-2, (c) Overall Memory
System Power Consumption

Figure 3: (a) Comparison based on Energy Delay Product using memory

configuration-1, (b) Comparison based on Energy Delay Product using
memory configuration-2, (c) Overall Memory System Power Consumption

C. Total Execution Time

The simulation trend seen in Figure 4, reveals that overall

performance of EEPAF is better than PBFS, FCFS and close

page policy. EEPAF shows significant reduction in execution

time, i.e., 10.06%, 4.85% and 0.43% when compared to

FCFS, close and PBFS scheduling policies respectively. In

comparison to RLDP scheduling policy, EEPAF shows

0.99% increase in execution time. But if we consider energy

consumption, then EEPAF reduced energy consumption in

comparison to RLDP.

D. Maximum Slowdown Time

For maximum slowdown time performance metric, EEPAF

showed best performance among all simulated memory

access scheduling policies for both memory configurations

(configuration-1 and configuration-2) under varied core

environment. By limiting maximum slowdown time, EEPAF

managed to reduce un-fairness among simultaneously

running threads in multicore platform.

Figure 4: (a) Comparison based on Total Execution Time using memory

configuration-1, (b) Comparison based on Total Execution Time using

memory configuration-2, (c) Overall Total Execution Time

Figure 5: (a)Comparison based on Maximum Slowdown Time using

memory configuration-1, (b)Comparison based on Maximum Slowdown
Time using memory configuration-2, (c) Overall Maximum Slowdown

Time

VI. CONCLUSION

We introduce energy-efficient performance aware fair

memory scheduler, EEPAF. The detailed analysis conducted

across a wide variety of workloads in a varied core

environment reveals that EEPAF significantly reduces energy

consumption and improves performance of the memory

system while maintaining fairness among threads. EEPAF

reduces the issue of energy consumption by rationalizing

power consumption and execution time of a thread.

Reduction in power consumption is achieved by reducing the

number of operations required to service a memory request.

Reduction in number of operations is achieved by

maximizing row hits. Whereas, thread’s execution time is

reduced by i) reducing the processor’s stall time (by

prioritizing reads over writes) ii) minimizing the slowdown

time of a thread (reducing unfairness) iii) enhancing bank

level parallelism (write-read interleaving) and iv) reducing

Journal of Telecommunication, Electronic and Computer Engineering

66 e-ISSN: 2289-8131 Vol. 9 No. 3-6

requests service time (exploiting row hits). EEPAF does not

adversely affect the performance of the system while

reducing energy consumption because it considers both

quantities, i.e., power and execution time while scheduling

commands. We conclude that EEPAF can be an effective and

efficient memory access scheduling strategy for multicore

systems. In future, further more efficient memory schedulers

can be explored. Also interaction of EEPAF with other

scheduling policies can be an interesting area to work on.

REFERENCES

[1] K. Barr and K. Asanovic, “Energy aware lossless data compression,”

in 1st Int. Conf. Mobile Systems, Applications, and Services

(MobiSys’03), San Francisco, CA, May 2003.

[2] 8 Kim, H., Vijaykrishnan, N., Kandemir, M., Brockmeyer, E.,
Catthoor, F., and Irwin, M.J.: ‘Estimating influence of data layout

optimizations on SDRAM energy consumption’. Proc. ISLPED, Aug.

2003, pp. 40–43.
[3] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and T.

Keller. Energy management for commercial servers. IEEE Computer,

36(12):39–48, 2003.
[4] K. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith, “Fair queuing

memory systems,” in Proc. 39th Annu. IEEE/ACM Int. Symp.
Microarchit., 2006, pp. 208–222..

[5] T. Moscibroda and O. Mutlu, “Memory performance attacks: Denial of

memory service in multi-core systems,” in Proc. 16th USENIX
Security Symp. USENIX Security Symp., 2007, pp. 18:1– 18:18.

[6] O. Mutlu and T. Moscibroda, “Stall-time fair memory access

scheduling for chip multiprocessors,” in Proc. 40th Annu. IEEE/ ACM
Int. Symp. Microarchit., 2007, pp. 146–16.

[7] O. Mutlu and T. Moscibroda, “Parallelism-aware batch scheduling:

Enhancing both performance and fairness of shared DRAM systems,”
in Proc. 35th Annu. Int. Symp. Comput. Archit., 2008, pp. 63–74.

[8] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens,

“Memory access scheduling,” in Proc. 27th Annu. Int. Symp. Comput.
Archit., 2000, pp. 128–138.

[9] JEDEC, Standard No. 79-3. DDR3 SDRAM STANDARD, 2010.

[10] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, “A case for
exploiting subarray-level parallelism (SALP) in DRAM,” in Proc. 39th

Annu. Int. Symp. Comput. Archit., 2012, pp. 368–379.

