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Abstract

Mutation testing takes a different approach to testing by asking questions about the efficacy

of test cases. It is a fault-based technique that measures the effectiveness of test suites for

fault localization, base on seeded faults. The fault detection effectiveness of a test suite is

defined as the percentage of faults that can be detected by that test suite. A mutation is a

change made to the source code by a mutation testing tool. Faults are introduced into the

program by creating a collection of faulty versions, called mutants. These mutants are created

from the original program by applying mutation operators which describe syntactic changes

to the original code. The test suite is then used to execute these mutants and to measure how

well it is able to find faults. A test case that distinguishes (returning a different result) the

program from one or more of its mutants is considered to be effective in finding faults. A

mutation score is  a  quantitative measurement  of  the quality of  the test  suite.  This  report

describes an automated mutation testing tool for Java programs. It describes the framework of
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the proposed tool and how the various components of the tool are interconnected to each

other. Also it provides the various mutation operators present in the tool.

1. INTRODUCTION

Software  testing  is  an  integral  part  of  software  development  cycle  which  is  aimed  at

evaluating an attribute or capability of a program or system and determining that it meets the

specified  requirements. It  is  crucial  for  the  quality  of  software  and  widely  deployed  by

programmers  and testers.  Due to  the limited understanding of  the principles  of  software,

Software testing still  remains an art.  The difficulty associated with software testing arises

from the complexity of software. It is practically not feasible to test a program with moderate

complexity completely. Testing  is  more  than  just  debugging.  The testing  can  be  done to

assure the quality of the software, or to verify and validate the system, or to estimate the

reliability of the product. Testing can be used as a generic metric as well. Software testing is a

trade-off between budget, time and quality.

1.1 Humans, Errors and Testing

Errors are a part of our daily life. Humans make errors in their thoughts, in their actions, and

in the products that might result from their actions. Errors occur almost everywhere. Humans
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can make errors in any field, for example in observation, in speech, in medical prescription,

in  driving,  in  sports,  and  similarly  even  in  software  development.  An  error  might  be

insignificant in that it leads to a gentle friendly smile, such as when a slip of tongue occurs.

Or, an error may lead to a catastrophe, such as when an operator fails to recognize that a

relief valve on the pressurizer was stuck open and this resulted in a disastrous radiation leak. 

To determine whether there are any errors in our thought, actions, and the products generated,

we resort to the process of testing. The primary goal of testing is to determine if the thoughts,

actions,  and products are as desired,  that is  they conform to the requirements. Testing of

thoughts  is  usually  designed  to  determine  if  a  concept  or  method  has  been  understood

satisfactorily. Testing of actions is designed to check if a skill that results in the actions has

been acquired satisfactorily. Testing of a product is designed to check if the product behaves

as  desired.  Both  semantic  and  syntax  errors  arise  during  programming .Given that  most

modern compilers are able to detect syntactic errors, testing focuses on semantic errors, also

known as faults that cause the program under test to behave incorrectly.

1.1.1 Errors, Faults and Failures

A programmer writes a program. An error occurs in the process of writing a program. A fault

is the manifestation of one or more errors. A failure occurs when a faulty piece of code is

executed  leading  to  an  incorrect  state  that  propagates  to  the  program’s  output.  The

programmer  might  misinterpret  the  requirements  and  consequently  write  incorrect  code.

Upon execution, the program might display behaviour that does not match with the expected

behaviour,  implying  thereby  that  a  failure  has  occurred.  A fault  in  the  program is  also

commonly referred to  as a  bug or  a  defect.  The term error and bug are by far the most

common ways of referring to something wrong in the program text  that might  lead to a

failure.  In Figure 1.1,  notice the separation of  observable from observed behaviour. This

separation is important because it is the observed behaviour that might lead one to conclude

that a program has failed.
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1.1.2 Test Automation

Testing  of  complex systems can  be  a  human intensive  task.  Often  one  needs  to  execute

thousands  of  tests  to  ensure  that,  for  example,  a  change  made  to  a  component  of  an

application does not cause previously correct code to malfunction. Execution of many tests

can be a tiring as well as error-prone.  Hence, there is a tremendous need for automating

testing tasks.

Most  software  development  organizations  automate  test-  related  tasks  such  as  regression

testing, graphical user interface (GUI) testing, and I/O device driver testing. Unfortunately,

the process of test automation cannot be generalized. For example, automating regression

tests for an embedded device such as a pacemaker is quite different from that for an I/O

device driver that connects to the USB port of a PC. Such lack of generalization often leads to

specialized test automation tools developed in-house.
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Nevertheless, there do exist general-purpose tools for test automation. While such tools might

not be applicable in all test environments, they are useful in many of them. Examples of such

tools include Eggplant, Marathon, and Pounder for GUI testing; eLoadExpert, DBMonster,

JMeter,  WAPT, LoadRunner,  and  Grinder  for  performance  or  load  testing;  and Echleon,

TestTube,  WinRunner  and  XTest  for  regression  testing.  Despite  the  existence  of  a  large

number and variety of test automation tools, large development organizations develop their

own test automation tools due primarily to the unique nature of their test requirements.

1.2 Software Quality

We all want high-quality software. There exist several definitions of software quality. Also,

one quality attribute might be more important to a user than another quality attribute. In any

case, software quality is a multidimensional quantity and is measurable.

1.2.1 Quality Attributes

There  exist  several  measures  of  software  quality.  These  can  be  divided  into  static  and

dynamic  quality  attributes.  Static  quality  attributes  refer  to  the  actual  code  and  related

documentation. Dynamic quality attributes relate to the behaviour of the application in use.

Static  quality attributes include structured,  maintainable,  and testable  code as well  as the

availability of correct and complete documentation. We might come across complaints such

as “Product X is excellent, I like the features it offers, but its user manual stinks!” In this

case, the user manual brings down the overall product quality. If a maintenance engineer has

been assigned the task of doing corrective maintenance on an application code, he will most

likely need to understand portions of the code before he make any changes to it. This is where

attributes related to items such as code documentation, understandability, and structure come

into play. A poorly documented piece of code will be harder to understand and hence difficult

to modify. Further, poorly structured code might be harder to modify and difficult to test.

Dynamic  quality  attributes  include  software  reliability,  correctness,  completeness,

consistency, usability, and performance. Reliability refers to the probability of failure-free

operation. Correctness refers to the correct operation of an application and is always with

reference to some artifact. For a tester, correctness is with respect to the requirements; for a

user, it is often with respect to a user manual. Completeness refers to the availability of all the

features listed in the requirements or in the manual. An incomplete software is one that does
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not fully implement all the features required. Consistency refers to adherence to a common

set of conventions and assumptions. Usability refers to the ease with which an application can

be used. This is an area in itself and there exist techniques for usability testing. Psychology

plays an important role in the design of techniques for usability testing.  Usability testing

refers to testing of a product by its potential users. The development organization invites a

selected set of potential users and asks them to test the product. Users in turn test for ease of

use,  functionality  as  expected,  performance,  safety,  and  security.  Usability  testing  is

sometimes referred to as user-centric testing. Performance refers to the time the application

takes to perform a requested task. Performance is considered as a non-functional requirement.

1.3 Software Testing

Software Testing is the process of Software Development Life Cycle (SDLC) which aims to

find errors in a program or system. It involves various activities to be performed whose aim is

to evaluate the capability or attributes of the software and determine that it meets its specified

requirements. Software is quite different from other physical processes which involve input

and  output.  Where  software  differs  is  in  the  manner  in  which  it  does  not  satisfy  its

requirements. Software can fail in many bizarre ways unlike other physical systems which

fail in a relatively small set of ways. It is rare and almost impossible to detect all of the

different failure modes for the software. 

Unlike most physical systems where manufacturing defects occur, most of the defects that

occur  in software are  design errors.  Software usually does not suffer from corrosion and

wear-and-tear.  Software generally does not change until its upgraded version is not available,

or until it  reaches obsolescence.  So, the design defects or bugs will remain buried in the

software or system, once the software is shipped.

A software module of considerable size will always have some defects present in it. It is not

because the programmers are careless or irresponsible, but because the complexity associated

with the software is generally intractable and humans have only limited ability to handle the

complexity.  It  is  also  true  that  for  any  complex  systems,  design  defects  can  never  be

completely ruled out.

