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ABSTRACT 
 

Data clustering is an unsupervised data analysis and data mining technique,which offers refined 

and more abstract views to the inherent structure of a data set by partitioning it into a number of 

disjoint or overlapping (fuzzy) groups. Hundreds of clustering algorithms and Signal Processing 

Techniques have been developed by researchers from a number of different scientific disciplines. 

The intention of this report is to present  a special class of clustering algorithms with or without 

signal processing, namely partition-based methods. After the introduction and a review on 

iterative relocation clustering  algorithms in Data Mining and Signal Processing, some 

illustrative results are presented. 

 

 

 

 

 

 

 

 

 

 
 

  



1 
 

 

CHAPTER 1  

 
 
 
 
 
 

INTRODUCTION 
 

PRE-PROCESSING 

DATA MINING 

ANOMALY DETECTION 

ASSOCIATION RULE LEARNING 

CLUSTER ANALYSIS 

MATLAB CODE 

APPLICATIONS 

 
 

 



2 
 

 

DATA MINING 

Data mining (the analysis step of the "Knowledge Discovery in Databases" process, or KDD) is 

the process that attempts to discover patterns in large data sets. It utilizes methods at the 

intersection of artificial intelligence, machine learning, statistics, and database systems. The 

overall goal of the data mining process is to extract information from a data set and transform it 

into an understandable structure for further use.  

The Knowledge Discovery in Databases (KDD) process is commonly defined with the stages: 

I. Selection 

II. Pre-processing 

III. Transformation 

IV. Data Mining 

V. Interpretation/Evaluation.  

1.1 Pre-processing 
Before data mining algorithms can be used, a target data set must be assembled. As data mining 

can only uncover patterns actually present in the data, the target dataset must be large enough to 

contain these patterns while remaining concise enough to be mined within an acceptable time 

limit. A common source for data is a data mart or data warehouse. Pre-processing is essential to 

analyze the multivariate datasets before data mining. The target set is then cleaned. Data cleaning 

removes the observations containing noise and those with missing data. 

1.2 Data mining  
Data mining involves six common classes of tasks:  

I. Anomaly detection (Outlier/change/deviation detection) – The identification of unusual 

data records, that might be interesting or data errors that require further investigation. 

II. Association rule learning (Dependency modeling) – Searches for relationships between 

variables. For example a supermarket might gather data on customer purchasing habits. 

Using association rule learning, the supermarket can determine which products are 

http://en.wikipedia.org/wiki/Data_mart
http://en.wikipedia.org/wiki/Data_warehouse
http://en.wikipedia.org/wiki/Multivariate_statistics
http://en.wikipedia.org/wiki/Data_cleaning
http://en.wikipedia.org/wiki/Statistical_noise
http://en.wikipedia.org/wiki/Missing_data
http://en.wikipedia.org/wiki/Anomaly_detection
http://en.wikipedia.org/wiki/Association_rule_learning
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frequently bought together and use this information for marketing purposes. This is 

sometimes referred to as market basket analysis. 

III. Clustering – is the task of discovering groups and structures in the data that are in some 

way or another "similar", without using known structures in the data. 

IV. Classification – is the task of generalizing known structure to apply to new data. For 

example, an e-mail program might attempt to classify an e-mail as "legitimate" or as 

"spam". 

V. Regression – Attempts to find a function which models the data with the least error. 

VI. Summarization – providing a more compact representation of the data set, including 

visualization and report generation. 

VII. Sequential pattern mining – Sequential pattern mining finds sets of data items that occur 

together frequently in some sequences. Sequential pattern mining, which extracts 

frequent subsequences from a sequence database, has attracted a great deal of interest 

during the recent data mining research because it is the basis of many applications, such 

as: web user analysis, stock trend prediction, DNA sequence analysis, finding language 

or linguistic patterns from natural language texts, and using the history of symptoms to 

predict certain kind of disease. 

 

1.3Anomaly detection 

Anomaly detection, also referred to as outlier detection refers to detecting patterns in a given data set 

that do not conform to an established normal behavior. The patterns thus detected are called anomalies 

and often translate to critical and actionable information in several application domains. Anomalies are 

also referred to as outliers, change, deviation, surprise, aberrant, peculiarity, intrusion, etc. 

In particular in the context of abuse and network intrusion detection, the interesting objects are often 

not rare objects, but unexpected bursts in activity. This pattern does not adhere to the common 

statistical definition of an outlier as a rare object, and many outlier detection methods (in particular 

unsupervised methods) will fail on such data, unless it has been aggregated appropriately. Instead, 

a cluster analysis algorithm may be able to detect the micro clusters formed by these patterns. 

 

http://en.wikipedia.org/wiki/Cluster_analysis
http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Regression_analysis
http://en.wikipedia.org/wiki/Automatic_summarization
http://en.wikipedia.org/w/index.php?title=Sequential_pattern_mining&action=edit&redlink=1
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1.3.1 Popular techniques for anomaly detection: 

Several anomaly detection techniques have been proposed in literature. Some of the popular 

techniques are: 

I. Distance based techniques (k-nearest neighbor, Local Outlier Factor). 

II. One Class Support Vector Machines. 

III. Replicator Neural Networks. 

IV. Cluster analysis based outlier detection. 

V. Pointing at records that deviate from learned association rules. 

1.4 Association rule learning: 

In data mining, association rule learning is a popular and well researched method for discovering 

interesting relations between variables in large databases. It is intended to identify strong rules 

discovered in databases using different measures of interestingness. 

For example, the rule  found in the sales data of a 

supermarket would indicate that if a customer buys onions and potatoes together, he or she is 

likely to also buy hamburger meat. Such information can be used as the basis for decisions about 

marketing activities such as, e.g., promotional pricing or product placements. In addition to the 

above example from market basket analysis association rules are employed today in many 

application areas including Web usage mining, intrusion detection, Continuous 

production and bioinformatics. As opposed to sequence mining, association rule learning 

typically does not consider the order of items either within a transaction or across transactions. 

Definition: 

The problem of association rule mining is defined as: Let be a set of 

 binary attributes called items. Let  be a set of transactions called 

the database. Each transaction in  has a unique transaction ID and contains a subset of the 

items in . A rule is defined as an implication of the form  where 
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 and . The sets of items (for short itemsets)  and  are called antecedent (left-

hand-side or LHS) and consequent (right-hand-side or RHS) of the rule respectively. 

To illustrate the concepts, we use a small example from the supermarket domain. The set of 

items is  and a small database containing the items (1 

codes presence and 0 absence of an item in a transaction) is shown in the table to the right. An 

example rule for the supermarket could be meaning that if 

butter and bread are bought, customers also buy milk. 

Note: this example is extremely small. In practical applications, a rule needs a support of several 

hundred transactions before it can be considered statistically significant, and datasets often 

contain thousands or millions of transactions 

 

1.5 Cluster Analysis: 
Cluster analysis or clustering is the task of assigning a set of objects into groups (called clusters) 

so that the objects in the same cluster are more similar (in some sense or another) to each other 

than to those in other clusters. 

Clustering is a main task of explorative data mining, and a common technique for statistical data 

analysis used in many fields, including machine learning, pattern recognition, image analysis, 

information retrieval, and bioinformatics. 

Cluster analysis itself is not one specific algorithm, but the general task to be solved. It can be 

achieved by various algorithms that differ significantly in their notion of what constitutes a 

cluster and how to efficiently find them. Popular notions of clusters include groups with low 

distances among the cluster members, dense areas of the data space, intervals or particular 
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statistical distributions. Clustering can therefore be formulated as a multi-objective optimization 

problem. The appropriate clustering algorithm and parameter settings (including values such as 

the distance function to use, a density threshold or the number of expected clusters) depend on 

the individual data set and intended use of the results. Cluster analysis as such is not an 

automatic task, but an iterative process of knowledge discovery or interactive multi-objective 

optimization that involves trial and failure. It will often be necessary to modify preprocessing 

and parameters until the result achieves the desired properties. 

Besides the term clustering, there are a number of terms with similar meanings, including 

automatic classification, numerical taxonomy, botryology (from Greek βότρσς "grape") and 

typological analysis. The subtle differences are often in the usage of the results: while in data 

mining, the resulting groups are the matter of interest, in automatic classification primarily their 

discriminative power is of interest. This often leads to misunderstandings between researchers 

coming from the fields of data mining and machine learning, since they use the same terms and 

often the same algorithms, but have different goals 

 

Figure 1 Result of cluster analysis 

1.5.1 Clusters and clusterings : 

The notion of a "cluster" varies between algorithms and is one of the many decisions to take 

when choosing the appropriate algorithm for a particular problem. At first the terminology of a 



7 
 

cluster seems obvious: a group of data objects. However, the clusters found by different 

algorithms vary significantly in their properties, and understanding these "cluster models" is key 

to understanding the differences between the various algorithms. Typical cluster models include: 

I. Connectivity models: for example hierarchical clustering builds models based on distance 

connectivity. 

II. Centroid models: for example the k-means algorithm represents each cluster by a single 

mean vector. 

III. Distribution models: clusters are modeled using statistic distributions, such as 

multivariate normal distributions used by the Expectation-maximization algorithm. 

IV. Density models: for example DBSCAN and OPTICS defines clusters as connected dense 

regions in the data space. 

V. Subspace models: in Bi clustering (also known as Co-clustering or two-mode-clustering), 

clusters are modeled with both cluster members and relevant attributes. 

VI. Group models: some algorithms (unfortunately) do not provide a refined model for their 

results and just provide the grouping information. 

VII. Graph-based models: a clique, i.e., a subset of nodes in a graph such that every two nodes 

in the subset are connected by an edge can be considered as a prototypical form of 

cluster. Relaxations of the complete connectivity requirement (a fraction of the edges can 

be missing) are known as quasi-cliques. 

A "clustering" is essentially a set of such clusters, usually containing all objects in the data set. 

Additionally, it may specify the relationship of the clusters to each other, for example a hierarchy 

of clusters embedded in each other. Clusterings can be roughly distinguished in: 

I. hard clustering: each object belongs to a cluster or not 

II. soft clustering (also: fuzzy clustering): each object belongs to each cluster to a certain 

degree (e.g. a likelihood of belonging to the cluster) 

There are also finer distinctions possible, for example: 

I. strict partitioning clustering: here each object belongs to exactly one cluster 
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II. strict partitioning clustering with outliers: objects can also belong to no cluster, and are 

considered outliers. 

III. overlapping clustering (also: alternative clustering, multi-view clustering): while usually 

a hard clustering, objects may belong to more than one cluster. 

IV. hierarchical clustering: objects that belong to a child cluster also belong to the parent 

cluster 

V. subspace clustering: while an overlapping clustering, within a uniquely defined subspace, 

clusters are not expected to overlap. 

