
i

TO DESIGN 16-BIT MICROPROCESSOR USING VHDL

Submitted in partial fulfillment of the Degree of

Bachelor of Technology

in

Electronics and Communication Engineering

MAY-2014

Under the Supervision of

Mr. Akhil Ranjan

By

Ayush Bajpai (101028)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY,

WAKNAGHAT

ii

CERTIFICATE

This is to certify that the work titled “DESIGN OF 16-BIT MICROPROCESSOR

USING VHDL” submitted by Ayush Bajpai in partial fulfilment for the award of degree of

B.Tech Electronics and Communication of Jaypee University of Information Technology,

Waknaghat has been carried out under my supervision. This work has not been submitted partially or

wholly to any other University or Institute for the award of this or any other degree or diploma.

Signature of Supervisor ……………………..

Name of Supervisor ……………………..

Designation ……………………..

Date ……………………..

iii

ACKNOWLEDGEMENT

I express sincere appreciation to Mr. Akhil Ranjan for his guidance throughout the research and

preparation of the thesis. I would like to thank him for his helpful comments, suggestions and giving

me chance to work together.

Signature of the student ……………………..

Name of Student ……………………..

Date ……………………..

iv

TABLE OF CONTENTS

Chapter no. Topics Page No.

 Abstract…………………………………………………....VI

 List of Figures……………………………………………...VII

 List of Tables…………………………………………….....VIII

 Symbols and abbreviations..IX

1. Introduction………………………………………………..1-2

2. Proposed Methodology…………………………………….3

2.1 RAM………………………………………………………...3

2.2 Comparator………………………………………………….3

2.3 ALU………………………………………………………....3

2.4 Registers…………………………………………………….3

2.5 Control Block……………………………………………….3

 3. Working flow chart and description of each block……...4

 3.1 RAM………………………………………………………..4-5

 3.2 Comparator………………………………………………....6

 3.3 ALU………………………………………………………...7

 3.4 Registers…………………………………………………....7-10

 3.4.1 Bi-registers………………………………………………...8

 3.4.2 Tri-registers………………………………………………..9-10

 3.5 Control Unit………………………………………………...11

 3.6 Shifter……………………………………………………….12

 4. RTL Schematic and Simulation…………………………..13-28

 4.1 RAM………………………………………………………...13-16

 4.2 Comparator………………………………………………….16-18

 4.3 Bi-register…………………………………………………...18-20

 4.4 Tri-register…………………………………………………..20-21

 4.5 Shifter……………………………………………………….22-23

 4.6 ALU…………………………………………………………24-25

 4.7 Main…………………………………………………………26-28

5. Conclusion…………………………………………………..29

v

6. Appendix……………………………………………………...30-32

 6.1 Appendix A……………………………………………………30-31

 6.2 Appendix B……………………………………………………32

7. References…………………………………………………….33

vi

Abstract

The aim of this project is to design and simulate a 16 bit processor. The design has been implemented

using VHDL synthesis tool Xilinx 9.2i. Microprocessor is basically an electronic device that consists of

ALU and control circuitry which is required to function as computer’s CPU. Microprocessor is

integrated circuit that interprets and executes the program instructions and behaves intelligently. The

processor operates at a speed of the internal clock and the speed of the clock depends upon the no. of

pulses per second. With each clock pulse, the processor performs the function that corresponds to the

instruction. Thus the power of the processor can be calculated by no. of instructions executed per

second. During the execution of instructions, data are stored temporarily in memory units called

registers. The control signal is the electronic signals used for communication between various

processor units during the execution of the instruction. This report describes all the sections of

microprocessor briefly using flowchart explained by a brief explanation and showing the output

waveform of different blocks.

