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Abstract. Currently, Android smartphone operating systems are the most
popular entity found in the market. It is open source software which allows
developers to take complete benefit of the mobile operation device, but addi-
tionally increases sizable issues related to malicious applications. With the
increase in Android phone users, the risk of Android malware is increasing. This
paper compares the basic machine learning algorithms and different ensemble
methods for classifying Android malicious applications. Various machine
learning algorithms such as Random Forest, Logistic Regression, Support
Vector Machine, K-Nearest Neighbor, Decision Tree and Naive Bayes and
ensemble methods like Bagging, Boosting and Stacking are applied on a dataset
comprising of permissions, intents, Application programming interface
(API) calls and command signatures extracted from Android applications. The
results revealed that the stacking ensemble techniques performed better as
compared to the Bagging, Boosting and base classifiers.
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1 Introduction

Android is the widely used mobile platform across the world with more than 85% of
the market share [1]. The increasing use of Android-based applications (apps) is
causing the growth of malware. Nearly 17.5 million Android users downloaded
malicious applications from the official Google Play Store in 2017 [2]. These malicious
apps create several serious threats such as information leakage, system damage and
financial loss etc. According to the McAfee report [3], the growth of Android malware
is increasing rapidly with approx 750 million in 2018. Android malware may be
embedded in various applications such as gaming, educational and banking apps etc.
These infected applications can compromise privacy and security by permitting
unauthorized access to rooting devices, private sensitive information, etc. Earlier, most
of the malware detection methods were based on signature-based approach. It uses a
database of known malware signatures and compares each application against this
database. The drawback of this method is that it is not suitable for detection of new
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malware (i.e. zero-day malware) whose signatures do not exist in the database.
Recently, researchers started to use machine learning methods for malware classifi-
cation. The problem in machine learning technique is that it gives high false positive
and false negative rate [4]. Ensemble techniques such as Bagging, Boosting and
Stacking are applied in order to improve accuracy. The goal of this paper is to compare
the different ensemble methods for Android malware classification. The paper is
organized as follows: Sect. 2 provides an overview of related work. Section 3 presents
the approach used. Section 4 provides the experimental results and their comparative
analysis. Finally, Sect. 5 presents the conclusion.

2 Literature Review

In this section, numerous contributions have been explored with the aid of the
researchers in the field of Android malware detection using machine learning. Zhou
and Jiang [5] characterized existing Android malware from diverse components,
including the permissions requested. They recognized the permissions which are
extensively asked in both benign and malicious apps. The author found that malicious
apps have a tendency to request extra permissions than benign ones. In 2012, Sanz
et al. [6] introduced a new technique to detect Android malware applications through
machine learning strategies with the aid of analyzing the extracted permissions from the
application itself. In [7], the author presented a method MAMA that extracts numerous
features from the Android manifest to build classifiers and detect malware. Huang et al.
[8] presented a technique for detection of Android malicious applications based on 20
features. Their experimental results show that an individual classifier is able to detect
about 81% of malware applications. In [9], the author developed a tool named Marvin
that creates a risk by examining an application using static and dynamic features. In
2015, Bhandari et al. [10] developed an approach DRACO that combines both static
and dynamic analysis. It explains the features that contributing to the maliciousness of
the examined application and generates the score. In [11], the author introduced SigPID
named as Significant Permission Identification for detection of Android malware. The
detection device based totally on permission usage to deal with rapid growth in
Android malware. SigPID used machine learning based classification method such as
SVM and Decision tree to classify the apps into malware or benign. The results show
that SVM achieves 90% of recall, precision, F-measure and accuracy. In 2015, Cen
et al. [12] proposed a malware detection method primarily based on permissions and
API calls. They applied probabilistic discriminative model based on RLR (Regularized
Logistic Regression) and compared with other classifier named as K-NN, decision tree,
SVM and Naive Bayes. Yerima et al. [13] proposed a novel classifier fusion approach
named as DroidFusion which is based on the multilevel architecture that enables the
combination of algorithms for improving the accuracy. They applied the various
ranking algorithm on their predictive accuracy in order to drive final classifier. Their
experimental results show that the fusion method performs better for improving
accuracy than the ensemble learning algorithm. Wang et al. [14] applied a different
machine learning algorithm named as SVM, Random Forest and Logistic regression
with static analysis for detection of Android malware apps. For training machine
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learning algorithms they used platform-specific static features and app specific static
features. Experimental results demonstrate that logistic regression performs better in
comparison to other classifiers with 96% of TPR (True Positive Rate) and 0.06% of
FPR (False Positive Rate). In [15], the author introduced a novel dynamic evaluation
framework, referred to as EnDroid, which automatically extracts multiple varieties of
dynamic features to implement effective malware detection. For effective detection of
malware, they applied the stacking ensemble technique. Their experimental outcomes
show that stacking perform better for the detection of Android malware. This paper
presents a comparative analysis of base classifiers and ensemble methods for classifi-
cation of Android applications.

