

WEB CRAWLER FOR EBOOK LIBRARY

BY

ABHISHEK KUMAR 101336

PROJECT SUPERVISOR: MR. SUMAN SAHA

MAY -2014

Submitted in partial fulfillment of the Degree of

Bachelor of Technology

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING AND

INFORMATION TECHNOLOGY

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY,

WAKNAGHAT

Table of Contents

Certificate from Supervisor I

Acknowledgement II

Abstract III

List of Figures IV

Chapter 1 : INTRODUCTION

 1.1 Overview 2

 1.2 Problem Statement 3

 1.3 Motivation 3

 1.4 Objective 3

Chapter 2 : LITRATURE

 2.1 Web Crawler 5

 2.2 Focused Crawler 6

 2.3 Indexing 7

 2.4 Page Ranking 8

Chapter 3 : CRAWLING

 3.1 Procedure 11

 3.2 Crawling Issues

 3.2.1 Robots.txt 12

 3.2.2 Spider Trap 13

 3.2.3 Preprocessing

 3.2.3.1 Stop-Word-Removal 13

 3.2.3.2 Stemming 14

Chapter 4 : CODE IMPLEMENTATION

 4.1 Code for eBook Crawler 16

 4.2 Output 40

CONCLUSION 42

Bibliography 43

(I)

CERTIFICATE

This is to certify that the work titled “WEB CRAWLER FOR EBOOK LIBRARY“

Submitted by ABHISHEK KUMAR in partial fulfillment for the award of degree of

B.Tech Computer Science Engineering of Jaypee University of Information

Technology, Waknaghat has been carried out under my supervision. This work has not

been submitted partially or wholly to any other University or Institute for the award of

this or any other degree or diploma.

(Signature of Supervisor)

Name of Supervisor: Mr. Suman Saha

Designation: Asst. Professor, Dept. of CSE and ICT

Date: 15
th

 May 2014

(II)

ACKNOWLEDGEMENT

We owe a great thanks to many people who have been helping and supporting us

during this project. Our heartiest thanks to Mr. Suman Saha, the Project Guide for

guiding and correcting us at every step of our work with attention and care. He has

taken pain to go through the project and make necessary correction as and when

needed. Thanks and appreciation to the helpful people at college for their support. We

would also thank our university and my faculty members without whom this project

would have been a distant reality. We also extend our heartfelt thanks to our family

and well-wishers.

Signature of Student:

Name of Student: Abhishek Kumar (101336)

Date: 15
th

 May 2014

(III)

ABSTRACT

A crawler is a program that retrieves and stores pages from the Web, commonly for a

Web search engine. A crawler often has to download hundreds of millions of pages in

a short period of time and has to constantly monitor and refresh the downloaded

pages. A focused crawler is a Web crawler aiming to search and retrieve Web pages

from the World Wide Web, which are related to a domain-specific topic. Rather than

downloading all accessible Web pages, a focused crawler analyzes the frontier of the

crawled region to visit only the portion of the Web that contains relevant Web pages,

and at the same time, try to skip irrelevant regions.

A web crawler for ebook library is a web crawler which replies to ebook related

queries. The crawler for ebook Library must crawl through the ebook specific Web

pages in the World Wide Web (WWW). For a crawler it is not an easy task to

download the ebook specific Web pages. Focus Crawling Mechanism can play a vital

role in this context. In our approach we crawl through the Web and store eBooks in a

fileSystem, which are related to a eBook domain using Focus Crawling Mechanism.

(IV)

List of Figures

Fig 2.1 - Working of General Crawler 5

Fig 2.2 - Working of Focused Crawler 7

Fig 4.1 - Output of eBook Crawler 40

Fig 4.2 – Log file of Output 41

Web Crawler for eBook Library

1

Chapter 1: INTRODUCTION

Web Crawler for eBook Library

2

1.1 Overview

A Web crawler is a program that downloads Web pages, commonly for a Web

search engine or a Web cache. Roughly, a crawler starts off with an initial set of

URLs. It first URL in a queue, where all URLs to be retrieved are kept and

prioritized. From this queue,the crawler gets a URL (in some order), downloads

the page, extracts any URLs in the downloaded page, and puts the new URLs in

the queue. This process is repeated until the crawler decides to stop, for any one of

various reasons. Every page that is retrieved is given to a client that saves the

pages, creates an index for the pages, or analyzes the content of the pages.

Crawlers are widely used today. Crawlers for the major search engines (e.g.,

Google,Yahoo, and Bing) attempt to visit a significant portion of textual Web

pages, in order to build content indexes. Other crawlers may also visit many

pages, but may look only for certain types of information.

Web Crawler for eBook Library use focused crawlers to selectively collect Web

pages relevant to particular ebook domains such that they can keep smaller Web

page collections and, at the same time, provide search results with high precision.

Unlike general-purpose Web crawler which automatically traverses the Web and

collects all Web, focused crawling is designed to gather collection of pages on

specific topic. A focused crawler tries to “predict” whether or not a target URL is

pointing to a relevant and high-quality Web page before actually fetching the

page, and then it follows the most appropriate links, leading to retrieval of more

relevant pages and greater saves in resources. In this crawler it traverse only those

links or paths within a specific domain : eBook. In this crawler it crawls the

eBook available in web and store in a fileSystem.