vii

LIST OF FIGURES

1) Compilation, Elaboration, and Simulation of VHDL code

2) Top level symbol of RAM

3) Top level schematic of RAM

4) Simulation of RAM block

5) Top level Symbol of comparator

6) Top level Schematic of Comparator block

7) Simulation of Comparator block

8) Top level Symbol of Bi-register

9) Top level Schematic of Bi-register

10) Simulation of Bi-register block

11) Top level Symbol of Tri-register

12) Top level Schematic of Tri-register

13) Simulation of Tri-register Block

14) Top level Symbol of Shifter block

15) Top level schematic of shifter block

16) Simulation of Shifter Block

17) Top level symbol of ALU block

18) Simulation of ALU block

19) Top level Symbol of Main Block

20) Top level schematic of Main block

21) Simulation of Main block

viii

LIST OF TABLES

1) RAM Simulation Explanation from table

2) Register block Corresponding to 'sel' value

3) Comparator Simulation Explanation through table

4) Bi-register Simulation explanation through table

5) Tri-register Simulation explanation through table

6) Shifter Simulation explanation through table

7) ALU Simulation explanation through table

ix

Symbols and abbreviations

1) VHDL :- Very high speed integrated circuit Hardware Description Language

2) RAM :- Random Access Memory

3) ALU:- Arithmetical Logical Unit

4) ROM:- Read Only Memory

5) Bits :- Binary Digits

6) RTL:- Register Transfer Level

1

1. INTRODUCTION

 The main aim of this project is to design 16 bit MICROPROCESSOR using VHDL (Very high

speed Integrated circuit Hardware Description Language). While designing such a project it is better to

have an idea about the functionality of the project as in such cases we need not to make a general

system. This will limit both cost and the time required to develop the system. This is the basic idea

behind the project. A Microprocessor basically contains a RAM, ALU, and Control unit to control the

flow of data.

 Before designing a microprocessor we should have a brief knowledge about the flow of data, the

way in which data is to be processed after doing a particular processing on data. If we will have

knowledge about the flow of data then it would be easy for us to design the system and map the output

of one block to the input of other or to data bus depending upon the flow of data.

 After describing a digital system in VHDL, we simulate and synthesize VHDL code for two

reasons. First, we need to verify the VHDL code correctly implements the intended design; second, we

need to verify that design meets its specifications. Before the VHDL model of digital system can be

simulated, the VHDL code must first be compiled (see Figure 1). The VHDL compiler also called as an

analyzer, first checks the VHDL source code to see whether it conforms to the syntax and semantic

rules of VHDL. If there is a syntax error, a missing semicolon, or if there is a semantic error such as

trying to add two signals of incompatible types, the compiler will output an appropriate error message.

The compiler also checks to see that references to libraries are correct. If the VHDL code conforms to

all the rules, the compiler generates intermediate code, which can be used by a simulator or by a

synthesizer.

Figure 1:Compilation, Elaboration, and Simulation of VHDL code

2

In preparation for simulation, the VHDL intermediate code must be converted to a form that can

be used by the simulator. This step is referred to as elaboration (synthesis). During the elaboration,

ports are created for each instance of a component, memory storage is allocated for required signals,

the interconnections among the ports signals are specified, and a mechanism is established for

executing the VHDL in the proper sequence. The resulting data structure represents the digital system

being simulated. After an initialization phase, simulation enters the execution phase.

 With some idea on the design methodology and deciding on the simulation and synthesis tool,

one can come with a complete design methodology for the project. The design process begins with

architectural specifications, which are then translated into a VHDL behavioral model. This behavioral

model is tested using VHDL test bench or command language of the simulator. After satisfactory

verification of the microprocessor Control block, the behavioral code is synthesized to obtain gate level

net list to prepare the layout and floor representation of the design.

3

2. Proposed methodology

 This Microprocessor basically contains a RAM, a comparator, a shifter, an ALU block, registers,

a control unit. This is a 16-bit microprocessor because the data on which processing is to be done is of

16-bit. Data bus is a 16-bit signal on which the data is written. The data is written in data bus during

processing. Address bus in this case is 16-bit which is used only to signify the address of the next

instruction to be performed by the microprocessor.

2.1 RAM

 This microprocessor contains 8 blocks in RAM each of 16 bit. A select line that selects the

block which is required for a particular operation. The size of RAM can also be varied based upon our

requirements by simply adding more blocks and by changing the size of select line. The RAM block

contains a select line which is of 3-bit which is basically used to select the Register block on which the

data is to be written or from which it is to be read from.

2.2 Comparator

 A comparator is a block that checks out of two data which one is greater than other, or less than

other, or whether they are equal to each other. The operation to be performed by comparator block is

also selected by its select line.

2.3 ALU

 As the name suggests any set of arithmetical or logical operation is performed by this block.

More set of instruction can again be added to this block depending upon the requirements.

2.4 Registers

 This is basically a set of 16-bit registers to store data in the mid way of calculation or any

processing of data .

