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Abstract In this paper, we have analyzed the performance of maximal ratio combing (MRC)
diversity receiver of the wireless communication systems over the composite fading environ-
ment, which is modelled by using the generalized-K distribution. However, this distribution
has been considered as a versatile distribution for the precise modelling of a great variety
of the short-term fading in conjunction with the long-term fading (shadow fading) channel
conditions. In this proposed analysis, we have derived the mathematical expression for the
moment generating function (MGF) of the generalized-K fading channel model that is used
to evaluate a novel closed-form expression of the average bit error rate for (BER) the binary
phase-shift keying /binary frequency-shift keying and average symbol error rate (SER) for the
rectangular quadrature amplitude modulation scheme. We have also derived the mathematical
expressions for the outage probability as well as the channel capacity for the generalized-K
fading channel model.

Keywords Generalized-K distribution · Multipath fading/shadow fading · Bit error rate ·
Maximal ratio combining diversity · Outage probability · Channel capacity · Symbol error
rate

1 Introduction

The performance analysis of digital wireless communication systems usually deal with com-
plicated and cumbersome statistical task. In general, the wireless communication channels are
modelled as the mixture of path-loss variance with distance and multipath fading or shadow
fading (long-term fading). The multipath fading is modelled by using the Rayleigh, Rician or
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Nakagami distributions [1,2] and the shadow fading by using the lognormal distribution [1].
However, the multipath fading and shadow fading occur simultaneously in several cases and
leads to the composite fading. Recent studies on the fading channels suggest that the compos-
ite multipath fading/shadow fading model is a better approximation in real-life scenarios of
the wireless communication [3–11]. The composite Rayleigh-lognormal (R-L) distributions
[3] is widely adopted to model the mixture of multipath fading and shadow fading [3–7].
It is well known fact that the Rayleigh-lognormal (Suzuki) distribution is a mixture of the
Rayleigh and lognormal distribution, however it has a complicated integral form. However,
the lack of general acceptance of this distribution may have been caused by its complicated
integral form [6–8]. Therefore, an alternative approach which is mathematically more ver-
satile to describe the mixture of multipath fading and shadow fading such as generalized-K
distribution [5] or K-distribution [6,7] has been explored. In [6], it has been demonstrated
that the Rayleigh-lognormal and K-distributions are similar, but the latter has a simpler form.
Moreover, the existence of numerous analytic results regarding Bessel functions makes it
possible to obtain closed-form solutions for the calculation of bit error rates, diversity effects
etc. using the K-distribution, which is mixture of the Rayleigh and gamma distributions [7].
This distribution is simpler and thus more appropriate for the analysis and design of wireless
communication systems.

Various mathematical expressions for the statistics of these diversity receivers, includ-
ing the PDF (probability density function), MGF and the moments output signal-to-noise
ratio (SNR) have been derived. Recently, few contributions dealing with the generalized-K
and K-distribution with diversity combining have been reported in detail in [8,9]. In [8],
the performance analysis of diversity combining techniques over the generalized-K fading
channel has been explored, however the closed-form mathematical expression for the BER
is not discussed. In [9], the performance of generalized selection combing (GSC) diversity
receivers over K-fading channel is presented but the mathematic expression derived in [9]
for the marginal moment generating function (MMGF) is not used to obtain the BER for
M-array phase shift keying (MPSK). Bithas et al. [10] have presented the detail performance
analysis for the important diversity receivers such as MRC, equal gain combining (EGC),
selection combining (SC), and switch and stay combining (SSC) diversity operating over the
composite fading channel modelled by using the generalized-K distribution. In [11], Bithas et
al have also provided a novel closed-form mathematical expression for the Shannon’s chan-
nel capacity and BER over several coherent and non-coherent digital modulation schemes.
In [12,13], the authors have presented the channel capacity under different adaptive trans-
mission policies, namely, optimal rate adaptation with constant transmitted power, optimal
simulation power and rate adaptation, total channel inversion with fixed rate, and truncated
channel inversion with fixed rate. For the results presented in [12], the authors consider an
arbitrary chosen values of k (the Gamma distribution for the received average power due to
the shadow fading) like the integer values of k or k equal to an integer plus one and half, how-
ever restricted over m (Nakagami fading parameters) only to the integer values. Efthymoglou
et al. [13] have derived the closed-form analytical expressions operating over generalized-K
fading channel for the outage probability, the average BER of several modulation schemes
and the channel capacity under different transmission policies in terms of generalised hyper-
geometric functions that can be easily evaluated for wide range of fading values. However,
for some special values of the fading parameters that is for the integer values of (k − m),
some of the functions in the formulae are not defined. In [14], the authors have developed
a comprehensive framework for the analysis of channel capacity over generalized fading
channels provided that the MGF of the received SNR is known in closed form and suggested
that there are several cases of interest in which truly closed-form results may be obtained
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by using this frameworks, for example, there are several scenarios in which the MGF of the
received SNR can conveniently be expressed in terms of a Meijer-G function.