Web Crawler for eBook Library

3

1.2 Problem Statement

I interested to design a custom web crawler to search online eBook available in the

Web. We can use it as a search engine for eBook and crawl through the Web and store

eBooks in a fileSystem, which are related to a eBook domain .

1.3 Motivation

I highly motivated to this topic because currently and in the future, this project will be

use very frequently because today’s world we use advance technology(eg. Mobile ,

TabletPC, Phablets etc) where people want to get all needs in its finger and students

prefers to download eBook instead of buying the hard copy of book and spending lots

of money on to it. In other hand if we talk about the general crawler which crawl the

complete web that not give the very relevant result which we want, they give the

complete result of our query and we have to search on them So this crawler gives the

result related to ebook only.

1.4 Objectives

The goal of this project is to build a custom web "spider" or "crawler" which is search

online eBook and traverse links related to ebook domain available in Web.

Web Crawler for eBook Library

4

Chapter 2 : LITERATURE REVIEW

Web Crawler for eBook Library

5

2.1 Web Crawler

A crawler is a program that visits Web sites and reads their pages and other

information in order to create entries for a search engine index. The major search

engines on the Web all have such a program, which is also known as a "spider" or a

"bot." Crawlers are typically programmed to visit sites that have been submitted by

their owners as new or updated. Entire sites or specific pages can be selectively visited

and indexed. Crawlers apparently gained the name because they crawl through a site a

page at a time, following the links to other pages on the site until all pages have been

read.

A web Crawler first create a list of URLs and then visits these URLs , called seeds.

When crawler visits all URLs which is in the list , it identifies the hyperlinks available

in the pages and add them to visiting URLs list, called the crawl frontier. URLs from

the frontiers follows some set of policies to visiting the URLs. If the crawler is

crawling the website then it copies and saves the information and stored such that then

can viewed, read and navigated on the live web. In a certain given time crawler

download a limited number of Web Pages which implies large volume So, its need to

prioritize its downloads..

Figure 2.1- Working of General Crawler

Web Crawler for eBook Library

6

2.2 Focused Crawler

A Focused crawler is a web crawler that attempts to download only web pages that

are relevant to our topic. A focused crawler is a web crawler that collects Web pages

that satisfy some specific property, by carefully prioritizing the crawl frontier and

managing the hyperlink exploration process. Some predicates may be based on

simple, deterministic and surface properties. For example, a crawler's mission may be

to crawl pages from only the .jp domain. Other predicates may be softer or

comparative, e.g., "crawl pages with large PageRank", or "crawl pages about

baseball". An important page property pertains to topics, leading to topical crawlers.

For example, a topical crawler may be deployed to collect pages about solar power, or

swine flu, while minimizing resources spent fetching pages on other topics. Crawl

frontier management may not be the only device used by focused crawlers; they may

use a Web directory, an Web text index, backlinks, or any other Web artifact. A

focused crawler must predict the probability that an unvisited page will be relevant

before actually downloading the page. Crawlers are also focused on page properties

other than topics.

The performance of the focused crawler depends on the richness of URLs in the

relevant topic being searched and it relies normal search engine for providing the

starting points. Selection of seed URLs is very important for focused crawler and

crawling efficiency. Focused crawler start the focus crawl from a list of high quality

seed URLs and limit the crawling scope to the domain of these URLs and this list of

high quality URLs strategy are a Whitelist Strategy. The Whitelist high quality seeds

should be selected based on a list of URLs which are accumulated over a long period

of normal web crawling. The list of high quality should be updated time to time after

it is created. The advantage of focused crawler are it take less time to give relevant

result and you spend less effort on processing web pages and less money that are

unlikely to be value . It basically takes less time for crawl as compare to general

crawler and search our related topic and search high value pages related to our topic.

Web Crawler for eBook Library

7

Figure 2.2 Working of Focused Crawler

2.3 Indexing

Tokenization is the process of breaking up an entire document into individual, index-

able keywords. The first process is to remove all HTML markup from the document.

Because HTML is a tag-based language, we should remove the text within the tags; in

this way, we avoid indexing the word "body" as found in "<body>". In certain cases,

we should also dismiss the information found in between opening and closing tags.

For instance, we are probably not interested in indexing the client-side scripting

available on the site (generally, Javascript). Thus we disregard all text found in

between the <script> and </script> tags. Other tags (such as the <body> tag) contain

very useful information between their opening and closing and should be kept.

For a Web index, one solution is that those Web pages should come from as many

different servers as possible. The Web Crawler takes the following approach: it uses a

modified breadth-first algorithm to ensure that every server has at least one Web page

represented in the index. This strategy is very effective. In detail, a WebCrawler

indexing run proceeds as follows: every time a Web page on a new server is found,

that server is placed on a list of servers to be visited right away. Before any other Web

pages are visited, a Web page on each of the new servers is retrieved and indexed.

Web Crawler for eBook Library

8

When all known servers have been visited, indexing proceeds sequentially through a

list of all servers until a new one is found, at which point the process repeats. During

indexing, the WebCrawler runs either for a certain amount of time, or until it has

retrieved some number of Web pages. The basic idea of following different Web

pages from one to another using the links came was first demonstrated to work in the

search. The Web Crawler extends that concept to initiate the search using the index,

and to follow links in an intelligent order.