2.5 Control block

 This is a major block of the project as this particular block controls the flow of the data in the

system. All the op-codes are written within this project, which decides the operation to be performed.

Over here we can add more op-codes depending upon our requirement.

4

3. Working flow chart of each block

In this particular block we are basically going to explain the working of each block with the help of

flow chart followed by detailed description of each and every flow chart in next section.

3.1 RAM Block

In this ‘a’ , ‘clk’,’en’ and ’sel’ are inputs and ‘y’ is output.

3.1.1 Flowchart for writing into block

 ‘No’ ‘Yes’

First data is fed into

‘a’ and then ‘clk’ is

checked.

If clk changes

from ‘0’ to ‘1’

It saves the data to

the block selected

based on select line

out of 8 blocks.

5

3.1.2 Flowchart for reading from block

 ‘yes’

 The basic functionality of RAM block is that it acts as a storage for various results produced

in the mid way of processing.

 RAM works in following Manner:-

1 There are two lines based on which it decides whether the data is to be written in the RAM or

data within is to be produced in the output. These two signals are ‘en’ and ‘clk’. It also has a

select line. Select line is of 3- bit so the RAM designed contains 8- blocks each of 16- bits.

2 When the ‘clk’ signal changes from 0 to 1 the data on the input is stored on the register selected

by select line.

3 When the ‘en’ signal changes from 0 to 1 the data on the selected register block is transferred to

the output line.

If ‘en’=’1’

Then the data present

in the block selected

by select line s

transmitted to the

output line.

6

3.2 Flowchart for Comparator

 ‘

 ‘yes’ ‘no’

 The basic functionality of Comparator block is that it just performs the comparison between

the two inputs.

 The comparison performed between the two inputs in this block are:-

1) Greater than

2) Greater than equal to

3) Less than

4) Less than equal to

5) Equal to

6) Not equal to

 This block contains two inputs ‘a’ and ‘b’ each of 16-bit, a select line having enumerated data

type to select the function to be performed on the inputs. A single bit output line to tell whether the

condition is true or not. If output is ‘1’ then the condition is true otherwise its false.

Give two inputs ‘a’ and

‘b’ to comparator block.

Select the operation to

be performed by

comparator block.

Check for operation

to be performed

Give output ‘1’ if

condition is true.

Give output ‘0’ if

condition is false

7

For eg:- a and b are given to input and we have to check whether ‘a’ is greater than or equal to ‘b’ than

we will give ‘gte’ to the select line if the condition is true than we will get ‘1’ in the output otherwise

we will get ‘0’ in the output line.

3.3 Flowchart for ALU Block

 This is a block that performs various logical operations in this project. This block contains 2

inputs, one select line, one output. Again in this case select line selects the operation to be performed

between two inputs or on one input.

 Suppose we give inputs to the ALU block both the inputs are of 16-bit each. A select line is

there that selects the operation to be performed so we suppose set select line to ‘andop’ then we get the

and of both the inputs on the output line.

3.4 Flowchart for Registers

 There are two types of registers :

1. Bi-registers :- Pass input directly to output on positive edge of clk.

2. Tri- registers :- Stores input on one positive edge of clk and pass to output on

positive edge of enable signal.

Give two inputs ‘a’ and

‘b’ to this block.

Based on the operation

to be performed give

in the input to the

select line

After performing the

operation pass on the

result to the output

line

8

3.4.1 Bi-register

 ‘yes’ ‘no’

 The basic need of this block is that some registers are required to simply pass the value

to the output and keep it there.

 Just taking example of how this bi-register is used in project. There is an operation

register in the circuit controlled by control unit. The output of this register is input to ALU. When

we need to perform operation on two inputs using ALU then since we have only one 16-bit data

bus, so two inputs can’t be stored there in such a case what we do is that first we select operation

register since it is a bi- register the data automatically gets transferred to its output i.e. at one input

of ALU ad then the second data is called to data bus and automatically comes to second input of

ALU. Since this input is directly connected to the data bus, then we select the operation to be

performed between both inputs in ALU and get the desired output.

 This register basically works in following manner when the positive edge of clock occurs

then it basically transfers its input as it is to the output.

Give input to the input

line.

