
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8, Issue-12S, October 2019

835

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: L118910812S19/2019©BEIESP

DOI: 10.35940/ijitee.L1189.10812S19

Abstract: A rapid dissemination of Android operating system in

smart phone market has resulted in an exponential growth of

threats to mobile applications. Various studies have been carried

out in academia and industry for the identification and

classification of malicious applications using machine learning

and deep learning algorithms. Convolution Neural Network is a

deep learning technique which has gained popularity in speech

and image recognition. The conventional solution for identifying

Android malware needs learning based on pre-extracted features

to preserve high performance for detecting Android malware. In

order to reduce the efforts and domain expertise involved in

hand-feature engineering, we have generated the grayscale

images of AndroidManifest.xml and classes.dex files which are

extracted from the Android package and applied Convolution

Neural Network for classifying the images. The experiments are

conducted on a recent dataset of 1747 malicious Android

applications. The results indicate that classes.dex file gives better

results as compared to the AndroidManifest.xml and also

demonstrate that model performs better as the image become

larger.

Keywords: Android malware, Android malware grayscale

images, Convolutional Neural Network, Deep learning, Feature

engineering, Machine learning

I. INTRODUCTION

In accordance with the worldwide smartphone sales

report, Android is considered as one of the most prominent

mobile operating system (OS) [1]. Due to the increase in the

usage of various applications of Android such as education,

lifestyle, banking and gaming, it has lured attention of the

cyber attackers. Consequently, Android malware applications

have been developed by the attackers in order to steal user’s

private information, money etc. Malware is a piece of

software which aimed to harm the system, collects the

important information, make fake premium calls etc.

According to the report of McAfee, more than 31 million

samples were discovered as Android malware and 1.9 million

new samples are found every year [2]. However, most of the

new malicious applications are installed as variants of earlier

known ones [3], [4]. As a result, malicious programs can be

grouped into their families having a set of similar

characteristics and behaviors. These similarities between the

Revised Manuscript Received on October 31, 2019.

 Meghna Dhalaria, Department of Computer Science and Engineering,

Jaypee University of Information Technology Waknaghat, Solan, (H.P.)

India. Email: meghna8aug@gmail.com

Ekta Gandotra*, Department of Computer Science and Engineering,

Jaypee University of Information Technology Waknaghat, Solan, (H.P.)

India.. Email: ekta.gandotra@gmail.com

samples of same family can be used for the classification of

new Android applications.

Malware authors are making use of various techniques for

evading detection of their applications. The most popular

method used to detect malware is based on signature based

approach which matches the signature of new application with

the signatures available in the existing database. The

drawback of this method is that is it not able to detect

unknown malware. The current methods for Android malware

detection are based on machine learning and deep learning

techniques. For using the concept of machine leaning, there is

a need of feature engineering which requires domain

expertise. These features are used to train a machine learning

model. The features are extracted by using two techniques i.e.

static and dynamic malware analysis. Static malware analysis

technique analyzes the source code of the application to

identify malicious patterns without executing the code [5].

The dynamic malware analysis technique analyzes the

behavior of application during runtime using the virtual

environment (i.e. Sandbox). The features obtained from static

and dynamic malware analysis can also be integrated to

enhance the classification accuracy [6]. Nowadays, due to the

availability of automated tools, a large number of malware

variants can be created with few clicks.

Moreover, attackers are using innovative ways to avoid

detection of their Android applications. In order to deal with

both of these problems and to reduce the efforts and domain

expertise involved in feature engineering, we have created the

grayscale images of AndroidManifest.xml and classes.dex

files of APK. A Convolutional Neural Network (CNN) is

designed which is used to classify the Android malicious

applications.

The following are the contributions of the paper:

1. We prepared the two different sets of graysacle image

datasets based on AndroidManifest.xml and

classess.dex file which consists of 1747 application

with 13 malware families.

2. Convolutional Neural Network model has been

designed for the classification of the Android

malicious applications into their families.