3 Methodology Used

This section discusses the approach followed for comparing the machine learning
algorithms and ensemble methods for detecting and classifying Android applications
into malicious and benign. First of all, a dataset [5] comprising of permissions, intents,
API calls and command signatures extracted from Android malicious and benign
applications is downloaded. Six machine learning algorithms i.e. Naive Bayes (NB),
Random Forest (RF), Logistic Regression (LR), K-Nearest Neighbor (K-NN), Decision
Tree (DT) and Support Vector Machine (SVM) and three ensemble technique i.e.
Bagging, Boosting and Stacking are applied on the dataset using WEKA (Waikato
Environment for Knowledge Analysis) [16] library and their performance is evaluated
based on different parameters. For stacking ensemble technique, the topmost four
classifiers (on the basis of accuracy) are combined in the group of three making four
different combinations. The LR is used as level-2 meta-classifier in stacking. After-
ward, comparative analysis is carried out on the results obtained. The details of the
dataset used, machine learning and ensemble algorithms used are given in the fol-
lowing sub-sections. Figure 1 depicts the methodology of the proposed work.

Fig. 1. Workflow of methodology used
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Dataset Used
Malgenome [5] dataset is used for this work. It consists of 3800 number of instances
which includes 1260 malware and 2539 benign. There are total 215 attributes which are
categorized into 4 parts i.e. API Call Signature, Manifest Permission, Command Sig-
nature, and Intent. At the time of installation, the permission is granted by the users and
these are declared in Android-Manifest file. API calls are needed to interact with the
device. Intents are also described in the Android Manifest file. It is the conceptual
information about an operation, with which we can infer the intentions of the apps.

Base Classifiers

Decision Tree
The DT [17] is used for building regression and classification model in the form of a
tree structure. It focuses on an easily understandable representation form and is one of
the most common learning methods. It can easily be visualized in tree structure format.
A decision tree is built by iteratively splitting the dataset on the attribute that separates
the data into the different existing classes until a stopping criterion is reached.

Random Forest
RF [18] is an ensemble learning method that creates numerous regression trees and
aggregates their results. It trains every tree independently by the usage of a random
sample of the data. This randomness allows making the model more powerful. The
random forest model is excellent at managing tabular records with numerical functions
or categorical functions with fewer than loads of categories.

Support Vector Machine
The SVM [19] algorithm, uses hyperplane to divide the n-dimensional space data into
two regions. It calculates the maximal margin between all dimensions i.e. it is creating
the largest distance between instances, which is reducing the generalization Error. The
basic approach to classify the data starts by trying to create a function that splits the
data points into the corresponding labels with (a) the least possible amount of errors or
(b) with the largest possible margin.

Naive Bayes
NB [20] is a classification technique based on Bayes’ theorem. This classifier is widely
using in text estimation. For instance, many spam filters are using it in order to divide
acceptable content from unacceptable. Usually, the accuracy of this method is relatively
low in contrast with other approaches. However, an advantage of this technique is a
very high speed of classification and also a very good level of tolerance to missing
values. Additionally, NB algorithm characterized by low tolerance to redundant attri-
butes. Continuous features are not permitted here.

K-Nearest Neighbor
K-NN [21] model is also a type of supervised learning algorithm. It is the simplest and
easy than other machine learning techniques. This algorithm is representative of lazy
algorithms. It is based on the assumption that records within a dataset are generally
having the same properties. K-NN algorithm is relatively slow in the classification of

Comparative Analysis of Ensemble Methods 373



new instances coming into the model but fast during the training process. Also, this
algorithm is very sensitive to noise in the dataset.

Ensemble Techniques

Bagging: Bagging is also known as Bootstrap Aggregating. Multiple models of the
same learning algorithm are generated over a subset of the training dataset using
random sampling with replacement. For combining the models, the two methods are
used i.e. majority voting and averaging. In majority voting, the final prediction is done
on the basis of votes of each classifier. In averaging, it takes an average of the pre-
dictions of each classifier. In our work, we have used the majority vote method.
Bagging helps to avoid the problem of overfitting and can reduce variance [22].