Googlebot processes each of the pages it crawls in order to compile a massive index

of all the words it sees and their location on each page. In addition, we process

information included in key content tags and attributes, such as Title tags and ALT

attributes. Googlebot can process many, but not all, content types. For example, we

cannot process the content of some rich media files or dynamic pages.

2.4 Page Ranking

PageRank is a link analysis algorithm and it assigns a numerical weighting to each

element of a hyperlinked set of documents, such as the World Wide Web, with the

purpose of "measuring" its relative importance within the set. The algorithm may be

applied to any collection of entities with reciprocal quotations and references. The

numerical weight that it assigns to any given element E is referred to as the PageRank

of E and denoted by PR(E). Other factors like Author Rank can contribute to the

importance of an entity. A PageRank results from a mathematical algorithm based on

the webgraph, created by all World Wide Web pages as nodes and hyperlinks as

edges, taking into consideration authority hubs such as cnn.com or usa.gov. The rank

value indicates an importance of a particular page. A hyperlink to a page counts as a

vote of support. The PageRank of a page is defined recursively and depends on the

number and PageRank metric of all pages that link to it ("incoming links"). A page

that is linked to by many pages with high PageRank receives a high rank itself.

PageRank is the measure of the importance of a page based on the incoming links

from other pages. In simple terms, each link to a page on your site from another site

adds to your site's PageRank. Not all links are equal: Google works hard to improve

Web Crawler for eBook Library

9

the user experience by identifying spam links and other practices that negatively

impact search results. The best types of links are those that are given based on the

quality of your content.

Googlebot processes each of the pages it crawls in order to compile a massive index

of all the words it sees and their location on each page. In addition, we process

information included in key content tags and attributes, such as Title tags and ALT

attributes. Googlebot can process many, but not all, content types. For example, we

cannot process the content of some rich media files or dynamic pages.

PageRank is a probability distribution used to represent the likelihood that a person

randomly clicking on links will arrive at any particular page. PageRank can be

calculated for collections of documents of any size. It is assumed in several research

papers that the distribution is evenly divided among all documents in the collection at

the beginning of the computational process. The PageRank computations require

several passes, called "iterations", through the collection to adjust approximate

PageRank values to more closely reflect the theoretical true value.

A probability is expressed as a numeric value between 0 and 1. A 0.5 probability is

commonly expressed as a "50% chance" of something happening. Hence, a PageRank

of 0.5 means there is a 50% chance that a person clicking on a random link will be

directed to the document with the 0.5 PageRank.

Web Crawler for eBook Library

10

Chapter 3: CRAWLING

Web Crawler for eBook Library

11

3.1 Procedure

Procedure for detect and extract links from pages is as follows:

1. Start at the <body> tag if one exists. This presumes that there is no page content

stored in the HTML head.

2. Find the next instance of "<a" (ignoring case), as links begin with an "<a href> tag.

3. Check to see if "href" and "=" are in this same tag, if so, continue.

4. Find the quotation mark immediately following the "href" and the "=". Extract the

link enclosed in these quotations.

5. Trim a "#" or "?" and the subsequent text off from the end of the link.

6. Trim "index.html" off of the end of the string, if present.

7. Convert all non-alpha-numeric (excluding "/" and ":") to their hexadecimal

equivalents (spaces convert to %20", etc.

8. Recall the origin URL from which this link is being extracted (in case of relative

links).

9. For every instance of "../" in the link URL, trim the last directory off of the base

URL (to ascend into its parent directory), and trim an instance of "../" from the link.

Repeat until either there are no more "../"s or until the parent directory ends in ".edu",

indicating that the highest parent URL is the base.

10. Trim "www." off of the front, if it is present.

11. Check to see if the link already exists in the database. If so, add a reference from

this page pointing to the pre-existing link so that we know that it links to that page. If

not, add that link to the list of all URLs in the domain, and add a reference from this

page to that one.

12. Go back to step 2, if applicable.

Web Crawler for eBook Library

12

3.2 Crawling Issues

3.2.1 robots.txt

The Robot Exclusion Standard, also known as the Robots Exclusion Protocol or

robots.txt protocol, is a convention to advising cooperating web crawlers and other

web robots about accessing all or part of a website which is otherwise publicly

viewable. Robots are often used by search engines to categorize and archive web sites,

or by webmasters to proofread source code. The standard is different from, but can be

used in conjunction with, Sitemaps, a robot inclusion standard for websites.

A robots.txt file on a website will function as a request that specified robots ignore

specified files or directories when crawling a site. This might be, for example, out of a

preference for privacy from search engine results, or the belief that the content of the

selected directories might be misleading or irrelevant to the categorization of the site

as a whole, or out of a desire that an application only operate on certain data. Links to

pages listed in robots.txt can still appear in search results if they are linked to from a

page that is crawled.

A robots.txt file covers one origin. For websites with multiple subdomains, each

subdomain must have its own robots.txt file. If example.com had a robots.txt file but

a.example.com did not, the rules that would apply for example.com would not apply

to a.example.com. In addition, each protocol and port needs its own robots.txt file;

http://example.com/robots.txt does not apply to pages under

https://example.com:8080/ or https://example.com/.

Example of robots.txt:

 user-agent: *

 Disallow: /cgi-bin/

 Disallow: /registration/

The "User-agent: *" means this section applies to all robots. The "Disallow: /" tells the

robot that it should not visit any pages on the site.

