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Abstract: A rapid dissemination of Android operating system in 

smart phone market has resulted in an exponential growth of 

threats to mobile applications. Various studies have been carried 

out in academia and industry for the identification and 

classification of malicious applications using machine learning 

and deep learning algorithms. Convolution Neural Network is a 

deep learning technique which has gained popularity in speech 

and image recognition. The conventional solution for identifying 

Android malware needs learning based on pre-extracted features 

to preserve high performance for detecting Android malware. In 

order to reduce the efforts and domain expertise involved in 

hand-feature engineering, we have generated the grayscale 

images of AndroidManifest.xml and classes.dex files which are 

extracted from the Android package and applied Convolution 

Neural Network for classifying the images. The experiments are 

conducted on a recent dataset of 1747 malicious Android 

applications. The results indicate that classes.dex file gives better 

results as compared to the AndroidManifest.xml and also 

demonstrate that model performs better as the image become 

larger. 

Keywords: Android malware, Android malware grayscale 

images, Convolutional Neural Network, Deep learning, Feature 

engineering, Machine learning 

I. INTRODUCTION 

In accordance with the worldwide smartphone sales 

report, Android is considered as one of the most prominent 

mobile operating system (OS) [1]. Due to the increase in the 

usage of various applications of Android such as education, 

lifestyle, banking and gaming, it has lured attention of the 

cyber attackers. Consequently, Android malware applications 

have been developed by the attackers in order to steal user’s 

private information, money etc. Malware is a piece of 

software which aimed to harm the system, collects the 

important information, make fake premium calls etc. 

According to the report of McAfee, more than 31 million 

samples were discovered as Android malware and 1.9 million 

new samples are found every year [2]. However, most of the 

new malicious applications are installed as variants of earlier 

known ones [3], [4]. As a result, malicious programs can be 

grouped into their families having a set of similar 

characteristics and behaviors. These similarities between the 
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samples of same family can be used for the classification of 

new Android applications.  

Malware authors are making use of various techniques for 

evading detection of their applications. The most popular 

method used to detect malware is based on signature based 

approach which matches the signature of new application with 

the signatures available in the existing database. The 

drawback of this method is that is it not able to detect 

unknown malware. The current methods for Android malware 

detection are based on machine learning and deep learning 

techniques. For using the concept of machine leaning, there is 

a need of feature engineering which requires domain 

expertise. These features are used to train a machine learning 

model. The features are extracted by using two techniques i.e. 

static and dynamic malware analysis. Static malware analysis 

technique analyzes the source code of the application to 

identify malicious patterns without executing the code [5]. 

The dynamic malware analysis technique analyzes the 

behavior of application during runtime using the virtual 

environment (i.e. Sandbox). The features obtained from static 

and dynamic malware analysis can also be integrated to 

enhance the classification accuracy [6]. Nowadays, due to the 

availability of automated tools, a large number of malware 

variants can be created with few clicks. 

Moreover, attackers are using innovative ways to avoid 

detection of their Android applications. In order to deal with 

both of these problems and to reduce the efforts and domain 

expertise involved in feature engineering, we have created the 

grayscale images of AndroidManifest.xml and classes.dex 

files of APK. A Convolutional Neural Network (CNN) is 

designed which is used to classify the Android malicious 

applications. 

The following are the contributions of the paper: 

1. We prepared the two different sets of graysacle image 

datasets based on AndroidManifest.xml and 

classess.dex file which consists of 1747 application 

with 13 malware families. 

2. Convolutional Neural Network model has been 

designed for the classification of the Android 

malicious applications into their families. 

3. A Comparative analysis of classification results 

obtained from AndroidManifest.xml and 

classess.dex files (represent as grayscale images) is 

performed on the basis of different image sizes i.e. 
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 32x32, 64x64, 128x128 and 256x256. 

The rest of the paper is framed as follows: Section II 

provides an overview related to Android Package (APK) 

structure. Section III provides the work related to 

identification and classification of Android application using 

machine learning and deep learning algorithms. Section IV 

discusses the methodology used and experimental result 

analysis for the Android malware family classification. 

Section V concludes the paper. 

