
i

Stateful Multilayer

Inspection Firewall

Under the supervision of

Prof. Dr.S.P. Ghrera

By

DEPARTMENT OF COMPUTER SCIENCE AND

INFORMATION TECHNOLOGY

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY -

WAKNAGHAT

Ampin Gupta (101337)

ii

Part-1 Packet Filtering Firewall

(a) Learning to filter packets.

(b) Creating a packet filter firewall.

(c) Write packet filtering rules.

(d) Testing and debugging.

Part-2 Circuit and Application Level Gateway

Firewall

(a) Creating circuit level gateway filtering firewall.

(b) Creating application level gateway filtering

firewall.

(c) Integration.

(d) Test run.

(e) Real-time evaluation of Stateful Multilayer

Inspection Firewall .

iii

 CERTIFICATE

This is to certify that the work entitled, " Stateful Multilayer

Inspection Firewall - part1: Packet filtering firewall"

submitted by: Ampin Gupta - 101337, in partial fulfilment for

the award of degree of Bachelor of Technology in Computer

Science Engineering of Jaypee University of Information

Technology has been carried out under my supervision. This

work has not been submitted partially or wholly to any other

University or Institute before the award of this or any other

degree or diploma.

Date:

Prof. Dr. Satya Prakash Ghrera,

Professor, Brig (Retd.) and Head,
Department of Computer Science and Information Technology

Jaypee University of Information Technology

Waknaghat

iv

ACKNOWLEDGEMENT

I would like to place on record our deep sense of gratitude to Prof.

Dr. S.P. Ghrera, HOD-Dept. of Computer Science and

Information Technology, JUIT, Waknaghat, India for his generous

guidance, help and useful suggestions. I appreciate his immense help

and his feedbacks which helped us in developing the project so

successfully.

I would also like to thank him for providing us with valuable help in

learning about Networks and the various firewall mechanisms. His

insightful thinking and constructive suggestions have helped us

improve the quality of this project work.

Ampin Gupta (101337)

v

PROBLEM STATEMENT

To control the incoming and outgoing network traffic by analyzing the

data packets and be able to determine whether it should be allowed

through or not, based on a predetermined rule set.

The project necessitated a thorough study and implementation of

Firewall Security Mechanisms. As such the main focus of the project has

been to deal with the problem of security over networks where many

computers are sharing data.

 In internet and similar networks, connecting an organisation to the

internet provides a two-way flow of traffic. This clearly is undesirable in

many organisations, as proprietary information is often displayed deeply

within a corporate intranet. In order to provide some level of separation

between an organisation's intranet, and the internet, firewalls have been

employed.

Various firewalls have been designed and are being designed for the

purpose of network security where the filtering rules are defined by the

OS itself and are complex to modify.

Through this project we seek to develop a new and better packet filtering

firewall that is more efficient in terms of time and cost and is also user-

friendly and covers a software based implementation, thus, making it

easy to configure.

vi

OBJECTIVE OF THE PROJECT

To develop a packet filtering firewall as a part of the Stateful Multi-

Layer Filtering Firewall, that allows or block traffic as per the specified

rule set.

Description:

We shall be building a packet filtering firewall, by writing out packet

filtering rules. To implement this, we shall be using a driver to invoke a

system service. This system service will then run the firewall

application. Also, the firewall shall run in the background once it has

started.

The firewall application shall have functionalities to add rule(s), modify

a rule, delete rule. Based on the rule defined, the packet passing the

firewall shall either be blocked or be allowed to pass.

vii

TABLE OF CONTENTS

1. Introduction...1

1.1 What is a firewall...1

1.2 Tasks of a firewall...1

1.3 Packet filtering-..1

1.3.1 Stateless packet filtering.......................................1

1.3.2 Stateful Packet Filtering..2

1.4 What Should Be Inspected In A Packet Header.................2

1.5 Advantages and disadvantages...2

2. Literature Review..3

3. Project Background...9

3.1 Packet filtering ...9

3.2 Functions of a Packet Filtering Firewall.............................10

3.3 Types of filtering mechanisms:..10

3.3.1 Packet filters...11

3.3.2 Circuit level gateways..11

3.3.3Application level gateways.....................................11

3.3.4 Stateful multilayer inspection firewalls..................12

viii

4. Project Design..13

4.1 Model used..13

4.2 Input/ output..14

4.3 Flow Chart...15

4.4 Use Case..16

5. Implementation...16

5.1 Working..17

5.2 Description of classes used……………………………….18

6. Result and discussions...31

 6.1 Conclusion ………………………………………………..41

 6.2 Implications for furure research…………………………..41

7. Bibliography...42

1

INTRODUCTION

Def.: A firewall is any security system protecting the boundary of an

internal network.

Tasks of a firewall:

• access control based on sender or receiver address

• access control based on services requested

• hiding the internal network, e.g. topology, addresses, etc.

• virus checking on incoming files

• authentication based on the source of traffic

• logging of Internet activities

Placement of firewall components:

(1) packet filter

(2) circuit-level proxy

(3) application-level proxy

Packet Filtering:

Packet filtering is a network security mechanism that works by

controlling what data can flow to and from a network. The data that

flows is in the form of packets.