Check for clock

positive edge

If true pass input to the

output line

9

 3.4.2 Tri-register

(a) Storing in register

 ‘no’

 ‘yes’

(b) Reading from register

 ‘yes’

Give input to the input

line of the register

Check for clk

positive edge

If true then store data

on input line in it

Check enable

positive edge triggering

If true then put the stored

data on to output line

10

 The basic need of this register is that some registers are required to save the value within

it and then pass it to the output. The saving of value into the register occurs on the positive edge of

the clock and the stored data is transferred to the output when ‘en’ i.e. enable signal gets a value’1’

 Tri-register can be used at various places like in case of out-register in which the value

after calculation from ALU block arrives. It cannot be directly passed to data bus as if we try to do

such an operation then in that case the value on the data bus will get over written and new result

will be produced taking in consideration this new value. So to avoid such problems we have used

this tri-register using which data will be written into the register in one cycle and will be sent to

output in other clock cycle.

11

3.5 Flowchart for Control Unit

First of all check for

reset. If the value of

reset is ‘1’ then the

control unit will start.

During the process of

reset control unit has

to pass through various

stages.

Once the control unit

reset is done the

control unit waits for

the op-code of the

operation to be

performed by the

control unit

Once the operation

corresponding to an

op-code is done it

again waits for other

op-code

12

3.6 Flowchart for Shift Units

 The basic need of this block is that this block is required in the places where we need to

shift the data or to rotate the data. The difference between shifting and rotating is that in one ‘0’ is

added at one end while in one the data rotates completely i.e. the last data comes to first in case of

rotate to left and vice versa in rotate to right.

 There is a select line that selects the operation to be performed on the input. Using select

line we select the operation to be performed on the data and depending upon the operation we will get

the output on the output line.

It contains one input and

one select line.

Check for

Select line

Based on the operation

mentioned in the select

line perform the shifting

operation

13

4. RTL schematic of different blocks

4.1 RAM block

Figure 2 Top level symbol of RAM

14

Figure 3 Top level schematic of RAM

15

Figure 4 Simulation of RAM block

Table 1 RAM Simulation Explanation from table.

Input ‘a’ Input ‘sel’ Input ‘clk’ Input ‘en’ Output ‘y’

1010101010010011 000 0 u zzzzzzzzzzzzzzzz

1010101010010011 000 1 u zzzzzzzzzzzzzzzz

1010101010010011 000 1 1 1010101010010011

1010101010010011 001 1 1 0000011110011010

1010101010010011 001 0 0 zzzzzzzzzzzzzzzz

1010101010010011 001 1 1 1010101010010011

Description of Simulation Table of RAM block

As we can see from above table it is clear that RAM block contains four inputs and one output. When

the input ‘a’ is forced to ‘1010101010010011’. Input ‘a’ is the input line to the RAM block. ‘Sel’ is to

select the register block from RAM it has 8 blocks each of 16- bit , so from table 2 it is clear that when

register block 1 is selected then in first row clk is ‘0’ and ‘en’ is ‘u’. so the output that we get

corresponding to this is all 16-bit ‘z’. Now when the positive edge of ‘clk’ arrives then the value is

stored in register block ‘1’ . Now when the ‘en’ signal is made ‘1’ then the output gets the value that

was given as input to that block. Since in RAM there is some stored value in each and every block so in

16

row -4 of table -1 when we selected block-2 keeping ‘en’ signal ‘1’ the value that was stored in it came

as it is to the output i.e. ‘0000011110011010’.

Table 2 Register block Corresponding to 'sel' value

‘Sel’ value ‘Register’ block it corresponds to

000 1

001 2

010 3

011 4

100 5

101 6

110 7

111 8

4.2 Comparator block

Figure 5 Top level Symbol of comparator

17

Figure 6 Top level Schematic of Comparator block

Figure 7 Simulation of Comparator block

18

Table 3 Comparator Simulation Explanation through table

Input ‘a’ Input ‘b’ Select ‘s’ Output ‘y’