1.5.2 Connectivity based clustering (hierarchical clustering): 

Connectivity based clustering, also known as hierarchical clustering, is based on the core idea of 

objects being more related to nearby objects than to objects farther away. As such, these 

algorithms connect "objects" to form "clusters" based on their distance. A cluster can be 

described largely by the maximum distance needed to connect parts of the cluster. At different 

distances, different clusters will form, which can be represented using a dendrogram, which 

explains where the common name "hierarchical clustering" comes from: these algorithms do not 

provide a single partitioning of the data set, but instead provide an extensive hierarchy of clusters 

that merge with each other at certain distances. In a dendrogram, the y-axis marks the distance at 

which the clusters merge, while the objects are placed along the x-axis such that the clusters 

don't mix. 

Connectivity based clustering is a whole family of methods that differ by the way distances are 

computed. Apart from the usual choice of distance functions, the user also needs to decide on the 

linkage criterion (since a cluster consists of multiple objects, there are multiple candidates to 

compute the distance to) to use. Popular choices are known as single-linkage clustering (the 

minimum of object distances), complete linkage clustering (the maximum of object distances) or 

UPGMA ("Unweighted Pair Group Method with Arithmetic Mean", also known as average 

linkage clustering). Furthermore, hierarchical clustering can be agglomerative (starting with 

single elements and aggregating them into clusters) or divisive (starting with the complete data 

set and dividing it into partitions). 
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While these methods are fairly easy to understand, the results are not always easy to use, as they 

will not produce a unique partitioning of the data set, but a hierarchy the user still needs to 

choose appropriate clusters from. The methods are not very robust towards outliers, which will 

either show up as additional clusters or even cause other clusters to merge (known as "chaining 

phenomenon", in particular with single-linkage clustering). In the general case, the complexity is 

, which makes them too slow for large data sets. For some special cases, optimal 

efficient methods (of complexity ) are known: SLINK for single-linkage and CLINK for 

complete-linkage clustering. In the data mining community these methods are recognized as a 

theoretical foundation of cluster analysis, but often considered obsolete. They did however 

provide inspiration for many later methods such as density based clustering 

H  

k-means clustering 

In data mining, k-means clustering is a method of cluster analysis which aims to partition n 

observations into k clusters in which each observation belongs to the cluster with the nearest 

mean. This results in a partitioning of the data space into Voronoi cells. 



10 
 

The problem is computationally difficult (NP-hard), however there are efficient heuristic 

algorithms that are commonly employed and converge fast to a local optimum. These are usually 

similar to the expectation-maximization algorithm for mixtures of Gaussian distributions via an 

iterative refinement approach employed by both algorithms. Additionally, they both use cluster 

centers to model the data, however k-means clustering tends to find clusters of comparable 

spatial extent, while the expectation-maximization mechanism allows clusters to have different 

shapes 

 

Description 

Given a set of observations (x1, x2, …, xn), where each observation is a d-dimensional real 

vector, k-means clustering aims to partition the n observations into k sets (k ≤ n) 

S = {S1, S2, …, Sk} so as to minimize the within-cluster sum of squares (WCSS): 

 

History 

The term "k-means" was first used by James MacQueen in 1967, though the idea goes back to 

Hugo Steinhaus in 1957. The standard algorithm was first proposed by Stuart Lloyd in 1957 as a 

technique for pulse-code modulation, though it wasn't published until 1982.
 

Standard algorithm 

The most common algorithm uses an iterative refinement technique. Due to its ubiquity it is 

often called the k-means algorithm; it is also referred to as Lloyd's algorithm, particularly in the 

computer science community. 

Given an initial set of k means m1
(1)

,…,mk
(1)

 (see below), the algorithm proceeds by alternating 

between two steps:
[4]

 

http://en.wikipedia.org/wiki/K-means_clustering#cite_note-3
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Assignment step: Assign each observation to the cluster with the closest mean (i.e. 

partition the observations according to the Voronoi diagram generated by the means).  

 

Update step: Calculate the new means to be the centroid of the observations in the 

cluster 

 

The algorithm is deemed to have converged when the assignments no longer change. 

 

As it is a heuristic algorithm, there is no guarantee that it will converge to the global optimum, 

and the result may depend on the initial clusters. As the algorithm is usually very fast, it is 

common to run it multiple times with different starting conditions. However, in the worst case, k-

means can be very slow to converge: in particular it has been shown that there exist certain point 

sets, even in 2 dimensions, on which k-means takes exponential time, that is 2
Ω(n)

, to converge. 

These point sets do not seem to arise in practice: this is corroborated by the fact that the 

smoothed running time of k-means is polynomial.  

The "assignment" step is also referred to as expectation step, the "update step" as maximization 

step, making this algorithm a variant of the generalized expectation-maximization algorithm. 

http://en.wikipedia.org/wiki/Centroid
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1.5.3 Distribution-based clustering 

The clustering model most closely related to statistics is based on distribution models. Clusters 

can then easily be defined as objects belonging most likely to the same distribution. A nice 

property of this approach is that this closely resembles the way artificial data sets are generated: 

by sampling random objects from a distribution. 

While the theoretical foundation of these methods is excellent, they suffer from one key problem 

known as over fitting, unless constraints are put on the model complexity. A more complex 

model will usually always be able to explain the data better, which makes choosing the 

appropriate model complexity inherently difficult. 

The most prominent method is known as expectation-maximization algorithm (or short: EM-

clustering). Here, the data set is usually modeled with a fixed (to avoid overfitting) number of 

Gaussian distributions that are initialized randomly and whose parameters are iteratively 

optimized to fit better to the data set. This will converge to a local optimum, so multiple runs 

may produce different results. In order to obtain a hard clustering, objects are often then assigned 

to the Gaussian distribution they most likely belong to, for soft clusterings this is not necessary. 

Distribution-based clustering is a semantically strong method, as it not only provides you with 

clusters, but also produces complex models for the clusters that can also capture correlation and 

dependence of attributes. However, using these algorithms puts an extra burden on the user: to 

choose appropriate data models to optimize, and for many real data sets, there may be no 

mathematical model available the algorithm is able to optimize (e.g. assuming Gaussian 

distributions is a rather strong assumption on the data) 
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Figure 2 Gaussian Distribution 
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1.6MATLAB code for clustering on randomly generated data: 

clc; 

clear all; 

close all; 

% set-1 

% Firstly defining  the data...+ones(80,4);-ones(80,4) 

X = [randn(80,4); randn(80,4)]; 

% Now the kmeans is applied... 

opts = statset('Display','final'); 

[cidx, ctrs] = kmeans(X, 4,'Distance','city', ... 

                              'Replicates',5, 'Options',opts); 

%% Now look at the cluster formation.... 

figure(1),plot(X(cidx==1,1),X(cidx==1,2),'r.', ... 

X(cidx==2,1),X(cidx==2,2),'b.',... 

X(cidx==3,1),X(cidx==3,2),'g.',... 

X(cidx==4,1),X(cidx==4,2),'m.',... 

ctrs(:,1),ctrs(:,2),ctrs(:,3),ctrs(:,4),'kx'); 

% this are the initial result for the implementation.... 

%%  set-2 

% Firstly defining  the data...+ones(80,4);-ones(80,4) 

X = [randn(80,4)+10*ones(80,4); randn(80,4)-10*ones(80,4)]; 

%X = [data2(:,1); data2(:,2)]; 

% Now the kmeans is applied... 

opts = statset('Display','final'); 

[cidx, ctrs] = kmeans(X, 4,'Distance','city', ... 

                              'Replicates',5, 'Options',opts); 
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%% Now look at the cluster formation.... 

figure(2),plot(X(cidx==1,1),X(cidx==1,2),'r.', ... 

X(cidx==2,1),X(cidx==2,2),'b.',... 

X(cidx==3,1),X(cidx==3,2),'g.',... 

X(cidx==4,1),X(cidx==4,2),'m.',... 

ctrs(:,1),ctrs(:,2),ctrs(:,3),ctrs(:,4),'kx'); 

% this are the initial result for the implementation.... 

%%  set-3 

% Firstly defining  the data...+ones(80,4);-ones(80,4) 

X = [randn(80,4)+5*ones(80,4); randn(80,4)-10*ones(80,4)]; 

%X = [data2(:,1); data2(:,2)]; 

% Now the kmeans is applied... 

opts = statset('Display','final'); 

[cidx, ctrs] = kmeans(X, 4,'Distance','city', ... 

                              'Replicates',5, 'Options',opts); 

%% Now look at the cluster formation.... 

figure(3),plot(X(cidx==1,1),X(cidx==1,2),'r.', ... 

X(cidx==2,1),X(cidx==2,2),'b.',... 

X(cidx==3,1),X(cidx==3,2),'g.',... 

X(cidx==4,1),X(cidx==4,2),'m.',... 

ctrs(:,1),ctrs(:,2),ctrs(:,3),ctrs(:,4),'kx'); 

% this are the initial result for the implementation.... 

%%  set-4 

% Firstly defining  the data...+ones(80,4);-ones(80,4) 

X = [randn(80,4)+ones(80,4); randn(80,4)-ones(80,4)]; 

%X = [data2(:,1); data2(:,2)]; 

% Now the kmeans is applied... 

opts = statset('Display','final'); 

[cidx, ctrs] = kmeans(X, 4,'Distance','city', ... 

                              'Replicates',5, 'Options',opts); 

%% Now look at the cluster formation.... 
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figure(4),plot(X(cidx==1,1),X(cidx==1,2),'r.', ... 

X(cidx==2,1),X(cidx==2,2),'b.',... 

X(cidx==3,1),X(cidx==3,2),'g.',... 

X(cidx==4,1),X(cidx==4,2),'m.',... 

ctrs(:,1),ctrs(:,2),ctrs(:,3),ctrs(:,4),'kx'); 

% this are the initial result for the implementation.... 
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Figure 3 : Clustering on random data 

 

1.7 Applications 
I. Biology, computational biology and bioinformatics 

a. Plant and animalecology 

b. cluster analysis is used to describe and to make spatial and temporal comparisons 

of communities (assemblages) of organisms in heterogeneous environments; it is 

also used in plant systematics to generate artificial phylogenies or clusters of 

organisms (individuals) at the species, genus or higher level that share a number 

of attributes 

c. Transcriptomics 

d. clustering is used to build groups of genes with related expression patterns (also 

known as co-expressed genes). Often such groups contain functionally related 

proteins, such as enzymes for a specific pathway, or genes that are co-regulated. 