II. BACKGROUND 

    This section gives an overview related to APK structure: 

 Android applications are introduced by Google [7] which are 

developed using Java programming language. The 

applications of Android are packed as APK file which 

contains various files/sub-folders like Asset, lib, res, 

META-INF, classes.dex, resources.arsc and Android 

Manifest.xml [8]. Structure of an APK file is shown in Fig. 1. 

A brief description of its files and sub-folders is given as 

follows. 

 Assets: Assets folder holds the media files which 

could be acquired by the Asset Manager. 

 lib: It contains the information about the compiled 

code of Android application. The lib comprises of 

multiple sub folders which contains compiled code 

for particular hardware architecture. These are 

armeabi (holds compiled code for Advanced RISC 

Machine (ARM) based processor), arm64- V8a 

(holds compiled code for ARMv8 and above 

processor), armeabi v7a (holds compiled code for 

ARMv7 and above processor), X86 (holds compiled 

code for X86 processor), X86-64 (holds compiled 

code for X86-64 processor) Mips (holds compiled 

code for MIPS processor). 

 res and resource.arsc folder: Resources are found in 

res and resource.arsc file. It contains XML file, 

string file, fonts, icons and images etc. 

 META_INF: This folder contains meta information 

about the contents of APK file. This folder 

comprises of three parts i.e. CERT.RSA, CERT.SF 

and MANIFEST.MF. CERT.RSA holds public 

certificate of the Android application. CERT.SF 

holds the application security certificate and the 

records of all files present in the APK file with their 

hash (SHA-1 digest). MANIFEST.MF is a manifest 

file which comprises of vital information about the 

application. It generally holds the information about 

the permissions (which application needs from other 

apps or OS), package name of the application and 

the features related to hardware and software which 

are required by the application.  

 Classes.dex: It includes the application bytecode in 

Dalvik Virtual Machine (DVM) format. It also 

contains the information about the API calls or 

methods, class name, class path and the package 

name. 

 AndroidManifest.xml: This file contains information 

about the permissions, minimum level of API and 

intents.   

III. LITERATURE REVIEW  

Various techniques and methods have been introduced for 

the identification or classification of Android malware. This 

section presents the review related to Android malware 

detection on the basis of features extracted from static and 

dynamic malware analysis and the visualization of malware 

using machine learning and deep leaning techniques. 

 

Sugunan et al. [9] performed an analysis on the behaviour 

of benign and malicious applications using its dynamic and 

static features. The authors proposed a system to detect 

Android malicious applications. The results indicate that the 

combinations of features (dynamic and static) are found to be 

more accurate in detecting the Android applications. In [10], 

the author presented an OmniDroid, which is an automated 

framework for both static and dynamic analysis of Android 

applications. They employed ensemble classifiers over this 

dataset for detection of Android malware. The experimental 

outcomes indicate the usability and feasibility of their 

publically available dataset and automated framework. Yuan 

et al. [11] introduced an online malware detection engine 

named as Droid detector which is based on deep learning 

techniques. It automatically detect the Android applications 

as either benign or malware. The results show that Droid 

detector achieves 96.76% accuracy in comparison with 

existing machine learning methods. In [12], the author 

proposed a detection system named as service monitor that 

dynamically detects the malware applications on the Android 

devices. They employed Markov chain model to depict how 

services are used to access system resources. Markov chain is 

considered for feature vector form and is classified by using 

Random Forest algorithm. The accuracy obtained is 96%. 

Cen et al. [13] presented a probabilistic discriminative model 

which is based on logistic regression for the identification of 

malware. They extracted API calls and permissions from 

decompiled source code. The results indicate that their 

proposed algorithm works well with combining both API calls 

and permissions. In [14], the authors designed a technique 

named as DREBIN for the detection of Android malware. 

They extracted eight different types of static features and 

applied machine learning algorithms to identify the malicious 

application. The experimental outcomes indicate that the 

DREBIN provide results with 94% accuracy. In [15], the 

author presented a technique to increase the user’s mobile 

security. The author implemented deep learning technique for 

identification of Android malware. They extracted API calls 

from APK file and employed CNN for detection of malware. 

The accuracy obtained by CNN algorithm is 90%. Dhalaria et 

al. [16] performed a comparative analysis on Malgenome 

dataset on the basis of different machine learning and 

ensemble techniques to detect the Android application. The 

experimental outcomes indicate that stacking ensemble 

technique perform better as compared to other machine 

learning classifiers. 