In this paper, we have exploited the MGF based performance analysis of the generalized-K
fading channel with L—branch MRC diversity receiver over various modulation schemes.
The main contribution of this paper consists of the evaluation of MGF function, which is
used to obtain the closed-form mathematical expressions for average error rates, outage
probability and channel capacity. However, the derived mathematical results are in terms
of well known hypergeometric function and Meijer-G function, which can be implemented
easily by using Maple or Mathematica simulation tool. However, the evaluation of average
SER for rectangular M-QAM modulation scheme is solved uniquely. The remainder of the
paper is organized as follows. Section 2 describes the proposed channel model of the wireless
communication system. In Sect. 3, the mathematical expression for the MGF, average BER,
average SER, outage probability and channel capacity have been derived for the proposed
model. The numerical results are discussed in the Sect. 4. Finally, the Sect. 5 concludes the
work.

2 Generalized-K Fading Channel Model

When the fading environment is such that the maximum delay spread of the channel is
significantly large compared to the symbol time that is the frequency selective fading, then
there exist multiple resolvable paths (the maximum number of which is determined by the ratio
of the maximum delay spread to the symbol time) which result multiple channel reception.
For the generic case of the multi-channel reception, the diversity combining schemes can
be employed at the receiver to improve the SNR and thus the average BER performance. In
general, the diversity combining schemes are rely on the characteristics of modulation and
their associated detections. For coherent detection, the optimum form of diversity combining
is the maximal ratio combining scheme. In the generalized-K fading environment, PDF of
the output SNR is given by [11,12]:

fγ (γ ) = 2(γ )(α
′−1)/2

�(m)�(k)
(�)(α

′+1)/2 Kβ ′
[
2
√

�γ
]

γ ≥ 0 (1)

where k and m are the distribution shaping parameters for the shadow fading and Nakagami
parameter for the short-term fading associated with the channel, respectively. α′ = m +k −1
and β ′ = k − m. Kβ ′ (·) is the β ′ (·) order modified Bessel function of the second kind [15,
Equation (8.432.1)]. � (·) is the Gamma function [15, Equation (8.310.1)], � = (km)/γ̄ and
γ̄ is the corresponding average received SNR per bit. The PDF of instantaneous SNR at the
output of a maximal ratio combiner with L-identical branches is obtained by substituting m
with Lm and γ̄ with L γ̄ in Eq. (1) as given in [12]:

fγ (γ ) = 2(γ )(α−1)/2

�(mL)�(k)
(�)(α+1)/2 Kβ

[
2
√

�γ
]

γ ≥ 0 (2)

where α = mL + k − 1 and β = k − mL . For the diversity technique consideration, it is
assumed that the distance among the diversity branches are significantly small. Furthermore,
it is well known fact that the shadow fading occurs in the large geographical areas. Thus, it
is reasonable to assume that the shadow fading effects are not de-correlated. Therefore, the
shadow fading parameters k has been assumed equal for all the diversity branches.
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3 Performance Analysis

The proposed model in this paper corresponds to the Nakagami-Gamma composite distribu-
tion which is controlled by two distribution shaping parameters m (Nakagami parameters for
the short-term fading) and k (parameter of the Gamma distribution for the received average
power due to the shadow fading). The parameter m ≥ 1/2 inversely reflects the fading sever-
ity and the positive parameter k inversely reflects the shadow fading severity, which has been
discussed in detail in [5]. The K-distribution is derived as a special case of the generalized-K
distribution by considering m = 1.