High throughput experiments using expressed sequence tags (ESTs) or DNA 

microarrays can be a powerful tool for genome annotation, a general aspect of 

genomics. 

http://en.wikipedia.org/wiki/Animal
http://en.wikipedia.org/wiki/Animal
http://en.wikipedia.org/wiki/Animal
http://en.wikipedia.org/wiki/Transcriptome
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e. Sequence analysis 

f. clustering is used to group homologous sequences into gene families. This is a 

very important concept in bioinformatics, and evolutionary biology in general. 

See evolution by gene duplication. 

g. High-throughput genotyping platforms 

h. clustering algorithms are used to automatically assign genotypes. 

i. Human genetic clustering 

j. The similarity of genetic data is used in clustering to infer population structures. 

II. Medicine 

a. Medical imaging 

b. On PET scans, cluster analysis can be used to differentiate between different 

types of tissue and blood in a three dimensional image. In this application, actual 

position does not matter, but the voxel intensity is considered as a vector, with a 

dimension for each image that was taken over time. This technique allows, for 

example, accurate measurement of the rate a radioactive tracer is delivered to the 

area of interest, without a separate sampling of arterial blood, an intrusive 

technique that is most common today. 

c. IMRT segmentation 

d. Clustering can be used to divide a fluence map into distinct regions for conversion 

into deliverable fields in MLC-based Radiation Therapy. 

III. Business and marketing 

a. Market research 

b. Cluster analysis is widely used in market research when working with 

multivariate data from surveys and test panels. Market researchers use cluster 

analysis to partition the general population of consumers into market segments 

and to better understand the relationships between different groups of 

consumers/potential customers, and for use in market segmentation, Product 

positioning, New product development and Selecting test markets. 

c. Grouping of shopping items 

http://en.wikipedia.org/wiki/Blood
http://en.wikipedia.org/wiki/Voxel
http://en.wikipedia.org/wiki/Marketing
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d. Clustering can be used to group all the shopping items available on the web into a 

set of unique products. For example, all the items on eBay can be grouped into 

unique products.  

IV. World wide web 

a. Social network analysis 

b. In the study of social networks, clustering may be used to recognize communities 

within large groups of people. 

c. Search result grouping 

d. In the process of intelligent grouping of the files and websites, clustering may be 

used to create a more relevant set of search results compared to normal search 

engines like Google. There are currently a number of web based clustering tools 

such as Clusty. 

e. Slippy map optimization 

f. Flickr's map of photos and other map sites use clustering to reduce the number of 

markers on a map. This makes it both faster and reduces the amount of visual 

clutter. 

V. Computer science 

a. Software evolution 

b. Clustering is useful in software evolution as it helps to reduce legacy properties in 

code by reforming functionality that has become dispersed. It is a form of 

restructuring and hence is a way of directly preventative maintenance. 

c. Image segmentation 

d. Clustering can be used to divide a digital image into distinct regions for border 

detection or object recognition. 

e. Evolutionary algorithms 

f. Clustering may be used to identify different niches within the population of an 

evolutionary algorithm so that reproductive opportunity can be distributed more 

evenly amongst the evolving species or subspecies. 

g. Recommender systems 

http://en.wikipedia.org/wiki/Social_network
http://en.wikipedia.org/wiki/Google
http://en.wikipedia.org/wiki/Clusty
http://en.wikipedia.org/wiki/Flickr
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Software_evolution
http://en.wikipedia.org/wiki/Digital
http://en.wikipedia.org/wiki/Image
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h. Recommender systems are designed to recommend new items based on a user's 

tastes. They sometimes use clustering algorithms to predict a user's preferences 

based on the preferences of other users in the user's cluster. 

i. Markov chain Monte Carlo methods 

j. Clustering is often utilized to locate and characterize extreme in the target 

distribution. 

VI. Social science 

a. Crime analysis 

b. Cluster analysis can be used to identify areas where there are greater incidences of 

particular types of crime. By identifying these distinct areas or "hot spots" where 

a similar crime has happened over a period of time, it is possible to manage law 

enforcement resources more effectively. 

c. Educational data mining 

d. Cluster analysis is for example used to identify groups of schools or students with 

similar properties. 

VII. Others 

a. Mathematical chemistry 

b. To find structural similarity, etc., for example, 3000 chemical compounds were 

clustered in the space of 90 topological indices.  

c. Climatology 

d. To find weather regimes or preferred sea level pressure atmospheric patterns.  

e. Petroleum geology 

f. Cluster analysis is used to reconstruct missing bottom hole core data or missing 

log curves in order to evaluate reservoir properties. 

g. Physical geography 

h. The clustering of chemical properties in different sample locations. 

1.8 Statistical classification 
In machine learning and statistics, classification is the problem of identifying to which of a set 

of categories (sub-populations) a new observation belongs, on the basis of a training set of data 

containing observations (or instances) whose category membership is known. The individual 

observations are analyzed into a set of quantifiable properties, known as various explanatory 
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variables, features, etc. These properties may variously be categorical (e.g. "A", "B", "AB" or 

"O", for blood type), ordinal (e.g. "large", "medium" or "small"),integer-valued (e.g. the number 

of occurrences of a part word in an email) or real-valued (e.g. a measurement of blood pressure). 

Some algorithms work only in terms of discrete data and require that real-valued or integer-

valued data be discretized into groups (e.g. less than 5, between 5 and 10, or greater than 10). An 

example would be assigning a given email into "spam" or "non-spam" classes or assigning a 

diagnosis to a given patient as described by observed characteristics of the patient (gender, blood 

pressure, presence or absence of certain symptoms, etc.). 

An algorithm that implements classification, especially in a concrete implementation, is known 

as a classifier. The term "classifier" sometimes also refers to the mathematical function, 

implemented by a classification algorithm that maps input data to a category. 

In the terminology of machine learning, classification is considered an instance of supervised 

learning, i.e. learning where a training set of correctly-identified observations is available. The 

corresponding unsupervised procedure is known as clustering (or cluster analysis), and involves 

grouping data into categories based on some measure of inherent similarity (e.g. 

the distance between instances, considered as vectors in a multi-dimensional vector space). 

Terminology across fields is quite varied. In statistics, where classification is often done 

with logistic regression or a similar procedure, the properties of observations are termed 

explanatory variables (or independent variables, repressors, etc.), and the categories to be 

predicted are known as outcomes, which are considered to be possible values of the dependent 

variable. In machine learning, the observations are often known as instances, the explanatory 

variables are termed features (grouped into a feature vector), and the possible categories to be 

predicted are classes. There is also some argument over whether classification methods that do 

not involve a statistical model can be considered "statistical". Other fields may use different 

terminology: e.g. in community ecology, the term "classification" normally refers to cluster 

analysis, i.e. a type of unsupervised learning, rather than the supervised learning described in this 

article. 
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1.9 Regression Analysis: 
In statistics, regression analysis is a statistical technique for estimating the relationships among 

variables. It includes many techniques for modeling and analyzing several variables, when the 

focus is on the relationship between a dependent variable and one or more independent variables. 

More specifically, regression analysis helps one understand how the typical value of the 

dependent variable changes when any one of the independent variables is varied, while the other 

independent variables are held fixed. Most commonly, regression analysis estimates 

the conditional expectation of the dependent variable given the independent variables – that is, 

the average value of the dependent variable when the independent variables are fixed. Less 

commonly, the focus is on a quantile, or other location parameter of the conditional distribution 

of the dependent variable given the independent variables. In all cases, the estimation target is 

a function of the independent variables called the regression function. In regression analysis, it is 

also of interest to characterize the variation of the dependent variable around the regression 

function, which can be described by a probability distribution. 

Regression analysis is widely used for prediction and forecasting, where its use has substantial 

overlap with the field of machine learning. Regression analysis is also used to understand which 

among the independent variables are related to the dependent variable, and to explore the forms 

of these relationships. In restricted circumstances, regression analysis can be used to infer causal 

relationships between the independent and dependent variables. However this can lead to 

illusions or false relationships, so caution is advisable; for example, correlation does not imply 

causation. 

A large body of techniques for carrying out regression analysis has been developed. Familiar 

methods such as linear regression and ordinary least squares regression are parametric, in that the 

regression function is defined in terms of a finite number of unknown parameters that are 

estimated from the data. Nonparametric regression refers to techniques that allow the regression 

function to lie in a specified set of functions, which may be infinite-dimensional. 

The performance of regression analysis methods in practice depends on the form of the data 

generating process, and how it relates to the regression approach being used. Since the true form 

of the data-generating process is generally not known, regression analysis often depends to some 

extent on making assumptions about this process. These assumptions are sometimes testable if 

http://en.wikipedia.org/wiki/Quantile
http://en.wikipedia.org/wiki/Parameter
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many data are available. Regression models for prediction are often useful even when the 

assumptions are moderately violated, although they may not perform optimally. However, in 

many applications, especially with small effects or questions of causality based on observational 

data, regression methods can give misleading results. 
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 KDD Process 
As we march into the age of digital information, the problem of data overload looms ominously 

ahead. Our ability to analyze and understand massive datasets lags far behind our ability to 

gather and store the data. A new generation of computational techniques and tools is required to 

support the extraction of useful knowledge from the rapidly growing volumes of data. These 

techniques and tools are the subject of the emerging field of knowledge discovery in databases 

(KDD) and data mining. Large databases of digital information are ubiquitous. Data from the 

neighborhood store’s checkout register, your bank’s credit card authorization device, records in 

your doctor’s office, patterns in your telephone calls, and many more applications generate 

streams of digital records archived in huge databases, sometimes in so-called data warehouses. 

Current hardware and database technology allow efficient and inexpensive reliable data storage 

and access. However, whether the context is business, medicine, science, or government, the 

datasets themselves (in raw form) are of little direct value. What is of value is the knowledge that 

can be inferred from the data and put to use. For example, the marketing database of a consumer 

goods company may yield knowledge of correlations between sales of certain items and certain 

demographic groupings. This knowledge can be used to introduce new targeted marketing 

campaigns with predictable financial return relative to unfocused campaigns. Databases are often 

a dormant potential resource that, tapped, can yield substantial benefits. This article gives an 

overview of the emerging field of KDD and data mining, including links with related fields, a 

definition of the knowledge discovery process, dissection of basic data mining algorithms, and 

an analysis of the challenges facing practitioners. Impractical Manual Data Analysis The 

traditional method of turning data into knowledge relies on manual analysis and interpretation. 