Web Crawler for eBook Library

13

Robots can ignore your /robots.txt. Especially malware robots that scan the web for

security vulnerabilities, and email address harvesters used by spammers will pay no

attention.

3.2.2 Spider trap

A spider trap (or crawler trap) is a set of web pages that may intentionally or

unintentionally be used to cause a web crawler or search bot to make an infinite

number of requests or cause a poorly constructed crawler to crash. Web crawlers are

also called web spiders, from which the name is derived. Spider traps may be created

to "catch" spambots or other crawlers that waste a website's bandwidth. They may also

be created unintentionally by calendars that use dynamic pages with links that

continually point to the next day or year.

Example of creation of indefinitely deep directory structures like :

http://abc.com/a/b/c/b/c/a/b/a/b/c/a/b/...............

3.2.3 Preprocessing

3.2.3.1 Stop-Word-Removal

Common words that carry less important meaning than the actual keywords. Stop-

words are a list of words which are viewed as unhelpful in narrowing down searches.

Words like "the" are generally not relevant to a query or to the ideal results of a query

(unless, of course, a document is about the word "The." Such exceptions should be

considered in a real-world IR system). These words are then excluded from the index.

stop words are words which are filtered out prior to, or after, processing of natural

language data (text).There is not one definite list of stop words which all tools use and

such a filter is not always used. Some tools specifically avoid removing them to

support phrase search.

For example of some stop words: a, the, this, etc.

http://abc.com/a/b/c/b/c/a/b/a/b/c/a/b/

Web Crawler for eBook Library

14

3.2.3.2 Stemming

The process for reducing inflected word to their stem, base or root form. Stemming is

the practice of reducing a word to its stem or root. The goal of stemming is to improve

information-retrieval on a document by "clustering" similar words together. In this

way, searches can be performed on the clusters of similar words as opposed to each

variant of the word individually.

For example: caresses --> caress

 Cats --> cat

Web Crawler for eBook Library

15

Chapter 4: CODE IMPLEMENTATION

Web Crawler for eBook Library

16

4.1 Code for eBOOK Crawler

import java.awt.*;

import java.awt.event.*;

import java.io.*;

import java.net.*;

import java.util.*;

import java.util.regex.*;

import javax.swing.*;

import javax.swing.table.*;

public class EbookCrawler extends JFrame

{

 private static final String[] MAX_URLS = {"50", "100", "500", "1000"};

 private HashMap disallowListCache = new HashMap();

 private JTextField startTextField;

private JComboBox maxComboBox;

 private JCheckBox limitCheckBox;

 private JTextField logTextField;

 private JTextField searchTextField;

 private JCheckBox caseCheckBox;

 private JButton searchButton;

 private JLabel crawlingLabel2;

 private JLabel crawledLabel2;

Web Crawler for eBook Library

17

 private JLabel toCrawlLabel2;

 private JProgressBar progressBar;

 private JLabel matchesLabel2;

 private JTable table;

 private boolean crawling;

 private PrintWriter logFileWriter;

 public EbookCrawler()

 {

 setTitle("Ebook Crawler");

 setSize(600, 600);

 addWindowListener(new WindowAdapter() {

 public void windowClosing(WindowEvent e) {

 actionExit();

 }

 });

 JMenuBar menuBar = new JMenuBar();

 JMenu fileMenu = new JMenu("File");

 fileMenu.setMnemonic(KeyEvent.VK_F);

 JMenuItem fileExitMenuItem = new JMenuItem("Exit",KeyEvent.VK_X);

 fileExitMenuItem.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 actionExit();

}

Web Crawler for eBook Library

18

 });

 fileMenu.add(fileExitMenuItem);

 menuBar.add(fileMenu);

 setJMenuBar(menuBar);

 JPanel searchPanel = new JPanel();

 GridBagConstraints constraints;

 GridBagLayout layout = new GridBagLayout();

 searchPanel.setLayout(layout);

JLabel startLabel = new JLabel("Start URL:");

constraints = new GridBagConstraints();

constraints.anchor = GridBagConstraints.EAST;

 constraints.insets = new Insets(5, 5, 0, 0);

 layout.setConstraints(startLabel, constraints);

 searchPanel.add(startLabel);

 startTextField = new JTextField();

 constraints = new GridBagConstraints();

 constraints.fill = GridBagConstraints.HORIZONTAL;

 constraints.gridwidth = GridBagConstraints.REMAINDER;

 constraints.insets = new Insets(5, 5, 0, 5);

 layout.setConstraints(startTextField, constraints);

 searchPanel.add(startTextField);

 JLabel maxLabel = new JLabel("Max URLs to Crawl:");

 constraints = new GridBagConstraints();

Web Crawler for eBook Library

19

 constraints.anchor = GridBagConstraints.EAST;

 constraints.insets = new Insets(5, 5, 0, 0);

 layout.setConstraints(maxLabel, constraints);

 searchPanel.add(maxLabel);

maxComboBox = new JComboBox(MAX_URLS);

 maxComboBox.setEditable(true);

 constraints = new GridBagConstraints();

 constraints.insets = new Insets(5, 5, 0, 0);

 layout.setConstraints(maxComboBox, constraints);

 searchPanel.add(maxComboBox);

limitCheckBox = new JCheckBox("Limit crawling to Start URL site");

 constraints = new GridBagConstraints();

 constraints.anchor = GridBagConstraints.WEST;

 constraints.insets = new Insets(0, 10, 0, 0);

 layout.setConstraints(limitCheckBox, constraints);

 searchPanel.add(limitCheckBox);