3. A Comparative analysis of classification results

obtained from AndroidManifest.xml and

classess.dex files (represent as grayscale images) is

performed on the basis of different image sizes i.e.

Convolutional Neural Network for Classification

of Android Applications Represented as

Grayscale Images

Meghna Dhalaria, Ekta Gandotra

mailto:meghna8aug@gmail.com
mailto:ekta.gandotra@gmail.com

Convolutional Neural Network for Classification of Android Applications Represented as Grayscale Images

836

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: L118910812S19/2019©BEIESP

DOI: 10.35940/ijitee.L1189.10812S19

 32x32, 64x64, 128x128 and 256x256.

The rest of the paper is framed as follows: Section II

provides an overview related to Android Package (APK)

structure. Section III provides the work related to

identification and classification of Android application using

machine learning and deep learning algorithms. Section IV

discusses the methodology used and experimental result

analysis for the Android malware family classification.

Section V concludes the paper.

II. BACKGROUND

 This section gives an overview related to APK structure:

 Android applications are introduced by Google [7] which are

developed using Java programming language. The

applications of Android are packed as APK file which

contains various files/sub-folders like Asset, lib, res,

META-INF, classes.dex, resources.arsc and Android

Manifest.xml [8]. Structure of an APK file is shown in Fig. 1.

A brief description of its files and sub-folders is given as

follows.

 Assets: Assets folder holds the media files which

could be acquired by the Asset Manager.

 lib: It contains the information about the compiled

code of Android application. The lib comprises of

multiple sub folders which contains compiled code

for particular hardware architecture. These are

armeabi (holds compiled code for Advanced RISC

Machine (ARM) based processor), arm64- V8a

(holds compiled code for ARMv8 and above

processor), armeabi v7a (holds compiled code for

ARMv7 and above processor), X86 (holds compiled

code for X86 processor), X86-64 (holds compiled

code for X86-64 processor) Mips (holds compiled

code for MIPS processor).

 res and resource.arsc folder: Resources are found in

res and resource.arsc file. It contains XML file,

string file, fonts, icons and images etc.

 META_INF: This folder contains meta information

about the contents of APK file. This folder

comprises of three parts i.e. CERT.RSA, CERT.SF

and MANIFEST.MF. CERT.RSA holds public

certificate of the Android application. CERT.SF

holds the application security certificate and the

records of all files present in the APK file with their

hash (SHA-1 digest). MANIFEST.MF is a manifest

file which comprises of vital information about the

application. It generally holds the information about

the permissions (which application needs from other

apps or OS), package name of the application and

the features related to hardware and software which

are required by the application.

 Classes.dex: It includes the application bytecode in

Dalvik Virtual Machine (DVM) format. It also

contains the information about the API calls or

methods, class name, class path and the package

name.

 AndroidManifest.xml: This file contains information

about the permissions, minimum level of API and

intents.

III. LITERATURE REVIEW

Various techniques and methods have been introduced for

the identification or classification of Android malware. This

section presents the review related to Android malware

detection on the basis of features extracted from static and

dynamic malware analysis and the visualization of malware

using machine learning and deep leaning techniques.

Sugunan et al. [9] performed an analysis on the behaviour

of benign and malicious applications using its dynamic and

static features. The authors proposed a system to detect

Android malicious applications. The results indicate that the

combinations of features (dynamic and static) are found to be

more accurate in detecting the Android applications. In [10],

the author presented an OmniDroid, which is an automated

framework for both static and dynamic analysis of Android

applications. They employed ensemble classifiers over this

dataset for detection of Android malware. The experimental

outcomes indicate the usability and feasibility of their

publically available dataset and automated framework. Yuan

et al. [11] introduced an online malware detection engine

named as Droid detector which is based on deep learning

techniques. It automatically detect the Android applications

as either benign or malware. The results show that Droid

detector achieves 96.76% accuracy in comparison with

existing machine learning methods. In [12], the author

proposed a detection system named as service monitor that

dynamically detects the malware applications on the Android

devices. They employed Markov chain model to depict how

services are used to access system resources. Markov chain is

considered for feature vector form and is classified by using

Random Forest algorithm. The accuracy obtained is 96%.