Packet filtering firewall allows only those packets to pass, which are

allowed as per your firewall policy. Each packet passing through is

inspected and then the firewall decides to pass it or not. The packet

filtering can be divided into two parts:

I. Stateless packet filtering.

II. Statefull packet filtering.

Stateless Packet Filtering

If the information about the passing packets is not remembered by the

firewall, then this type of filtering is called stateless packet filtering.

This type of firewalls are not smart enough and can be fooled very

easily by the hackers. These are especially dangerous for UDP type of

data packets. The reason is that, the allow/deny decisions are taken on

packet by packet basis and these are not related to the previous

allowed/denied packets.

2

Stateful Packet Filtering

If the firewall remembers the information about the previously passed

packets, then that type of filtering is stateful packet filtering. These

can be termed as smart firewalls. This type of filtering is also known

as Dynamic packet filtering.

What Should Be Inspected In A Packet Header?

1. Source IP address of the packet. This is necessary because IP

spoofers might have changed the source IP address to reflect the

origin of packet from somewhere else, rather than reflecing the

original source.

2. Destination IP Address. The firewall rules should check for IP

address rather than DNS names. This prevents abuse of DNS servers.

3. IP Protocol ID.

4. TCP/UDP port number.

5. ICMP message type.

6. Fragmentation flags.

7. IP Options settings.

Advantages Of Packet Filtering Firewall :

1. Because not a lot of data is analyzed or logged, they use very little

CPU resources and create less latency in a network. They tend to be

more transparent in that the rules are configured by the network

administrator for the whole network so the individual user doesn’t have

to face the rather complicated task of firewall rule sets.

2. It is cost effective to simply configure routers that are already a part

of the network to do additional duty as firewalls.

Disadvantages:

1. Packet Filtering Firewalls can work only on the Network Layer and

these Firewalls do not support complex rule based models. And it’s also

vulnerable to Spoofing in some cases.

3

LITERATURE REVIEW

[1]V.K. Solanki, K.P. Singh, M. Venkatesan, S. Raghuwanshi, ,

"Firewalls Policies Enhancement Strategies Towards Securing

Network", Dept. of CSE, Anna Univ., Chennai, India , in Proceedings

of 2013 IEEE Conference on Information and Communication

Technologies (ICT 2013), 11-12 April 2013.

Brief Summary:

This paper is aimed at discussing about the enhancement of firewalls

policies in the network. The Firewalls can be improved in multiple ways but

in practical scenario, there are many conflicts like first is not going for

dynamic updating of firewalls policies and second the policies conflict

with LAN and WAN.

Three stage policies approach:

Firewall initialization- the system security team member will first study the

nature of network and initialize the rule.

 Firewall ageing - to identify the usage of policy.

Firewall updation - the final rule deployment is done to make it effective.

Advantage: with this three stages approach to make firewall more

efficient is easy for network security team member to protect their

network from outside as well as inside unauthorized and unwanted access.

Disadvantage: We have realized that the approach is not very useful in case if

the policies involved in firewalls are misuses by internal employees and

second the planning of policies if not done properly then it’s dicey to say

that using above approach make firewalls more efficient and more

optimize towards securing the main aim of network security.

 With the help of three stage designed approached we have realized that if its

run by cost-on-cost basis than the efficiency of the firewall could be

certainly improved. We have found the novel idea to increase the

effectiveness of firewalls through optimal policies change usage in

network using three stages policy approach.

Firewall initialization Firewall ageing Firewall updation

4

[2] Tugkan Tuglular, Fevzi Belli, "Protocol-Based Testing of

Firewalls", Department of Computer Science, Dept. of Comput. Eng.,

Izmir Inst. of Technol., Izmir, Turkey , 2009 Fourth South-East

European Workshop on Formal Methods.

Brief Summary:

A firewall should be tested rigorously with respect to its implemented network

protocols and security policy specification. Abstract test cases are generated

by mutating event sequence graph model of chosen network protocol and filled

with values from policy specification by using equivalence partitioning and

boundary value analysis. A case study is presented to validate the presented

approach.

There are three general approaches to firewall testing: penetration testing,

testing of the firewall rules, and testing of the firewall implementation.

Penetration testing is performed to check the firewall for potential breaches of

security that can be exploited.

The firewall penetration testing is structured in the following four steps :

• indirect information collection

• direct information collection

• attack from the outside

• attack from the inside.

This type of testing targets specific known vulnerabilities of firewalls

determined through information collection.

Testing of the firewall rules verifies whether the security policy is correctly

enforced by a sequence of firewall rules or not.

The firewall implementation testing approach evaluates the correspondence of

firewall rules with respect to the actions the firewall performs, e.g., it checks

whether a rule indicates to block a packet, but the firewall illegally forwards the

packet, which might be caused by a firewall implementation error .

5

[3] Khaled Salah, Khalid Elbadawi, Member, Raouf Boutaba,

"Performance Modeling and Analysis of Network Firewalls", Khalifa

Univ. of Sci., Sharjah, United Arab Emirates, IEEE transactions on

network and service management, vol. 9, no. 1, march 2012

Brief Summary:

In this paper, an analytical queuing model based on the embedded Markov

chain to study and analyze the performance of rule-based firewalls when

subjected to normal traffic flows as well as DoS attack flows targeting different

rule positions is presented. Work has been done towards improving the firewall

performance by proposing techniques to optimise and detect misconfigurations

in the firewall security policies.