For example, in the health-care industry, it is common for specialists to analyze current trends 

and changes in health-care data on a quarterly basis. Databases are increasing in size in two 

ways: the number N of records, or objects, in the database, and the number d of fields, or 

attributes, per object. Databases containing on the order of N = 109 objects are increasingly 

common in, for example, the astronomical sciences. The number d of fields can easily be on the 

order of 102 or even 103 in medical diagnostic applications. Who could be expected to digest 

billions of records, each with tens or hundreds of fields? Yet the true value of such data lies in 

the users' ability to extract useful reports, spot interesting events and trends, support decisions 

and policy based on statistical analysis and inference, and exploit the data to achieve business, 
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operational, or scientific goals. When the scale of data manipulation, exploration, and inference 

grows beyond human capacities, people look to computer technology to automate the 

bookkeeping. The problem of knowledge extraction from large databases involves many steps, 

ranging from data manipulation and retrieval to fundamental mathematical and statistical 

inference, search, and reasoning. Researchers and practitioners interested in these problems have 

been meeting since the first KDD Workshop in 1989. Although the problem of extracting 

knowledge from data (or observations) is not new, automation in the context of large databases 

opens up many new unsolved problems. 

2.1 Kdd process 
“ 

Finding useful patterns in data is known by different names (including data mining) in different 

communities (e.g., knowledge extraction, information discovery, information harvesting, data 

archeology, and data pattern processing). 

” 

 

The term ―data mining ―is used most by statisticians, database researchers, and more recently by 

the MIS and business communities. Here we use the term ―KDD‖ to refer to the overall process 

of discovering useful knowledge from data. Data mining is a particular step in this process 

application of specific algorithms for extracting patterns (models) from data. The additional steps 

in the KDD process, such as data preparation, data selection, data cleaning, incorporation of 

appropriate prior knowledge, and proper interpretation of the results of mining ensure that useful 

knowledge is derived from the data. Blind application of data mining methods(rightly criticized 

as data dredging in the statistical literature)can be a dangerous activity leading to discovery of 

meaningless patterns.KDD has evolved, and continues to evolve, from the intersection of 

research in such fields as databases, machine learning, pattern recognition, statistics, artificial 

intelligence and reasoning with uncertainty, knowledge acquisition for expert systems, data 

visualization, machine discovery , scientific discovery, information retrieval, and high-

performance computing. KDD software systems incorporate theories, algorithms, and 

Methods from all of these fields. Database theories and tools provide the necessary infrastructure 

to store, access, and manipulate data. Data warehousing, a recently popularized term, refers to 

the current business trend of collecting and cleaning transactional data to make them available 
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for online analysis and decision support. A popular approach for analysis of data warehouses is 

called online analytical processing (OLAP).1 OLAP tools focus on providing multidimensional 

data analysis, which is superior to SQL (a standard data manipulation language) in computing 

summaries and breakdowns along many dimensions. While current OLAP tools target interactive 

data analysis, we expect they will also include more automated discovery components in the near 

future. Fields concerned with inferring models from data—including statistical pattern 

recognition, applied statistics, machine learning, and neural networks—were the impetus for 

much early KDD work. KDD largely relies on methods from these fields to find patterns from 

data in the data mining step of the KDD process. A natural question is: How is KDD different 

from these other fields? KDD focuses on the overall process of knowledge discovery from data, 

including how the data is stored and accessed, how algorithms can be scaled to massive datasets 

and still run efficiently, how results can be interpreted and visualized, and how the overall 

human-machine interaction can be modeled and supported.KDD places a special emphasis on 

finding understandable patterns that can be interpreted as useful or interesting knowledge. 

Scaling and robustness properties of modeling algorithms for large noisy datasets are also of 

fundamental interest. 

                                                                       

 

Figure 4 Overview of Kdd 

 

2.2 Goals 

 

I. Selection 

II. Preprocessing 

III. Transformation 

IV. Data Mining 
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V. Interpretation/Evaluation 

VI. Target Knowledge Data 

VII. Preprocessed Data 

VIII. Transformed Data 

IX. Patterns Data 

 

It lies in this multidisciplinary field and how they fit together. We define the KDD process  as: 

The nontrivial process of identifying valid, novel, potentially useful, and ultimately 

understandable patterns in data. Throughout this article, the term pattern goes beyond its 

traditional sense to include models or structure in data. In this definition, data comprises a set of 

facts (e.g., cases in a database), and pattern is an expression in some language describing a subset 

of the data (or a model applicable to that subset). The term process implies there are many steps 

involving data preparation, search for patterns, knowledge evaluation, and refinement—all 

repeated in multiple iterations. The process is assumed to be nontrivial in that it goes beyond 

computing closed-form quantities; that is, it must involve search for structure, models, patterns, 

or parameters. The discovered patterns should be valid for new data with some degree of 

certainty. We also want patterns to be novel (at least to the system, and 

preferably to the user) and potentially useful for the user or task. Finally, the patterns should be 

understandable—if not immediately, then after some 

post processing. This definition implies we can define quantitative measures for evaluating 

extracted patterns. In many cases, it is possible to define measures of certainty (e.g., estimated 

classification accuracy) or utility (e.g., gain, perhaps in dollars saved due to better predictions or 

speed-up in a system’s response time). Such notions as novelty and understandability are much 

more subjective. In certain contexts, understandability can be estimated through simplicity (e.g., 

number of bits needed to describe a pattern). An important notion, called interestingness, is 

usually taken as an overall measure of pattern value, combining validity, novelty, usefulness, and 

simplicity. Interestingness functions can be explicitly defined or can be manifested implicitly 

through an ordering placed by the KDD system on the discovered patterns or models. Data 

mining is a step in the KDD process consisting of an enumeration of patterns (or models) over 

the data, subject to some acceptable computational-efficiency limitations. Since the patterns 

enumerable over any finite dataset are potentially infinite, and because the enumeration of 
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patterns involves some form of search in a large space, computational constraints place severe 

limits on the subspace that can be explored by a data mining algorithm. The KDD process is 

outlined in Figure 1. (We did not show all the possible arrows to indicate that loops can, and do, 

occur between any two steps in the process; also not shown is the system's performance element, 

which uses knowledge to make decisions or take actions.) The KDD process is interactive and 

iterative (with many decisions made by the user), involving numerous steps, summarized as: 

I. Learning the application domain: includes relevant prior knowledge and the goals of the 

application 

II. Creating a target dataset: includes selecting a dataset or focusing on a subset of variables or 

data samples on which discovery is to be performed 

III. Data cleaning and preprocessing: includes basic operations, such as removing noise or 

outliers if appropriate, collecting the necessary information to model or account for noise, 

deciding on strategies for handling missing data fields, and accounting for time sequence 

information and known changes, as well as deciding DBMS issues, such as data types, 

schema, and mapping of missing and unknown values 

IV. Data reduction and projection:includes finding useful features 

to represent the data, depending on the goal of the task, and using dimensionality reduction or 

transformation methods to reduce the effective number of variables under consideration or to 

find invariant representations for the data 
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 DATA CLUSTERING 
 

Data clustering, by definition, is an exploratory and descriptive data analysis technique, which 

has gained a lot of attention, e.g., in statistics, data mining, pattern recognition etc. It is an 

explorative way to investigate multivariate data sets that contain possibly many different data 

types. These data sets differ from each other in size with respect to a number of objects and 

dimensions, or they contain different data types etc. Undoubtedly, the data clustering belongs to 

the core methods of data mining, in which one focuses on large data sets with unknown 

underlying structure. The intention of this report is to be an introduction into specific parts of this 

methodology called cluster analysis. So called partitioning-based clustering methods are flexible 

methods based on iterative relocation of data points between clusters. The quality of the 

solutions is measured by a clustering criterion. At each iteration, the iterative relocation 

algorithms reduce the value of the criterion function until convergence. By changing the 

clustering criterion, it is possible to construct robust clustering methods that are more insensitive 

to erroneous and missing data values than classical methods. Surprisingly, most of ‖real-data‖ is 

of this form . Hence, in the end of this report, an example of robust partitioning-based cluster 

analysis techniques is presented. Next to this introduction, various definitions for cluster analysis 

and clusters are discussed. Thereafter, in the third section, a principle of partitioning-based 

clustering is presented with numerous examples. A special treatment is given for the well-known 

K-means algorithm. The fourth chapter consists of discussion about robust clustering methods. In 

the sixth section, a novel partitioning-based method, which is robust against outliers and based 

on the iterative relocation principle including the treatment for missing values, is introduced. The 

last section contains the final summary for the report. 

 

3.1 What is cluster analysis ? 
Cluster analysis is an important element of exploratory data analysis. It is typically directed to 

study the internal structure of a complex data set, which can not be described only through the 

classical second order statistics . Already in 1967, MacQueen  stated that clustering applications 

are considered more as an aid for investigators to obtain qualitative and quantitative 

understanding of a large amount of multivariate data than only a computational process that finds 

some unique and definitive grouping for the data. Later, due to its unsupervised, descriptive and 
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summarizing nature, data clustering has also become a core method of data mining and 

knowledge discovery. Especially during the last decade, the increasing number of large 

multidimensional data collections have stepped up the development of new clustering algorithms 

. Generally speaking, the classification of different things is a natural process for human beings. 

There exist numerous natural examples about different classifications for living things in the 

world. For example, various animal and plant species are the results of unsupervised 

categorization processes made by humans (more precisely, domain experts), who have divided 

objects into separate classes by using their observable characteristics . There were no labels for 

the species before someone generated them. A child classifies things in an unsupervised manner 

as well. By observing similarities and dissimilarities between different objects, a child groups 

those objects into the same or different group. At the time before the computers came available, 

clustering tasks had to be performed manually. Although it is easy to visually perceive groups 

from a two- or three-dimensional data set, such ‖human clustering‖ is not likely an inconsistent 

procedure, since different individuals see things in different ways. The measure of similarity, or 

the level and direction one is looking at the data, are not consistent between different individuals. 

By direction we mean the set of features (or combinations of features) that one exploits when 

classifying objects. For example, people can be classified into a number of groups according to 

the economical status or the annual alcohol consumption etc. These groupings will not 

necessarily capture the same individuals . The direction where the user is looking at the data set 

depends, for example, on her/his background (position, education, profession, culture etc.). It is 

clear that such things vary a lot among different individuals . Numerous definitions for cluster 

analysis have been proposed in the literature. The definitions differ slightly from each other in 

the way to emphasize the different aspects of the methodology. In one of the earliest books on 

data clustering, Underberg defines cluster analysis as a task, which aims to ‖finding of ”natural 

groups” from a data set, when little or nothing is known about the category structure‖. Bailey  

who surveys the methodology from the sociological perspective, defines that ‖cluster analysis 

seeks to divide a set of objects into a small number of relatively homogeneous groups on the 

basis of their similarity over N variables.‖ N is the total number of variables in this case. 