Bagging Algorithm

For training:

1. Repeat step 2 to 3 for each iteration i = 1, 2, …, n
2. Create bootstrap samples of the training dataset using random sampling with

replacement.
3. Train different classifiers on these samples (NB, K-NN, DT etc.)

For testing:

1. Use a new dataset, to make predictions using base classifiers.
2. Combine the results of all models on the basis of majority voting.

Boosting: This method is used for improving the predictions of the model. Boosting
technique selects instances which give the wrong prediction and modify the weights.
Boosting is a little variation on bagging. In boosting, firstly equal weights are assigned
to all instances. Train the classifiers to make predictions of wrongly classified instances
then modify the weights of incorrectly predicted instances. In the end, take the weighted
mean of all weak learners to make a strong learner i.e. final model [23]. There are
different boosting algorithms such as AdaBoost, Gradient Tree Boosting and XGBoost.
The AdaBoost (Adaptive Boosting) algorithm is used to perform boosting in our work.

Boosting Algorithm

1. Assign equal weights to all instances.
2. Train the classifier to make predictions.
3. Assign higher weights to wrongly classified instances.
4. Repeat step 2 & 3 till the classifier correctly predict the instances.

Stacking: Stacking is also known as stacked generalization. It deals with combining
multiple classifiers generated by different machine learning algorithms. The process of
stacking can be divided into two phases: In the first phase, all the algorithms are trained
using the training data. In the second phase, the predictions from multiple models are
used as input to the second level to build a new model. This model is used for the
prediction on test data [24].
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Stacking Algorithm

1. Select topmost four classifiers (on the basis of accuracy) combine these in the group
of three making four different combinations.

2. Train these models using a complete training dataset.
3. Construct a new dataset of predictions made from multiple base-level classifiers.
4. Train a meta-model i.e. LR using the new dataset created in step 3.
5. Make predictions using this newly formed model.

4 Experimental Results

This section discusses the experimental results obtained. Six different classifiers i.e.
NB, LR, RF, K-NN, DT and SVM (explained in Sect. 3) are executed on WEKA 3.8
under Intel Core i3 processor, 64 bit, 2 GB RAM. All the classification models and
ensemble methods are trained using 5-fold cross-validation. The parameters used for
evaluating various models are True Positive Rate (TPR), False Positive Rate, Precision,
F-measure and Accuracy.

Table 1. Performance evaluation of base classifiers

Classifier TPR FPR Precision (%) F-measure (%) Accuracy (%)

NB 0.959 0.044 95.9 95.9 95.8
RF 0.991 0.016 99.1 99.1 99.0
LR 0.974 0.026 97.4 97.4 97.3
SVM 0.990 0.011 99.0 99.0 99.0
K-NN 0.986 0.015 98.6 98.6 98.5
DT 0.970 0.037 97.0 97.0 96.9

Fig. 2. Comparative analysis of base classifiers
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Table 1 represents the result of six base classifiers. The results show that SVM and
RF give the best accuracy i.e. 99% followed by K-NN which gives an accuracy of
98.5%. The TPR of RF and SVM is also high i.e. 0.99 and FPR is low i.e. 0.016
(RF) and 0.011 (SVM) respectively.

Figure 2 represents the comparison of six base classifiers on the basis of F-measure
and Accuracy. Herein SVM and RF classifiers are proved to be the best among used
base classifiers for the Malgenome dataset.

Table 2 represents the performance of six different classifiers using Bagging
ensemble technique. The results show that classifiers with bagging namely NB, LR,
RF, K-NN and DT give better results as compared to base classifiers. There is no
improvement in results using the bagging technique in case of SVM because bagging
work well with unstable classifiers. There is a minor improvement in TPR and FPR for
classifiers with Bagging as compared to the base classifiers.

Table 3 depicts the performance of six classifiers using Boosting ensemble tech-
nique. The results show that all the classifiers with boosting except SVM give better
results as compared to base classifiers. It is found that classifiers with AdaBoost
algorithm have performed better than classifier with bagging ensemble technique with
majority voting. There is an improvement in TPR and FPR for classifiers with Ada-
Boost algorithm as compared to the classifiers with bagging.