JLabel blankLabel = new JLabel();

 constraints = new GridBagConstraints();

 constraints.gridwidth = GridBagConstraints.REMAINDER;

 layout.setConstraints(blankLabel, constraints);

 searchPanel.add(blankLabel);

JLabel logLabel = new JLabel("Matches Log File:");

 constraints = new GridBagConstraints();

Web Crawler for eBook Library

20

 constraints.anchor = GridBagConstraints.EAST;

 constraints.insets = new Insets(5, 5, 0, 0);

layout.setConstraints(logLabel, constraints);

 searchPanel.add(logLabel);

 String file = System.getProperty("user.dir") + System.getProperty("file.separator") +

"crawler.log";

 logTextField = new JTextField(file);

 constraints = new GridBagConstraints();

 constraints.fill = GridBagConstraints.HORIZONTAL;

 constraints.gridwidth = GridBagConstraints.REMAINDER;

 constraints.insets = new Insets(5, 5, 0, 5);

layout.setConstraints(logTextField, constraints);

 searchPanel.add(logTextField);

JLabel searchLabel = new JLabel("Search String:");

 constraints = new GridBagConstraints();

 constraints.anchor = GridBagConstraints.EAST;

 constraints.insets = new Insets(5, 5, 0, 0);

 layout.setConstraints(searchLabel, constraints);

 searchPanel.add(searchLabel);

searchTextField = new JTextField();

 constraints = new GridBagConstraints();

 constraints.fill = GridBagConstraints.HORIZONTAL;

 constraints.insets = new Insets(5, 5, 0, 0);

Web Crawler for eBook Library

21

 constraints.gridwidth= 2;

 constraints.weightx = 1.0d;

 layout.setConstraints(searchTextField, constraints);

 searchPanel.add(searchTextField);

 caseCheckBox = new JCheckBox("Case Sensitive");

 constraints = new GridBagConstraints();

 constraints.insets = new Insets(5, 5, 0, 5);

 constraints.gridwidth = GridBagConstraints.REMAINDER;

 layout.setConstraints(caseCheckBox, constraints);

 searchPanel.add(caseCheckBox);

searchButton = new JButton("Search");

 searchButton.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 actionSearch();

}

 });

 constraints = new GridBagConstraints();

constraints.gridwidth = GridBagConstraints.REMAINDER;

 constraints.insets = new Insets(5, 5, 5, 5);

 layout.setConstraints(searchButton, constraints);

 searchPanel.add(searchButton);

JSeparator separator = new JSeparator();

 constraints = new GridBagConstraints();

Web Crawler for eBook Library

22

 constraints.fill = GridBagConstraints.HORIZONTAL;

 constraints.gridwidth = GridBagConstraints.REMAINDER;

 constraints.insets = new Insets(5, 5, 5, 5);

 layout.setConstraints(separator, constraints);

 searchPanel.add(separator);

JLabel crawlingLabel1 = new JLabel("Crawling:");

 constraints = new GridBagConstraints();

 constraints.anchor = GridBagConstraints.EAST;

 constraints.insets = new Insets(5, 5, 0, 0);

 layout.setConstraints(crawlingLabel1, constraints);

 searchPanel.add(crawlingLabel1);

crawlingLabel2 = new JLabel();

 crawlingLabel2.setFont(

 crawlingLabel2.getFont().deriveFont(Font.PLAIN));

 constraints = new GridBagConstraints();

 constraints.fill = GridBagConstraints.HORIZONTAL;

constraints.gridwidth = GridBagConstraints.REMAINDER;

 constraints.insets = new Insets(5, 5, 0, 5);

 layout.setConstraints(crawlingLabel2, constraints);

 searchPanel.add(crawlingLabel2);

JLabel crawledLabel1 = new JLabel("Crawled URLs:");

 constraints = new GridBagConstraints();

 constraints.anchor = GridBagConstraints.EAST;

Web Crawler for eBook Library

23

 constraints.insets = new Insets(5, 5, 0, 0);

 layout.setConstraints(crawledLabel1, constraints);

 searchPanel.add(crawledLabel1);

crawledLabel2 = new JLabel();

 crawledLabel2.setFont(

 crawledLabel2.getFont().deriveFont(Font.PLAIN));

 constraints = new GridBagConstraints();

 constraints.fill = GridBagConstraints.HORIZONTAL;

 constraints.gridwidth = GridBagConstraints.REMAINDER;

 constraints.insets = new Insets(5, 5, 0, 5);

layout.setConstraints(crawledLabel2, constraints);

 searchPanel.add(crawledLabel2);

JLabel toCrawlLabel1 = new JLabel("URLs to Crawl:");

 constraints = new GridBagConstraints();

 constraints.anchor = GridBagConstraints.EAST;

 constraints.insets = new Insets(5, 5, 0, 0);

 layout.setConstraints(toCrawlLabel1, constraints);

 searchPanel.add(toCrawlLabel1);

toCrawlLabel2 = new JLabel();

 toCrawlLabel2.setFont(

 toCrawlLabel2.getFont().deriveFont(Font.PLAIN));

 constraints = new GridBagConstraints();

 constraints.fill = GridBagConstraints.HORIZONTAL;