Discovering  the  design  defects  in  software  is  equally  difficult,  for  the  same  reason  of

complexity. Because software and any digital systems are not continuous, testing boundary
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values are not sufficient to guarantee correctness. All the possible values need to be tested

and verified, but complete testing is infeasible. Exhaustively testing a simple program to add

only two integer inputs of 32-bits (yielding 2^64 distinct test cases) would take hundreds of

years,  even if  tests  were  performed at  a  rate  of  thousands  per  second.  Obviously, for  a

realistic software module, the complexity can be far beyond the example mentioned here. If

inputs from the real world are involved, the problem will  get worse,  because timing and

unpredictable environmental effects and human interactions are all possible input parameters

under consideration.

A further complication has to do with the dynamic nature of programs. If a failure occurs

during preliminary testing and the code is changed, the software may now work for a test

case that it didn't work for previously. But its behaviour on pre-error test cases that it passed

before  can  no  longer  be  guaranteed.  To  account  for  this  possibility,  testing  should  be

restarted. The expense of doing this is often prohibitive. 

Regardless of these limitations, testing is an integral part of software development life cycle.

It is broadly deployed in the every phase of development cycle. Typically, more than 50%

percent of the software development time is spent in testing the product. Testing is usually

performed for the following purposes:

To improve quality

As computers and software are used in critical applications, the outcome of a bug can be

severe at times. Bugs can cause huge losses. Bugs in critical systems have caused crashes of

the airplane, allowed space shuttle missions to go awry, halted trading on the stock market,

and even worse. Bugs can cause disasters. The so-called year 2000 (Y2K) bug has given birth

to a cottage industry of consultants and programming tools dedicated to making sure the

modern world doesn't come to a screeching halt on the first day of the next century.   In a

computerized embedded world, the quality and reliability of software is a matter of life and

death.

Quality  means  the  conformance  to  the  specified  design  requirement.  Being  correct,  the

minimum  requirement  of  quality,  means  performing  as  required  under  specified

circumstances. Debugging, an another approach of software testing, is performed to find out

design defects made by the programmer. The imperfection of human nature makes it almost
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impossible  to  make  a  moderately  complex  program  correct  the  first  time.  Finding  the

problems and get them fixed is the purpose of debugging in programming phase.

For Verification & Validation (V&V)

Another important purpose of testing is verification and validation (V&V). Testing can serve

as  metrics.  It  is  used  as  a  tool  in  the  V&V process.  Testers  can  make  claims  based on

interpretations of the testing results, which either the product works under certain situations,

or it does not work. We can also compare the quality among different products under the

same specification, based on results from the same test.

We cannot test quality directly, but we can test related factors to make quality visible. Quality

has  three  sets  of  factors-  functionality, engineering,  and adaptability. These  three  sets  of

factors can be thought of as dimensions in the software quality space. Each dimension may be

broken down into its component factors and considerations at successively lower levels of

detail. Table 1 illustrates some of the most frequently cited quality considerations. 

Table 1.1 Typical Software Quality Factors

Functionality(exterior

quality)

Engineering  (interior

quality)

Adaptability  (future

quality)
Correctness Efficiency Flexibility
Reliability Testability Reusability
Usability Documentation Maintainability
Integrity Structure

Good testing provides measures for all  relevant factors. The importance of any particular

factor varies from application to application. Any system where human lives are at stake must

place extreme emphasis on reliability and integrity. In the typical business system usability

and maintainability are the key factors, while for a one-time scientific program neither may

be significant. Our testing, to be fully effective, must be geared to measuring each relevant

factor and thus forcing quality to become tangible and visible. 

Tests with the purpose of validating the product works are named clean tests, or positive tests.

The drawbacks are that it  can only validate that the software works for the specified test

cases. A finite number of tests are not sufficient to validate that the software works for all

situations. On the contrary, only one failed test is sufficient enough to show that the software

does not work. The tests aiming at breaking the software, or showing that it does not work are
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known as Dirty tests or negative tests. A piece of software must have sufficient exception

handling capabilities to survive a significant level of dirty tests.

A testable design is a design that can be easily validated, falsified and maintained. Because

testing requires significant time and cost, is a rigorous effort and design for testability is also

an important design rule for software development.

For reliability estimation

Software  reliability has  important  relations  with  many aspects  of  software,  including the

structure, and the amount of testing it has been subjected to. Based on an operational profile

(an estimate of the relative frequency of use of various inputs to the program), testing can

serve as a statistical sampling method to gain failure data for reliability estimation.

Software testing is  not  mature.  It  still  remains  an art,  because we still  cannot  make it  a

science. We are still using the same testing techniques invented 20-30 years ago, some of

which  are  crafted  methods  or  heuristics  rather  than  good engineering  methods.  Software

testing can be costly, but not testing software is even more expensive, especially in places

that human lives are at stake. Solving the software-testing problem is no easier than solving

the Turing halting problem. We can never be sure that a piece of software is correct. We can

never  be sure that the specifications  are  correct.  No verification system can verify every

correct program. We can never be certain that a verification system is correct either.

1.4 Key Concepts

1.4.1 Taxonomy

There is a number of testing methods and testing techniques available today, serving different

purposes in software development life cycle. Classified by source of test generation, software

testing  can  be  classified  in  two  categories:  Black-box  testing  and  White-box  testing.

Classified by life-cycle phase, software testing can be classified into the following categories:

Unit  testing,  Integration  testing,  System  testing,  Regression  testing  and  Beta  testing.

Classified by the nature of the goal for which testing is performed, software testing can be

classified into three categories: Robustness testing, Stress testing, Performance testing and

Load testing. 

1.4.2 Source of Test Generation

14



Test Generation is an essential part of testing; it is as wedded to testing as the earth is to the

sun. There are a variety of ways to generate tests. Tests could be generated from informally or

formally specified requirements and with or without the aid of the code that is under test.

Black-box testing

The black-box testing is a testing approach in which test data is generated from the specified

functional  requirements  without  even  considering  the  code  of  the  program  under

consideration. It is also termed as data-driven or requirements-based testing. As the tester is

only concerned with the functionality of the software, black-box testing is also referred as

functional testing which can be defined as a testing method whose main focus is on executing

the functions of the software and examining the input and output data of the software. The

tester treats the software under test as a black box - only the inputs, outputs and specification

are visible, and the functionality of the software is determined by observing the output set to

the corresponding input set. In this testing approach, multiple inputs are exercised and the

outputs are observed and compared against specification to validate the correctness of the

product. Test cases are generated from the specifications of the software. No details of the

code are considered while working on this approach of testing.

As the tester goes more and more deep in the input set, he will tend to explore more problems

regarding the software and thereafter his confidence regarding the quality of the software will

surely enhance. In an ideal case, the tester would want to exhaustively test the input set. But

this approach towards  testing the combinations of valid inputs will be a tedious task for most

of the programs. Combinatorial explosion is the major roadblock in black-box testing.  A

tester  could never  be sure whether  the specification  provided to  him is  either  correct  or

complete. Ambiguity is also another problem, due to limitations of the language used in the

specifications (usually natural language). Even if we use some type of formal or restricted

language,  we  may  still  fail  to  write  down  all  the  possible  cases  in  the  specification.

Sometimes,  the  specification  itself  becomes  an  intractable  problem:  it  is  not  possible  to

specify precisely every situation that can be encountered using limited words. Specification

problems contributes  approximately 30 percent of all  bugs in software. People can rarely

specify exactly what they want - they usually can tell whether a prototype is, or is not, what

they want after they have been finished. 
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The research in black-box testing mainly focuses on how to maximize the effectiveness of

testing with minimum cost, usually the number of test cases. It is not possible to exhaust the

input space, but it is possible to exhaustively test a subset of the input space. Partitioning is

one of the popular techniques used in black box testing. If we can partition the input space

and assume all the input values in a partition is equivalent, then we only need to test one

value in each partition to sufficiently cover the whole input space. Domain testing partitions

the input domain into regions, and consider the input values in each domain an equivalent

class. Domains can be exhaustively tested and covered by selecting a representative value(s)

in each domain. Boundary values are of special interest in this approach. Research in this

field has shown that test cases that explore boundary conditions have a higher payoff than test

cases that do not. Boundary value analysis requires one or more boundary values selected as

representative  test  cases.  The  difficulties  with  domain  testing  are  that  incorrect  domain

definitions in the specification cannot be efficiently discovered.

White-box testing

Contrary to black-box testing, in this approach of testing, software is viewed as a white-box,

or glass-box, as the tester can see the structure and flow of the software under test. Testing

plans are made according to the details of the software implementation, such as programming

language, logic, and styles.