Two optimizing approaches have been proposed on using Ternary Content

Addressable Memories(TCAM)- TCAM chip is a hardware chip dedicated for

fast packet classification.

A finite queuing model with multi-stage service is used where incoming packets

get queued in an Rx DMA ring. An interrupt is generated to notify the device

driver of the reception of a new packet. The device driver starts executing Data

Link layer functionalities and then invokes the kernel IP processing task. The

kernel packet processing is responsible for performing IP Network layer. This

model represents a rule- based network firewall.

To validate the model, it was subjected to two types of traffic - (1) normal

traffic, (2) DDoS traffic. Consequently, the throughput and the CPU utilization

have been analysed.

It was demonstrated that targeting rules at the bottom of a relatively large

ruleset can be severely detrimental to the performance of the firewall. As a good

design practice and vital countermeasure against DoS attacks that target bottom

rules, it is recommended to minimize the size of the firewall ruleset or to

rearrange dynamically rules so that bottom rules can be served at the top of the

ruleset, thereby making it harder to launch such complexity algorithmic

attacks that target bottom-rules.

6

[4] Alex X Lieu, "Change-Impact Analysis of firewall policies",

ESORICS 2007, LNCA 4734,pp 155-170, Springer-Verlag Berlin

Heidlberg 2007.

Brief Summary:

In this paper the theory and algorithms for firewall policy change-impact

analysis are presented. The algorithms take as input a firewall policy and a

proposed change, then output the accurate impact of the change. Thus, a

firewall administrator can verify a proposed change before committing it.

The firewall change-impact analysis algorithms are implemented, and tested on

both real-life and synthetic firewall policies. The experimental results show that

the algorithms are effective in terms of ensuring firewall policy correctness and

efficient in terms of computing the impact of policy changes.

Four types of firewall policy changes have been identified: rule deletion, rule

insertion, rule modification, and rule swap. For each type of change, there is a

theorem that states the decisions of which packets will be changed due to the

policy change. Using the algorithms, an administrator can verify a proposed

change before committing it.

 Methods for correlating the impact of a firewall policy change and the high

level security requirements that the firewall needs to satisfy as well as methods

for making corrections if the impact of a change is not desirable are also

presented in the paper.

7

[5] Ian Mothersole and Martin J. Reed, " Optimising Rule Order for a

Packet Filtering Firewall", University of Essex, Wivenhoe Park,

Colchester, Essex, CO4 3SQ, United Kingdom, Network and

Information Systems Security (SAR-SSI), 2011 Conference 18-21

May 2011

Brief Summary:

A heuristic approximation algorithm that can optimise the order of firewall rules

to minimise packet matching is presented. This paper proposes an algorithm that

is designed to give good performance in terms of minimising the packet

matching cost of the firewall. The performance of the algorithm is related to

complexity of the firewall rule set and is compared to an alternative algorithm

demonstrating that the algorithm here has improved the packet matching cost in

all cases.

Firewall filtering rules may not be disjoint, which means that a packet could

potentially match more than one rule. The rules could be related or dependent or

in a conflict. Dependent rules have a precedence order.

The firewall optimisation problem is to place the rules in such an order so that

the most frequently used rules are near to the top of the rule set and therefore

reduce the packet-rule searching time. To facilitate this, the rules are associated

with a weight that is equal to the number of matches of this rules in a

representative flow of traffic. The optimisation problem is very similar to the

popular job scheduling problem.

The proposed algorithm turned out to have an improved cost performance

because it guaranteed to perform a first- order check for optimum dependent

rule position. The opportunity for optimisation arises from the fact that traffic

distributions and rule ranges are not uniform.

The algorithm presented here is shown to have improved performance

compared to an earlier reported algorithm in all cases, at the cost of higher

runtime complexity. The increased runtime complexity is unlikely to be

significant for the offline optimisation of a firewall, which is the main target of

this work.

8

[6] Dmifty Rovniagin, Avishai Wool, " The Geometric Efficient

Matching Algorithm For Firewalls", School of Electrical

Engineering, Tel Aviv University, Ramat Aviv 69978, Israel,

Dependable and Secure Computing, IEEE Transactions

on (Volume:8 , Issue: 1) Jan.-Feb. 2011

Brief Summary:

Firewall packet matching can be viewed as a point location problem: Each

packet (point) has 5 fields (dimensions) which need to be checked against every

firewall rule in order to find the first matching rule. In this paper packet

matching algorithm, which we call the Geometric Efficient Matching (GEM)

algorithm is presented. The GEM algorithm enjoys a logarithmic matching time

performance, easily beating the linear time required by the naive matching

algorithm. However, the algorithm’s theoretical worst-case space complexity is

O(n4) for a rule-base with n rules.

The firewall packet matching problem finds the first rule that matches a given

packet on one or more fields from its header. The packet header contains the

protocol number, source and destination address and port numbers fields. First,

we check the protocol field and go to the protocol array of the search data

structure, to select the corresponding protocol database header. From this point.

we apply a binary search with the corresponding field value on every level, in

order to find the matching simple range and continue to the next level. The last

level will supply us with the desired result-the matching rule number.

From the paper, it is concluded that GEM maintained a 100% throughput at all

the send rates and for all rule-base sizes tried, therefore, it is an efficient rule

filtering algorithm.

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8858
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8858
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5639109

9

PROJECT BACKGROUND

Packet filtering is a network security mechanism that works by

controlling what data can flow to and from a network.