3.1 Moment Generating Function

MGF is one of the most important characteristics of any distribution function because it
is used for the average error rate performance evaluation of the wireless communication
systems. However, it is clearly shown in [1] that MGF can be used to obtain the average BER
of various modulations scheme (with and without diversity) either in the closed-form or in
the form of a simple finite–range integral. Therefore, the MGF is a key tool that needs to be
derived and is defined as [1]:

Mγ (s) =
∞∫

0

exp(−sγ ) fγ (γ )dγ (3)

By substituting the value of fγ (γ ) from Eq. (2) into Eq. (3), the MGF of generalized-K
fading channel can be written as:

Mγ (s) = (�/s)
α+1

2

�(mM)�(k)
G

2 1
1 2

[
�

s

∣∣∣∣
(1 − α)/2

β/2 −β/2

]
(4)

where G (·) is the Meijer-G function [15, Equation (9.301)], which is easy to evaluate by using
the modern mathematical tools such as Mathematica and Maple. The detailed derivation of
Eq. (4) is shown in “Appendix 6”.

3.2 Computation of Error-Rates for Various Modulation Schemes

The average BER is an important property of the digital communication systems, which
provides a base-line for the amount of information transferred and depends on the channel
as well as modulation format. However, the average BER computation depends basically on
the SNR at the receiver [17]. The average BER performance can be obtained by using MGF
based approach. The mathematical expression for the average BER computation by using
MGF based approach for BPSK/BFSK modulation format is [1,2]:

P̄b = 1

π

π/2∫

0

Mγ

(
g

sin2 θ

)
dθ (5)

where g is the constant associated with modulation scheme. g = 1 for BPSK, g = 1/2
for coherent detection of BFSK and g = 0.715 for the coherent detection of minimum
shift keying [2]. Therefore, the average BER for BPSK/ BFSK modulation scheme can be
expressed as:
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P̄b = (�/g)
α+1

2

2
√

π�(m L)�(k)
G

2 2
2 3

[
�

g

∣∣∣∣
−α/2 (1 − α)/2
β/2 −β/2 −(1 + α)/2

]
(6)

For L = 1 the Eq. (6) is similar with the [10, Equation (8)]. However, the detailed proof of
Eq. (6) is given in “Appendix 7”.

The average BER for differentially coherent detection of the phase-shift-keying (DPSK)
or non-coherent detection of orthogonal frequency-shift-keying (NFSK) [1,2] is given as:

P̄dpsk = 1

2
Mγ (a) (7)

where a = 1 for DPSK, a = 1/2 for NCFSK as given in [1,2] and Mγ (·) is the MGF. The
average SER for rectangular M-QAM scheme by using the MGF based approach has been
obtained as given in [18].

P̄qam = 4

π

(
1 − 1√

M

) π
2∫

0

Mγ

(
gQ AM

sin2 θ

)
dθ − 4

π

(
1 − 1√

M

)2
π
4∫

0

Mγ

(
gQ AM

sin2 θ

)
dθ

(8)

where gQ AM = 3/2(M − 1). However, the constellation size is given by M = 2ν with ν is
an even number. Equation (8) is consists of two integrals such as:

I2 =
π
2∫

0

Mγ

(
gQ AM

sin2 θ

)
dθ (9)

and

I3 =
π
4∫

0

Mγ

(
gQ AM

sin2 θ

)
dθ (10)

The integral I2 as given in Eq. (9) can be solved as I1, which is given in “Appendix 7”.
Equation (10) can be further expressed as:

I3 = 1

2
√

2

[
�(−β)