White-box testing refers to the test activity wherein code is used in the generation of or the

assessment  of  test  cases.  It  is  rare,  and  almost  impossible,  to  use  white-box  testing  in

isolation.  As  a  test  case  contains  of  both  inputs  and  expected  outputs,  one  must  use

requirements to generate test cases, the code is used as an additional artefact in the generation

process. However, there are techniques for generating tests exclusively from code and the

corresponding  expected  output  from  requirements.  For  example,  tools  are  available  to

generate tests to distinguish all mutants of a program under test or generate tests that force the

program under test to exercise a given path. In any case, when someone claims they are using

white-box testing, it is reasonable to conclude that they are using some forms of both black-

box and white-box testing.

Code could be used directly or indirectly for test generation. In the direct case, a tool, or a

human  tester,  examines  the  code  and  focuses  on  a  given  path  to  be  covered.  A test  is

generated to  cover  this  path.   In  the indirect  case,  tests  generated using some black-box
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testing techniques are assessed against some code-based coverage criterion. Additional tests

are then generated to cover the uncovered portions of code by analyzing which parts of the

code are feasible. Control flow, data flow and mutation testing can be used for direct as well

as indirect code-based test generation. 

1.4.3 Life Cycle Phase based Testing

Testing activities take place throughout the software lifecycle. Each artifact produced is often

subject to testing at different levels of rigor and using different testing techniques. Testing is

often categorized based on the phase in which it occurs.

Programmers write  code during the early coding phase.  They test  their  code before it  is

integrated with other system components. This type of testing is referred to as Unit testing.

When units are integrated and a large component or a subsystem formed, programmers do

Integration testing of the subsystem. Eventually when the entire system has been built, its

testing is referred to as System Testing. Test phases mentioned above differ in their timing

and focus. In unit testing, a programmer focuses on the unit or a small component that has

been developed. The goal is to ensure that unit functions correctly in isolation. In integration

testing, the goal is to ensure that a collection of components function as desired. Integration

errors are often discovered at this stage. The goal of system testing is to ensure that all the

desired functionality is in the system and works as per its requirements.  

Often a selected set of customers is asked to test a system before commercialization. This

form of testing is known as Beta-testing. Errors reported by users of an application often lead

to additional testing and debugging. Often changes made to an application are much smaller

in  their  size when compared to the entire  application.  In such situations,  one performs a

regression test. The goal of regression testing is to ensure that the modified system functions

as per its specifications. Test cases selected for regression testing include those designed to

test the modified code and any other code that might be affected by the modifications. 

1.4.3 Goal directed Testing

There exists a variety of goals. Of course, finding any hidden errors is the prime goal of

testing, goal-oriented testing looks for specific types of failures. For example, the goal of

vulnerability  testing  is  to  detect  if  there  is  any way by which  system under  test  can  be

penetrated by unauthorized users. 
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Robustness Testing

Robustness testing refers to the task of testing an application for robustness against 

unintended inputs. It differs from functional testing in that the tests for robustness are derived

from outside of the valid input space, whereas in the former the tests are derived from the 

valid input space. 

Stress Testing

In Stress testing one checks for the behaviour of an application under stress. Handling of 

overflow of data storage, for example buffers, can be checked with the help of stress testing. 

Web applications can be tested by stressing them with a large number and variety of requests.

The goal here is to find if the application continues to function correctly under stress.

Performance Testing

The term performance testing refers to that phase of testing where an application is tested 

specifically with performance requirements in view. For example, a compiler might be tested 

to check if it meets the performance requirements stated in terms of number of lines of code 

compiled per second.

Load Testing

The term load testing refers to that phase of testing in which an application is loaded with 

respect to one or more operations. The goal is to determine if the application continues to 

perform as required under various load conditions. For example, a database server can be 

loaded with requests from a large number of simulated users. While the server might work 

correctly when one or two users use it, it might fail in various ways when the number of users

exceeds a threshold. During load testing one can determine whether the application  is 

handling exceptions in an adequate manner .
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2. MUTATION TESTING

2.1 Introduction

Software Testing is the activity aimed at evaluating an attribute or capability of a program or

system and determining that it meets its required results. Mutation Testing is a fault based

testing technique that  measures  the effectiveness  of a  test  suite.  Unlike other  fault-based

strategies that directly inject artificial faults into the program, this method generates simple

syntactic deviations called mutants of the original program with the help of a set of rules

known as Mutation Operators. 

The goal of mutation testing is the generation of a test set that distinguishes the behavior of

the mutants from the original program. If a test set can distinguish a mutant from the original

program  (i.e.  produce  different  execution  results),  the  mutant  is  said  to  be  killed  or
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distinguished. Otherwise, the mutant is said to be a  live  mutant. A mutant may remain live

because either it is equivalent to the original program (i.e.it is functionally identical to the

original  program although syntactically different)  or  the  test  set  is  inadequate to  kill  the

mutant. The ratio of distinguished mutants over the total number of mutants, measures the

adequacy of the test set. A test case is adequate if it is useful in detecting faults in a program.

If the original program and all the mutant programs generate the same output, the test case is

inadequate.

Our interest  is  in  using the mutation technique to  examine the adequacy of  test  data  for

object-oriented programs. Obviously, the traditional mutation method can be applied to OO

programs.  However,  using  an  existing  mutation  system  it  is  may  not  be  sufficient  to

adequately test OO programs because the existing mutation systems were developed in non-

OO programming environments. That is, the common programming errors that the traditional

mutation systems model were derived from non-OO programming experience and thus they

do not consider some kinds of errors likely to appear in OO programs.

In addition, the differences and new features in OO programming are likely to change the

requirements  for  mutation testing.  For  instance,  the  conventional  mutation  systems make

mutants of expressions, variables, and statements but do not mutate type and component (e.g.

a data structure) declarations. Traditional programming simply 
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makes use of the built-in types and entities of a language which are unlikely to contain many

errors, so you wouldn’t get much benefit by changing the declarations of those pre-defined

program entities. However, OO programs are composed of user-defined data types (classes)

and  references  to  the  user-defined  types.  It  is  very  likely  that  user-defined  components

contain many defects such as mutual dependency between members/classes, inconsistencies

or conflicts between the components developed by different programmers etc.

In object-oriented systems, mutation testing should also consider the relationships between

components  even though it  is  presently aimed at  testing a single method or a  class.  For

example, traditional mutation uses pre-fixed type compatibility (e.g. all arithmetic types are

considered compatible) to replace a variable with other variables of compatible types. This is

reasonable where there are only pre-defined built-in types. However, type compatibility of

OO programs should be flexible because programmers can declare as many types as they

want,  which  will  change  class  structures.  Compatibility  thus  needs  to  be  dynamically

determined by considering cluster structure at the time mutation is performed.

The effectiveness of mutation testing, like other fault-based approaches, heavily depends on

the types of faults the mutation system is intended to represent, as they actually decide what

to test and point out where analysis should be done. In our opinion, it is mainly the flaws
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related to OO-specific features such as inheritance, polymorphism, and so on that the current

mutation systems fail to adequately handle.

2.2 Founding Principles of Mutation Testing

Mutation Testing is a powerful testing technique for achieving correct or close to correct, 

programs. It rests on two fundamental principles. One principle is commonly known as the 

competent programmer assumption. The other is known as the coupling effect.

2.2.1 The Competent Programmer Hypothesis

The competent programmer hypothesis (CPH) arises from a simple observation made of 

practising programmers. The hypothesis states that given a problem statement, a programmer 

writes a program P that is in the general neighbourhood of the set of correct programs.

A reasonable interpretation of the CPH is that the program written to satisfy a set of 

requirements will be a few mutants away from a correct program. Thus, while the first 

version of the program might be incorrect, it could be corrected by a series of simple 

mutations. One might argue against the CPH by claiming something like “What about a 

missing conditional as the fault? One would need to add the missing conditional in order to 

arrive at a correct program.” Indeed, given a correct program P, one of its mutants is obtained 

by removing the condition from a conditional statement. Thus, a missing conditional does 

correspond to a simple mutant.

The CPH assumes that the programmer knows of an algorithm to solve the program at hand, 

and if not, will find one prior to writing the program. It is thus safe to assume that when 

asked to write a program to sort a list of numbers, a competent programmer knows of, and 

makes use of, at least one sorting algorithm. Certainly mistakes could be made while coding 

the algorithm. Such mistakes will lead to a program that can be corrected b applying one or 

more first-order mutations.