To transfer information across a network, the information has to be

broken up into small pieces, each of which is sent separately.

Breaking the information into pieces allows many systems to share

the network, each sending pieces in turn. In IP networking, those

small pieces of data are called packets. All data transfer

across IP networks happens in the form of packets.

The basic device that interconnects IP networks is called a router.

Packets traversing an internetwork (a network of networks) travel

from router to router until they reach their destination.

Packet filters act by inspecting the "packets" which transfer between

computers on the Internet. If a packet matches the packet filter's set of

rules, the packet filter will drop (silently discard) the packet, or reject

it (discard it, and send "error responses" to the source).

This type of packet filtering pays no attention to whether a packet is

part of an existing stream of traffic (i.e. it stores no information on

connection "state"). Instead, it filters each packet based only on

information contained in the packet itself (most commonly using a

combination of the packet's source and destination address, its

protocol, and, for TCP and UDP traffic, the port number).

Packet Filtering Firewalls work on the Basis of Rules defines by

Access Control Lists. They check all the Packets and screen them

against the rules defined by the Network Administrator as per the

ACLs. If in case, any packet does not meet the criteria then that

packet is dropped and Logs are updated about this information.

Administrators can create their ACLs on the basis Address, Protocols

and Packet attributes.

10

Functions of a Packet Filtering Firewall:

 Control: Allow only those packets that you are interested in to

pass through.

 Security: Reject packets from malicious outsiders

 Watchfulness: Log packets to/from outside world

Important Features of Packet Filters

 The firewall should provide good deal of logs. The more

detailed are the logs, the better the protection.

 The command line syntax or GUI of firewall should be easy to

create new rules and of course firewall exceptions.

 The packet filter orders should be evaluated carefully in order to

make the filtering fruitful.

Different types of filtering mechanisms:

Fig. 4

11

Packet filters –

 work at the network level.

 compared to a set of criteria before it is forwarded

Advantages: low cost, low impact on network performance.

Disadvantages: does not support sophisticated rule based models.

Circuit level gateways –

 work at the session layer

 monitor TCP handshaking between packets to determine whether a

requested session is legitimate

 Information passed to remote computer through a circuit level

gateway appears to have originated from the gateway.

Advantages: relatively inexpensive , hiding information about the

private network

Disadvantages: they do not filter individual packets.

Application level gateways –

 work at the application layer

 Incoming or outgoing packets cannot access services for which

there is no proxy

 filter application specific commands

 can also be used to log user activity and logins.

Advantages: a high level of security

Disadvantages: having a significant impact on network performance,

not transparent to end users and require manual configuration of each

client computer.

12

Stateful multilayer inspection firewalls–

 work at the application , session, network layer.

 They filter packets at the network layer, determine whether session

packets are legitimate and evaluate contents of packets at the

application layer

 They allow direct connection between client and host, alleviating

the problem caused by the lack of transparency of application level

gateways. can also be used to log user activity and logins.

 They rely on algorithms to recognize and process application layer

data instead of running application specific proxies.

Advantages: a high level of security, good performance, transparency

to end users

Disadvantages: they are expensive and complex.

13

PROJECT DESIGN

Model used

Incremental Model

Fig. 1

The Incremental Model is an evolution of the waterfall model, where

the waterfall model is incrementally applied.

The series of releases is referred to as “increments”, with each

increment providing more functionality to the customers. After the first

increment, a core product is delivered, which can already be used by

the customer. Based on customer feedback, a plan is developed for the

next increments, and modifications are made accordingly. This process

continues, with increments being delivered until the complete product

is delivered.

14

Advantages

 It is generally easier to test and debug than other methods of

software development because relatively smaller changes are

made during each iteration. This allows for more targeted and

rigorous testing of each element within the overall product.

 Customer can respond to features and review the product for any

needful changes.

 Initial product delivery is faster and costs lower.

Disadvantages

 Resulting cost may exceed the cost of the organization.

 As additional functionality is added to the product, problems may

arise related to system architecture which were not evident in

earlier prototypes.

Input/ Output:

 Input:

 Packets coming from network

 Output:

 List of blocked packets and their IP addresses and the packets that

passed the firewall successfully.

15

Flow Chart:

Fig. 2

16

Use Case diagram:

Fig. 3

17

Working of the filter:

Working of firewall is based on the following steps:
 Extract the packet header
 Check the protocol associated
 Compare with the rules
 Check the source and destination add. If protocol is same
 Check out the port if protocol is TCP
 Drop or pass the packet

Brief description:

After declaring structure variables, an integer type “countrule” is

declared and initialized it holds the value of the number the rule, it is

incremented when new rule is required. Filterlist is initialized to

first, its size increases as more and more rules are added. Now the

packet header is extracted and is assigned to the variable ipp.

Next the protocol is checked.

If the protocol is numbered as 6 means it is TCP. We accept all the

packets if the connection is already established. Also if we don't

have the bit SYN activate then we pass the packet by using

return PF_FORWARD. Otherwise the packet is compared against

the rules from the list until there is no member is in the list means till

the condition while (aux! =NULL) persists. Now check if the

protocol is same, if it is then look for the source and destination

address and each time increment the countrule. Now if the protocol

is TCP check for the port.