Web Crawler for eBook Library

24

 constraints.gridwidth = GridBagConstraints.REMAINDER;

 constraints.insets = new Insets(5, 5, 0, 5);

 layout.setConstraints(toCrawlLabel2, constraints);

 searchPanel.add(toCrawlLabel2);

JLabel progressLabel = new JLabel("Crawling Progress:");

 constraints = new GridBagConstraints();

 constraints.anchor = GridBagConstraints.EAST;

 constraints.insets = new Insets(5, 5, 0, 0);

 layout.setConstraints(progressLabel, constraints);

 searchPanel.add(progressLabel);

 progressBar = new JProgressBar();

 progressBar.setMinimum(0);

 progressBar.setStringPainted(true);

 constraints = new GridBagConstraints();

 constraints.fill = GridBagConstraints.HORIZONTAL;

 constraints.gridwidth = GridBagConstraints.REMAINDER;

 constraints.insets = new Insets(5, 5, 0, 5);

 layout.setConstraints(progressBar, constraints);

 searchPanel.add(progressBar);

 JLabel matchesLabel1 = new JLabel("Search Matches:");

 constraints = new GridBagConstraints();

constraints.anchor = GridBagConstraints.EAST;

 constraints.insets = new Insets(5, 5, 10, 0);

Web Crawler for eBook Library

25

 layout.setConstraints(matchesLabel1, constraints);

 searchPanel.add(matchesLabel1);

matchesLabel2 = new JLabel();

 matchesLabel2.setFont(matchesLabel2.getFont().deriveFont(Font.PLAIN));

 constraints = new GridBagConstraints();

 constraints.fill = GridBagConstraints.HORIZONTAL;

 constraints.gridwidth = GridBagConstraints.REMAINDER;

 constraints.insets = new Insets(5, 5, 10, 5);

 layout.setConstraints(matchesLabel2, constraints);

 searchPanel.add(matchesLabel2);

 table = new JTable(new DefaultTableModel(new Object[][]{},new String[]{"URL"})

{

 public boolean isCellEditable(int row, int column)

 {

return false;

 }

 });

 JPanel matchesPanel = new JPanel();

 matchesPanel.setBorder(BorderFactory.createTitledBorder("Matches"));

 matchesPanel.setLayout(new BorderLayout());

 matchesPanel.add(new JScrollPane(table),

BorderLayout.CENTER);

 getContentPane().setLayout(new BorderLayout());

Web Crawler for eBook Library

26

 getContentPane().add(searchPanel, BorderLayout.NORTH);

 getContentPane().add(matchesPanel,BorderLayout.CENTER);

}

 private void actionExit() {

 System.exit(0);

 }

private void actionSearch() {

 if (crawling) {

crawling = false;

 return;

}

ArrayList errorList = new ArrayList();

 String startUrl = startTextField.getText().trim();

 if (startUrl.length() < 1) {

errorList.add("Missing Start URL.");

 }

 else if (verifyUrl(startUrl) == null) {

errorList.add("Invalid Start URL.");

 }

 int maxUrls = 0;

 String max = ((String) maxComboBox.getSelectedItem()).trim();

 if (max.length() > 0) {

try {

Web Crawler for eBook Library

27

maxUrls = Integer.parseInt(max);

 }

catch (NumberFormatException e) {

 }

 if (maxUrls < 1) {

errorList.add("Invalid Max URLs value.");

 }

 }

 String logFile = logTextField.getText().trim();

 if (logFile.length() < 1) {

errorList.add("Missing Matches Log File.");

 }

 String searchString = searchTextField.getText().trim();

 if (searchString.length() < 1) {

errorList.add("Missing Search String.");

 }

 if (errorList.size() > 0) {

 StringBuffer message = new StringBuffer();

 for (int i = 0; i < errorList.size(); i++) {

 message.append(errorList.get(i));

 if (i + 1 < errorList.size()) {

 message.append("\n");

 }

Web Crawler for eBook Library

28

 }

showError(message.toString());

 return;

 }

 startUrl = removeWwwFromUrl(startUrl);

 search(logFile, startUrl, maxUrls, searchString);

}

private void search(final String logFile, final String startUrl,

 final int maxUrls, final String searchString)

{

 Thread thread = new Thread(new Runnable() {

 public void run() {

 setCursor(Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR));

 startTextField.setEnabled(false);

 maxComboBox.setEnabled(false);

 limitCheckBox.setEnabled(false);

 logTextField.setEnabled(false);

 searchTextField.setEnabled(false);

 caseCheckBox.setEnabled(false);

 searchButton.setText("Stop");

table.setModel(new DefaultTableModel(new Object[][]{},

 new String[]{"URL"}) {

public boolean isCellEditable(int row, int column)

Web Crawler for eBook Library

29

 {

return false;

 }

 });

updateStats(startUrl, 0, 0, maxUrls);

 try {

 logFileWriter = new PrintWriter(new FileWriter(logFile));

} catch (Exception e) {

 showError("Unable to open matches log file.");

 return;

}

 crawling = true;

 crawl(startUrl, maxUrls, limitCheckBox.isSelected(),

 searchString, caseCheckBox.isSelected());

 crawling = false;

 try {

 logFileWriter.close();

 } catch (Exception e) {

 showError("Unable to close matches log file.");