Moreover, Bailey notes that ‖Conversely variables can be grouped according to their similarity 

across all objects.‖. Hence, the interest of cluster analysis may be in either grouping of objects or 

variables, or even both . On the other hand, it is not rare to reduce the number of variables before 
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the actual object grouping, because the data can be easily compressed by substituting the 

correlating variables with one summarizing and representative variable. From the statistical 

pattern recognition perspective, Jain et al.  define cluster analysis as ‖the organization of 

collection of patterns (usually represented as a vector of measurements, or a point in a 

multidimensional space) into clusters based on similarity‖. Hastie et  define the goal of cluster 

analysis from his statistical perspective as a task ‖to partition the observations into groups 

(”clusters”) such that the pairwise dissimilarities between those assigned to the same cluster 

tend to be smaller than those in different clusters‖. Tan et al.  states from data mining point of 

view that ‖Cluster analysis divides data into groups that are meaningful, useful, or both.‖. By 

meaningful they refer to clusters that capture the natural structure of a data set, whereas the 

useful clusters serve only as an initial setting for some other method, such as PCA (principal 

component analysis) or regression methods. For these methods, it may be useful to summarize 

the data sets beforehand. The first definition emphasizes the unknown structure of the target data 

sets, which is one of the key assumptions in cluster analysis. This is the main difference between 

clustering (unsupervised classification) and classification (supervised classification). In a 

classification task the category structure is known a priori, whereas the cluster analysis focuses 

on the object collections, whose class labels are unknown. Jain et al.  suggest that the class labels 

and all other information about data sources, have an influence to the result interpretation, but 

not to the cluster formation process. On the other hand, the domain understanding is often of use 

during the configuration of initial parameters or correct number of clusters. The second and third 

definitions stress the multi-dimensionality of the data objects (observations, records etc.). This is 

an important notion, since the grouping of objects that possess more than three variables is no 

easy matter for a human being without automated methods. Naturally, most of the 

aforementioned definitions address the notion of similarity. Similarity is one of the key issues of 

cluster analysis, which means that one of the most influential elements of cluster analysis is the 

choice of an appropriate similarity measure. The similarity measure selection is a data-dependent 

problem. Anderberg does not use term ‖similarity‖, but instead he talk about the degree of 

‖natural association‖ among objects. Based on the aforementioned definitions and notions, the 

cluster analysis is summarized as ‖analysisof the unknown structure of a multidimensional data 

set by determining a (small) number ofmeaningful groups of objects or variables according to a 

chosen (dis)similarity measure‖. Inthis definition, the term meaningful is understood identically 
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with Tan et al. Even though the visual perception of data clusters is a suitable method up tothree 

dimensions, in more than three dimensional space the visual perception turns to a complex task 

and computers become indispensable. As we know that a human classifier is an inconsistent 

classifier, also different algorithms produce different groupings even for the same data set. 

Hence, there exist not any universally best clustering algorithm. 

 

 

3.2  The main elements of cluster analysis 

Although the intuitive idea behind cluster analysis is simple, the successful completion of the 

tasks presume a large number of correct decisions and choices from several alternatives. 

Anderberg  states that there appears to be at least nine major elements in a cluster analysis study 

before the final results can be attained. Because the current real world data sets contain missing 

values as well, we complete this element list with data presentation and missing data strategy . 

I. Data presentation. 

II. Choice of objects. 

III. Choice of variables. 

IV. What to cluster: data units or variables. 

V. Normalization of variables. 

VI. Choice of (dis)similarity measures. 

VII. Choice of clustering criterion (objective function). 

VIII. Choice of missing data strategy. 

IX. Algorithms and computer implementation (and their reliability, e.g., convergence) 

X. Number of clusters. 

XI. Interpretation of results. 

These are the most significant parts of the general clustering process. Jain et al.  suggest that the 

strategies used in data collection, data representation, normalization and cluster validity are as 

important as the clustering strategy itself. According to Hastie et al.  choice of the best 

(dis)similarity measure is even more important than the choice of clustering algorithms. This list 

could be also completed by validation of the resulting cluster solution . Validation is, on the 

other hand, closely related to the estimation of the number of clusters and to the result 
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interpretation. For example, the visual exploration of the obtained solutions can be considered a 

kind of validation technique. 

3.2.1 Laplace distributions 

‖Do not forget that clusters are, in large part, on the eye of the beholder.‖ 

 

 

Figure 1: Illustration about the ambiguous number of clusters. On the left, there are seven 

clusters that are generated from a normal distribution using a set of different location and scatter 

parameters. Correspondingly, on the right, there are seven clusters that are drawn from the 

Laplace distribution using the same location and scatter parameters as in the normal case. It is 

not straightforward to say how many clusters there are, especially in the Laplace-case, because 

the clusters are inherently more spread in all directions. Although the visual recognition of 

clusters from a two-dimensional view is usually easy, it is hard to give a formal definition for a 

cluster. Many authors with contributions in the clustering literature address the lack of the 

universal and formal definition of a cluster. However, at the same time, they agree that giving 

one is an intractable problem . The notion of a cluster depends on the application and it is usually 

weakly defined . The goal of the cluster analysis task effects to the definition as well. Depending 

on the application, clusters have different shapes and size. Moreover, even the number of 

inherent clusters in the data is not unambiguous, because it depends on the resolution (local 

versus global)one is looking at the data . See Figure 1. 
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Typically clustering methods yield a data description in terms of clusters that possess strong 

internal similarities . Often one defines the cluster in terms of internal cohesion (homogeneity) 

and external isolation (separation). Hence, the cluster is often simply considered as a collection 

of objects, which are similar to one another within the same cluster and dissimilar to the objects 

in other clusters . An interesting connection to the software engineering is recognized, when we 

notice that the principle is very similar with the common software architecture rule on‖loose 

coupling and strong cohesion‖. Such architecture aims to localize effects caused by code 

modifications . The software components with a large number of mutual links can be considered 

close to each other. Hence, a good software architecture should contain clearly separated 

‖component clusters‖. Some common definitions are collected from the clustering literature and 

given below . 

‖A Cluster is a set of entities which are alike, and entities from different clusters are not alike.‖ 

‖A cluster is an aggregation of points in the space such that the distance between two points in 

the cluster is less than the distance between any point in the cluster and any point not in it.‖ 

‖Clusters may be described as connected regions of a multidimensional space containing a 

relatively high density of points, separated from other such regions by a region containing a 

relatively low density of points.‖ 

Although the cluster is an application dependent concept, all clusters are compared with respect 

to certain properties: density, variance, dimension, shape, and separation 

The cluster should be a tight and compact high-density region of data points when compared to 

the other areas of space. From compactness and tightness, it follows that the degree of dispersion 

(variance) of the cluster is small. The shape of the cluster is not known a priori. It is determined 

by the used algorithm and clustering criteria. Separation defines the degree of possible cluster 

overlap and the distance to each other. Fuzzy clustering methods produce overlapping clusters by 

assigning the degree of the membership to the clusters for each point . Traditional partitioning 

clustering methods, such as K-Means, and hierarchical methods produce separated clusters , 

which means that each data point is assigned to only one cluster. A cluster is defined in a 

dimension of its variables and, if having a round shape, it is possible to determine its radius. 

These are the measurable features for any cluster ,but it is not possible to assign universal values 

or relations to them. Perhaps, the most problematic features are shape and size. 
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3.2.2 K-means clustering 

Basically K-means is an iterative process that divides a given data set into K disjoint groups. K-

means is perhaps the most widely used clustering principle, and especially, the best-known of the 

partitioning-based clustering methods that utilize prototypes for cluster presentation (a.k.a 

representative-based algorithm by Estivill- Castro [35]). Quality of K-means clustering is 

measured through the within-cluster squared error criterion (e.g., [5, p.165] or [58]) 

 

 

Figure 2: A sample (n = 30) from a two dimensional normal distribution f(x) = 1 2N2((0 0)T ; I2) 

+ 1 2N2((10 10)T ; I2) in the left figure is clustered using the hierarchical single-linkage method. 

The result is visualized using a dendrogram tree. 

 

where c is a code vector for partition that contains the cluster membership for each object. 

m(c)iis the mean of the cluster, where the data point xi is assigned. The sample mean leads to a 

unique minimum of the within-cluster variance, from which it follows that the problem actually 

corresponds to the minimization of PKi=1 trace(Wi), where Wi is the within-group covariance 

matrix of the ith cluster. Thus, the K means clustering is also referred to as a variance 

minimization technique . Actually in 1963, before the invention of any K-means algorithm, the 
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minimum variance optimization technique was used by Ward , who proposed an hierarchical 

algorithm that begins with each data points as its own cluster and proceed by combining points 

that result in the minimum increase in the error sum of squares value (This method is later 

referred to both as the Ward’s method,  and the pairwise nearest neighbor algorithm (PNN), e.g.. 

As such, K-means clustering tends to produce compact clusters, but not take into account the 

between-cluster distances. The use of the squared l2-norm makes the problem formulation 

extremely sensitive towards large errors, which means that the formulation is non-robust in 

statistical sense However, due to its implementational simplicity and computational efficiency, 

K-means has remained its position as an extremely popular principle for many kind of cluster 

analysis tasks. It also requires less memory resources than, for instance, hierarchical methods, in 

which computation is often based on the dissimilarity matrix. By courtesy of its computational 

efficiency, K-means is also applied to initialization of other more expensive methods (e.g., EM 

algorithm . The K-means algorithm, which is used to minimize the problem of K-means, has a 

large number of variants which are described next. 

 

 

 

3.3 K-means algorithms 

 

K-means type grouping has a long history. For instance, already in 1958, Fisher  investigated this 

problem in one-dimensional case as a grouping problem. At that time, algorithms and computer 

power were still insufficient for larger-scale problems, but the problem was shown to be 

interesting with concrete applications. Hence, more efficient procedures than exhaustive search 

was needed. The seminal versions of the K-means procedure were introduced in the Sixties by 

Forgy  (c.f. discussion in and MacQueen These are perhaps the most widely used versions of the 

K-means algorithms .The main difference between Forgy’s and MacQueen’s 

algorithms is the order, in which the data points are assigned to the clusters and the cluster 

centers are updated. The MacQueen’s K-means algorithm updates the ‖winning‖ cluster center 

immediately after every assignment of a data point and all cluster centers one more time after all 

data points have become assigned to the clusters. The Forgy’s method updates the cluster centers 
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only after all data points are assigned to the closest cluster centers. Moreover, another difference 

is that the Forgy’s method iterates until converged while the MacQueen’s basic algorithm 

performs only one complete pass through data. The starting points of the MacQueen’s algorithm 

are often the first K data points in the data set. In 1982, Lloyd [88] presented a quantization 

algorithms for pulse-codemodulation (PCM) of analog signals. 