Cen et al. [13] presented a probabilistic discriminative model

which is based on logistic regression for the identification of

malware. They extracted API calls and permissions from

decompiled source code. The results indicate that their

proposed algorithm works well with combining both API calls

and permissions. In [14], the authors designed a technique

named as DREBIN for the detection of Android malware.

They extracted eight different types of static features and

applied machine learning algorithms to identify the malicious

application. The experimental outcomes indicate that the

DREBIN provide results with 94% accuracy. In [15], the

author presented a technique to increase the user’s mobile

security. The author implemented deep learning technique for

identification of Android malware. They extracted API calls

from APK file and employed CNN for detection of malware.

The accuracy obtained by CNN algorithm is 90%. Dhalaria et

al. [16] performed a comparative analysis on Malgenome

dataset on the basis of different machine learning and

ensemble techniques to detect the Android application. The

experimental outcomes indicate that stacking ensemble

technique perform better as compared to other machine

learning classifiers.

The above mentioned research works are related to

extracting features using static and dynamic malware analysis

to classify Android application. In order to remove the

hand-feature engineering, the concept of CNN came into

being which automatically extract the features.

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8, Issue-12S, October 2019

837

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: L118910812S19/2019©BEIESP

DOI: 10.35940/ijitee.L1189.10812S19

The following are the research works related to the

classification and detection of malware after visualizing these

as images.

Nataraj et al. [17] was the first who worked on the malware

images. They suggested a technique based on visualized

classification of windows malware through image processing.

The authors converted malware binaries into grayscale

images and applied K-Nearest Neighbour (K-NN) technique

for classifying the malware. The results indicate that the

accuracy obtained by K-NN model is 98%. Yan et al. [18]

introduced a novel technique known as MalNet which uses

Long Short Term Memory (LSTM) and CNN. These

networks learn from opcode sequence and grayscale images

and applied stacking ensemble technique for classification of

windows malware. The results demonstrate that MalNet

obtained 99.88% accuracy for identifying malware. Cui et al.

[19] presented a novel technique in order to efficiently detect

the variants of malware. They transformed malicious code

into grayscale images and classified these images using CNN.

The results indicate the model achieves better accuracy i.e.

94.5% than other existing models. In [20], the authors

designed a detection system for Android malware based on

color inspired CNN. They converted the classes.dex to rgb

color image and store the image with fixed size. The results

indicate that the designed system give accurate results in

terms of security. Zhao and Qian [21] introduced a static

technique which does not require knowing the source code of

application. With the help of decompilation they map the

opcodes, API function into RGB image. They employed CNN

to detect Android malware families. The results are

demonstrated on the basis of accuracy, precision, recall, and

f-measure which were 90.67%, 93.36%, 93.95% and 93.56%

respectively. Hasegawa and Iyatomi [22] presented a method

which is highly efficient and accurate in detection of malware.

The proposed method considered a very small part of APK

file as a target and examines it with 1-D CNN. They applied

the proposed technique on two datasets. The results

demonstrate that the accuracy obtained by two datasets is

95.40% and 97.04% respectively.

It is clear that the traditional methods are based on the

pre-extracted features to detect the Android malicious

application which requires domain expertise. Moreover,

attackers are making use of innovative ways to evade

detection of their Android applications, In order to deal with

these problems, we have generated the grayscale images

classes.dex and AndroidManifest.xml files which are

extracted from the part of APK and applied CNN for

classifying the images. The experiments are conducted on a

recent dataset of 1747 malicious Android applications. The

results show that classes.dex file performs better results as

compared to the AndroidManifest.xml.