The above mentioned research works are related to 

extracting features using static and dynamic malware analysis 

to classify Android application. In order to remove the 

hand-feature engineering, the concept of CNN came into 

being which automatically extract the features.  
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The following are the research works related to the 

classification and detection of malware after visualizing these 

as images.  

Nataraj et al. [17] was the first who worked on the malware 

images. They suggested a technique based on visualized 

classification of windows malware through image processing. 

The authors converted malware binaries into grayscale 

images and applied K-Nearest Neighbour (K-NN) technique 

for classifying the malware. The results indicate that the 

accuracy obtained by K-NN model is 98%. Yan et al. [18] 

introduced a novel technique known as MalNet which uses 

Long Short Term Memory (LSTM) and CNN. These 

networks learn from opcode sequence and grayscale images 

and applied stacking ensemble technique for classification of 

windows malware. The results demonstrate that MalNet 

obtained 99.88% accuracy for identifying malware. Cui et al. 

[19] presented a novel technique in order to efficiently detect 

the variants of malware. They transformed malicious code 

into grayscale images and classified these images using CNN. 

The results indicate the model achieves better accuracy i.e. 

94.5% than other existing models. In [20], the authors 

designed a detection system for Android malware based on 

color inspired CNN. They converted the classes.dex to rgb 

color image and store the image with fixed size. The results 

indicate that the designed system give accurate results in 

terms of security. Zhao and Qian [21] introduced a static 

technique which does not require knowing the source code of 

application. With the help of decompilation they map the 

opcodes, API function into RGB image. They employed CNN 

to detect Android malware families. The results are 

demonstrated on the basis of accuracy, precision, recall, and 

f-measure which were 90.67%, 93.36%, 93.95% and 93.56% 

respectively. Hasegawa and Iyatomi [22] presented a method 

which is highly efficient and accurate in detection of malware. 

The proposed method considered a very small part of APK 

file as a target and examines it with 1-D CNN. They applied 

the proposed technique on two datasets. The results 

demonstrate that the accuracy obtained by two datasets is 

95.40% and 97.04% respectively. 

  

It is clear that the traditional methods are based on the 

pre-extracted features to detect the Android malicious 

application which requires domain expertise. Moreover, 

attackers are making use of innovative ways to evade 

detection of their Android applications, In order to deal with 

these problems, we have generated the grayscale images 

classes.dex and AndroidManifest.xml files which are 

extracted from the part of APK and applied CNN for 

classifying the images. The experiments are conducted on a 

recent dataset of 1747 malicious Android applications. The 

results show that classes.dex file performs better results as 

compared to the AndroidManifest.xml. 

IV. METHODOLOGY USED 

This section describes the workflow of the methodology 

used for comparing the Android family classification results 

obtained using AndroidManifest.xml  and classes.dex files 

represented using grayscale images. Firstly, we collected the 

Android applications from virusshare.com [23]. These 

applications are then decompiled using AXMLPrinter2 [24] 

and Baksmali Disassembler [25] to extract the 

AndroidManifest.xml and classes.dex files. The 

AndroidManifest.xml and classes.dex files are transformed 

into their grayscale images. Afterward, CNN is applied to 

classify the malware images. Fig. 2 demonstrates the 

workflow of the methodology used. 

A. Data collection and Preparation 

 Collection of Android Applications: A total of 2200 

Android applications are collected from virusshare. 

These are downloaded after getting registered with 

their website (www.virusshare.com). 

 Renaming to MD5: MD5 hash algorithm has been 

employed to rename the applications with their hash 

value and to remove the duplicate applications. After 

this step, we left with 1747 applications. 

 Labelling of Data: All these Android applications are 

scanned using Avira antivirus (AV) tool to identify 

the families of malware. The Avira AV tool detects 

the name of families which the particular application 

belongs to (shown in Table- I). It is found that, 1747 

malicious applications belong to 13 different 

families of Android malware.    

Table- I: Number of applications belonging to a 

particular family. 