Now the decision can be taken whether to drop or pass the packet

according to the following statements

If (aux->ipf.drop)

 return PF_DROP; //drop the packet

else

 return PF_FORWARD; //forward the packet

The same procedure is done for the packets of the UDP protocols.

18

Description of the classes used:

Module 1

Administrator class:

This is the first driving class of the program that will accept the user name and the password.

Only if the user supplies the correct entries the software will enable the user to proceed ahead

otherwise not

• Return value:

On success: MainMenu() will be called.

On failure: exit() will execute.

•Parameter:

User ID and Password.

•Pseudocode:

 BEGIN:

1. [DECLARE] command CHARACTER 20;

2. command=GETCOMMAND();

3. IF(command= =(“OK”)) THEN

{

 IF(username= =(userid.GETTEXT()) AND pwd= =(password.GETTEXT()))

 THEN

 MainMenu();

}

4. ELSE

PRINT(“Invalid Username OR Password ! Reenter the Username & Password ”);

 END:

19

Module 2

ftpFilter class

ftpFliter class is used to perform various actions on a ftp file. This class first performs a check

to an ftp file, If the file passes the firewall barrier then the file is stored. This class also

provides methods to create dialog boxes which prompt the user to provide permission to

perform various actions on the ftp file. The various actions include reading, writing,

renaming, deleting, traversing and listing the ftp file. When the user selects the desirous

option by marking on the checkbox and clicking on OK an event is fired and corresponding

action is performed on the ftp file.

Module 3

httpFilter class

By using this class the user defines if he allows flash files, java applets, java scripts or VB

scripts to be or not to be accessed by the user on a http file.

Module 4

sessionViewer class

The session Viewer class shows in a tabular manner the internal and external source of the

ongoing connection or the history of connections

Module 5

siteAuthen class

In this class a dialog box is created using which, the user enters either the ip address or

domain name and clicks on ok. As ok is pressed an event is fired and it is handled. A table is

also created using JTable and the information entered by the user is saved in a file and shown

in the table.

Module 6

siteLocker class

This class provides the site locker feature to our firewall. This class is used to create a dialog

box where the user specifies the site (to be blocked)in the text box by either entering the

domain name or the ip address, As the user enters the information and hits on ok an event is

fired which is handled. The site or ip address is then read and stored in a file. For the

convenience of the user this class also provides a table in that dialogue box wherein the

previously blocked site or ip addresses also appear.

Module 7

keywordlocker class

 Using this filter the administrator of the firewall can block particular keywords that he

doesn’t want to be seen by the users. The domain name that has this keyword as its part

cannot be accessed. It can also be the domain name that represents multiple computers.

20

Module 8

ftpproxy class

 To allow various actions through FTP Server.

Module 9

mainMenu class

This class draws the main screen of the software. It allows the administrator to configure the

various settings. Depending on the kind of setting the program flow will move on.

 Return value:

This class may pass the control to either Server class, FtpProxy class, SessionViewer class,

About class, Help class or exit.

 Pseudo code:

BEGIN:

1. [DECLARE] j CHARACTER 20

2. IF(j= =About)

 CALL About();

3. IF(j= =Help)

 CALL Help();

4. IF(j= =http)

 CALL http();

5. IF(j= =ftp)

 CALL ftp();

6. IF(j= =SessionViewer)

 CALL SessionViewer();

7. IF(j= =exit)

 CALL exit();

END:

Module 10

serialization class

It is used for saving the state of an Object, and being able to reconstitute that state at a later

time

21

Module 11

about class

it displays the firewall version, authors and contact email id.

Module 12

help class

It is designed to make the firewall more user-friendly as it represents all the topics in a tree

form.

Module 13

server class

This class checks the protocol of incoming site converts it and save the packet of data into

a file (as per the rule base of our firewall the site is allowed to be accessed.). This class saves

the number of sockets, ports and connections. It used the concept of threads.

An object of Session Viewer class is made and it is continuously passed data from the session

viewer class. An object of statistic class (serialization class is made) and this object is used to

read the file. Protocol check is provided here.

An array of server socket, client socket and no of thread is made and no of ports defined the

size of these arrays. In the array of server socket port number and number of connections are

given as input to it. The number of threads is equal to the number of ports

Server Socket

This class implements server sockets. A server socket waits for requests to come in over the

network. It performs some operation based on that request, and then possibly returns a result

to the requester.

Client socket

cs[index]=ss[index].accept()

using the above command the requested file is delivered on the client socket

accept()

 this function accepts a connection on a socket. An incoming connection is acknowledged and

associated with an immediately created socket.

Now this client socket’s index is buffered and stored into a buffer named inp, now this inp is

in turn read an stored into a String type object called line. Now this line string stores the url.

To get the path of this url we use this function

value=line.substring(line.indexOf(":")+2,line.length())

Another string key is created which is implemented as

22

key=line.substring(0,line.indexOf(":"))

Now in a hash table the key value is stored and the above details is stored and written in a file

and output to the user in a tabulated form.

Now a check is provided on every client port. The path is checked with the validation of

protocol , keyword check and a list of allowed sites specified by the user. If this check returns

true then the user is allowed to access this file else the site is blocked. For allowing a

connection .openConnection() method is used.

Module 14

Close Dialog Box

This class prompts the user to exit from the firewall server. When the user clicks on exit a

window appears which ask to exit from the firewall serer if the user clicks ‘ok’ then it exits or

if the user clicks cancel it will not exit.