IV. METHODOLOGY USED

This section describes the workflow of the methodology

used for comparing the Android family classification results

obtained using AndroidManifest.xml and classes.dex files

represented using grayscale images. Firstly, we collected the

Android applications from virusshare.com [23]. These

applications are then decompiled using AXMLPrinter2 [24]

and Baksmali Disassembler [25] to extract the

AndroidManifest.xml and classes.dex files. The

AndroidManifest.xml and classes.dex files are transformed

into their grayscale images. Afterward, CNN is applied to

classify the malware images. Fig. 2 demonstrates the

workflow of the methodology used.

A. Data collection and Preparation

 Collection of Android Applications: A total of 2200

Android applications are collected from virusshare.

These are downloaded after getting registered with

their website (www.virusshare.com).

 Renaming to MD5: MD5 hash algorithm has been

employed to rename the applications with their hash

value and to remove the duplicate applications. After

this step, we left with 1747 applications.

 Labelling of Data: All these Android applications are

scanned using Avira antivirus (AV) tool to identify

the families of malware. The Avira AV tool detects

the name of families which the particular application

belongs to (shown in Table- I). It is found that, 1747

malicious applications belong to 13 different

families of Android malware.

Table- I: Number of applications belonging to a

particular family.

Malware Family Number of

applications

Android/AdLoad.A.Gen 50

Adware/ANDR.AdMogo.FAN.Gen 55

Adware/ANDR.AdsWo.CG.Gen 163

Adware/ANDR.Kuguo.K.Gen 263

Adware/ANDR.Mobwin.A.Gen 114

Android/Mseg.E.Gen 36

Android/MTK.F.Gen 52

Android/Plankton.C.Gen 60

Android/SmsAgent.AAV.Gen 402

Android/TrojanSMS.Boxer.B.Gen 335

Adware/ANDR.Waps.I.Gen 179

Adware/ANDR.Dianjin.A.Gen 18

Adware/ANDR.Fengvi.B.Gen 20

 Decompilation process: The applications are

decompiled using python script which uses

automated tool named as AXMLPrinter2 and

Baksmali Disassembler. Through this, we extracted

the AndroidManifest.xml and classes.dex.

 Formation of Grayscale images: After the process of

decompilation, the classes.dex and

AndroidManifest.xml are transformed to grayscale

images using python script. In our work, a malware

is read as binary as a vector of 8 bit unsigned integer

and then arranged into 2D array as shown in Fig. 3.

This can be represented as a grayscale images which

has pixel values ranging from 0 to 255. Here 0 means

black and 255 means white. Here, the width of the

image is kept fix using a square root function and the

height of the image is dependent on the size of the

file.

http://www.virusshare.com/

Convolutional Neural Network for Classification of Android Applications Represented as Grayscale Images

838

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: L118910812S19/2019©BEIESP

DOI: 10.35940/ijitee.L1189.10812S19

 Resizing the image: The grayscale images generated

are of different sizes and dimensions depending on

the respective size of each Android application.

Therefore, these malware images can’t be directly

provides as the input for CNN. To overcome this

problem, we reshaped the images to a fixed size i.e.

32x32, 64 x 64, 128 x128 and 256 x 256. In this way,

the images are resized and could be directly

provided to the CNN for classification. Table- II

shows the algorithm of the methodology used.

B. Classification using CNN

CNN or ConvNet is a feed forward neural network where

the association pattern between the neuron is encouraged by

the structure of an animal visual cortex [26]. It is used in

various areas such as audio, image recognition, identifying

faces etc. We have used CNN because it can be applied to

whole image at a time and it is more reliable. The purpose of

convolution layer is to extract features from original image. It

makes use of different filters which acts as feature detectors

and produce different feature maps for the same image.

Different activation functions such as ReLU, sigmoid, tanh

etc are used to convert the input to an output. The output is

used as an input for the next layer. Pooling layer is responsible

for reducing the dimensionality of each feature map. It is

known as down sampling and sub sampling. The fully

connected layer is used for classifying the original images into

different classes.
In the proposed work, we have designed 4-layer

convolutional neural network for classifying the Android

applications into 13 malware families (shown in Fig. 4). We

first employed convolution layer and after every layer we

applied ReLU non linear activation function to perform

operation. We employed ReLU because it helps in vanishing

gradient problem and is much faster than other activation

function such as sigmoid and tanh (described in equation 1).