 }

 crawlingLabel2.setText("Done");

 startTextField.setEnabled(true);

 maxComboBox.setEnabled(true);

Web Crawler for eBook Library

30

 limitCheckBox.setEnabled(true);

 logTextField.setEnabled(true);

 searchTextField.setEnabled(true);

 caseCheckBox.setEnabled(true);

 searchButton.setText("Search");

 setCursor(Cursor.getDefaultCursor());

if (table.getRowCount() == 0) {

JOptionPane.showMessageDialog(EbookCrawler.this,

 "Your Search String was not found. Please try another.",

 "Search String Not Found",

 JOptionPane.WARNING_MESSAGE);

 }

}

 });

 thread.start();

}

private void showError(String message) {

 JOptionPane.showMessageDialog(this, message, "Error",

 JOptionPane.ERROR_MESSAGE);

}

private void updateStats(

 String crawling, int crawled, int toCrawl, int maxUrls)

{

Web Crawler for eBook Library

31

 crawlingLabel2.setText(crawling);

 crawledLabel2.setText("" + crawled);

 toCrawlLabel2.setText("" + toCrawl);

 if (maxUrls == -1) {

 progressBar.setMaximum(crawled + toCrawl);

 } else {

progressBar.setMaximum(maxUrls);

 }

 progressBar.setValue(crawled);

matchesLabel2.setText("" + table.getRowCount());

}

private void addMatch(String url) {

 DefaultTableModel model =(DefaultTableModel) table.getModel();

 model.addRow(new Object[]{url});

 try {

 logFileWriter.println(url);

 } catch (Exception e) {

 showError("Unable to log match.");

 }

}

private URL verifyUrl(String url) {

 if (!url.toLowerCase().startsWith("http://"))

return null;

Web Crawler for eBook Library

32

 URL verifiedUrl = null;

 try {

verifiedUrl = new URL(url);

 } catch (Exception e) {

 return null;

 }

return verifiedUrl;

}

boolean isRobotAllowed(URL urlToCheck) {

 String host = urlToCheck.getHost().toLowerCase();

 ArrayList disallowList = (ArrayList) disallowListCache.get(host);

 if (disallowList == null) {

 disallowList = new ArrayList();

try {

 URL robotsFileUrl =

 new URL("http://" + host + "/robots.txt");

 BufferedReader reader = new BufferedReader(new InputStreamReader(

 robotsFileUrl.openStream()));

String line;

 while ((line = reader.readLine()) != null) {

 if (line.indexOf("Disallow:") == 0) {

 String disallowPath = line.substring("Disallow:".length());

 int commentIndex = disallowPath.indexOf("#");

Web Crawler for eBook Library

33

 if (commentIndex != -1) {

disallowPath = disallowPath.substring(0, commentIndex);

 }

 disallowPath = disallowPath.trim();

 disallowList.add(disallowPath);

 }

 }

disallowListCache.put(host, disallowList);

 }

 catch (Exception e) {

 return true;

}

 }

 String file = urlToCheck.getFile();

 for (int i = 0; i < disallowList.size(); i++) {

String disallow = (String) disallowList.get(i);

 if (file.startsWith(disallow)) {

 return false;

 }

 }

return true;

}

private String downloadPage(URL pageUrl) {

Web Crawler for eBook Library

34

try {

 BufferedReader reader = new BufferedReader(new InputStreamReader(

pageUrl.openStream()));

 String line;

 StringBuffer pageBuffer = new StringBuffer();

 while ((line = reader.readLine()) != null) {

pageBuffer.append(line);

 }

return pageBuffer.toString();

 } catch (Exception e) {

 }

return null;

}

private String removeWwwFromUrl(String url) {

 int index = url.indexOf("://www.");

 if (index != -1) {

return url.substring(0, index + 3) +

 url.substring(index + 7);

 }

return (url);

}

private ArrayList retrieveLinks(URL pageUrl, String pageContents, HashSet

Web Crawler for eBook Library

35

crawledList, boolean limitHost)

{

 Pattern p

=Pattern.compile("<a\\s+href\\s*=\\s*\"?(.*?)[\"|>]",Pattern.CASE_INSENSITIVE);

 Matcher m = p.matcher(pageContents);

ArrayList linkList = new ArrayList();

while (m.find()) {

 String link = m.group(1).trim();

 if (link.length() < 1) {

 continue;

 }

 if (link.charAt(0) == '#') {

 continue;

 }

 if (link.indexOf("mailto:") != -1) {

 continue;

 }

 if (link.toLowerCase().indexOf("javascript") != -1) {

 continue;

 }

if (link.indexOf("://") == -1) {

 if (link.charAt(0) == '/') {

link = "http://" + pageUrl.getHost() + link;

Web Crawler for eBook Library

36

 } else {

String file = pageUrl.getFile();

 if (file.indexOf('/') == -1) {

 link = "http://" + pageUrl.getHost() + "/" + link;

 } else {

 String path = file.substring(0, file.lastIndexOf('/') + 1);

 link = "http://" + pageUrl.getHost() + path + link;

 }

 }

 }

 int index = link.indexOf('#');

 if (index != -1) {

 link = link.substring(0, index);

}

 link = removeWwwFromUrl(link);

 URL verifiedLink = verifyUrl(link);

 if (verifiedLink == null) {

continue;