[D] Various Pre Defines Methods, Classes, Events, Handlers and Interfaces used:

- JDialog Interface

 Imported from swing package, it is a class for creating a dialog window. You can use this

class to create a custom dialog, or invoke the many class methods to create a variety of

standard dialogs.

-.. ActionListner event

 The listener interface for receiving action events. The class that is interested in processing

an action event implements this interface, and the object created with that class is registered

with a component, using the component's addActionListener method. When the action event

occurs, that object's actionPerformed method is invoked.

 A semantic event which indicates that a component-defined action occured. This high-

level event is generated by a component (such as a Button) when the component-specific

action occurs (such as being pressed). The event is passed to every every ActionListener

object that registered to receive such events using the component's addActionListener

method.

 Syntax: void actionPerformed(ActionEvent e)

 Invoked when an action occurs.

 -.KeyListner event

 The listener interface for receiving keyboard events (keystrokes)

Syntax: void keyPressed(KeyEvent e)

 Invoked when a key has been pressed.

23

- JPanel

 It is a generic light weight container with a double buffer and a flow layout.

- ProgressMonitor

 A class to monitor the progress of some operation. If it looks like the operation will take a

while, a progress dialog will be popped up. When the ProgressMonitor is created it is given a

numeric range and a descriptive string. As the operation progresses, call the setProgress

method to indicate how far along the [min,max] range the operation is. Initially, there is no

ProgressDialog. After the first millisToDecideToPopup milliseconds (default 500) the

progress monitor will predict how long the operation will take. If it is longer than

millisToPopup (default 2000, 2 seconds) a ProgressDialog will be popped up.

-.setForeground()

 for setting the foreground

- password.setEchoChar(*);

 JPasswordField is intended to be source-compatible with java.awt.TextField used with

echoChar set. It is provided separately to make it easier to safely change the UI for the

JTextField without affecting password entries.

- actionPerfomed

 This method of JDialog interface is over ridden(method is used to check the password and

usrid)

-System.exit()

 Terminates the currently running Java Virtual Machine

 - textfield

 A TextField object is a text component that allows for the editing of a single line of text.

-font

 The Font class represents fonts, which are used to render text in a visible way.

24

-JLabel

 A display area for a short text string or an image, or both.

-setMnemonic()

 to associate mnemonics to menu items. Mnemonics allows user to interact with menu items

using keys on keyboard.

-Setfocuspainted()

 Sets whether focus should be painted.

-Parameters():

 If true, the focus state is painted.

-setBorderPainted()

 method is used to decide whether the progress bar should paint its border or not. The

default value is false: progress bar without border.

-setRolloverIcon

 used to set the icon or image to a button for display when the mouse pointer rolls over the

icon or the button.

-setPressedIcon(ImageIcon)

 method to set a pressed icon in the button.

-setactioncommand()

 Returns the command name of the action event fired by this button. If the command name is

null (default) then this method returns the label of the button.

-setToolTipText

 method to set up a tool tip for the component.

-actionPerformed(ActionEvent e)

25

 Invoked when an action occurs.

-keyPressed(KeyEvent e)

 Invoked when a key has been pressed.

-keyReleased(KeyEvent e)

 Invoked when a key has been released.

-keyTyped(KeyEvent e)

 Invoked when a key has been typed.

-ImageIcon

 An implementation of the Icon interface that paints Icons from Images.

-JTextField

 is a lightweight component that allows the editing of a single line of text.

-JButton

 An implementation of a "push" button.

- JTable

 is used to display and edit regular two-dimensional tables of cells.

-A generic Abstract Window Toolkit(AWT) container object is a component that can contain

other AWT components.Components added to a container are tracked in a list.

-setForeground(Color fg)

 Sets the foreground color of this component.

-setActionCommand(String command)

 Sets the command name for the action event fired by this button.

-setLocation(int x, int y)

26

 Changes the point to have the specified location.

-JFrame

 adds support for the JFC/Swing component architecture.

-Jmenu

 An implementation of a menu -- a popup window containing JMenuItems that is displayed

when the user selects an item on the JMenuBar.

-Jmenubar

 An implementation of a menu bar. You add JMenu objects to the menu bar to construct a

menu. When the user selects a JMenu object, its associated JPopupMenu is displayed,

allowing the user to select one of the JMenuItems on it.

-setSize(Dimension d)

 Resizes this component so that it has width d.width and height d.height.

-setVisible(boolean b)

 Shows or hides this component depending on the value of parameter b.

-setTitle

 Defines the title of the document.

-setResizable(boolean resizable)

 If the parameter is false then the user cannot re-size the frame.

-runnable

 The Runnable interface should be implemented by any class whose instances are intended to

be executed by a thread. The class must define a method of no arguments called run.

27

-ServerSocket

 This class implements server sockets. A server socket waits for requests to come in over the

network. It performs some operation based on that request, and then possibly returns a result

to the requester.

-Socket

 This class implements client sockets (also called just "sockets"). A socket is an endpoint for

communication between two machines.

-BufferedReader

 Reads text from a character-input stream, buffering characters so as to provide for the

efficient reading of characters, arrays, and lines.

-Writer

 Abstract class for writing to character streams. The only methods that a subclass must

implement are write(char[], int, int), flush(), and close().

-getInetAddress()

 Returns the address to which the socket is connected.