Fig. 1. APK Structure

We have used max pooling of 2x2 to reduce the

dimensionality of feature maps. It takes filter size of 3x3 and

stride=1. After employing all the layers, we have four

dimensional vectors of arrays. To transform these vectors into

single layer of 1-D vector which is called as fully connected

layer. There may be loss of information while downsampling

all vector into 1-D. For this purpose, we have employed two

fully connected layers using softmax non linear activation

function. It is represented in equation (2). Finally, this layer

classifies the original images into 13 different malware

families. The loss is calculated using cross entropy loss

function which is mainly used for multiclass classification

problem. For optimization purpose, we have used Adam

optimizer.

 (1)

 (2)

Here x is a vector of the inputs to the output layer. i indexes

the output units, so i = 1, 2, ..., J.

The lists of the parameters used in the proposed model of

CNN are shown in Table- III.

Table- III: List of CNN network parameters

Model Parameters CNN

Kernel size 3x3

Stride 1

Activation function ReLU

Max Pooling 2x2

Optimizer Adam

Loss function Cross entropy

Dropout probability 0.5

Epoch 20

batchsize 16

Fully connected

(Activation function)

Softmax

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8, Issue-12S, October 2019

839

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: L118910812S19/2019©BEIESP

DOI: 10.35940/ijitee.L1189.10812S19

Fig. 2. Workflow of Methodology Used

Fig. 3. Formation of grayscale image

Table- II: Algorithm of the methodology used

Input: Android malware Applications (X) in the form of APK

Begin

1. Z=MD5(X) //rename all the file to MD5 to remove duplicates

2. Gpscan.log=Scan_Avira(Z) //to categorize the families of Android malware

3. Unzip each application , use //to unzip.APK

 AXMLPrinter2 tool for disassembling AndroidManifest.xml (A) //to extract AndroidManifest.xml file

 Baksmali disassembler for disassembling classes.dex (C) //to extract Classes.dex file

4. for every file , repeat the following //transform A and C into grayscale images

 Read f as a binary //as a vector of 8 bit unsigned integer

 Set width of image as Sqrt (f) //fixed the width of the image

Set height of image as length (f) //height of the image

 Resize(32x32) //create the images of size 32x32

 Resize(64x64) //create the images of size 64x64

 Resize(128x128) //create the images of size 128x128

 Resize(256x256) //create the images of size 256x256

5. for both type of images of all sizes, apply CNN algorithm (shown in table 4)

End

Output: Android malware family classification.

Convolutional Neural Network for Classification of Android Applications Represented as Grayscale Images

840

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: L118910812S19/2019©BEIESP

DOI: 10.35940/ijitee.L1189.10812S19

Fig. 4. Illustration of Android family classification using CNN

Table- IV: Algorithm for CNN

Input: Image of size w x h x d where w is the width of an image, h is the height of an image and d is the number of

channel for grayscale image.

Begin:

Step 1: Convolution operation

1. Pass the input as an image (i.e. matrix with pixel value).

2. Select K as 3x3x1 matrix where K is the kernel/filter with stride =1.

3. Through this extract the feature from the original image (i.e. called Convolved feature).

(The main purpose of the convolution layer is to extract feature from the original image)

Step 2: Apply activation function

1. Rectified Linear Unit (ReLU) activation is applied.

(The main purpose of the activation function is to convert the input to an output and that output become input for

the next layer)

 Step 3: Pooling layer

1. Max pooling of window size 2x2 is applied over convolved feature.

2. Each window size takes maximum value.

(The main purpose of this layer is to reduce the size and also retains the important data)

Step 4: Flattening

1. Convert the output of the previous layer (which is matrix form) into 1-D feature vector (or we can say

column vector).