Table 3. Performance evaluation of classifiers using boosting ensemble technique

Classifier TPR FPR Precision (%) F-measure (%) Accuracy (%)

NB_Boosting 0.977 0.030 97.7 97.7 97.7
RF_Boosting 0.992 0.013 99.2 99.2 99.2
LR_Boosting 0.974 0.026 97.4 97.4 97.3
SVM_Boosting 0.988 0.014 98.8 98.8 98.8
K-NN_Boosting 0.986 0.015 98.6 98.6 98.6
DT_Boosting 0.991 0.012 99.1 99.1 99.0

Table 2. Performance evaluation of classifiers using bagging ensemble technique

Classifier TPR FPR Precision (%) F-measure (%) Accuracy (%)

NB_Bagging 0.961 0.042 96.1 96.1 96.0
RF_Bagging 0.992 0.016 99.2 99.2 99.1
LR_Bagging 0.979 0.021 97.9 97.9 97.9
SVM_Bagging 0.989 0.011 99.0 98.9 98.9
K-NN_Bagging 0.988 0.015 98.8 98.8 98.8
DT_Bagging 0.985 0.021 98.5 98.5 98.4
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Figure 3 represents the comparison of the base classifiers with bagging and boosting
ensemble technique on the basis of F-measure. Both Bagging and Boosting showing
better accuracy than base classifiers. Adaboost with NB and DT are performing better
than their bagged versions. Bagging with LR and K-NN has better accuracy than their
boosted version. Bagging and Boosting with RF is giving almost same result.

Herein classifier with boosting i.e. NB, RF and DT are the best among other
classifiers. The classifier with bagging is also performing better with some classifiers
i.e. RF, LR and K-NN.

Fig. 3. Comparison of the base classifiers with bagging and boosting ensemble techniques on
the basis of F-measure

Fig. 4. Comparison of the base classifiers with bagging and boosting ensemble techniques on
the basis of Accuracy
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Figure 4 represents the comparison of the base classifier with bagging and boosting
ensemble technique on the basis of Accuracy. Herein classifier with boosting namely
NB, RF and DT are shown to be the best among other classifiers. The classifier with
bagging is also performing better with some classifiers i.e. LR and K-NN.

For applying stacking ensemble method, we ranked the base classifiers on the basis of
their accuracy. The ascending order of top four base classifiers is LR, K-NN, RF and
SVM. Following four stacked ensemble models (each consisting of three base classifiers
out of the top four) are designed and tested on the Malgenome dataset using 5-fold cross-
validation.

M1 (RF_SVM_LR)
M2 (SVM_LR_K-NN)
M3 (LR_K-NN_RF)
M4 (K-NN_RF_SVM)

Stacking ensemble method uses a stack of classifiers in order to achieve better
results as compared to the individual classifier. The Logistic regression is used as level-
2 meta-classifier. Table 4 represents the performance of four ensemble models. The
results show that almost all the four models designed using stacking ensemble tech-
niques perform better than the base classifiers and other ensemble methods i.e. Bagging
and Boosting. The accuracy obtained by RF_SVM_LR is 99.3% followed by LR_K-
NN_RF and K-NN_RF_SVM which provide an accuracy of 99.2%.

Table 4. Performance evaluation of four stacking ensemble models

Ensemble models TPR FPR Precision (%) F-measure (%) Accuracy (%)

RF_SVM_LR 0.993 0.008 99.3 99.3 99.3
SVM_LR_KNN 0.992 0.011 99.2 99.2 99.1
LR_KNN_RF 0.993 0.009 99.3 99.3 99.2
KNN_RF_SVM 0.993 0.009 99.3 99.3 99.2

Fig. 5. Comparison of top four base models and stacking ensemble models
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Figure 5 depicts the comparative analysis of the top four base models with the
stacking ensemble approach in terms of F-measure and Accuracy. The stacking
ensemble approach gives the highest accuracy to classify malicious apps. It is clear
from the results that the models designed with stacking ensemble technique show
significant improvement over base classifiers.

5 Conclusion

With the increase in Android phone users, the risk of Android malware is increasing.
So there is a need to develop an effective technique for better classifying the malware.
This paper presented a comparative analysis of base classifiers and three ensemble
techniques i.e. Bagging, Boosting and stacking for classifying Android apps. It is
concluded that ensemble techniques perform better as compared to the base classifiers.
Further stacking ensemble technique outperforms in comparison to Bagging and
Boosting ensemble technique. The comparison is done on the basis of F-measure and
Accuracy. It is revealed from the results that the overall stacking ensemble model has
improved accuracy in contrast to the base classifier accuracy. The result shows that the
combination of RF_SVM_LR performs better as compared to the other ensemble
models. The accuracy obtained is 99.3%.
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