2.2.2 The Coupling Effect  

While CPH arises out of observations of programmer behaviour, the coupling effect is 

observed empirically. The coupling effect has been paraphrased by DeMillo, Lipton, and 

Sayward as follows:
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Test data that distinguishes all programs differing from a correct one by only simple errors is 

so sensitive that it also implicitly distinguishes more complex errors.

A seemingly simple first order mutant could be either equivalent to its program or not. For 

some input, a non-equivalent mutant forces a slight perturbation in the state space of the 

program under test. This perturbation takes place at the point of mutation and has the 

potential of infecting the entire state of the program. It is during an analysis of the behaviour 

of the mutant in relation to that of its parent that one discovers complex faults.

It may be easy to discover a fault that is a combination of many first-order mutations. Almost 

any test will likely discover such a fault. It is the subtle faults that are close to first-order 

mutations that are often difficult to detect. However,  due to the coupling effect, a test set that 

distinguishes first-order mutants is likely to cause an erroneous program under test to fail.

2.3 Related Work

Research  in  mutation  testing  focuses  on  four  kinds  of  activities:  1)  defining  mutation

operators, 2) applying these mutation operators (experimentation), 3) developing tools, and 4)

reducing the cost of mutation analysis. 

The first one involves defining new mutation operators for different languages. The second

research  activity  is  experimentation  with  mutation  operators.  Empirical  studies  have

supported the effectiveness of mutation testing. The third kind of activities in mutation testing

research is developing mutation tools. Last but not least in terms of research activities is

investigating  ways  to  reduce  the  cost  of  mutation  analysis.  The  major  cost  of  mutation

analysis arises from the computational expense of generating and running large numbers of

mutant  programs.  Mutation  testing  is  a  powerful  but  time-consuming technique  which  is

impractical to use without a reliable, fast and automated tool that generates mutants, runs the

mutants against a suite of tests, and reports the mutation score of the test suite.

2.4 Class Mutation

Class Mutation is a mutation technique for OO (Java) programs. The main difference from

the traditional mutation method is that it is targeted at plausible faults related to OO-specific

features that Java provides – class declarations and references, single inheritance, information
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hiding, and polymorphism. Faults are introduced into the program by a set of new mutation

operators (predefined program modification rules). 

2.5 Class Mutation Techniques

2.5.1 Polymorphic Types

In OO systems, it is common for a variable to have polymorphic types. That is, a variable

may at runtime refer to an object of a different type from its declaration and to objects of

different types at different times. This raises the possibility that not all objects that become

attached to the same variable correctly support the same set of features. This may also cause

runtime  type  errors  which  cannot  always  be  detected  at  compile  time.  Two  mutation

operators, CRT and ICE, were designed to address this feature.

CRT (Compatible Reference Type replacement)

This operator replaces a reference type with compatible types in a cluster2. The compatible

types  are  the  names  of  other  types  (classes)  that  meet  the  widening/narrowing reference

conversion rules in the Java language specification. For instance, the class type S can be

replaced with the class type T provided that S is a subclass of T, or S can be replaced with the

interface type K provided that S implements K.

class T { … }
class S extends T implements K { … }
class U extends S { … } 
interface K { … }

Original code:
S s = new S();

CRT Mutants: 
a) T s = new S();
b) K s = new S();
c) U s = new S();

ICE (class Instance Creation Expression changes)

While CRT handles the declared types, the ICE operator was designed to change the runtime

type of an object. Java ‘instance creation expression’ creates an object of the class specified

in the expression. The ICE operator replaces the class name in ‘instance creation expression’

with compatible class names. This results in calling the constructors of compatible types,

which will create the objects of the replaced types.

For example, the original code above can have two mutants created by the ICE operator.
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ICE Mutants:
a) S s = new T();
b) S s = new U();

Mutant   a)  will  call  the constructor  in  class T creating an object  of  type T (resulting in

compilation errors), while mutant b) creates an object of type U through the constructor of

class U.

PNC (new method call with child class type)

The POI operator changes the instantiated type of an object reference. This causes the object

reference to refer to an object of a type that is different from the declared type. 

In the example below, class Parent is the parent of class Child.

Original Code:                                            
Parent a;                                                         
a = new Parent();

PNC Mutant:
Parent a;
a = new Child();

PMD (Member variable declaration with parent class type)

The PMD operator  changes the declared type of an object reference to  the parent of the

original declared type. The instantiation will still be valid (it will still be a descendant of the

new declared type). To kill this mutant, a test case must cause the behavior of the object to be

incorrect with the new declared type. 

In the example below, class Parent is the parent of class Child.

Original Code:
Child b;
b = new Child();                                            

PMD Mutant:
Parent b;
b = new Child();

PPD (Parameter variable declaration with child class type)

The PPD operator is the same as the PMD, except that it operates on parameters rather than

instance and local variables. It changes the declared type of a parameter object reference to be

that of the parent of its original declared type.

In the example below, class Parent is the parent of class Child.

Original Code:                                     
boolean equals (Child o)   
{…..} 
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PPD Mutant:
boolean equals (Parent o)  
{…..}

2.5.2 Inheritance 

Although a powerful and useful abstraction mechanism, incorrect use of inheritance can lead

to a number of faults. We define five mutation operators to try to test the various aspects of

using inheritance,  covering variable shadowing, method overriding,  the use of super, and

definition of constructors.

Variable shadowing can cause instance variables that are defined in a subclass to shadow (or

hide) member variables of the parent. However, this powerful feature can cause an incorrect

variable to be accessed. Thus it is necessary to ensure that the correct variable is accessed

when variable shadowing is used, which is the intent of the IHD and IHI mutation operators.

IHD (Hiding variable deletion)

The IHD operator deletes a hiding variable, a variable in a subclass that has the same name

and type as a variable in the parent class. This causes references to that variable to access the

variable defined in the parent (or ancestor). This mutant can only be killed by a test case that

is able to show that the reference to the parent variable is incorrect.

Original Code:                                             
class List {
 int size ;  
 ... ...
} 
class Stack extends List {                                       
int size;
... ...
}

IHD Mutant:
class List {             
 int size;      
 ... ...     
}
class Stack extends List} 
int size;
... ...
} 

                                                          

IHI (Hiding variable insertion)

The IHI operator inserts a hiding variable into a subclass. It is  a reverse case of IHD. By

inserting a hiding variable, two variables (a hiding variable and a hidden variable) of the

same  name  become  to  be  exist.  Newly  defined  and  overriding  methods  in  a  subclass
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reference the hiding variable although inherited methods reference the hidden variable as

before.

Original Code:                                   
class List {
int size;
... ...
}
class Stack extends List {                                                        
... ...
}

IHI Mutant:
class List {
int size;
... ...
}
class Stack extends List {
int size;
... ...
}

IOD (Overriding method deletion)

The IOD operator deletes an entire declaration of an over- riding method in a subclass so that

references to the method uses the parent's version.The mutant act as if there is no overriding

method for the method.

Original Code:                                 
class Stack extends List {
... ...
void push (int a) {... }                        
}

IOD Mutant:
class Stack extends List {
... ...
void push (int a) {... }
}

IOP (Overridden method calling position change)

Sometimes, an overriding method in a child class needs to call the method it overrides in the

parent class. This may happen if the parent's method uses a private variable v, which means

the method in the child class may not modify v directly.

Original Code:
class List {
... ...
void SetEnv()
{size = 5; ... }
}
class Stack extends List {                                                         
... ...                                                                            
void SetEnv() {                                                                    
super.SetEnv();
size = 10;                                                                         
}
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}

IOP Mutant:
class List {
... ...
void SetEnv()
{size = 5; ... }
}
class Stack extends List {
... ...
void SetEnv() {
size = 10;
super.SetEnv();
}
}

2.5.3 Encapsulation

It is important to note that poor access definitions do not always cause faults initially, but can

lead to faulty behavior when the class is integrated with other classes, modified, or inherited

from.

AMC (Access modifier change) 

The  AMC operator  changes  the access  level  for  instance  variables  and methods to  other

access levels. The purpose of the AMC operator is to guide testers to generate test cases that

ensure that accessibility is correct. 

2.5.4 Method Overloading

A class type may have more than one method with the same name as long as they have

different signatures. There is more possibility of an unintended method being called, even if

the  correct  method name is  given,  when several  versions  of  the  same name method are

available. 