Malware Family Number of 

applications 

Android/AdLoad.A.Gen 50 

Adware/ANDR.AdMogo.FAN.Gen 55 

Adware/ANDR.AdsWo.CG.Gen 163 

Adware/ANDR.Kuguo.K.Gen 263 

Adware/ANDR.Mobwin.A.Gen 114 

Android/Mseg.E.Gen 36 

Android/MTK.F.Gen 52 

Android/Plankton.C.Gen 60 

Android/SmsAgent.AAV.Gen 402 

Android/TrojanSMS.Boxer.B.Gen 335 

Adware/ANDR.Waps.I.Gen 179 

Adware/ANDR.Dianjin.A.Gen 18 

Adware/ANDR.Fengvi.B.Gen 20 

 

 Decompilation process: The applications are 

decompiled using python script which uses 

automated tool named as AXMLPrinter2 and 

Baksmali Disassembler. Through this, we extracted 

the AndroidManifest.xml and classes.dex.    

 Formation of Grayscale images: After the process of 

decompilation, the classes.dex and 

AndroidManifest.xml are transformed to grayscale 

images using python script. In our work, a malware 

is read as binary as a vector of 8 bit unsigned integer 

and then arranged into 2D array as shown in Fig. 3.  

This can be represented as a grayscale images which 

has pixel values ranging from 0 to 255. Here 0 means 

black and 255 means white. Here, the width of the 

image is kept fix using a square root function and the 

height of the image is dependent on the size of the 

file. 
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 Resizing the image: The grayscale images generated 

are of different sizes and dimensions depending on 

the respective size of each Android application. 

Therefore, these malware images can’t be directly 

provides as the input for CNN. To overcome this 

problem, we reshaped the images to a fixed size i.e. 

32x32, 64 x 64, 128 x128 and 256 x 256. In this way, 

the images are resized and could be directly 

provided to the CNN for classification. Table- II 

shows the algorithm of the methodology used. 

B. Classification using CNN 

CNN or ConvNet is a feed forward neural network where 

the association pattern between the neuron is encouraged by 

the structure of an animal visual cortex [26]. It is used in 

various areas such as audio, image recognition, identifying 

faces etc. We have used CNN because it can be applied to 

whole image at a time and it is more reliable. The purpose of 

convolution layer is to extract features from original image. It 

makes use of different filters which acts as feature detectors 

and produce different feature maps for the same image. 

Different activation functions such as ReLU, sigmoid, tanh 

etc are used to convert the input to an output. The output is 

used as an input for the next layer. Pooling layer is responsible 

for reducing the dimensionality of each feature map. It is 

known as down sampling and sub sampling. The fully 

connected layer is used for classifying the original images into 

different classes. 
In the proposed work, we have designed 4-layer 

convolutional neural network for classifying the Android 

applications into 13 malware families (shown in Fig. 4). We 

first employed convolution layer and after every layer we 

applied ReLU non linear activation function to perform 

operation. We employed ReLU because it helps in vanishing 

gradient problem and is much faster than other activation 

function such as sigmoid and tanh (described in equation 1). 

 

 
 

Fig. 1. APK Structure  

We have used max pooling of 2x2 to reduce the 

dimensionality of feature maps. It takes filter size of 3x3 and 

stride=1. After employing all the layers, we have four 

dimensional vectors of arrays. To transform these vectors into 

single layer of 1-D vector which is called as fully connected 

layer. There may be loss of information while downsampling 

all vector into 1-D. For this purpose, we have employed two 

fully connected layers using softmax non linear activation 

function. It is represented in equation (2). Finally, this layer 

classifies the original images into 13 different malware 

families. The loss is calculated using cross entropy loss 

function which is mainly used for multiclass classification 

problem. For optimization purpose, we have used Adam 

optimizer.  

                                      (1)                                            

                                         (2) 

Here x is a vector of the inputs to the output layer. i indexes 

the output units, so i = 1, 2, ..., J. 

The lists of the parameters used in the proposed model of 

CNN are shown in Table- III. 