 }

 if (limitHost &&

!pageUrl.getHost().toLowerCase().equals(verifiedLink.getHost().toLowerCase()))

 {

 continue;

Web Crawler for eBook Library

37

 }

 if (crawledList.contains(link)) {

 continue;

 }

 linkList.add(link);

 }

return (linkList);

}

private boolean searchStringMatches(String pageContents, String searchString,

boolean caseSensitive)

{

 String searchContents = pageContents;

 if (!caseSensitive) {

 searchContents = pageContents.toLowerCase();

 }

 Pattern p = Pattern.compile("[\\s]+");

 String[] terms = p.split(searchString);

 for (int i = 0; i < terms.length; i++) {

 if (caseSensitive) {

 if (searchContents.indexOf(terms[i]) == -1) {

 return false;

 }

 } else {

Web Crawler for eBook Library

38

 if (searchContents.indexOf(terms[i].toLowerCase()) == -1) {

 return false;

 }

 }

 }

return true;

}

public void crawl(String startUrl, int maxUrls, boolean limitHost, String

searchString, boolean caseSensitive)

{

 HashSet crawledList = new HashSet();

 LinkedHashSet toCrawlList = new LinkedHashSet();

 toCrawlList.add(startUrl);

 while (crawling && toCrawlList.size() > 0)

 {

 if (maxUrls != -1) {

 if (crawledList.size() == maxUrls) {

 break;

 }

 }

 String url = (String) toCrawlList.iterator().next();

 toCrawlList.remove(url);

 URL verifiedUrl = verifyUrl(url);

Web Crawler for eBook Library

39

 if (!isRobotAllowed(verifiedUrl)) {

 continue;

 }

 updateStats(url, crawledList.size(), toCrawlList.size(), maxUrls);

 crawledList.add(url);

 String pageContents = downloadPage(verifiedUrl);

 if (pageContents != null && pageContents.length() > 0)

 {

 ArrayList links = retrieveLinks(verifiedUrl, pageContents, crawledList, limitHost);

 toCrawlList.addAll(links);

 if (searchStringMatches(pageContents, searchString, caseSensitive))

 {

 addMatch(url);

 }

 }

 updateStats(url, crawledList.size(), toCrawlList.size(), maxUrls);

}

 }

 public static void main(String[] args) {

 EbookCrawler crawler = new EbookCrawler();

 crawler.show();

 }

}

Web Crawler for eBook Library

40

4.2 Output

Figure 4.1 Output of eBook Crawler

Web Crawler for eBook Library

41

Figure 4.2 – Log File of Output

Web Crawler for eBook Library

42

CONCLUSION:

I found this project quite interesting but time consuming. During implementation

phase i faced many problems to build this project because in this project there are

three phases crawling for eBook query , indexing the result and ranking the results.

Due to time consuming modules I am able to complete only one phase of project

which is crawling for the ebook.

So, the crawling phase of eBook Crawler is successfully implemented and it gives the

relevant links of the eBook and store those results in a log file .

Web Crawler for eBook Library

43

Bibliography

[1] Crawling the web: Discovery and Maintenance of large scale web data by

Junghoo Cho, Nov 2001

[2] Debajyoti Mukhopadhyay, Arup Biswas, Sukanta Sinha; A New Approach to

Design Domain Specific Ontology Based Web Crawler; 10th International

Conference on Information Technology, ICIT 2007 Proceedings; Bhubaneswar,

India; IEEE Computer Society Press, California, USA; December 17-20, 2007;

pp.289-291.

[3] Jeff Allen;Indexing Web Crawler CSE 8337 - Margaret Dunham , 2009

[4] The Robots Exclusion Protocol standard is described at

http://www.robotstxt.org/wc/exclusion.html

[5] Prioritization of Domain-Specific Web Information Extraction by Jian

Huang and Cong Yu , 2010

[6] A Distributed Approach to Crawl Domain Specific Hidden Web by

Lovekesh kumar Desai , 2007

[7] Indexing Web Crawler CSE 8337 – Margaret Dunham ,Spring 2009,

Jeff Allen

[8] Google : Crawling and Indexing at

https://www.google.co.in/insidesearch/howsearchworks/crawling-

indexing.html

[9] Google: Page Rank at

https://support.google.com/webmasters/answer/70897?hl=en

[10]Wikipedia: Stemming at http://en.wikipedia.org/wiki/Stemming

[11]Wikipedia: Focused Crawler at

http://en.wikipedia.org/wiki/Focused_crawler

[12] Wikipedia: Robots.txt at

http://en.wikipedia.org/wiki/Robots_exclusion_standard

[13] Scribd: Stemming Algorithm at

http://www.scribd.com/doc/81017602/36/Different-Stemming-Algorithms

[14] Crawling web with Java by Herbert Schildt and James Holmes, 2004

http://www.robotstxt.org/wc/exclusion.html
https://www.google.co.in/insidesearch/howsearchworks/crawling-indexing.html
https://www.google.co.in/insidesearch/howsearchworks/crawling-indexing.html
https://support.google.com/webmasters/answer/70897?hl=en
http://en.wikipedia.org/wiki/Stemming
http://en.wikipedia.org/wiki/Focused_crawler
http://en.wikipedia.org/wiki/Robots_exclusion_standard
http://www.scribd.com/doc/81017602/36/Different-Stemming-Algorithms