In  order  to  handle  the method overloading feature,  we manipulate  parameters  in  method

declarations and arguments in method invocation expressions. The CRT operator contributes

to  examining  this  feature  as  it  changes  the  types  of  method  parameters  in  method

declarations. We also propose the POC, VMR, AOC, and AND operators for the method

overloading feature.

POC (method Parameter Order Change)
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The POC operator changes the order of parameters in method declarations if the method has

more than one parameter. For example, the Log Message class in our case study has five

overloading constructors, and two of them are:

Original Code:
1. public LogMessage(int level, String logKey, Object[]
inserts) {…}
2. public LogMessage(int level, String logKey, Object
insert) {…}

POC mutant:
public LogMessage(String logKey, int level, Object[]
inserts) {…}

AOC (Argument Order Change)

The AOC operator changes the order of arguments in method invocation expressions , if there

is more than one argument.

Original code: 
Trace.entry(“Logger”, “addLogCatalogue”);

AOC Mutant:
Trace.entry (“addLogCatalogue”, “Logger”);

2.5.5 Exceptional Handling

Catch Clauses Deletion (CCD)

In some case, more than one exception could be raised by a single piece of code. To handle

this type of situation, two or more catch clauses can specify, each catch block can catch a

different type of exception.

The CCD removes catch clauses one by one when there is more than one catch clauses(no

effect whether or not the finally clause exist  in the code).  CCD working is  given by the

following codes:-

Original code:
1. class ccd {
2. try {………}
3. catch (ArithmeticException e){……}
4. catch (ArrrayIndexOutOfBoundsException  e){……}
5. catch (ArrayStoreException e){………}
6. catch (IllegalArgumentException e){…} }

CCD mutant:
1. class ccd{
2. try{……}
3. catch (ArithmeticException e){……}
4.catch(ArrrayIndexOutOfBoundsException e){………} 
5. catch(ArrayStoreException e) {....... .}

Throw Statement Deletion (TSD)
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TSD operator  deletes the throw statement that is  shown by the following codes with the

different outputs –

Original code:
1. class tsd{
2. try{
3. System.out.println("1st time exception throw");
4. Throw new NullPointerException("demo"); }
5. catch (NullPointerExceptione){
6. System.out.println("exception throw");
7. throw e; } } }

TSD mutant:
1. class tsd{
2. try{
3. System.out.println("1st time exception  throw"); }
4. catch(NullPointerException e){
5. System.out.println("exception throw");
6. throw e; } } }

Finally Clause Deletion (FCD)

The FCD operator delete this finally clause and produce an output difference.

Original code:
1. class fcd{
2. try{……………….
3. …………{catch(……){
4. …………}catch(……){…}
5. ...}finally{……………} 

FCD mutants:
1. class fcd{
2. try{……………….
3. …………{catch(……..){
4. …………}catch(……){…}

2.5.6 String Handling Operators

Value Change Operators (VCO):

String Methods   

charAt()                              

setCharAt()                        

getChars()                         

substring()                         

replace()                            

deleteCharAt()                 
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Original code:                  Mutants:
s.charAt(4);                    s.charAt(5);
s.setCharAt(6);                 s.setCharAt(7);
getChars(10,14,str,0);          getChars(11,15,str,1);
substring(5,6);                 substring(6,7);     
replace(5,7,”new”);             replace(6,8,”new”);
deleteCharAt(3);                deleteCharAt(4); 

  

2.6 EXISTING MUTATION TESTING TOOLS

Since  mutation  testing  was  proposed  in  1987,  a  number  of  mutation  testing  tools  have

developed in academic world.  Mothra is  one of the most widely known mutation testing

systems for FORTRAN in the early historical development of mutation testing. It was the

first  tool that implemented mutation analysis  as a complete software testing environment.

Following the introduction of mutation operators for the programming language C, the first

mutation  testing  tool  for  C  program was  developed,  called  Proteum.  After  that  as  Java

became more popular, many mutation tools for java were developed. One of the most widely

known  one  is  MuJava,  which  not  only  supports  traditional  mutation  operators  but  also

provides class-level mutation operators.

In recent years, a number of open source mutation tools have also been implemented for

many programming languages. For example, PesTer is a mutation testing tool for Python and

PyUnit tests. Nester is a mutation tool for C# code. SQLMutation is a mutation testing tool

for database queries. Then SourceForge has an open source mutation tool for java called

Jester. However, the efficiency of mutation testing depends largely on the mutation operators

and the mutation operators that Jester uses have proven to be rather unstable.

2.6.1 muJava

µJava (muJava)  is  a  mutation  testing  tool  for  Java  programs.  It  automatically  generates

mutants for both traditional mutation testing and class-level mutation testing. µJava can test

individual classes as well as packages of multiple classes. Tests are supplied by the users as

sequences  of  method  calls  to  the  classes  under  test  encapsulated  in  methods  in  separate

classes.

µJava is the result of a collaboration between two universities, Korea Advanced Institute of

Science and Technology (KAIST) in S. Korea and George Mason University in the USA. The

research collaborators are Yu Seung Ma, PhD candidate at KAIST in Korea, Dr. Yong Rae
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Kwon,  Professor  at  KAIST  in  Korea,  and Dr.  Jeff  Offutt,  Professor  at  George  Mason

University in the USA. Most of the software development was done by YuSeung. 

 µJava uses two types of mutation operators, class level and method level. The class level

mutation operators were designed for Java classes by Ma, Kwon and Offutt, and were in turn

designed from a categorization of object-oriented faults by Offutt, Alexander. µJava creates

object-oriented mutants for Java classes according to 24 operators that are specialized to

object-oriented faults. Method level (traditional) mutants are based on the selective operator

set  by Offutt.  After  creating  mutants, µJava allows  the  tester  to  enter  and run  tests,  and

evaluates the mutation coverage of the tests.

2.6.2 Jester

Jester  offers  a  way  to  the  default  set  of  mutation  operations,  but  problems  concerning

performance  and  reliability  of  the  tool,  as  well  as  a  limited  range  of  possible  mutation

operators  (based  only  on  string  substitution)  remain.  Moreover,  the  mutation  operators

offered by Jester are nor context-aware, and often lead to broken code. It is worth mentioning

that Jester’s approach is to generate, compile and run unit tests against a mutant. The process

repeats  for  every  mutant  of  the  SUT  and,  thus  is  inefficient.  Because  of  these  major

disadvantages, Jester was not a successful tool.

2.6.3 Jumble

Jumble is  a  class  level  mutation  testing  tool  that  works  in  conjunction  with  JUnit.  The

purpose of mutation testing is to measure of the adequacy of test cases. A single mutation is

performed on the code under consideration; the corresponding test cases are then executed. If

the modified code fails the tests, then this increases confidence in the tests. Conversely, if the

modified code passes the tests this indicates a testing deficiency.

Jumble was developed in 2003-2006 by a commercial company in New Zealand, Reel Two

(www.reeltwo.com), and is now available as open source under the GPL licence.

JUnit has become the de facto unit testing framework for the Java language. A class and its

corresponding JUnit test is a sensible granularity at which to apply mutation testing. With

Java it is feasible to perform mutation testing either at the source code or byte-code level.

Jester is a mutation testing tool which operates at the source code level. While Jester proves
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useful, it is hampered by the costly cycle of modifying the source, compiling the source, and

running the tests.

Jumble  is  a  new mutation  tester  operating  directly  on  class  files.  It  uses  the  byte-code

engineering library (BCEL) to directly modify class files thereby drastically cutting the time

taken for each mutation test cycle.

Jumble has been designed to operate in an industrial setting with large projects. Heuristics

have been included to speed the checking of mutations, for example, noting which test fails

for each mutation and running this first in subsequent mutation checks. Significant effort has

been put into ensuring that it can test code which runs in environments such as the Apache

webserver. This requires careful attention to class path handling and co-existence with foreign

class-loaders.

At ReelTwo, Jumble is used on a continuous basis within an agile programming environment

with approximately 400,000 lines of Java code under source control. This checks out project

code every fifteen minutes and runs an incremental set of unit tests and mutation tests for

modified classes.