\-gethostaddress()

 Returns the Internet Protocol (IP) addresses for the specified host.

-gethostname function

 retrieves the standard host name for the local computer.

-InputStreamReader

 An InputStreamReader is a bridge from byte streams to character streams: It reads bytes

and decodes them into characters using a specified charset.

-OutputStreamWriter

 An OutputStreamWriter is a bridge from character streams to byte streams: Characters

written to it are encoded into bytes using a specified charset.

-getOutputStream()

28

 Gets the output stream of the subprocess.

-readLine()

 Read a line of text.

-flush()

 Flushes the output stream and forces any buffered output bytes to be written out.

-setValueAt

 Sets the value in the cell at columnIndex and rowIndex to aValue.

-Calendar

 provides methods for converting between a specific instant in time and a set of calendar

fields such as YEAR, MONTH, DAY_OF_MONTH, HOUR.

\-getInstance()

 Gets a calendar using the default time zone and locale.

-ObjectInputStream

 De-serializes primitive data and objects previously written using an ObjectOutputStream.

-getContentPane()

 It is a method that returns a container that is where you usually add all of your components

instead of adding Component objects directly to a window such as a JFrame or a JDialog.

-setLayout

 Sets or gets the layout manager for this panel. The layout manager is responsible for

positioning the panel's components within the panel's bounds according to some philosophy.

-setBorder

 To put a border around a JComponent, we use setBorder method.

29

-setBackground

 to set the color and the background.

-treeexpnasion listener

 Called whenever an item in the tree has been expanded.

-setBounds(int x,int y,int width,int height)

 positions the called object in the specified location and in specified size.

-window listener and window adapter

 The listener interface for receiving window events. The class that is interested in processing

a window event either implements this interface (and all the methods it contains) or extends

the abstract WindowAdapter class (overriding only the methods of interest). The listener

object created from that class is then registered with a Window using the window's

addWindowListener method. When the window's status changes by virtue - the event

responsible for the update of being opened, closed, activated or deactivated, iconified or

deiconified, the relevant method in the listener object is invoked, and the WindowEvent is

passed to it.

-HyperlinkEvent

 Is used to notify interested parties that something has happened with respect to a hypertext

link.

 e- the event responsible for the update

-TreeSelectionModel

 This interface represents the current state of the selection for the tree component.

-SINGLE_TREE_SELECTION

 Selection can only contain one path at a time.

-TreeSelectionListener

 The listener that's notified when the selection in a TreeSelectionModel changes

30

-TreeSelectionEvent e

 Called whenever the value of the selection changes the event that characterizes the change.

-JTree()

 Returns a JTree with a sample model.

-JScrollPane()

 Creates an empty (no viewport view) JScrollPane where both horizontal and vertical

scrollbars appear when needed.

-JEditorPane()

 Creates a new JEditorPane.

-DefaultMutableTreeNode()

 Creates a tree node that has no parent and no children, but which allows children.

-getContentPane()

 It is a method that returns a container that is where you usually add all of your components

instead of adding Component objects directly to a window such as a JFrame or a JDialog.

-KeyEvent.VK_ESCAPE

 For key typed events, the getKeyCode method always returns VK_UNDEFINED (Virtual

key methods)

-ItemListner events

 ItemListner interface is used for receiving item events

- addActionListner()

 Register an instance of the event handler class as a listener on one or more components

- addItemListner()

 Adds a listener to receive item events, when the state of an item is changed by the user.

31

Results and Discussions.

[A] Various Screenshots of the associated demo of our firewall are as follows:

 The source code named firewall is compiled in cmd by following these steps:

1. Open cmd

2. Set the path for the source code

3. Compile the code by typing “javac firewall.java” in cmd

4. Now run it by typing “java firewall”.

After following the above steps the following output is obtained:

A. This is the first dialog box that appears

B. This is the second dialog box

Type administrator as the user name and “anukriti” or “mehak” or “mango” as password click

ok.

32

C. This is the third dialog box that pops up after log in and it shows the main menu.

After successful login the above screen appears.

 To start the HTTP proxy server, from Main Menu go to proxy policies-> HTTP policies->

start and view, the session viewer window will appear.

 To start the FTP proxy server, from the Main Menu go to the proxy policies-> FTP

policies-> start FTP server. A dialog box asking FTP server name will appear. Enter the

FTP server name and click OK, the FTP session viewer window will appear.

 After starting the proxies to view the sessions go to View-> HTTP session Status/FTP

session Status. The respective session viewer window will appear.

33

C.(a). The following 3 outputs shows the menu that get dropped down after clicking on

“Proxy policies’, “View” and “Help”.

34

D. It shows the “session controls” dialog box where we can mention various details for the rule

base of our firewall’s session.

 First go to Proxy policies on the menu bar then click session control.

 For creating sessions enter port ID, no. of connections, and select the protocol.

 Click add, the respective entry will appear in the table.

 Similarly for removing an entry select that entry from table and click remove.

E. It shows the various sub divisions of “ proxy policies” tab

35

F. It shows the source authentication dialog box.

 First go to Proxy policies on the menu bar then click HTTP policies and click source

 authentication.

 For adding a new source give the source IP address in the respective text field.

 Click add, the respective entry will appear in the table.

 Similarly for removing an entry select that entry from table and click remove.