2. Feature vector become input for the next layer (i.e. fully connected layer)

Step 5: Fully connected layer

1. Fed flattens output as an input to ANN (Artificial Neural network)

2. Softmax activation function is used to classify the families of malware.

End

Output: Classifying the images into their families

The various parameters used in the proposed design of CNN

are shown in Table- IV.

C. Experimental Result Analysis

This section describes the dataset, evaluation parameters

used for evaluating and comparing the proposed design of

CNN model on different sizes of images created from

AndroidManifest.xml and classes.dex files. It also presents

the analysis of results obtained.

Dataset

As discussed in sub-section 4.1., the dataset used in this

work is created from 1747 malicious Android application

containing 13 malware families. AndroidManifest.xml and

classes.dex files of each Android application are represented

grayscale image of different sizes i.e. 32x32, 64x64, 128x128

and 256x256. The proposed CNN model is applied on all the

images.

Evaluation Parameters

70% of total data is used for training purpose and

remaining 30% is used for testing purpose. The experiments

are conducted on Intel core (i5 processor) CPU (3.3 GHZ)

with 8 GB RAM. The performance of proposed CNN

classifier is evaluated on the basis of different evaluation

parameters as discussed below:

 Precision: It is defined as what amount of positive

identifications is correctly classified. It is calculated

using equation (3)

 (3)

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8, Issue-12S, October 2019

841

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: L118910812S19/2019©BEIESP

DOI: 10.35940/ijitee.L1189.10812S19

 Recall: It is defined as what amount of actual positive

cases is classified correctly. The recall is computed

using equation (4)

 (4)

 Accuracy: It is defined as the ratio of number of

correct predictions to the total number of

prediction. It is computed using equation (5)

 (5)

Here false positive (FP) and true positive (TP) are the number

of samples wrongly and correctly classified as malware

respectively. Similarly, false positive (FP) and true negative

(TN) are correctly classified as benign respectively.

 F-measure: It is defined as the harmonic mean of both

precision and recall. It is also known as F-score.

The F-measure is computed using equation (6)

 (6)

Result Analysis

Table- V presents the comparative analysis of classification

results obtained on applying the proposed CNN model on the

images (of size 32x32, 64x64, 128x128 and 256x256) created

from AndroidManifest.xml and classes.dex files of APK

Table- V: Classification results of AndroidManifest.xml and classes.dex images of APK on different image sizes

Image Size of image Precision Recall F-measure Accuracy

 (%)

AndroidManifest.xml 32x32 0.631 0.629 0.629 63.0

64x64 0.667 0.663 0.664 66.5

128x128 0.684 0.680 0.681 68.2

256x256 0.701 0.700 0.700 70.0

Classes.dex 32x32 0.642 0.641 0.641 64.1

64x64 0.671 0.670 0.670 67.0

128x128 0.722 0.720 0.720 72.1

256x256 0.746 0.745 0.745 74.5

It shows that for every image size considered in our dataset,

classes.dex files give better classification accuracy as

compared to AndroidManifest.xml. It clearly indicates that

classes.dex file contains more relevant information about the

Android application for classification purpose. It also

demonstrates that for both types of files, as the image size

increases, the classification accuracy increases. It may be due

to the reason that as the image size is decreased, some of the

features get destroyed. For the larger size image, the features

remain intact and thus the larger size image gives better

results. However, the larger size images take more training

time.

Fig. 5. Comparison of Precision, Recall, F-measure of

AndroidManifest.xml images of different sizes

Fig. 5 demonstrates the comparison of Precision, Recall,

F-measure of AndroidManifest.xml images of different sizes.

It shows that as the size of images become larger it gives more

accurate results. The images with size 256x256 perform better

in terms of precision, recall and f-measure i.e. 0.701, 0.700

and 0.700 respectively.