Table- III: List of CNN network parameters 

Model Parameters CNN 

Kernel size  3x3 

Stride 1 

Activation function ReLU 

Max Pooling 2x2 

Optimizer Adam 

Loss function Cross entropy 

Dropout probability 0.5 

Epoch 20 

batchsize 16 

Fully connected 

(Activation function) 

Softmax 
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Fig. 2. Workflow of Methodology Used 

 
Fig. 3. Formation of grayscale image 

Table- II: Algorithm of the methodology used 

Input: Android malware Applications (X) in the form of APK 

Begin 

1. Z=MD5(X)                                                                 //rename all the file to MD5 to remove duplicates 

2. Gpscan.log=Scan_Avira(Z)                                      //to categorize the families of Android malware 

3. Unzip each application , use                                                               //to unzip.APK 

               AXMLPrinter2 tool for disassembling AndroidManifest.xml (A)  //to extract AndroidManifest.xml file 

                Baksmali disassembler for disassembling classes.dex (C)                      //to extract Classes.dex file          

4. for every file , repeat the following        //transform A and C into grayscale images     

 Read f as a binary                                                               //as a vector of 8 bit unsigned integer 

 Set width of image as Sqrt (f)                                                                   //fixed the width of the image 

Set height of image as length (f)                                                                   //height of the image 

          Resize(32x32)                                                                    //create the images of size 32x32 

          Resize(64x64)                                                                   //create the images of size 64x64 

          Resize(128x128)                                                              //create the images of size 128x128 

          Resize(256x256)                                                            //create the images of size 256x256 

5. for both type of images of all sizes, apply CNN algorithm (shown in table 4) 

End 

Output: Android malware family classification. 
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Fig. 4. Illustration of Android family classification using CNN 

 

Table- IV: Algorithm for CNN 

Input: Image of size w x h x d where w is the width of an image, h is the height of an image and d is the number of 

channel for grayscale image.  

Begin: 

Step 1: Convolution operation  

1. Pass the input as an image (i.e. matrix with pixel value). 

2. Select K as 3x3x1 matrix where K is the kernel/filter with stride =1. 

3. Through this extract the feature from the original image (i.e. called Convolved feature). 

(The main purpose of the convolution layer is to extract feature from the original image) 

Step 2: Apply activation function 

1. Rectified Linear Unit (ReLU) activation is applied. 

(The main purpose of the activation function is to convert the input to an output and that output become input for 

the next layer) 

 Step 3: Pooling layer 

1. Max pooling of window size 2x2 is applied over convolved feature. 

2. Each window size takes maximum value. 

(The main purpose of this layer is to reduce the size and also retains the important data) 

Step 4: Flattening 

1. Convert the output of the previous layer (which is matrix form) into 1-D feature vector (or we can say 

column vector). 

2. Feature vector become input for the next layer (i.e. fully connected layer) 

Step 5: Fully connected layer 

1. Fed flattens output as an input to ANN (Artificial Neural network)  

2. Softmax activation function is used to classify the families of malware.                                      

End 

Output: Classifying the images into their families 

 

The various parameters used in the proposed design of CNN 

are shown in Table- IV. 

C. Experimental Result Analysis 

This section describes the dataset, evaluation parameters 

used for evaluating and comparing the proposed design of 

CNN model on different sizes of images created from 

AndroidManifest.xml and classes.dex files. It also presents 

the analysis of results obtained. 

Dataset 

As discussed in sub-section 4.1., the dataset used in this 

work is created from 1747 malicious Android application 

containing 13 malware families. AndroidManifest.xml and 

classes.dex files of each Android application are represented 

grayscale image of different sizes i.e. 32x32, 64x64, 128x128 

and 256x256. The proposed CNN model is applied on all the 

images. 

Evaluation Parameters 

70% of total data is used for training purpose and 

remaining 30% is used for testing purpose. The experiments 

are conducted on Intel core (i5 processor) CPU (3.3 GHZ) 

with 8 GB RAM. The performance of proposed CNN 

classifier is evaluated on the basis of different evaluation 

parameters as discussed below: 

 

 Precision: It is defined as what amount of positive 

identifications is correctly classified. It is calculated 

using equation (3) 

                                                          (3) 
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 Recall: It is defined as what amount of actual positive 

cases is classified correctly. The recall is computed 

using equation (4) 

                                                             (4) 

 

 Accuracy: It is defined as the ratio of number of 

correct predictions to the total number of 

prediction. It is computed using equation (5) 

                                              (5) 

 

Here false positive (FP) and true positive (TP) are the number 

of samples wrongly and correctly classified as malware 

respectively. Similarly, false positive (FP) and true negative 

(TN) are correctly classified as benign respectively. 