G. This is the “http filtering” dialog box

 From the Main Menu go to the proxy policies-> HTTP policies-> HTML filter, the

 above screen will appear.

 Check or uncheck the check boxes as per the filtering requirement.

 Click OK.

36

H. This is the “site locker” dialog box

 From the Main Menu go to the proxy policies-> HTTP policies-> HTML filter, the

 above screen will appear.

 Enter the site to lock.

 Click add to enter the site.

 Click remove to delete the entry.

 Click OK.

I.This is the “keyword locker” dialog box

 From the Main Menu go to the proxy policies-> HTTP policies-> site locker->keyword

 lock, the above screen will appear.

 Enter the keyword that has to be locked.

 Click OK.

 To remove a entry select that entry from table click Remove and then click OK.

37

J. This is the “allow list” dialog box.

 From the Main Menu go to the proxy policies-> HTTP policies-> site locker->Allow

 List, the above screen will appear.

 Enter the domain name or IP address of the site that is allowed

 Click add to make an entry for the site or the domain.

 Click OK.

 To remove a entry select that entry from table click Remove and then click OK

K. This output shows the menu one gets after clicking on “ftp policies”.

.

38

L. This dialog box shows the ftp server selection. After typing the server and after clicking on

this the ftp server starts.

M. It shows the ftp Access permissions options where the user can define all the accesses he

wants to define for “ftp”.

 From the Main Menu go to proxy policies-> FTP policies-> Allowed action settings,

 the above screen will appear.

 Check or Uncheck File permissions or directory permissions that are desired.

 Click OK.

39

N. It shows the “help” dialog box.

O. It shows the http session viewer in the firewall

40

P. It shows the ftp session viewer in firewall

Q. It shows the “close dialog box”.

41

 Advantage of the project to the modern age

 It is a Concurrent Server so multiple requests can be handled simultaneously

 It waits for requests and grants connection if it is valid, if unexecuted threads still remain

then it serves them too & after that the proxy server receives data from server & delivers

it to client.

 Proper error pages are sent in case of improper request

 It makes use of JAVA which is a platform independent, robust and secure language.

 CONCLUSION AND RECOMMENDATIONS

 It can be concluded that the firewall made is sufficient enough for the following:

 Content Filtering.

 Blocking of client IP addresses

 Blocking of web sites.

 It is recommended that the firewall can be made more effective by distributed system

architecture.

IMPLICATIONS FOR FUTURE RESEARCH

 Firewall can be extended to filter images (Use of AI)

 Firewall can be extended by implementation of cryptographic protocols to make it more

secure

 Firewall can be extended to work for all other ports.

 Firewall can be extended to prevent different types of denial of service attacks like

“SYN” attacks, Process Table Overflow, Ping of Death.

 This proxy server can be extended as a “caching server” that will cache the pages that are

frequently required by the clients in order to reduce the load on the server.

42

`BIBLIOGRAPHY

 [1]V.K. Solanki, K.P. Singh, M. Venkatesan, S. Raghuwanshi, ,

"Firewalls Policies Enhancement Strategies Towards Securing

Network", Dept. of CSE, Anna Univ., Chennai, India , in Proceedings

of 2013 IEEE Conference on Information and Communication

Technologies (ICT 2013), 11-12 April 2013.

[2] Tugkan Tuglular, Fevzi Belli, "Protocol-Based Testing of

Firewalls", Department of Computer Science, Dept. of Comput. Eng.,

Izmir Inst. of Technol., Izmir, Turkey , 2009 Fourth South-East

European Workshop on Formal Methods.

[3] Khaled Salah, Khalid Elbadawi, Member, Raouf Boutaba,

"Performance Modeling and Analysis of Network Firewalls", Khalifa

Univ. of Sci., Sharjah, United Arab Emirates, IEEE transactions on

network and service management, vol. 9, no. 1, march 2012

[4] Alex X Lieu, "Change-Impact Analysis of firewall policies",

ESORICS 2007, LNCA 4734,pp 155-170, Springer-Verlag Berlin

Heidlberg 2007.

[5] Ian Mothersole and Martin J. Reed, " Optimising Rule Order for a

Packet Filtering Firewall", University of Essex, Wivenhoe Park,

Colchester, Essex, CO4 3SQ, United Kingdom, Network and

Information Systems Security (SAR-SSI), 2011 Conference 18-21

May 2011

[6] Dmifty Rovniagin, Avishai Wool, " The Geometric Efficient

Matching Algorithm For Firewalls", School of Electrical

Engineering, Tel Aviv University, Ramat Aviv 69978, Israel,

Dependable and Secure Computing, IEEE Transactions

on (Volume:8 , Issue: 1) Jan.-Feb. 2011

[7] Cryptography and Network Security : Principles and Practice by

William Stallings

[8] Computer Networks by Andrew S. Tanenbaum

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8858
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8858
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5639109

43

[9] http://debian-handbook.info/browse/stable/sect.firewall-packet-

filtering.html

[10]https://publib.boulder.ibm.com/infocenter/iseries/v5r4/index.jsp?t

opic=%2Frzatj%2Fpacketff.htm

[11]http://securityworld.worldiswelcome.com/packet-filtering-

firewall-an-introduction

http://debian-handbook.info/browse/stable/sect.firewall-packet-filtering.html
http://debian-handbook.info/browse/stable/sect.firewall-packet-filtering.html