2.6.4 Proteum

Proteum is the first tool to support the testing of C programs based on mutation testing at the

unit level. With the proposition of the criterion Interface mutation, that uses a set of mutant

operators developed to model integration errors, the Proteum/IM has been developed. At the

integration level, Interface mutation is also effective in detecting faults. Recently, Proteum

and Proteum/IM have been integrated in a testing environment, named Proteum/IM 2.0. In

this  way, the tester  can  use  the same concept  during the  unit  and the integration  testing

phases.

The Proteum family is composed of the following tools:

Proteum: supports the unit testing of C programs. It has 71 operators, categorized into four

mutation classes: Statement(15), Operator(46), Variable(7) and constant(3).

Proteum/IM: supports the integration testing of C programs based on the Interface Mutation

criterion. It has 33 operators divided into two groups: 24 of them Group I, and 9 of Group II.
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It provides mechanisms for the assessment of test case adequacy for testing the interactions

among the units of a given program.

Proteum/IM 2.0:  is  an  evolution  of  Proteum and  Proteum/IM.  It  is  a  single,  integrated

environment that provides facilities to investigate low-cost and incremental testing strategies

based on mutation.

Proteum/FSM: supports the application of mutation testing to validate Finite State Machine

based specifications. It has 9 mutant operators. These operators are based on the error classes

defined by Chow and on heuristics about typical errors made by designers during the creation

of Finite State Machines.

Proteum/ST:  supports  the  application  of  mutation  testing  to  validate  statecharts  based

specifications. Statecharts are an extension to Finite State Machines. The approach taken to

implement  Proteum/FSM  makes  it  easier  to  extend  the  ideas,  concepts  and  tools  to

Statecharts  considering  hierarchy,  concurrency,  history  and  other  statechart  features.

Proteum/ST is divided into three categories: 9 Finite State Machine operators; 11 Extended

FSM(EFSM) operators; and 17 Statecharts-feature based operators.

2.6.5 Judy

Judy is an implementation of the FAMTA Light approach developed in Java with AspectJ

extensions.  The  core  features  of  Judy  are  high  mutation  testing  process  performance,

advanced  mutant  generation  mechanism,  integration  with  professional  development

environment  tools,  full  automation of  mutation  testing process  and support  for  the latest

version of Java, enabling it to run mutation testing against the most recent Java software

systems or components.

Judy, like MuJava, supports traditional mutation operators. These were initially defined for

procedural  programs  and have  been  identified  by Offutt  as  selective  mutation  operators.

These operators are to minimize the number of mutation operators, whilst maximizing testing

strength. The latter was measured by Offutt and Lee by computing the non selective mutation

scores of the test sets that were 100% adequate for selective mutation. 
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Table 2.1 A list of mutation Testing Tools

Language Tool Year
Fortran PIMS 1976

FMS 1978
PMS 1978
EXPER 1978
Mothra 1988

COBOL CMS.1 1980
C Proteum 1993

PMothra 1993
CMothra 1989
Proteum/IM 2000

C# Nester 2001
Java Jester 2001

µJava 2002
Lava 2005

Python Pester 2001

2.7 Mutation Operators

Mutation operators are designed to model simple programming mistakes that programmers

make.  Faults  in  the  programs  could  be  much  more  complex  than  the  simple  mistakes

modelled by a mutation operator. However, it has been found that, despite the simplicity of

mutations,  complex  faults  are  discovered  while  trying  to  distinguish  mutants  from their

parent. We apply one or more mutation operators to P to generate a variety of mutants. A

mutation operator might generate no mutants or one or more mutants. The input statement

and declarations are not mutated at all.  

While  it  is  possible  to  categorize  mutation  operators  into  a  few  generic  categories,  the

operators  themselves  are  dependent  on  the  syntax  of  the  programming  language.  For

example, for a program written in ANSI C, one needs to use mutation operators for C. A Java

program is mutated using mutation operators designed for the java language.

There are at least three reasons for the dependence of mutation operators on language syntax.

First, given that the program being mutated is syntactically correct, a mutation operator must

produce a mutant that is also syntactically correct. To do so requires that a valid syntactic

construct be mapped to another valid syntactic construct in the same language.
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Second,  the  domain  of  a  mutation  operator  is  determined  by  the  syntax  rules  of  a

programming language. For example, in java, the domain of a mutation operator that replaces

one relational operator by another is {<,<=,>,>=,!=,==}.

Third,  peculiarities  of  language  syntax  have  an  effect  on  the  kind  of  mistakes  that  a

programmer could make. The aspects of a language such as procedural versus object oriented

are captured in the language syntax. 

Mujava  uses  two  types  of  mutation  operators.  The  traditional  mutation  operators  are

developed from procedural languages. Object Oriented languages have additional class level

mutation operators. They work on the features of object oriented languages like inheritance,

polymorphism and dynamic binding.

Mothra uses 22 traditional mutation operators on Fortran. However, running all these mutant

operates generate a huge number of mutants and not all of them are effective because of

overlaps.  The idea  of  selective  mutation  was  introduced  by Wong and  Mathur  and later

experimentally validated by Offutt. Selective mutation states that a subset of all the mutation

operators is sufficient to provide same effectiveness as non-selective mutation.

24 class mutation operators were identified for Java classes by Ma, Kwon and Offutt for

testing object-oriented and integration issues. There is yet any research on applying selective

mutation on these operators. A major issue with class mutation operators is that they are

applicable  in  different  levels  –  intra-method,  inter-method,  intra-class  and  inter-class.

Traditional mutation operators are all intra-method operators. In general the class mutation

operators  are  intra-class,  but  inter-class  operators  are  important  for  traditional  integration

testing and seldom used subsystem testing.

3. PROPOSED FRAMEWORK OF TOOL

Now that  we know what mutation is  and what mutants look like,  let  us understand how

mutation is used for assessing the adequacy of test set. The problem of test assessment using

mutation can be stated as follows:
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Let P be a program under test, T be a test set for P, and R the set of requirements that P must

meet. Suppose that P has been tested against all tests in T and found to be correct with respect

to R on each test case. We want to know “How good is T?”

Mutation offers a way of answering the question stated above. A quantitative assessment of

the  goodness  of  T is  obtained by computing a  mutation score of  T. Mutation score is  a

number between 0 and 1. A score of 1 means that T is adequate with respect to mutation.  A

score lower than 1 means that T is inadequate with respect to mutation. An inadequate test set

can be enhanced by the addition of test cases that increase the mutation score.

3.1 Software Engineering Approach

We followed SDLC (System Development  Life  Cycle)  for  the  various  phases  of  project

development. 

3.1.1 System Development Life Cycle 

The  Systems  Development  Life  Cycle  (SDLC),  or  Software  Development  Life  Cycle  in

systems  engineering  and  software  engineering,  is  the  process  used  by the  developers  to

develop software with the help of certain models defined in software engineering. 

Software Development Life  Cycle (SDLC) is  a  process  used by a  software developer  to

develop  an  information  system  for  the  software  under  consideration,  including  its

requirements, designing, coding, testing and maintainability. Any SDLC should result in a

high  quality  software  that  not  just  meets  its  customer  expectations  but  also  reaches

completion  within  the  given time  frame and whose cost  estimates  works  effectively and

efficiently  in  the  current  Information  Technology  infrastructure,  and  is  inexpensive  to

maintain and cost-effective to enhance.

Computer  systems  are  complex  and  often  link  multiple  traditional  systems  potentially

supplied by different software vendors. To manage this level of complexity, a number of

SDLC models  have  been  created:  waterfall,  spiral,  build  and fix,  incremental,  and rapid

prototyping.

The  approach  which  we  followed  for  the  development  of  the  tool  is Incremental

development.  The incremental  development  model is  a  method  of software
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development where  the  model  is designed,  implemented  and tested incrementally  (a  little

more is added each time) until the product is fully developed as per the stated requirements. It

involves  both  development  and  maintenance.  This  model  combines  the  elements  of

the waterfall model with the iterative philosophy of prototyping. In this model, there is an

overall lower risk of project failure.

The  tool  is  decomposed  into  a  number  of  components,  each  of  which  is  designed  and

implemented separately. Firstly, the mutation operators are being defined for the tool. After

that some mutants are generated of a source code. Then the source code and all the mutants

are being run on the test cases to check their adequacy. Next, some more operators are added

to the tool and thereafter it generates more mutants of the original program. In this way the

tool is being developed and the incremental process model helps in adding more and more

functionality at each stage of the product development.