 Fig. 6. Comparison of Precision, Recall, F-measure of

classes.dex images of different sizes

Fig. 6 demonstrates the Comparison of Precision, Recall,

F-measure of classes.dex images of different sizes. It

indicates that as the size of image become larger it gives more

accurate results. The images with size 256x256 perform better

in terms of precision, recall and f-measure i.e. 0.746, 0.745

and 0.745 respectively.

Convolutional Neural Network for Classification of Android Applications Represented as Grayscale Images

842

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: L118910812S19/2019©BEIESP

DOI: 10.35940/ijitee.L1189.10812S19

Fig. 7. Comparison of classification accuracy of

AndroidManifest.xml and classes.dex images of different

sizes

Fig. 7 indicates the comparison of AndroidManifest.xml

and classes.dex images of different sizes on the basis of

accuracy. It is concluded that the images created from the

classes.dex file with size 256x256 provides the highest

classification accuracy i.e. 74.5% followed by 128x128 i.e.

72.1%.

V. CONCLUSION

The risk of Android malware is increasing exponentially

due to the increase in the dependency of Android users on

different applications. At present, the malware generated are

complex and sophisticated that can’t be easily recognized.

Most of the new malicious applications are installed as

variants of earlier known ones. For better classification of

Android malicious applications, the concept of machine

learning and deep learning is being used where the domain

expertise is required to select the features to be used.

Therefore in this paper, we have proposed a design of CNN

model which is applied on the grayscale images (of different

sizes) obtained from AndroidManifest.xml and classes.dex

file which are extracted from APK. CNN automatically

extracts features from the images. The experiments are

conducted on the dataset consisting of grayscale images of

1747 Android application with 13 malware families. We

claim that our datasets consist of recent Android malicious

applications. The results demonstrate that the images created

through classes.dex files give better classification accuracy as

compared to the images created using AndroidManifest.xml

files. It is also concluded that for both types of files, as the

image size increases, the classification accuracy increases.

Thus images created from the classes.dex file with size

256x256 provide the highest classification accuracy i.e.

74.5%.

REFERENCES

1. http://gs.statcounter.com/os-market-share/mobile/worldwide.

2. McAfee Labs Threat Predictions Report, McAfee Labs, Santa Clara,

CA, USA, Mar. 2018.

3. S. Singla, E. Gandotra, D. Bansal, and S. Sofat, "Detecting and

classifying morphed malwares: A survey," International Journal of

Computer Applications, vol. 122, no. 10, 2015.

4. E. Gandotra, S. Singla, D. Bansal, and S. Sofat, "Clustering morphed

malware using opcode sequence pattern matching," Recent Patents on

Engineering, Vol. 12, no. 1, 2018, pp. 30-36.

5. E. Gandotra, D. Bansal, and S. Sofat, "Malware analysis and

classification: A survey," Journal of Information Security, Vol. 5, no.

02, 2014, p. 56.

6. E.Gandotra, D. Bansal, and S. Sofat, "Integrated framework for

classification of malwares," In Proceedings of the 7th International

Conference on Security of Information and Networks, 2014, p. 417.

7. Google. Android. 2014. URL, www.android.com.

8. Application Fundamentals | Android Developers". Android

Developers. Retrieved 2018-12-03.

9. K. Sugunan, T. G. Kumar, and K. A. Dhanya, "Static and dynamic

analysis for android malware detection," In Advances in Big Data and

Cloud Computing, Springer, Singapore, 2018, pp. 147-155.

10. A. Martín, R. L. Cabrera, and D. Camacho, "Android malware

detection through hybrid features fusion and ensemble classifiers: The

AndroPyTool framework and the OmniDroid dataset," Information

Fusion, 52, 2019, pp. 128-142.

11. Z. Yuan, Y. Lu, and Y. Xue, "Droiddetector: android malware

characterization and detection using deep learning," Tsinghua Science

and Technology, 21, no. 1, 2016, pp. 114-123.