1110001110001110 1110001110001111 eq 0

1110001110001110 1110001110001111 neq 1

1110001110001110 1110001110001111 gt 0

1110001110001110 1110001110001111 lt 1

1110001110001110 1110001110001111 gte 0

1110001110001110 1110001110001111 lte 1

Description of Simulation Table of Comparator block

As shown in table-3 it is clear that ‘a’ and ‘b’ are 16 –bit input line for this block. ‘s’ is the select line

to select the operation to be performed by this block. ‘a’ is given a value ‘1110001110001110’ as input

and ‘b’ is given a value ‘1110001110001111’ as input. From row-1 of table-3 it is clear that

corresponding to this value of ‘a’ & ‘b’ select line ‘s’ is given a value ‘eq’ so now the comparator

blocks checks whether ‘a=b’ or not. Since ‘a’ is not equal to ‘b’ so it gives ‘0’ on the output line. If the

condition would have been true then the output corresponding to this would have been ‘1’, as shown in

second row in which it is checking for not equal to condition. The output line is of 1-bit.

4.3 Bi-register Block

Figure 8 Top level Symbol of Bi-register

19

Figure 9 Top level Schematic of Bi-register

Figure 10 Simulation of Bi-register block

Table 4 Bi-register Simulation explanation through table

Input’a’ Input ‘clk’ Output ‘y’

1111000011110010 0 uuuuuuuuuuuuuuuu

1111000011110010 1 1111000011110010

1111000011110010 0 1111000011110010

1010101000110011 1 1010101000110011

20

Description of Simulation Table of Bi-register block

As mentioned earlier that in bi-register ‘a’ is input line and it has ‘clk’ signal and at the positive edge of

‘clk’ the input is transferred to the output. So from table- 4 it is clear that when initially input ‘a’ is

assigned a value ‘1111000011110010’ in the first row and ‘clk’ is assigned a value ‘0’. We get output

as all the 16-bits ‘u’, and when the positive edge of ‘clk’ arrives i.e. in second row of the table the input

gets transferred to the output.

4.4 Tri-register block

Figure 11 Top level Symbol of Tri-register

Figure 12 Top level Schematic of Tri-register

21

Figure 13 Simulation of Tri-register Block

Table 5 Tri-register Simulation explanation through table

Input ‘a’ Input ‘clk’ Input ‘en’ Storage ‘u’ Output ’y’

1111000000001111 0 0 uuuuuuuuuuuuuuuu zzzzzzzzzzzzzzzz

1111000000001111 1 0 1111000000001111 zzzzzzzzzzzzzzzz

1111000000001111 1 1 1111000000001111 1111000000001111

Description of Simulation Table of Tri-register block

As we can see in table-5 it is clear that this block contains three input lines ‘a’ input that is of 16-bit ,

‘clk ‘ is an input, ‘en’ signal is there to pass input to output when ‘en’ signal is ‘1’ the data stored is

transferred to output as it is. As from table-5 we can see that when ‘a’ is given a value

‘1111000000001111’ then initially when ‘clk’ was having value ‘0’ and ‘en’ was having value ‘0’ then

storage was all ‘u’ and output all ‘z’ . In the second row i.e. when the positive edge of clock arrived

then the value at the input got stored in the storage signal ‘u’ so the value corresponding to ‘u’ got

changed to ‘1111000000001111’ . Now in the third row when the ‘en’ signal got the value ‘1’ the value

in the storage signal ‘u’ got transferred to the output line ‘y’, so ‘y’ is having value

‘1111000000001111’ in the third stage.

22

4.5 Shifter block

Figure 14 Top level Symbol of Shifter block

Figure 15 Top level schematic of shifter block

23

Figure 16 Simulation of Shifter Block

Table 6 Shifter Simulation explanation through table

Input ‘a’ Select ‘s’ Output ‘y’

1111000011110001 shl 1110000111100010

1111000011110001 shr 0111100001111000

1111000011110001 rotl 1110000111100011

1111000011110001 rotr 1111100001111000

1111000011110001 shp 1111000011110001

Description of Simulation Table of Shifter block

As mentioned earlier and also from table-6 it is clear that ‘a’ is the input line of shifter block. ‘s’ is the

select line that selects the operation to be performed by the shifter block. ‘y’ is a 16-bit output line.

From the first row of the table it is clear when input ‘1111000011110001’ is given to the shifter block

and ‘shl’ is selected in select line then the input data is shifted to left by 1-bit and ‘0’ is appended on

the LSB of the input. Likewise in row-2 when ‘shr’ is selected as the operation then the data is shifted

to right by one unit and ‘0’is appended to the MSB and ‘y’ has a value ‘1110000111100011’. When

‘rotl’ is selected then the entire data is rotated to left so the MSB of the input comes to the ‘LSB’ and

‘y’ has a value ‘0111100001111000’ vice versa is case in ‘rotr’ so ‘y’ has value ‘1111100001111000’.