�(1/2 − β/2 + α/2)

(
�

2gQ AM

)(α+β+1)/2

I4

+ �(β)

�(1/2 + β/2 + α/2)

(
�

2gQ AM

)(α−β+1)/2

I5

]
(11)

where

I4 =
∞∑

n=0

1

n !
�[(α + β + 1)/2 + n]

�[(β + α + 1)/2]
�(β + 1)

�(β + 1 + n)

(
�

2gQ AM

)n

× B

(
n + α + β + 2

2
, 1

)

×F (1/2, n + (α + β + 2)/2, n + (α + β + 4)/2, 1/2) (12)

I5 =
∞∑

n=0

1

n !
�[(α − β + 1)/2 + n]

�[(α − β + 1)/2]
�(β + 1)

�(β + 1 + n)

(
�

2gQ AM

)n

× B

(
n + α − β + 2

2
, 1

)

×F (1/2, n + (α − β + 2)/2, n + (α − β + 4)/2, 1/2) (13)
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The detailed proof of Eq. (11) is shown in “Appendix 8”. By substituting the value of I3from
the Eq. (11) and the value of I2 from Eq. (9) in Eq. (8), then the average SER of the rectangular
M-QAM can be expressed as:

P̄qam = 2

(π)3/2

(
1− 1√

M

) (
�/gQ AM

) (1+α)
2

�(mL)�(k)
G

2 2
2 3

[
�

gQ AM
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− α/2 (1 − α)/2
β/2 −β/2 −(α+1)/2

]

−
√

2

π

(
1 − 1√

M

)2

×
[

�(−β)

�(1/2 − β/2 + α/2)

(
�

2gQ AM

)(α+β+1)/2

I4

+ �(β)

�(1/2 + β/2 + α/2)

(
�

2gQ AM

)(α−β+1)/2

I5

]
(14)

Equation (14) is a novel mathematical expression for the average SER over the generalized-K
fading channel with L—branch MRC diversity receiver, which is simply evaluate by using
Mathematica and Maple.

3.3 Outage Probability

The outage probability (Pout ) is defined as the probability that the instantaneous error rate
exceeds a specified value or equivalently that combined the SNR falls below a certain thresh-
old, γth , [1,2,19]. In other words, Pout is the cumulative distribution function (CDF) of γ

which is evaluated at certain threshold value. However, an approach to obtain the outage
probability is: 1) find the PDF of γ and 2) integrate it over that PDF as given in:

Pout =
γth∫

0

f (γ )dγ , (15)

By using Eq. (2) and after some mathematical manipulation, the outage probability, Pout can
be expressed as:

Pout = 1 −
∞∫

γth

2 (γ )(α−1)/2

�(mL)�(k)
(�)(α+1)/2 Kβ

[
2
√

�γ
]

dγ (16)

Now, the Eq. (16) can be expressed as:

Pout = 1 − (�γth)(α+1)/2

�(mL)�(k)
G

3 0
1 3

[
�γth | 1 − (α + 1)/2

−(α + 1)/2 β/2 −β/2

]
(17)

This is the closed-form mathematical expression for the outage probability involving Meijer-
G function, which is simply evaluated by using Mathematica and Maple. The detailed proof
of Eq. (17) is presented in “Appendix 9”.

3.4 Channel Capacity By Channel Inversion with Fixed Rate

The interest stems for the fact that Shannon’s channel capacity represents the upper bound
for the data rate achievable in a transmission with an arbitrary small error probability, which
serves as an ultimate performance measure of the communication system. In this section,
a closed-form mathematical expression for the channel capacity with power adaptive trans-
mission technique for the generalized–K fading channel model by using MGF is presented.
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The channel capacity by channel inversion with fixed rate (CCIFR) requires that the trans-
mitter exploits the channel state information such that the constant SNR is maintained at
receiver. This technique uses fixed-rate modulation and fixed code design, since the channel
after channel inversion appears as a time-invariant additive white Gaussian noise (AWGN)
channel. As a result, the channel inversion with fixed rate is the least complex technique to
implement, however better channel informations are available at the transmitter and receiver.
The channel capacity per unit bandwidth of the fixed channel inversion with fixed rate in
terms of MGF can be expressed as [14,19]:

CCIFR = log
2

⎛
⎜⎜⎜⎝1 + 1

∞∫
0

Mγ (s)ds

⎞
⎟⎟⎟⎠ (18)

By using Eq. (18), the channel capacity can be expressed as:

CCIFR = log2

(
1 + �(mL)�(k)

��((α + β − 1)/2)�((α − β − 1)/2)

)
(19)

However, the detailed derivation of Eq. (19) is shown in “Appendix 10”. Equation (19) is
similar as [12, Equation (29)]. Therefore, the Eq. (19) is a general expression for the channel
capacity per unit bandwidth for total channel inversion with MRC diversity receiver.

4 Results and Discussion

In this section, we have presented the results for performance evaluation of the proposed
communication system by using the MGF based analysis as discussed in the preceding sec-

Fig. 1 The average BER versus SNR characteristics of BPSK modulation scheme over the generalized-K
fading channel with L—branch MRC diversity receiver
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Fig. 2 The average BER versus SNR characteristics of DPSK modulation scheme over the generalized-K
fading channel with L—branch MRC diversity receiver

tions for error rates, outage probability and channel capacity for various digital modulation
formats. We have used the Eq. (6), (7) and (14) to obtain the average BER and average
SER response, respectively. Equations (17) and (19) are used to obtain the outage probabil-
ity and channel capacity, respectively. Figure 1 depicts the average BER versus the average
SNR characteristics for the generalized-K fading channel with MRC diversity receiver. How-
ever, the MRC diversity receiver requires the individual signals from each branch which are
weighted by their signal voltage to the noise power ratios and then summed coherently [1].

In this proposed analysis, we have assumed the perfect knowledge of branch amplitudes
and phases that is the MRC diversity with perfect combining which is the optimal diversity
scheme. Therefore it provides the maximum channel capacity improvement relative to all
the diversity combining techniques. The average BER against the average received SNR per
bit for BPSK modulation format in the fading channel conditions has been obtained by an
appropriate choice of the shaping parameters k and m. For k = 2.01 as the diversity branches
increases the average BER performance improves for the same values of SNR, however
for k = 75.11 as the diversity branches increases the average BER performance improves
more significantly than that at k = 2.01 as shown in Fig. 1. The Fig. 2 demonstrated that
the average BER verses average SNR characteristics for DPSK modulation scheme over
the generalized-K fading channel with L—branch MRC diversity receiver. However, with
the increase of diversity branches, the error rate performance improves significantly but this
improvement is slightly less than that of BPSK modulation scheme. Figure 3a, b show the
comparison of average BER versus SNR characteristics between the proposed method with
that reported in [8] for BPSK and DPSK modulation schemes over the generalized-K fading
channel with L—branch MRC diversity receiver for k = 2.2 and m = 1.5, respectively. In
Fig. 3a, we have compared equation (6) of the proposed method with [8, Equation (22)] for
BPSK modulation scheme, and in Fig. 3b, we have compared equation (7) of the proposed
method with [8, Equation (20)] for DPSK modulation scheme. It is clearly seen from Fig. 3a,
b that the average BER verses SNR characteristics of the proposed method is almost similar
to that reported in [8]. Figure 4 demonstrates the average SER versus SNR characteristics of
4-QAM modulation scheme. As the number of diversity branches increases for the chosen
values of the distribution shaping parameters for the shadow fading and Nakagami parameter
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Fig. 3 Comparison of average BER versus SNR characteristics over generalized-K fading channel with
L—branch MRC diversity receiver between the proposed method and that reported by Shanker [8] for a
BPSK and b DPSK

for the short-term fading associated with the channel, the performance of the communication
system improve. However, this improvement is more significant at k = 7/2 as compared to
k = 1/2. However, the Eq. (14) is given in an infinite series form, which converges rapidly
and steadily requiring very few terms for the desired accuracy. In analyzing the accuracy
of the numerical results of Eq. (14), we are aware for the possible source of errors in each
stage of the computational process and with the extent to which these errors can affect the
device performance. The truncation error is caused when we are forced to use mathematical
techniques that provide approximate results rather than exact. However, for the SNR greater
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Fig. 4 The average SER versus SNR response for M-QAM modulation scheme over the generalized-K fading
channel with L—branch MRC diversity receiver