 

 

3.4 Drawbacks 

 

Despite the wide popularity of the ordinary K-means algorithms, there are some significant 

defects that have led to development of numerous alternative versions during the past years  

Sensitivity to initial configuration. Since the basic algorithms are local search heuristics and K-

means cost function is non-convex, it is very sensitive to the initial configuration and the 

obtained partition is often only suboptimal (notthe globally best partition). 

Lack of robustness.As the sample mean and variance are very sensitive estimate against outliers. 

So-called breakdown point is zero, which means that one gross errors may distort the estimate 

completely. The obvious consequent is that the k-means problem formulation is highly non-

robust as well. Unknown number of clusters.Since the algorithm is a kind ‖flat‖ or ‖non-

hierarchical‖method , it does not provide any information about the number of clusters. 
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 Signal processing 
 

is an area of systems engineering, electrical engineering and applied mathematics that 

deals with operations on or analysis of signals, or measurements of time-varying or 

spatially varying physical quantities. 

Signals of interest can include 

I. sound, 

II. images, and sensor data for example 

III. biological data such as electro-cardio-grams, 

IV. control system signals, 

V. telecommunication transmission signals, and many others. 

 

 

Advantage of using signal processing is that we can implement dimensionality reduction 

which saves time. 

 

 

4.1: Signal Processing Techniques 

4.1.1 The Fourier transform: 

named for Joseph Fourier, is a mathematical transform with many applications in physics and 

engineering. Very commonly, it expresses a mathematical function of time as a function of 

frequency, known as its frequency spectrum. The Fourier inversion theorem details this 

relationship. For instance, the transform of a musical chord made up of pure notes (without 

overtones) expressed as amplitude as a function of time, is a mathematical representation of the 

amplitudes and phases of the individual notes that make it up. The function of time is often 

http://en.wikipedia.org/wiki/Joseph_Fourier
http://en.wikipedia.org/wiki/Transformation_%28function%29
http://en.wikipedia.org/wiki/Physics
http://en.wikipedia.org/wiki/Engineering
http://en.wikipedia.org/wiki/Function_%28mathematics%29
http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Frequency_spectrum
http://en.wikipedia.org/wiki/Fourier_inversion_theorem
http://en.wikipedia.org/wiki/Musical_chord
http://en.wikipedia.org/wiki/Overtone
http://en.wikipedia.org/wiki/Phase_%28waves%29
http://en.wikipedia.org/wiki/Time
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called the time domain representation, and the frequency spectrum the frequency domain 

representation. The inverse Fourier transform expresses a frequency domain function in the time 

domain. Each value of the function is usually expressed as a complex number (called complex 

amplitude) that can be interpreted as a magnitude and a phase component. The term "Fourier 

transform" refers to both the transform operation and to the complex-valued function it produces. 

In the case of a periodic function, such as a continuous, but not necessarily sinusoidal, musical 

tone, the Fourier transform can be simplified to the calculation of a discrete set of complex 

amplitudes, called Fourier series coefficients. Also, when a time-domain function is sampled to 

facilitate storage or computer-processing, it is still possible to recreate a version of the original 

Fourier transform according to the Poisson summation formula, also known as discrete-time 

Fourier transform. 

 

Definition 

There are several common conventions for defining the Fourier transform ƒ̂ of an integrable 

function ƒ: R → C (Kaiser 1994, p. 29), (Rahman 2011, p. 11). This article will use the 

definition: 

,   for every real number ξ. 

When the independent variable x represents time (with SI unit of seconds), the transform variable 

ξ represents frequency (in hertz). Under suitable conditions, ƒ can be reconstructed from ƒ̂ by the 

inverse transform: 

for every real number x. 

The statement that ƒ can be reconstructed from ƒ̂ is known as the Fourier integral theorem, and 

was first introduced in Fourier'sAnalytical Theory of Heat  , although what would be considered 

http://en.wikipedia.org/wiki/Time_domain
http://en.wikipedia.org/wiki/Frequency_domain
http://en.wikipedia.org/wiki/Complex_number
http://en.wikipedia.org/wiki/Periodic_function
http://en.wikipedia.org/wiki/Sine_wave
http://en.wikipedia.org/wiki/Fourier_series
http://en.wikipedia.org/wiki/Sampling_%28signal_processing%29
http://en.wikipedia.org/wiki/Poisson_summation_formula
http://en.wikipedia.org/wiki/Discrete-time_Fourier_transform
http://en.wikipedia.org/wiki/Discrete-time_Fourier_transform
http://en.wikipedia.org/wiki/Fourier_transform#Other_conventions
http://en.wikipedia.org/wiki/Lebesgue_integration
http://en.wikipedia.org/wiki/Fourier_transform#CITEREFKaiser1994
http://en.wikipedia.org/wiki/Fourier_transform#CITEREFRahman2011
http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/SI
http://en.wikipedia.org/wiki/Second
http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Hertz
http://en.wikipedia.org/wiki/Fourier_inversion_formula
http://en.wikipedia.org/wiki/Joseph_Fourier
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a proof by modern standards was not given until much later .The functions ƒ and ƒ̂ often are 

referred to as a Fourier integral pair or Fourier transform pair. 

For other common conventions and notations, including using the angular frequency ω instead of 

the frequencyξ, see Other conventions and Other notations below. The Fourier transform on 

Euclidean space is treated separately, in which the variable x often represents position and ξ 

momentum. 

The motivation for the Fourier transform comes from the study of Fourier series. In the study of 

Fourier series, complicated but periodic functions are written as the sum of simple waves 

mathematically represented by sines and cosines. The Fourier transform is an extension of the 

Fourier series that results when the period of the represented function is lengthened and allowed 

to approach infinity. 

Due to the properties of sine and cosine, it is possible to recover the amplitude of each wave in a 

Fourier series using an integral. In many cases it is desirable to use Euler's formula, which states 

that e
2πiθ

= cos(2πθ) + i sin(2πθ), to write Fourier series in terms of the basic waves e
2πiθ

. This has 

the advantage of simplifying many of the formulas involved, and provides a formulation for 

Fourier series that more closely resembles the definition followed in this article. Re-writing sines 

and cosines as complex exponentials makes it necessary for the Fourier coefficients to be 

complex valued. The usual interpretation of this complex number is that it gives both the 

amplitude (or size) of the wave present in the function and the phase (or the initial angle) of the 

wave. These complex exponentials sometimes contain negative "frequencies". If θ is measured in 

seconds, then the wavese
2πiθ

 and e
−2πiθ

 both complete one cycle per second, but they represent 

different frequencies in the Fourier transform. Hence, frequency no longer measures the number 

of cycles per unit time, but is still closely related. 

There is a close connection between the definition of Fourier series and the Fourier transform for 

functions ƒ which are zero outside of an interval. For such a function, we can calculate its 

Fourier series on any interval that includes the points where ƒ is not identically zero. The Fourier 

transform is also defined for such a function. As we increase the length of the interval on which 

we calculate the Fourier series, then the Fourier series coefficients begin to look like the Fourier 

http://en.wikipedia.org/wiki/Angular_frequency
http://en.wikipedia.org/wiki/Omega
http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Fourier_transform#Other_conventions
http://en.wikipedia.org/wiki/Fourier_transform#Other_notations
http://en.wikipedia.org/wiki/Fourier_transform#Fourier_transform_on_Euclidean_space
http://en.wikipedia.org/wiki/Fourier_transform#Fourier_transform_on_Euclidean_space
http://en.wikipedia.org/wiki/Fourier_series
http://en.wikipedia.org/wiki/Sine
http://en.wikipedia.org/wiki/Cosine
http://en.wikipedia.org/wiki/Euler%27s_formula
http://en.wikipedia.org/wiki/Complex_exponentials
http://en.wikipedia.org/wiki/Amplitude
http://en.wikipedia.org/wiki/Phase_%28waves%29
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transform and the sum of the Fourier series of ƒ begins to look like the inverse Fourier transform. 

To explain this more precisely, suppose that T is large enough so that the interval [−T/2,T/2] 

contains the interval on which ƒ is not identically zero. Then the n-th series coefficient cn is 

given by: 

 

Comparing this to the definition of the Fourier transform, it follows that cn = ƒ̂(n/T) since ƒ(x) is 

zero outside [−T/2,T/2]. Thus the Fourier coefficients are just the values of the Fourier transform 

sampled on a grid of width 1/T. As T increases the Fourier coefficients more closely represent 

the Fourier transform of the function. 

Under appropriate conditions, the sum of the Fourier series of ƒ will equal the function ƒ. In 

other words, ƒ can be written: 

 

where the last sum is simply the first sum rewritten using the definitions ξn = n/T, and Δξ = (n + 

1)/T − n/T = 1/T. 

This second sum is a Riemann sum, and so by letting T → ∞ it will converge to the integral for 

the inverse Fourier transform given in the definition section. Under suitable conditions this 

argument may be made precise . 

In the study of Fourier series the numbers cn could be thought of as the "amount" of the wave 

present in the Fourier series of ƒ. Similarly, as seen above, the Fourier transform can be thought 

of as a function that measures how much of each individual frequency is present in our function 

ƒ, and we can recombine these waves by using an integral (or "continuous sum") to reproduce 

the original function. 

 

http://en.wikipedia.org/wiki/Riemann_sum
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4.1.2 Fast Fourier Transform: 

A fast Fourier transform (FFT) is an efficient algorithm to compute the discrete Fourier 

transform (DFT) and its inverse. There are many distinct FFT algorithms involving a wide range 

of mathematics, from simple complex-number arithmetic to group theory and number theory. 

A DFT decomposes a sequence of values into components of different frequencies. This 

operation is useful in many fields (see discrete Fourier transform for properties and applications 

of the transform) but computing it directly from the definition is often too slow to be practical. 

An FFT is a way to compute the same result more quickly: computing a DFT of N points in the 

naïve way, using the definition, takes O(N
2
) arithmetical operations, while an FFT can compute 

the same result in only O(N log N) operations. The difference in speed can be substantial, 

especially for long data sets where N may be in the thousands or millions—in practice, the 

computation time can be reduced by several orders of magnitude in such cases, and the 

improvement is roughly proportional toN / log(N). This huge improvement made many DFT-

based algorithms practical; FFTs are of great importance to a wide variety of applications, from 

digital signal processing and solving partial differential equations to algorithms for quick 

multiplication of large integers. 

The most well known FFT algorithms depend upon the factorization of N, but there are FFTs 

with O(N log N) complexity for all N, even for prime N. Many FFT algorithms only depend on 

the fact that is an thprimitive root of unity, and thus can be applied to analogous 

transforms over any finite field, such as number-theoretic transforms. Since the inverse DFT is 

the same as the DFT, but with the opposite sign in the exponent and a 1/N factor, any FFT 

algorithm can easily be adapted for it. 