12. M. Salehi, and M. Amini, "Android Malware Detection using Markov

Chain Model of Application Behaviors in Requesting System

Services," arXiv preprint arXiv:1711.05731, 2017.

13. L. Cen, C. S. Gates, L. Si, and N. Li, "A probabilistic discriminative

model for android malware detection with decompiled source code,"

IEEE Transactions on Dependable and Secure Computing, 12, no. 4,

2014, pp. 400-412.

14. D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and C. E.

R. T. Siemen,. "Drebin: Effective and explainable detection of android

malware in your pocket," In Ndss, vol. 14, 2014, pp. 23-26.

15. Y. U. Ding, W.G. Zhao, Z. P. Wang, and L. F. Wang, "Automaticlly

Learning Featurs Of Android Apps Using CNN," In 2018 International

Conference on Machine Learning and Cybernetics (ICMLC), vol. 1,

2018, pp. 331-336.

16. M. Dhalaria, E. Gandotra, and S. Saha, "Comparative Analysis of

Ensemble Methods for Classification of Android Malicious

Applications," In International Conference on Advances in

Computing and Data Sciences, Springer, Singapore, 2019, pp.

370-380.

17. L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, "Malware

images: visualization and automatic classification," In Proceedings of

the 8th international symposium on visualization for cyber security,

2011, p. 4.

18. J. Yan, Y. Qi, and Q. Rao, "Detecting malware with an ensemble

method based on deep neural network," Security and Communication

Networks, 2018.

19. Z. Cui, F. Xue, X. Cai, Y. Cao, G. Wang, and J. Chen, "Detection of

malicious code variants based on deep learning," IEEE Transactions

on Industrial Informatics, 14, no. 7, 2018, pp. 3187-3196.

20. T. T. Hsien-De Huang, and H. Y. Kao, "R2-D2: color-inspired

convolutional neural network (cnn)-based android malware

detections," In 2018 IEEE International Conference on Big Data (Big

Data), 2018, pp. 2633-2642.

21. Y. Zhao, and Q. Qian, "Android Malware Identification Through

Visual Exploration of Disassembly Files," International Journal of

Network Security, 20, no. 6, 2018, pp. 1061-1073.

22. C. Hasegawa, and H. Iyatomi, "One-dimensional convolutional neural

networks for Android malware detection," In 2018 IEEE 14th

International Colloquium on Signal Processing & Its Applications

(CSPA), 2018, pp. 99-102.

23. www.virusshare.com

24. android4me: J2ME port of Google’s Android, 2011.

https://code.google.com/p/android4me/downloads/list.

25. W. Enck, D. Octeau, P. D. McDaniel, and S. Chaudhuri, "A study of

android application security," In USENIX security symposium, vol. 2,

2011, p. 2.

26. R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional

neural networks: an overview and application in radiology,” Insights

into imaging, 9(4), 2018, pp.611-629.

http://www.android.com/
https://developer.android.com/guide/components/fundamentals
http://www.virusshare.com/

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8, Issue-12S, October 2019

843

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: L118910812S19/2019©BEIESP

DOI: 10.35940/ijitee.L1189.10812S19

AUTHORS PROFILE

Meghna Dhalaria is pursuing Ph.D in computer

Science Department, Jaypee University of Information

and Technology, Waknaghat. She received her

Bachelor‟s degree from Baddi University of Emerging

Sciences and Technologies. She completed her Master’s

degree from Thapar Institute of Engineering and Technology, Patiala. Her

current research includes the applications of Machine learning and Deep

learning.

 Ekta Gandotra is currently working as Assistant

Professor in the Department of Computer Science &

Engineering at Jaypee University of Information

Technology, Waknaghat, Solan, Himachal Pradesh. She

has around 12 years of teaching and research

experience. She has completed her Ph.D. in Computer

Science & Engineering from PEC University of Technology, Chandigarh.

Her research areas include Network & Cyber Security, Malware Threat

Profiling, Cyber Threat Intelligence, Machine Learning and Big Data

Analytics.