Fig. 5 The truncation error versus SNR (k = 7/2, m = 1) for various diversity branches

than 8 dB only two terms are required for the sufficient accuracy and when it is less than 8
dB. The Fig. 5 demonstrates the truncation error versus SNR response for the total number of
terms in the series that is equal to 12. Form Fig. 5, it is illustrated that as the SNR increases,
the truncation error decrease, however the truncation error increases with increase of the
diversity branch at the receiver.

Figure 6 depicts the outage probabilities versus SNR characteristics for the generalized-K
fading channel with L—branch MRC diversity receiver (m = 2, L = 2, threshold SNR
(γth) = 15 and 10 dB) for the light shadow fading (k = 75.11) and heavy shadow fading
(k = 2.01). However, for a given value of the threshold SNR, the outage probability decreases
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Fig. 6 The outage probability versus SNR characteristics for the generalized-K fading channel with
L—branch MRC diversity receiver (m = 2, L = 2) for the light shadow fading (k = 75.11) and heavy
shadow fading (k = 2.01)

Fig. 7 Comparison of the outage probabilities versus SNR characteristics between the proposed method and
Laourine et al. [12] for the generalized-K fading channel with L—branch MRC diversity receiver (m = 2,

L = 1 and 4) for the light shadow fading (k = 75.11) and heavy shadow fading (k = 2.01)

with increase of the SNR for both light shadow fading as well as heavy shadow fading.
However, this decrement is more significant in the light shadow fading as compared to that of
the heavy shadow fading. As the values of the threshold SNR increases for the heavy shadow
fading and light shadow fading, the outage probability decreases at chosen SNR. In Fig. 7, the
comparison of outage probability versus SNR characteristics between the proposed method
and other reported by Laourine et al. [12] for shaping parameter (m = 2), number of diversity
receiver (L = 1, 4) and light as well as heavy shadow fading (k = 75.11, 2.01) has been
discussed. We have compared the outage probability versus SNR characteristics between
the proposed method of as in Eq. (17) and Laourine et al. [12, Equation (24)]. However,
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Fig. 8 The channel capacity per unit bandwidth for generalized-K fading channel for channel inversion with
fixed rate versus SNR for the light shadow fading (k = 75.11) and heavy shadow fading (k = 1.0931)

the results of proposed method are closely matched with that of Laourine et al. [12]. The
Fig. 8 demonstrate the channel capacity per unit bandwidth for the generalized-K fading
channel for channel inversion with fixed rate (CC I F R) versus SNR characteristics for the
light shadow fading (k = 75.11, m = 2) and heavy shadow fading (k = 1.0931, m = 2)
for several diversity branches (L = 1, 3). With emphasizing on the effect of shadow fading,
particularly in case of the heavy shadow fading (k = 1.0931) the channel capacity degrades
significantly as shown in Fig. 8 and it improves with the increase of the diversity branches
because the channel inversion suffers relatively the largest capacity penalty, however the
penalty diminishes with increase of the diversity. Although the diversity yields large capacity
gain for all the techniques as d, however the gain is more pronounced with channel inversion
since it is the least complex scheme to implement. However, there is a trade-off between the
complexity and capacity for various adaptation methods and diversity combining techniques
as discussed in [12,13].