[11] D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian, and O. Mutlu,
“Tiered-latency DRAM: A low latency and low cost DRAM

architecture,” in Proc. IEEE 19th Int. Symp. High Perform. Comput.

Archit., 2013, pp. 615–626..
[12] D. Lee, K. Yoongu, G. Pekhimenko, S. Khan, V. Seshadri, K. Chang,

and O. Mutlu, “Adaptive-latency DRAM: Optimizing DRAM timing

for the common-case,” in Proc. IEEE 21st Int. Symp. High Perform.
Comput. Archit., 2015, pp. 489–50.

[13] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G.

Pekhimenko, Y. Luo, O. Mutlu, P. Gibbons, M. Kozuch, and T.
Mowry, “RowClone: Fast and efficient In-DRAM copy and

initialization of bulk data,” in Proc. 46th Annu. IEEE/ACM Int. Symp.

Microarchit., 2013, pp. 185–197.
[14] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter, “Thread

cluster memory scheduling: Exploiting differences in memory access

behavior,” in Proc. MICRO, 2010.H. Simpson, Dumb Robots, 3rd ed.,
Springfield: UOS Press, 2004, pp.6-9.

[15] M. Bojnordi and E. Ipek, “PARDIS: A programmable memory

controller for the DDRx interfacing standard,” in Proceedings of ISCA,
2012.

[16] Aastha Modgil, Nitin and Vivek Kumar Sehgal,“Understanding and

Analyzing the Impact of Memory Controller’s Scheduling Policies on
DRAM’s Energy and Performance,” in proceedings of the 4th

ICECCS, 2015, vol. 70, pp.399-406

[17] J. Shao and B. T. Davis, “A burst scheduling access reordering
mechanism”, In HPCA-13, 2007

[18] I. Hur and C. Lin., “Adaptive history-based memory schedulers”, in

MICRO-37, 2004.
[19] Long Chen, Yanan Cao, Sarah Kabala and Parijat Shukla, “Pre-Read

and Write-Leak Memory Scheduling Algorithm,” in 3rd JILP

Workshop on Computer Architecture Competitions: Memory
Scheduling Championship, MSC, 2012.

[20] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “ATLAS: A

scalable and high-performance scheduling algorithm for multiple
memory controllers,” in Proc. HPCA, 2010.

[21] Y.S. Moon, Y. Kwon, H.S. Kim, D. Kim, H. H. Lee and K. Park, “The

Compact Memory Scheduling Maximizing Row Buffer Locality,” in
3rd JILP Workshop on Computer Architecture Competitions: Memory

Scheduling Championship, MSC, 2012.

[22] Li, C., Wang, D., Wang, H., & Xue, Y. Priority Based Fair Scheduling:
A Memory Scheduler Design for ChipMultiprocessor Systems.

Tsinghua National Laboratory for Information Science and
Technology.

[23] Fang, K., Iliev, N., Noohi, E., Zhang, S., Zhu, Z.; 2012.; “Thread-Fair

Memory Request Reordering,” 3rd JILP Workshop on Computer
Architecture Competitions(JWAC-3): Memory Scheduling

Championship (MSC), July 2012.

[24] Z. Zhu and Z. Zhang, “A performance comparison of dram memory
system optimizations for smt processors,” in Proceedings of the

International Symposium on High-Performance Computer

Architecture (HPCA), pages 213 – 224, Feb. 2005.
[25] J. W. Janzen. TN-46-03 - Calculating Memory System Power for DDR.

Micron Technology, Inc., October 2003.

[26] Micron Technology Inc. Calculating Memory System Power for DDR3
- Technical Note TN-41-01, 2007

[27] Micron System Power Calculator. http://goo.gl/4dzK6.

[28] Micron Technology, Inc., 2004. Calculating memory system power for
DDR2. Technical Note, http://www.micron.com.

[29] N. Chatterjee, R. Balasubramonian, M. Shevgoor, S. Pugsley, A. Udipi,

A. Shafiee, K. Sudan, M. Awasthi, and Z. Chishti, “USIMM: the Utah
SImulated Memory Module,” Technical report, University of Utah,

2012. UUCS-12-002.

[30] C. Bienia, S. Kumar, J. P. Singh, and K. Li., “The PARSEC Benchmark
Suite: Characterization and Architectural Implications,” in Proceedings

of PACT, 2008.

[31] R. Gonzalez and M. Horowitz, “Energy Dissipation in General Purpose
Processors,” in Proceedings of the IEEE Symposium on Low Power

Electronics, Oct. 1995, pp. 12-3.

[32] M. A.Bender, S.Chakrabarti, and S. Muthukrishnan, “Flow and stretch
metrics for scheduling continuous job streams,” in Proceedings of the

ACM Symposium on Discrete Algorithms (SODA), 1998.