And when ‘shp’ is selected input is as it is passed to the output so ‘y’ has a value ‘1111000011110001’.

24

4.6 ALU block

Figure 17 Top level symbol of ALU block

Figure 18 Simulation of ALU block

25

Table 7 ALU Simulation explanation through table

Input ‘a’ Input ‘b’ Select input

‘s’

Output ‘y’ Output ‘z’

1001000111100111 0101010110101010 Andop 0001000110100010 uuuuuuuuuuuuuuuu

1001000111100111 0101010110101010 Orop 1101010111101111 uuuuuuuuuuuuuuuu

1001000111100111 0101010110101010 Notop 0110111000011000 uuuuuuuuuuuuuuuu

1001000111100111 0101010110101010 Mul 1001011001100110 0011000011010010

1001000111100111 0101010110101010 Add 1110011110010001 uuuuuuuuuuuuuuuu

1001000111100111 0101010110101010 Adc 1110011110010001 0000000000000000

1001000111100111 0101010110101010 Sub 0011110000111101 uuuuuuuuuuuuuuuu

1001000111100111 0101010110101010 Pass 1001000111100111 uuuuuuuuuuuuuuuu

1001000111100111 0101010110101010 Inc 1001000111101000 uuuuuuuuuuuuuuuu

1001000111100111 0101010110101010 Dec 1001000111100110 uuuuuuuuuuuuuuuu

1001000111100111 0101010110101010 Zero 0000000000000000 uuuuuuuuuuuuuuuu

Description of Simulation Table of Shifter block

As we can see from table-7 ‘a’ and ‘b’ are two input lines, ‘s’ is the select line which selects the

operation to be performed by this block. ‘y’ and ‘z’ are two output lines. Two output lines are required

for Multiplication and addition with carry as multiplication of two 16- bit number will be a 32-bit

number so it requires two 16-bit output lines. Lower 16-bits will be stored in ‘y’ and upper 16- bits are

stored in ‘z’. Now initially as we can see from table that ‘a’ is assigned a value ‘1001000111100111’

and ‘b’ is given a value ‘0101010110101010’ select input is given ‘andop’ in the first row of table so

the output ‘y’ is basically the and of ‘a’ and ‘b’ and its value is ‘0001000110100010’. When select

input is given value ‘orop’ then we get following output ‘1101010111101111’ which is the or of the

values in ‘a’ and ‘b’. When the select input gets the value ‘notop’ then the output we get is

‘0110111000011000’, which is not of the value in input ‘a’. When the select input gets value ‘mul’

then the output that we get is multiplication of ‘a’ and ‘b’ the value of outputs are ‘y’ =

‘1001011001100110’ and ‘z’ = ‘0011000011010010’. Likewise corresponding to different set of input

given to the select line the output is produced accordingly.

26

4.7 Main Block

Figure 19 Top level Symbol of Main Block

Figure 20 Top level schematic of Main block

27

Figure 21 Simulation of Main block

Detailed description of Simulation of main block

The process to be followed in the simulation is as follows:-

1) Initially set ‘clk’ to 0 and reset to ‘1’ so as to reset the system as done in above Diagram.

2) Now set ‘clk’ to ‘1’ and again run

3) Now set ‘clk’ to ‘0’ and reset to ‘0’ and run.

4) Then set ‘clk’ to ‘1’ and run then outregwr is set to ‘1’ when you run this.

5) Then on the next positive edge of clk, outregrd signal is set to ‘1’. So now data bus will have

value that was is outreg i.e. all 16-bits ‘0’

6) On the next positive edge of clk, progcntrwr gets value ‘1’ and all 16-bit ‘0’ is written to it.

Same data is written to address register connected to external address bus.

7) On the next positive edge of clk, vma is set to ‘1’ and wrb to ‘0’ i.e. the processor is waiting for

an op-code to arrive on data bus. So that operation corresponding to that particular op-code is

performed. This value is written manually since, no ROM is present so we have to give it

manually.