3.2 Project Process

3.2.1 Requirement Phase 

This is the starting phase of the project development and consisted of following:
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 Literature Survey and Research: In this phase, I learned about various aspects of mutation

testing. Also learned about mutation operators and how they are applied in practise. I came to

know about the traditional  mutation operators and class level  mutation operators.  Also,  I

learned about some existing mutation testing tools like mujava, how they are run, how they

differ from each other and what different functionalities that they perform which make them

different from the one another.   

Analysis:  After going through a lot  of research and literature survey, I  analysed that  the

Eclipse version 3.5 (Java platform) would be a good platform to develop the tool. Eclipse is

a multi-language software development environment comprising an integrated development

environment  and  an  extensible  plug-in  system.  Also,  I  analysed  that  Java  would  be  the

language for which the tool will work initially. After that other object oriented languages will

also be included in the tool.

3.2.2 Design Phase

This phase is the most important phase of the project development:

Framework and Implementation
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In this phase, the framework of the tool is modeled. Also It was decided how the various

components  of  the  tool  will  be  interconnected  to  meet  the  specified  requirements.  The

framework of the tool is depicted in Fig 3.2. The various steps of implementing the tool is

given below:

Step 1 Program execution 

The  first  step  in  assessing  the  adequacy of  a  test  set  T with  respect  to  program P and

requirements R is  to  execute P against each test  case in  T. Let  P(t)  denote the observed

behaviour of  P when executed against t. Generally, the observed behaviour is expressed as a

set of values of output variables in P. However, it might also relate to the performance of P.

Step 2 Mutant Generation

The next  step in test-adequacy assessment is  the generation of mutants.  The mutants are

generated with the help of Mutation Operators that are defined in the tool. A mutant can be

generated from P by altering the arithmetic operators such that any occurrence of the addition

operator  (+)  is  replaced  by  the  subtraction  operator  (-).  By  mutating  the  program  as

mentioned  above,  we  obtain  various  mutants  of  the  program which  are  known  as  Live

Mutants(L). These mutants are live because we have not yet distinguished them from the

original program. Distinguishing a mutant from its parent is also known as killing a mutant. 
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Step 3 Select the next mutant 

In this step, we select the next mutant to be considered. This mutant must not be selected

earlier. At this point a loop is starting that will cycle through all mutants in L until each

mutant has been selected. If there are live mutants in L, which have never been selected in

any previous step, then a mutant is selected arbitrarily. The selected mutant is removed from

L.

Step 4 Mutant execution

Having selected a mutant M, we know attempt to find whether at least one of the tests in T

can distinguish it from its parent P. To do so, we need to execute M against tests in T. Thus at

this  point  we  enter  another  loop  that  is  executed  for  each  selected  mutant.  The  loop

terminates  when  all  tests  are  exhausted  or  M  is  distinguished  by  some  test,  whichever

happens earlier. We have selected a mutant M for execution against a test set t. Then we

execute M against t and check if the output generated by executing M against t is same or

different from that generated by executing P against t.

Step 5 Distinguished and Live Mutants

After executing all mutants, we check for the Live and Distinguished mutants. When none of

the tests in T is able to distinguish mutant M from its parent P, then M is placed back into the

set of  Live Mutants and when any one of the test case in T is able to distinguish the mutant

M from its parent P, then that mutant is called Killed or Distinguished Mutant.

Step 6 Computation of mutation Score

This is the final step in the assessment of test adequacy. Mutant score can be computed as the

total number of Distinguished Mutants by the total number of Live Mutant.  As evident from

the formula above, a mutation score is always between 0 and 1. If a test set T distinguishes all

mutants, then the mutation score is 1.  If T does not distinguish any mutant, then the mutant

score is 0. The score of 0 does not imply that the test set is inadequate. In this case, the set of

mutants generated is insufficient to assess the adequacy of the test set. In practise, it is rare to

find such a situation.

3.3 The Problem of Mutation Analysis
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Although Mutation Testing is able to effectively assess the quality of a test set, it still suffers 

from a number of problems. One problem that prevents Mutation Testing from becoming a 

practical testing is the high computational cost of executing the enormous number of mutants 

against a test set. The other problem related to the amount of human effort involved in using 

Mutation Testing is the human oracle problem. The human oracle problem refers to the 

process of checking the original program’s output with each test case. Strictly speaking this is

not a problem unique to Mutation Testing. In all forms of testing, once a set of inputs has 

been arrived at, there remains the problem of checking output. However, mutation testing is 

effective precisely because it is demanding and this can lead to an increase in the number of 

test cases thereby increasing the oracle cost. This oracle cost is often the most expensive part 

of the overall testing activity.

4. Results
Original Program: 

public class kk 
{
public static void main(String args[])
{
int a=0;
int u=10;
int l=a+u;      
int c=a-u;            
int d=a*u;           
int f=a/u;
if(a<u)
System.out.println("a is less than u");
System.out.println(l);
System.out.println(c);
System.out.println(d);
System.out.println(f);
}
}

Mutated code1
public class kk 
{
public static void main(String args[])
{
int a=0;
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int u=10;
int l=a-u;             
int c=a-u;                
int d=a*u;         
int f=a/u;
if(a<u)
System.out.println("a is less than u");
System.out.println(l);
System.out.println(c);
System.out.println(d);
System.out.println(f);
}
}

Mutated code2
public class kk 
{
public static void main(String args[])
{
int a=0;
int u=10;
int l=a*u;      
int c=a-u;        
int d=a*u;            
int f=a/u;
if(a<u)
System.out.println("a is less than u");   
System.out.println(l);
System.out.println(c);
System.out.println(d);
System.out.println(f);
}
}

Mutated code3
public class kk
{
public static void main(String args[])
{
int a=0;
int u=10;
int l=a/u;         
int c=a-u;       
int d=a*u;      
int f=a/u;
if(a<u)
System.out.println("a is less than u");
System.out.println(l);
System.out.println(c);
System.out.println(d);
System.out.println(f);
}
}

Mutated code 4
public class kk 
{
public static void main(String args[])
{
int a=0;
int u=10;
int l=a+u;       
int c=a/u;      
int d=a*u;     
int f=a/u;
if(a<u)
System.out.println("a is less than u");
System.out.println(l);
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System.out.println(c);
System.out.println(d);
System.out.println(f)
}
}

Mutated code 5
public class kk
{
public static void main(String args[])
{
int a=0;
int u=10;
int l=a+u;      
int c=a+u;      
int d=a*u;   
int f=a/u;
if(a<u)
System.out.println("a is less than u");
System.out.println(l);
System.out.println(c);
System.out.println(d);
System.out.println(f);
}
}

Mutated code 6
public class kk 
{
public static void main(String args[])
{
int a=0;
int u=10;
int l=a+u;   
int c=a*u; 
int d=a*u;        
int f=a/u;
if(a<u)
System.out.println("a is less than u");
System.out.println(l);
System.out.println(c);
System.out.println(d);
System.out.println(f);
}
}

Mutated code 7
public class kk 
{
public static void main(String args[])
{
int a=0;
int u=10;
int l=a+u; 
int c=a-u;   
int d=a/u;         
int f=a/u;
if(a<u)
System.out.println("a is less than u");
System.out.println(l);
System.out.println(c); 
System.out.println(d);
System.out.println(f);
}
}

Mutated code 8
public class kk 
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{
public static void main(String args[])
{
int a=0;
int u=10;
int l=a+u; 
int c=a-u;  
int d=a+u; 
int f=a/u;
if(a<u)
System.out.println("a is less than u");
System.out.println(l);
System.out.println(c);
System.out.println(d);
System.out.println(f);
}
}

Mutated code 9
public class kk
{
public static void main(String args[])
{
int a=0;
int u=10;
int l=a+u; 
int c=a-u;  
int d=a-u;    
int f=a/u;
if(a<u)
System.out.println("a is less than u");
System.out.println(l);
System.out.println(c);
System.out.println(d);
System.out.println(f);
}
}

Mutated code 10
public class kk 
{
public static void main(String args[])
{
int a=0;
int u=10;
int l=a+u;
int c=a-u;   
int d=a*u;     
int f=a+u;
if(a<u)
System.out.println("a is less than u");
System.out.println(l); 
System.out.println(c);
System.out.println(d);
System.out.println(f);
}
}

Mutated code 11
public class kk
{
public static void main(String args[])
{
int a=0;
int u=10;
int l=a+u; 
int c=a-u;    
int d=a*u;    
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int f=a-u;
if(a<u)
System.out.println("a is less than u");
System.out.println(l);
System.out.println(c);
System.out.println(d);
System.out.println(f);
}
}

Mutated code 12
public class kk
{
public static void main(String args[])
{
int a=0;
int u=10;
int l=a+u;
int c=a-u;    
int d=a*u;      
int f=a*u;
if(a<u)
System.out.println("a is less than u");
System.out.println(l);
System.out.println(c);
System.out.println(d);
System.out.println(f);
}
}

Mutated code 13
public class kk 
{
public static void main(String args[])
{
int a=0;
int u=10;
int l=a+u; 
int c=a-u;      
int d=a*u;       
int f=a/u;
if(a>u)
System.out.println("a is less than u");
System.out.println(l);
System.out.println(c);
System.out.println(d);
System.out.println(f);
}
}
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CONCLUSION

Mutation testing is not meant as a replacement for code coverage, but as a complementary

approach that is useful in detecting those pieces of the code that are executed by running

tests, but are not fully tested. It is not widely used in software engineering due to the limited

performance of the existing tools and lack of support for standard unit testing and build tools.