5 Conclusion

In this paper, we have presented a simple mathematical approach to yield a closed-form
expression for the performance measurement of a generalized-K distribution fading channel
by using simple MGF based approach. For this purpose, first we have obtained a MGF for the
generalized-K fading channel with L—branch MRC diversity receiver. This mathematical
expression of MGF is presented in terms of the Meijer- G function, which is used to evaluate
BER of BPSK/BFSK modulation and SER of M-QAM schemes. However, the expression for
average BER of BPSK/BFSK is given by Eq. (6), and for L = 1 the Eq. (6) is similar with that
reported in [11, Equation (8)]. We have derived a novel mathematical equation (14) for the
average SER over the generalized-K fading channel with L—branch MRC diversity receiver.
Moreover, we have also derived the mathematical expressions for the outage probability and
channel capacity for the channel inversion with fixed rate (CCIFR). However, the CCIFR is
very easily computed by using MGF based approach, and for L = 1, CCIFR is computed by
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using Eq. (19) which is similar to that reported in [12, Equation (29)] and [13, Equation (27)].
The mathematical expressions provided in this paper are very useful for the assessment of
the performance of the wireless digital communication system over the generalized-K fading
environment. The proposed mathematical analysis is complemented by various performance
evaluation results, which demonstrate the accuracy of the theoretical approach.
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6 Appendix: MGF of Generalized-K Fading Channel

Equation (4) can be obtained by substituting the value of fγ (γ ) from Eq. (2) into Eq. (3) and
the MGF of generalized K-fading channel can be written as:

Mγ (s) = 2 (�)(α+1)/2

�(mL)�(k)

∞∫

0

exp(−sγ ) (γ )(α−1)/2 Kβ

[
2
√

�γ
]

dγ (20)

By putting Kβ

(
2
√

�γ ·) as 1
2 G 2 0

0 2

[
�γ

∣∣∣∣ β/2 −β/2

]
[16, Equation (8.4.23.1)] in Eq. (20),

we get:

Mγ (s) = (�)(α+1)/2

�(mL)�(k)

∞∫

0

γ (α−1)/2e−sγ G
2 0
0 2

[
�γ

∣∣∣∣ β/2 −β/2

]
dγ (21)

By putting
∫ ∞

0 xs−1e−σ x G m n
p q

[
ω x

∣∣∣∣
(
ap

)
(
bq

)
]

dx = σ−s G m n + 1
p + 1 q

[
ω
σ

∣∣∣∣ 1 − s
(
ap

)
(
bq

)
]

form

[16, Equation (2.24.3.1)] into Eq. (21) provides equation (4).

7 Appendix: Average BER for BPSK/BFSK Modulation Scheme

For the proof of Eq. (6), we assume, I1 = ∫ π/2
0 Mγ

(
g

sin2 θ

)
dθ in Eq. (5). By using Eq. (4),

I1 can be expressed as:

I1 = (�)
α+1

2 1

π�(mL)�(k)

π
2∫

0

(
g

sin2 θ

)− (α+1)
2

G
2 1
1 2

[
� sin2 θ

g

∣∣∣∣
(1 − α)/2

β/2 −β/2

]
dθ (22)

By changing the variable t = sin2 θ and after some mathematical manipulation, Eq. (22) can
be expressed as:

I1 = (�/g)
α+1

2

2π�(mL)�(k)

1∫

0

(t)
(α)
2 (1 − t)−1/2 G

2 1
1 2

[
�t

g

∣∣∣∣
(1 − α)/2

β/2 −β/2

]
dt (23)
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By using
∫ 1

0 xs−1 (1 − x)t−1 G m n
p q

[
ω x

∣∣∣∣
(
ap

)
(
bq

)
]

dx = �(t)G m n+1
p+1 q+1

[
ω

∣∣∣∣ 1−s
(
ap

)
(
bq

)
1−s−t

]

from [16, Equation (2.24.2)], the Eq. (23) can be expressed as:

I1 = (�/g)
(1+α)

2
√

π

2�(mL)�(k)
G

2 2
2 3

[
�

g

∣∣∣∣
− α/2 (1 − α)/2
β/2 −β/2 −(α + 1)/2

]
(24)

By using Eqs. (5) and (24), we can obtain Eq. (6).