28

8) In the above simulation shown the data that was fed to it was ‘1100000000101111’ where the

top 5-bits i.e. ‘11000’ corresponds to op-code lower 6-bits divided into 2- segments each of 3-

bits represents the RAM block on which the operation is to be performed. i.e. ‘101’ and ‘111’

i.e. 6
th

 and 8
th

 block. And the data will be finally stored to the destination register as per opcode

that in this case is ‘111’ i.e. 8
th

 block of RAM. OPCODE ‘11000’ represents that the operation

that will be on the two registers is ‘andop’.

9) Now in the first clk cycle the data will be sent to instruction register output which is given as

input to control unit which will decode and identify the operation to be performed on the two

register blocks.

10) Now on the next positive edge of the ‘clk’ the data is read from 6
th

 block and bought on data

bus and send to output of opreg which is a bi-register. Which is one input to ALU block.

11) On the next clk positive edge the data from other register is read and the ‘and’ operation is

performed on the both the inputs and data is passed to the input of shift register which simply

passes the input to output since it is selected as ‘shp’ now the output of shifter is input to

‘outreg’ which is a tri-register.

12) Now when the next positive edge of clk arrives data is written to outreg.

13) In the next positive edge of clk data is read from outreg and is now on data bus.

14) The data on the data bus is now written on to the destination register .

15) Then in the next few cycles the progcntr is incremented which is used to get the address of the

next op-code.

16) And again the same process is performed corresponding to other op-code.

29

Conclusion

The design architecture of 16-bit microprocessor is written in VHDL code using Xilinx ISE and

Modelsim 5.4a tools for synthesis and simulation. From synthesis report it is clear that minimum

clock period that can be achieved from this proposed microprocessor is 3.526ns, which translate to

a maximum operating frequency of 283.607MHz.