 

 F-measure: It is defined as the harmonic mean of both 

precision and recall. It is also known as F-score. 

The F-measure is computed using equation (6) 

                        (6) 

Result Analysis 

 

Table- V presents the comparative analysis of classification 

results obtained on applying the proposed CNN model on the 

images (of size 32x32, 64x64, 128x128 and 256x256) created 

from AndroidManifest.xml and classes.dex files of APK

Table- V: Classification results of AndroidManifest.xml and classes.dex images of APK on different image sizes 

Image Size of image  Precision  Recall  F-measure Accuracy 

     (%) 

AndroidManifest.xml 32x32 0.631 0.629 0.629 63.0 

64x64 0.667 0.663 0.664 66.5 

128x128 0.684 0.680 0.681 68.2 

256x256 0.701 0.700 0.700 70.0 

Classes.dex 32x32 0.642 0.641 0.641 64.1 

64x64 0.671 0.670 0.670 67.0 

128x128 0.722 0.720 0.720 72.1 

256x256 0.746 0.745 0.745 74.5 

 

It shows that for every image size considered in our dataset, 

classes.dex files give better classification accuracy as 

compared to AndroidManifest.xml. It clearly indicates that 

classes.dex file contains more relevant information about the 

Android application for classification purpose. It also 

demonstrates that for both types of files, as the image size 

increases, the classification accuracy increases. It may be due 

to the reason that as the image size is decreased, some of the 

features get destroyed. For the larger size image, the features 

remain intact and thus the larger size image gives better 

results. However, the larger size images take more training 

time. 

 
 

Fig. 5. Comparison of Precision, Recall, F-measure of 

AndroidManifest.xml images of different sizes 

 

 

 

 

Fig. 5 demonstrates the comparison of Precision, Recall, 

F-measure of AndroidManifest.xml images of different sizes.  

It shows that as the size of images become larger it gives more 

accurate results. The images with size 256x256 perform better 

in terms of precision, recall and f-measure i.e. 0.701, 0.700 

and 0.700 respectively.  

 

 
  Fig. 6. Comparison of Precision, Recall, F-measure of 

classes.dex images of different sizes  

Fig. 6 demonstrates the Comparison of Precision, Recall, 

F-measure of classes.dex images of different sizes. It 

indicates that as the size of image become larger it gives more 

accurate results. The images with size 256x256 perform better 

in terms of precision, recall and f-measure i.e. 0.746, 0.745 

and 0.745 respectively.  
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Fig. 7. Comparison of classification accuracy of 

AndroidManifest.xml and classes.dex images of different 

sizes 

Fig. 7 indicates the comparison of AndroidManifest.xml 

and classes.dex images of different sizes on the basis of 

accuracy. It is concluded that the images created from the 

classes.dex file with size 256x256 provides the highest 

classification accuracy i.e. 74.5% followed by 128x128 i.e. 

72.1%. 

V. CONCLUSION 

The risk of Android malware is increasing exponentially 

due to the increase in the dependency of Android users on 

different applications. At present, the malware generated are 

complex and sophisticated that can’t be easily recognized. 

Most of the new malicious applications are installed as 

variants of earlier known ones. For better classification of 

Android malicious applications, the concept of machine 

learning and deep learning is being used where the domain 

expertise is required to select the features to be used. 

Therefore in this paper, we have proposed a design of CNN 

model which is applied on the grayscale images (of different 

sizes) obtained from AndroidManifest.xml and classes.dex 

file which are extracted from APK. CNN automatically 

extracts features from the images. The experiments are 

conducted on the dataset consisting of grayscale images of 

1747 Android application with 13 malware families. We 

claim that our datasets consist of recent Android malicious 

applications. The results demonstrate that the images created 

through classes.dex files give better classification accuracy as 

compared to the images created using AndroidManifest.xml 

files. It is also concluded that for both types of files, as the 

image size increases, the classification accuracy increases. 

Thus images created from the classes.dex file with size 

256x256 provide the highest classification accuracy i.e. 

74.5%.  
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