8 Appendix: Integration I3

To derive Eq. (11), we proceed by using [15, Equation (6.643.3)] and Eq. (2), the MGF of
the generalized K-fading distribution can be expressed as:

Mγ (s) =
(

�

s

)α/2

exp

(
�

2s

)
W−α/2,β/2

(
�

s

)
(25)

where W−μ,ν (·) is the Whittaker function as discussed in [15, Equation (9.220.4)]. From
Eq. (10) and (25), the integral I3 can be expressed as:

I3 =
π
4∫

0

(
� sin2 θ

gQ AM

)α/2

exp

(
� sin2 θ

2gQ AM

)
W−α/2,β/2

(
� sin2 θ

gQ AM

)
dθ (26)

By using the transformation t = 2 sin2 θ and after some mathematical manipulation, the
Eq. (26) can be written as:

I3 = 1

2
√

2

(
�

2gQ AM

)α/2 1∫

0

t (α−1)/2 (1−t/2)−1/2 exp

(
�t

4gQ AM

)
W−α/2,β/2

(
�t

2gQ AM

)
dt

(27)

With the help of [15, Equation (9.220.4)], [15, Equation (9.220.3)] and [15, Equation
(9.220.2)] Eq. (27) can be expressed as:

I3 = 1

2
√

2

(
�

2gQ AM

)α/2 1∫

0

t (α−1)/2 (1 − t/2)−1/2
[

�(−β)

�(1/2 − β/2 + α/2)

(
�t

2gQ AM

)(β+1)/2

×1F1

(
α + β + 1

2
, β + 1,

�t

2gQ AM

)
+ �(β)

�(1/2 + β/2 + α/2)

(
�t

2gQ AM

)(−β+1)/2

×1F1

(
α − β + 1

2
, β + 1,

�t

2gQ AM

)]
dt (28)

where, 1F1 is the confluent hpergeometric function as discussed in [15, Equation (9.210.1)].
By using [15, Equation (9.210.1)] and [15, Equation (9.111)], Eq. (28) can be written as
Eq. (11).
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9 Appendix: Outage Prabability

To derive Eq. (16), we proceed by substituting the value of fγ (γ ) from Eq. (2) into Eq. (15),
Pout can be expressed as:

Pout = 1 −
∞∫

γth

2 (γ )(α−1)/2

�(mL)�(k)
(�)(α+1)/2 Kβ

[
2
√

�γ
]

dγ (29)

By replacing Kβ (·) as 1
2 G

2 0
0 2

[
�γ

∣∣∣∣ β/2 −β/2

]
from [16, Equation (8.4.23.1)] in Eq. (29),

we get:

Pout = 1 − (�)(α+1)/2

�(mL)�(k)

∞∫

γth

(γ )(α−1)/2 G
2 0
0 2

[
�γ |

β/2 −β/2

]
dγ (30)

Now, with the help of
∫ ∞

u xs−1(x − u)t−1G m n
p q

[
ω x

∣∣∣∣
(
ap

)
(
bq

)
]

dx = �(t)G m + 1 n
p + 1 q + 1[

ω

∣∣∣∣
(
ap

)
1 − s

1 − s − t
(
bq

)
]

from [16, Equation (2.24.2.3)], the Eq. (30) can be expressed as Eq. (16).

10 Appendix: Channel Capacity by Channel Inversion with Fixed Rate

To derive Eq. (19), we proceed by sssuming, I6 = ∫ ∞
0 Mγ (s) ds in Eq. (18). Using Eq. (4)

I6 can be expressed as:

I6 =
∞∫

0

(�/s)
α+1

2

�(mL)�(k)
G

2 1
1 2

[
�

s

∣∣∣∣
(1 − α)/2
β/2 −β/2

]
ds (31)

By putting 1/s = t in Eq. (31) and using [15, Equation (7.811.4)], Eq. (31) can be written as:

I6 = �� ((α + β − 1)/2) � ((α − β − 1)/2)

�(mL) �(k)
(32)

If we substitute value of I6 from Eq. (32) to Eq. (18) it results Eq. (19).
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