30

Appendix A

Signals and Their use

Signals Use

Clk This is basically clock signal given to all the blocks which are dynamic

En This is enable signal used basically in RAM and tri-register to move input

to output

andop Enumerated data type in ALU to perform “AND” operation

Orop Enumerated data type in ALU to perform “OR” operation

notop Enumerated data type in ALU to perform “NOT” operation

xorop Enumerated data type in ALU to perform “XOR” operation

Add Enumerated data type in ALU to perform “ADD” operation

Adc Enumerated data type in ALU to perform “Addition with carry” operation

Sub Enumerated data type in ALU to perform “subtract” operation

Mul Enumerated data type in ALU to perform “multiply” operation

Inc Enumerated data type in ALU to perform “increment by 1” operation

Dec Enumerated data type in ALU to perform “decrement by 1” operation

Pass Enumerated data type in ALU to pass the input as it is to output

Zero Enumerated data type in ALU to pass 16-bit ‘0’ to output

Shl Enumerated data type in shifter to perform left shift by 1-bit

Shr Enumerated data type in shifter to perform right shift by 1-bit

Rotl Enumerated data type in shifter to perform rotate to left shift by 1-bit

Rotr Enumerated data type in shifter to perform rotate to right shift by 1-bit

Shp Enumerated data type in shifter to pass input as it is to output

Eq Enumerated data type in comparator to check whether both the inputs are

equal or not

Gte Enumerated data type in comparator to check whether input ‘a’ is greater

than or equal to ‘b’ or not

Lte Enumerated data type in comparator to check whether input ‘a’ is less than

or equal to ‘b’ or not

Gt Enumerated data type in comparator to check whether input ‘a’ is greater

than ‘b’ or not

Lt Enumerated data type in comparator to check whether input ‘a’ is less than

‘b’ or not

reset1 Symbolizes the state corresponding to first clock cycle of reset

reset2 Symbolizes the state corresponding to second clock cycle of reset

Reset3 Symbolizes the state corresponding to third clock cycle of reset

Reset4 Symbolizes the state corresponding to fourth clock cycle of reset

Reset5 Symbolizes the state corresponding to fifth clock cycle of reset

Reset6 Symbolizes the state corresponding to sixth clock cycle of reset

execute Symbolizes the state corresponding to the start of execution of op-code

Move Symbolizes the state corresponding to first clock cycle of move operation

to move from one register to other

Move2 Symbolizes the state corresponding to second clock cycle of move

operation to move from one register to other

Move3 Symbolizes the state corresponding to third clock cycle of move operation

to move from one register to other

31

Move4 Symbolizes the state corresponding to fourth clock cycle of move

operation to move from one register to other

Incpc Symbolizes the state corresponding to first clock cycle of increment

program counter

Incpc2 Symbolizes the state corresponding to second clock cycle of increment

program counter

Incpc3 Symbolizes the state corresponding to third clock cycle of increment

program counter

Incpc4 Symbolizes the state corresponding to fourth clock cycle of increment

program counter

Incpc5 Symbolizes the state corresponding to fifth clock cycle of increment

program counter

Incpc6 Symbolizes the state corresponding to sixth clock cycle of increment

program counter

Inc2 Symbolizes the state corresponding to second clock cycle of increment

Inc3 Symbolizes the state corresponding to third clock cycle of increment

Inc4 Symbolizes the state corresponding to fourth clock cycle of increment

Add1 Symbolizes the state corresponding to first clock cycle of add operation

Add2 Symbolizes the state corresponding to second clock cycle of add operation

Add3 Symbolizes the state corresponding to third clock cycle of add operation

Add4 Symbolizes the state corresponding to fourth clock cycle of add operation

And1 Symbolizes the state corresponding to first clock cycle of and operation

And2 Symbolizes the state corresponding to second clock cycle of and operation

And3 Symbolizes the state corresponding to third clock cycle of and operation

And4 Symbolizes the state corresponding to fourth clock cycle of and operation

Or1 Symbolizes the state corresponding to first clock cycle of or operation

Or2 Symbolizes the state corresponding to second clock cycle of or operation

Or3 Symbolizes the state corresponding to third clock cycle of or operation

Or4 Symbolizes the state corresponding to fourth clock cycle of or operation

32

Appendix B

Control Signals and their requirements

Control signal Requirement

Clk Just works as normal clock to control unit.

Reset Signal that symbolizes that block need to be reset when set to ‘1’

Instrregout This is the output of instruction register which is input to this block to decode the

op-code that it contains

Compout It is the output of comparator block

Ready Ready is a signal used to symbolize that the op-code from external memory has

been fed into data bus when it has value ‘1’

progrcntrwr This is just like clock signal to tri-register when its positive edge arrives data is

written into it

Progcntrrd This is just like enable signal to tri-register

Addrregsel This is just like clock signal to bi-register

Outregwr This is just like clock signal to tri-register when its positive edge arrives data is

written into it

Outregrd This is just like enable signal to tri-register

Shiftsel This symbolizes select line corresponding to shift register

Alusel This symbolizes select line corresponding to ALU

Compsel This symbolizes select line corresponding to comparator

Opregsel This is just like clock signal to bi-register

Instrregsel This is just like clock signal to bi-register

Regsel This is just like select line to RAM

Regwr This is just like clock signal to RAM

Regrd This is just like enable signal of RAM

Vma “vma” when set to ‘1’ symbolizes that a valid memory address has been sent to

address bus and processor is waiting for instruction op-code to arrive.

Wrb “wrb” signifies that data bus is ready for signal to be written in it.

33

References

 [1] Alpesh Kumar Dauda, Nalinikanta Barpanda, Nilamani Bhoi, Manoranjan Pradhan “Control

Unit Design of a 16-bit Processor Using VHDL”, “International Journal of Advanced Research in

Computer Science and Software Engineering” Volume 3, Issue 12, December 2013.

[2] Hall. Douglas V., Microprocessors and Interfacing Programming and Hardware, McGraw-Hill

International, Inc. 1992.

[3] Neenu joseph,Sabaninath.S, Sankarapandiammal K, “FPGA based Implementation of High

Performance Archi tectural level Low Power 32-bit RISC Core”, International Conference on

Advances in Recent Technologies in Communication and Computing,2009.

[4] Mamun Bin Ibne Reaz, Md. Shabiul Islam, Mohd. S. Sulaiman, “A Single Clock Cycle MIPS

RISC Processor Design using VHDL”,ICSE2002 Proc. 2002, Penang, Malaysia.

[5] D.L. Perry, VHDL, 4 Edition, Mc Graw-Hill, 2002.

[6] Volnei A. Pedroni, Circuit Design with VHDL, 2004.

[7] Anjana & Krunal Gandhi “VHDL Implementation of a MIPS RISC Processor” International

Journal of Advanced Research in Computer Science and Software Engineering Volume 2, Issue 8,

August 2012.