The FFT has been described as ―the most important numerical algorithm of our lifetime‖ 

 

 

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Discrete_Fourier_transform
http://en.wikipedia.org/wiki/Discrete_Fourier_transform
http://en.wikipedia.org/wiki/Discrete_Fourier_transform
http://en.wikipedia.org/wiki/Complex_number
http://en.wikipedia.org/wiki/Group_theory
http://en.wikipedia.org/wiki/Number_theory
http://en.wikipedia.org/wiki/Sequence
http://en.wikipedia.org/wiki/Discrete_Fourier_transform
http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Orders_of_magnitude
http://en.wikipedia.org/wiki/Proportionality_%28mathematics%29
http://en.wikipedia.org/wiki/Digital_signal_processing
http://en.wikipedia.org/wiki/Partial_differential_equation
http://en.wikipedia.org/wiki/Multiplication_algorithm
http://en.wikipedia.org/wiki/Factorization
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Prime_number
http://en.wikipedia.org/wiki/Primitive_root_of_unity
http://en.wikipedia.org/wiki/Finite_field
http://en.wikipedia.org/wiki/Number-theoretic_transform
http://en.wikipedia.org/wiki/Numerical_analysis
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4.1.3 Wavelet Transform 

The Continuous Wavelet Transform (CWT) associated with the 

mother wavelet ψ (t) is defined as: 

 

 

 

squareintegrable function, a is the scaling parameter, b is the translation parameter and , ( ) a b ψ 

t is the dilation and translation  of the mother wavelet defined as: 

 

This CWT [9][10] provides a redundant representation of the signal in the sense that the entire 

support of W(a,b) need not be used to recover y(t) . By only evaluating the CWT at dyadic 

intervals, the signal can be represented compactly as: 

 

where ( ) j d k is called the discrete wavelet transform (DWT) of y(t) associated with the wavelet 

is a scaling function ϕ (t) . The scaling function along with the wavelet creates a multi resolution 

analysis (MRA) of the signal. The scaling function of one level can be represented as a sum of a 

scaling function of the next finer level. 

 

 

The wavelet is also related to the scaling function by 
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scaling function used to represent the signal as 

 

Where jo represents the coarsest scale spanned by the scaling function.The scaling and wavelet 

coefficients of the signal y(t) can be evaluated by using a filter bank of quadrature mirror 

filters (QMF). 

 

 

Equations  and  show that the coefficients at a coarser level can be attained by passing the 

coefficients at the finer level to their respective filters followed by a decimation of two. The 

decomposition process is shown in Fig.5.1. For a signal that is sampled at a frequency higher 

than the Nyquist frequency, the samples are used as 

1 ( ) j c + m 

. A three level decomposition of time series data obtained from power signal disturbances, 

sampled at 12.8 kHz is shown below. The approximation coefficients contain the low frequency 

information while the detail coefficients contain the high frequency information of the 

oscillatory transient. 
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 Iris flower data set 

The Iris flower data set or Fisher's Iris data set is a multivariate data set introduced by Sir Ronald 

Fisher (1936) as an example of discriminant analysis. It is sometimes called Anderson's Iris data 

set because Edgar Anderson collected the data to quantify the morphologic variation 

of Iris flowers of three related species. Two of the three species were collected in the Gaspé 

Peninsula "all from the same pasture, and picked on the same day and measured at the same time 

by the same person with the same apparatus". 

The data set consists of 50 samples from each of three species of Iris (Iris setosa, Iris 

virginica and Iris versicolor). Four features were measured from each sample: the length and the 

width of the sepals and petals, in centimetres. Based on the combination of these four features, 

Fisher developed a linear discriminant model to distinguish the species from each other. 

 

5.1 Use of the dataset: 

Based on Fisher's linear discriminant model, this data set became a typical test case for 

many classification techniques in machine learning such as support vector machines. 

The use of this data set in cluster analysis however is uncommon, since the data set only contains 

two clusters with rather obvious separation. One of the clusters contains Iris setosa, while the 

other cluster contains both Iris virginica and Iris versicolor and is not separable without the 

species information Fisher used. This makes the data set a good example to explain the 

difference between supervised and unsupervised techniques in data mining: Fisher's linear 

discriminant model can only be obtained when the object species are known: class labels and 

clusters are not necessarily the same.  

Nevertheless, all three species of Iris are separable in the projection on the nonlinear branching 

principal component
.
 The data set is approximated by the closest tree with some penalty for the 

excessive number of nodes, bending and stretching. Then the so-called "metro map" is 

http://en.wikipedia.org/w/index.php?title=Iris_setosa&action=edit&redlink=1
http://en.wikipedia.org/wiki/Iris_virginica
http://en.wikipedia.org/wiki/Iris_virginica
http://en.wikipedia.org/wiki/Iris_virginica
http://en.wikipedia.org/wiki/Iris_versicolor
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constructed. The data points are projected into the closest node. For each node the pie diagram of 

the projected points is prepared. The area of the pie is proportional to the number of the projected 

points.  

 

k-means clustering result and actual species visualized . 

5.2 Data set 
Table 1 : Fisher’s Iris data 

Fisher's Iris Data 

Sepal length Sepal width Petal length Petal width Species 

5.1 3.5 1.4 0.2 I. setosa 

4.9 3.0 1.4 0.2 I. setosa 

4.7 3.2 1.3 0.2 I. setosa 

4.6 3.1 1.5 0.2 I. setosa 
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Fisher's Iris Data 

Sepal length Sepal width Petal length Petal width Species 

5.0 3.6 1.4 0.2 I. setosa 

5.4 3.9 1.7 0.4 I. setosa 

4.6 3.4 1.4 0.3 I. setosa 

5.0 3.4 1.5 0.2 I. setosa 

4.4 2.9 1.4 0.2 I. setosa 

4.9 3.1 1.5 0.1 I. setosa 

5.4 3.7 1.5 0.2 I. setosa 

4.8 3.4 1.6 0.2 I. setosa 

4.8 3.0 1.4 0.1 I. setosa 

4.3 3.0 1.1 0.1 I. setosa 

5.8 4.0 1.2 0.2 I. setosa 

5.7 4.4 1.5 0.4 I. setosa 

5.4 3.9 1.3 0.4 I. setosa 
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Fisher's Iris Data 

Sepal length Sepal width Petal length Petal width Species 

5.1 3.5 1.4 0.3 I. setosa 

5.7 3.8 1.7 0.3 I. setosa 

5.1 3.8 1.5 0.3 I. setosa 

5.4 3.4 1.7 0.2 I. setosa 

5.1 3.7 1.5 0.4 I. setosa 

4.6 3.6 1.0 0.2 I. setosa 

5.1 3.3 1.7 0.5 I. setosa 

4.8 3.4 1.9 0.2 I. setosa 

5.0 3.0 1.6 0.2 I. setosa 

5.0 3.4 1.6 0.4 I. setosa 

5.2 3.5 1.5 0.2 I. setosa 

5.2 3.4 1.4 0.2 I. setosa 

4.7 3.2 1.6 0.2 I. setosa 
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Fisher's Iris Data 

Sepal length Sepal width Petal length Petal width Species 

4.8 3.1 1.6 0.2 I. setosa 

5.4 3.4 1.5 0.4 I. setosa 

5.2 4.1 1.5 0.1 I. setosa 

5.5 4.2 1.4 0.2 I. setosa 

4.9 3.1 1.5 0.2 I. setosa 

5.0 3.2 1.2 0.2 I. setosa 

5.5 3.5 1.3 0.2 I. setosa 

4.9 3.6 1.4 0.1 I. setosa 

4.4 3.0 1.3 0.2 I. setosa 

5.1 3.4 1.5 0.2 I. setosa 

5.0 3.5 1.3 0.3 I. setosa 

4.5 2.3 1.3 0.3 I. setosa 

4.4 3.2 1.3 0.2 I. setosa 
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Fisher's Iris Data 

Sepal length Sepal width Petal length Petal width Species 

5.0 3.5 1.6 0.6 I. setosa 

5.1 3.8 1.9 0.4 I. setosa 

4.8 3.0 1.4 0.3 I. setosa 

5.1 3.8 1.6 0.2 I. setosa 

4.6 3.2 1.4 0.2 I. setosa 

5.3 3.7 1.5 0.2 I. setosa 

5.0 3.3 1.4 0.2 I. setosa 

7.0 3.2 4.7 1.4 I. versicolor 

6.4 3.2 4.5 1.5 I. versicolor 

6.9 3.1 4.9 1.5 I. versicolor 

5.5 2.3 4.0 1.3 I. versicolor 

6.5 2.8 4.6 1.5 I. versicolor 

5.7 2.8 4.5 1.3 I. versicolor 
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Fisher's Iris Data 

Sepal length Sepal width Petal length Petal width Species 

6.3 3.3 4.7 1.6 I. versicolor 

4.9 2.4 3.3 1.0 I. versicolor 

6.6 2.9 4.6 1.3 I. versicolor 

5.2 2.7 3.9 1.4 I. versicolor 

5.0 2.0 3.5 1.0 I. versicolor 

5.9 3.0 4.2 1.5 I. versicolor 

6.0 2.2 4.0 1.0 I. versicolor 

6.1 2.9 4.7 1.4 I. versicolor 

5.6 2.9 3.6 1.3 I. versicolor 

6.7 3.1 4.4 1.4 I. versicolor 

5.6 3.0 4.5 1.5 I. versicolor 

5.8 2.7 4.1 1.0 I. versicolor 

6.2 2.2 4.5 1.5 I. versicolor 
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Fisher's Iris Data 

Sepal length Sepal width Petal length Petal width Species 

5.6 2.5 3.9 1.1 I. versicolor 

5.9 3.2 4.8 1.8 I. versicolor 

6.1 2.8 4.0 1.3 I. versicolor 

6.3 2.5 4.9 1.5 I. versicolor 

6.1 2.8 4.7 1.2 I. versicolor 

6.4 2.9 4.3 1.3 I. versicolor 

6.6 3.0 4.4 1.4 I. versicolor 

6.8 2.8 4.8 1.4 I. versicolor 

6.7 3.0 5.0 1.7 I. versicolor 

6.0 2.9 4.5 1.5 I. versicolor 

5.7 2.6 3.5 1.0 I. versicolor 

5.5 2.4 3.8 1.1 I. versicolor 

5.5 2.4 3.7 1.0 I. versicolor 
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Fisher's Iris Data 

Sepal length Sepal width Petal length Petal width Species 

5.8 2.7 3.9 1.2 I. versicolor 

6.0 2.7 5.1 1.6 I. versicolor 

5.4 3.0 4.5 1.5 I. versicolor 

6.0 3.4 4.5 1.6 I. versicolor 

6.7 3.1 4.7 1.5 I. versicolor 

6.3 2.3 4.4 1.3 I. versicolor 

5.6 3.0 4.1 1.3 I. versicolor 

5.5 2.5 4.0 1.3 I. versicolor 

5.5 2.6 4.4 1.2 I. versicolor 

6.1 3.0 4.6 1.4 I. versicolor 

5.8 2.6 4.0 1.2 I. versicolor 

5.0 2.3 3.3 1.0 I. versicolor 

5.6 2.7 4.2 1.3 I. versicolor 
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Fisher's Iris Data 

Sepal length Sepal width Petal length Petal width Species 

5.7 3.0 4.2 1.2 I. versicolor 

5.7 2.9 4.2 1.3 I. versicolor 

6.2 2.9 4.3 1.3 I. versicolor 

5.1 2.5 3.0 1.1 I. versicolor 

5.7 2.8 4.1 1.3 I. versicolor 

6.3 3.3 6.0 2.5 I. virginica 

5.8 2.7 5.1 1.9 I. virginica 

7.1 3.0 5.9 2.1 I. virginica 

6.3 2.9 5.6 1.8 I. virginica 

6.5 3.0 5.8 2.2 I. virginica 

7.6 3.0 6.6 2.1 I. virginica 

4.9 2.5 4.5 1.7 I. virginica 

7.3 2.9 6.3 1.8 I. virginica 
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Fisher's Iris Data 

Sepal length Sepal width Petal length Petal width Species 

6.7 2.5 5.8 1.8 I. virginica 

7.2 3.6 6.1 2.5 I. virginica 

6.5 3.2 5.1 2.0 I. virginica 

6.4 2.7 5.3 1.9 I. virginica 

6.8 3.0 5.5 2.1 I. virginica 

5.7 2.5 5.0 2.0 I. virginica 

5.8 2.8 5.1 2.4 I. virginica 

6.4 3.2 5.3 2.3 I. virginica 

6.5 3.0 5.5 1.8 I. virginica 

7.7 3.8 6.7 2.2 I. virginica 

7.7 2.6 6.9 2.3 I. virginica 

6.0 2.2 5.0 1.5 I. virginica 

6.9 3.2 5.7 2.3 I. virginica 
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Fisher's Iris Data 

Sepal length Sepal width Petal length Petal width Species 

5.6 2.8 4.9 2.0 I. virginica 

7.7 2.8 6.7 2.0 I. virginica 

6.3 2.7 4.9 1.8 I. virginica 

6.7 3.3 5.7 2.1 I. virginica 

7.2 3.2 6.0 1.8 I. virginica 

6.2 2.8 4.8 1.8 I. virginica 

6.1 3.0 4.9 1.8 I. virginica 

6.4 2.8 5.6 2.1 I. virginica 

7.2 3.0 5.8 1.6 I. virginica 

7.4 2.8 6.1 1.9 I. virginica 

7.9 3.8 6.4 2.0 I. virginica 

6.4 2.8 5.6 2.2 I. virginica 

6.3 2.8 5.1 1.5 I. virginica 
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Fisher's Iris Data 

Sepal length Sepal width Petal length Petal width Species 

6.1 2.6 5.6 1.4 I. virginica 

7.7 3.0 6.1 2.3 I. virginica 

6.3 3.4 5.6 2.4 I. virginica 

6.4 3.1 5.5 1.8 I. virginica 

6.0 3.0 4.8 1.8 I. virginica 

6.9 3.1 5.4 2.1 I. virginica 

6.7 3.1 5.6 2.4 I. virginica 

6.9 3.1 5.1 2.3 I. virginica 

5.8 2.7 5.1 1.9 I. virginica 

6.8 3.2 5.9 2.3 I. virginica 

6.7 3.3 5.7 2.5 I. virginica 

6.7 3.0 5.2 2.3 I. virginica 

6.3 2.5 5.0 1.9 I. virginica 
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Fisher's Iris Data 

Sepal length Sepal width Petal length Petal width Species 

6.5 3.0 5.2 2.0 I. virginica 

6.2 3.4 5.4 2.3 I. virginica 

5.9 3.0 5.1 1.8 
I. virginica 

 

 

 

 

5.3Matlab code for clustering on iris data set: 

clc; 

%clear all; 

close all; 

load iris; 

y=zeros(1,15); 

y1=zeros(1,15); 

y2=zeros(1,15); 

fori=1:50 

    x=iris{i,1}; 

    c=x(1,1:15); 

    y=[y;c]; 

end 

fori=51:100 

x1=iris{i,1}; 

     c1=x1(1,1:15); 
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     y1=[y1;c1]; 

end 

fori=101:150 

x2=iris{i,1}; 

    c2=x2(1,1:15); 

    y2=[y2;c2]; 

end 

y=y(2:end,:); 

y1=y1(2:end,:); 

y2=y2(2:end,:); 

for j=4:4:12 

y(:,j)=[' ']; 

y1(:,j)=[' ']; 

y2(:,j)=[' ']; 

end 

y=str2num(y); 

y1=str2num(y1); 

y2=str2num(y2); 

%% Firstly defining  the data...+ones(80,4);-ones(80,4) 

X = [y;y1;y2]; 

%X = [data2(:,1); data2(:,2)]; 

% Now the kmeans is applied... 

opts = statset('Display','final'); 

[cidx, ctrs] = kmeans(X, 3,'Distance','city', ... 

                              'Replicates',5, 'Options',opts); 

%% Now look at the cluster formation.... 

figure,h=plot(X(cidx==1,1),X(cidx==1,2),X(cidx==1,3),X(cidx==1,4),'r.', ... 

                               X(cidx==2,1),X(cidx==2,2),X(cidx==2,3),X(cidx==2,4),'b.',... 

                               X(cidx==3,1),X(cidx==3,2),X(cidx==3,3),X(cidx==3,4),'g.',... 

ctrs(:,1),ctrs(:,2),ctrs(:,3),ctrs(:,4),'kx'); 

set(h,'linestyle','none'); 
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                                  Appendix -  A 

Clustering of oxygen isotope Without signal  
clc 

clear all 

close all 

load  oxygen_isotope 

time=data(:,1:15); 

oxy=data(:,16:25); 

time2=time(:,9:15); 

for i=1:length(oxy) 

oxy1(i,:)=str2double(oxy(i,:)); 

end 

for i=1:length(time2) 

time3(i,:)=str2double(time2(i,:)); 

end 

x=timeseries(oxy1,'Name','Oxygen Isotope'); 

%% 

newdata=x.Data; 

time4=x.Time; 

plot(time4,newdata); 

le=length(newdata); 

y=newdata(1:72,:); 

y1=newdata(73:144,:); 

y2=newdata(145:216,:); 

y3=newdata(217:288,:); 

x=[y y1 y2 y3]; 

  

y=newdata(289:(288+72),:); 

y1=newdata((288+73):(288+144),:); 

y2=newdata((288+145):(288+216),:); 

y3=newdata((288+217):(288+288),:); 

x2=[y y1 y2 y3]; 

  

y=newdata((288+289):(288+288+72),:); 
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y1=newdata((288+288+73):(288+288+144),:); 

y2=newdata((288+288+145):(288+288+216),:); 

y3=newdata((288+288+217):(288+288+288),:); 

x3=[y y1 y2 y3]; 

%% Firstly defining  the data...+ones(80,4);-ones(80,4) 

X = [x;x2;x3]; 

%X = [data2(:,1); data2(:,2)]; 

% Now the kmeans is applied... 

opts = statset('Display','final'); 

[cidx, ctrs] = kmeans(X, 3,'Distance','city', ... 

                              'Replicates',5, 'Options',opts); 

%% Now look at the cluster formation.... 

figure,h=plot(X(cidx==1,1),X(cidx==1,2),X(cidx==1,3),X(cidx==1,4),'r.', ... 

                               

X(cidx==2,1),X(cidx==2,2),X(cidx==2,3),X(cidx==2,4),'b.',... 

                               

X(cidx==3,1),X(cidx==3,2),X(cidx==3,3),X(cidx==3,4),'g.',... 

                               ctrs(:,1),ctrs(:,2),ctrs(:,3),ctrs(:,4),'kx'); 

                           set(h,'linestyle','none'); 

% this are the initial result for the implementation.... 
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Figure 5 Result of clustering without signal processing 
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Appendix - B 

 Clustering of oxygen isotope with signal processing 
clc 

clear all 

close all 

load  oxygen_isotope 

time=data(:,1:15); 

oxy=data(:,16:25); 

time2=time(:,9:15); 

for i=1:length(oxy) 

oxy1(i,:)=str2double(oxy(i,:)); 

end 

for i=1:length(time2) 

time3(i,:)=str2double(time2(i,:)); 

end 

x=timeseries(oxy1,'Name','Oxygen Isotope'); 

%% 

newdata=x.Data; 

time4=x.Time; 

plot(time4,newdata); 

le=length(newdata); 

y=newdata(1:72,:); 

y1=newdata(73:144,:); 

y2=newdata(145:216,:); 

y3=newdata(217:288,:); 

x=[y y1 y2 y3]; 

  

y=newdata(289:(288+72),:); 

y1=newdata((288+73):(288+144),:); 

y2=newdata((288+145):(288+216),:); 

y3=newdata((288+217):(288+288),:); 

x2=[y y1 y2 y3]; 

  

y=newdata((288+289):(288+288+72),:); 

y1=newdata((288+288+73):(288+288+144),:); 

y2=newdata((288+288+145):(288+288+216),:); 

y3=newdata((288+288+217):(288+288+288),:); 
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x3=[y y1 y2 y3]; 

%% Firstly defining  the data...+ones(80,4);-ones(80,4) 

X = [x;x2;x3]; 

s=fft(X); 

s1=abs(s); 

X=s1; 

%X = [data2(:,1); data2(:,2)]; 

% Now the kmeans is applied... 

opts = statset('Display','final'); 

[cidx, ctrs] = kmeans(X, 3,'Distance','city', ... 

                              'Replicates',5, 'Options',opts); 

%% Now look at the cluster formation.... 

figure,h=plot(X(cidx==1,1),X(cidx==1,2),X(cidx==1,3),X(cidx==1,4),'r.', ... 

                               

X(cidx==2,1),X(cidx==2,2),X(cidx==2,3),X(cidx==2,4),'b.',... 

                               

X(cidx==3,1),X(cidx==3,2),X(cidx==3,3),X(cidx==3,4),'g.',... 

                               ctrs(:,1),ctrs(:,2),ctrs(:,3),ctrs(:,4),'kx'); 

                           set(h,'linestyle','none'); 

                           axis([0 20 0 20]); 

% this are the initial result for the implementation.... 
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Figure 6 result of clustering with signal processing 
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