My target of the project is to develop a feasible mutation testing tool with minimal human

involvement  and  significant  performance  improvement.  The  tool  would  provide  almost

complete automation to the tester.  Good coverage is an important criterion and efficient

mutation testing provides significantly better coverage than other techniques.
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APPENDIX

CODING

import java.io.*;
public class kk 
{
public static void main(String args[]) throws IOException
{
File j =  new 
File("C:/Users/PARIMALROYCHAUDHURY/workspace/test/src/m.java");
File m1 = new File("C:/Users/PARIMAL 
ROYCHAUDHURY/workspace/test/src/m1.java");
File m2 =new File("C:/Users/PARIMAL 
ROYCHAUDHURY/workspace/test/src/m2.java");
File m3 =new File("C:/Users/PARIMAL 
ROYCHAUDHURY/workspace/test/src/m3.java");
File m4 =new File("C:/Users/PARIMAL 
ROYCHAUDHURY/workspace/test/src/m4.java");
File m5 =new File("C:/Users/PARIMAL 
ROYCHAUDHURY/workspace/test/src/m5.java");
File m6 =new File("C:/Users/PARIMAL 
ROYCHAUDHURY/workspace/test/src/m6.java");
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File m7 =new File("C:/Users/PARIMAL 
ROYCHAUDHURY/workspace/test/src/m7.java");
File m8 =new File("C:/Users/PARIMAL 
ROYCHAUDHURY/workspace/test/src/m8.java");
File m9 =new File("C:/Users/PARIMAL 
ROYCHAUDHURY/workspace/test/src/m9.java");
File m10=new File("C:/Users/PARIMAL 
ROYCHAUDHURY/workspace/test/src/m10.java");
File m11=new File("C:/Users/PARIMAL                     
ROYCHAUDHURY/workspace/test/src/m11.java");
File m12=new File("C:/Users/PARIMAL   
ROYCHAUDHURY/workspace/test/src/m12.java");
File m13=new File("C:/Users/PARIMAL  
ROYCHAUDHURY/workspace/test/src/m13.java");
m1.createNewFile();
m2.createNewFile();
m3.createNewFile();
m4.createNewFile();
m5.createNewFile();
m6.createNewFile();
m7.createNewFile();
m8.createNewFile();
m9.createNewFile();
m10.createNewFile();
m11.createNewFile();
m12.createNewFile();
m13.createNewFile();
if(m1.isFile())
{
System.out.println("file1 exists");
}
if(m2.isFile())
{
System.out.println("file2 exists");
}
if(m3.isFile())
{
System.out.println("file3 exists");
}
if(m4.isFile())
{
System.out.println("file4 exists");
}
if(m5.isFile())
{
System.out.println("file5 exists");
}
if(m6.isFile())
{
System.out.println("file6 exists");
}
if(m7.isFile())
{
System.out.println("file7 exists");
}
if(m8.isFile())
{
System.out.println("file8 exists");
}
if(m9.isFile())
{
System.out.println("file9 exists");
}
if(m10.isFile())
{
System.out.println("file10 exists");
}
if(m11.isFile())
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{
System.out.println("file11 exists");
}
if(m12.isFile())
{
System.out.println("file12 exists");
}
if(m13.isFile())
{
System.out.println("file13 exists");
}
BufferedReader br1=new BufferedReader(new FileReader(j));
BufferedWriter ty1=new BufferedWriter(new FileWriter(m1));
String line;
String l=null;
while((line=br1.readLine())!=null)
{
l=line.replace("class m", "class m1");
line = l;
l=line.replace('+', '-');
ty1.write(l);
}
ty1.flush();
ty1.close();
BufferedReader br2=new BufferedReader(new FileReader(j));
BufferedWriter ty2=new BufferedWriter(new FileWriter(m2));
l=null;
while((line=br2.readLine())!=null)
{
l=line.replace("class m", "class m2");
line = l;
l=line.replace('+', '*');
ty2.write(l);
}
ty2.flush();
ty2.close();
BufferedReader br3=new BufferedReader(new FileReader(j));
BufferedWriter ty3=new BufferedWriter(new FileWriter(m3));
l=null;
while((line=br3.readLine())!=null)
{
l=line.replace("class m", "class m3");
line = l;
l=line.replace('+', '/');
ty3.write(l);
}
ty3.flush();
ty3.close();
BufferedReader br4=new BufferedReader(new FileReader(j));
BufferedWriter ty4=new BufferedWriter(new FileWriter(m4));
l=null;
while((line=br4.readLine())!=null)
{
l=line.replace("class m", "class m4");
line = l;
l=line.replace('-', '/');
ty4.write(l);
}
ty4.flush();
ty4.close();
BufferedReader br5=new BufferedReader(new FileReader(j));
BufferedWriter ty5=new BufferedWriter(new FileWriter(m5));
l=null;
while((line=br5.readLine())!=null)
{
l=line.replace("class m", "class m5");
line = l;
l=line.replace('-', '+');

50



ty5.write(l);
}
ty5.flush();
ty5.close();
BufferedReader br6=new BufferedReader(new FileReader(j));
BufferedWriter ty6=new BufferedWriter(new FileWriter(m6));
l=null;
while((line=br6.readLine())!=null)
{
l=line.replace("class m", "class m6");
line = l;
l=line.replace('-', '*');
ty6.write(l);
}
ty6.flush();
ty6.close();
BufferedReader br7=new BufferedReader(new FileReader(j));
BufferedWriter ty7=new BufferedWriter(new FileWriter(m7));
l=null;
while((line=br7.readLine())!=null)
{
l=line.replace("class m", "class m7");
line = l;
l=line.replace('*', '/');
ty7.write(l);
}
ty7.flush();
ty7.close();
BufferedReader br8=new BufferedReader(new FileReader(j));
BufferedWriter ty8=new BufferedWriter(new FileWriter(m8));
l=null;
while((line=br8.readLine())!=null)
{
l=line.replace("class m", "class m8");
line = l;
l=line.replace('*', '+');
ty8.write(l);
}
ty8.flush();
ty8.close();
BufferedReader br9=new BufferedReader(new FileReader(j));
BufferedWriter ty9=new BufferedWriter(new FileWriter(m9));
l=null;
while((line=br9.readLine())!=null)
{
l=line.replace("class m", "class m9");
line = l;
l=line.replace('*', '-');
ty9.write(l);
}
ty9.flush();
ty9.close();
BufferedReader br10=new BufferedReader(new FileReader(j));
BufferedWriter ty10=new BufferedWriter(new FileWriter(m10));
l=null;
while((line=br10.readLine())!=null)
{
l=line.replace("class m", "class m10");
line = l;
l=line.replace('/', '+');
ty10.write(l);
}
ty10.flush();
ty10.close();
BufferedReader br11=new BufferedReader(new FileReader(j));
BufferedWriter ty11=new BufferedWriter(new FileWriter(m11));
l=null;
while((line=br11.readLine())!=null)
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{
l=line.replace("class m", "class m11");
line = l;
l=line.replace('/', '-');
ty11.write(l);
}
ty11.flush();
ty11.close();
BufferedReader br12=new BufferedReader(new FileReader(j));
BufferedWriter ty12=new BufferedWriter(new FileWriter(m12));
l=null;
while((line=br12.readLine())!=null)
{
l=line.replace("class m", "class m12");
line = l;
l=line.replace('/', '*');
ty12.write(l);
}
ty12.flush();
ty12.close();
BufferedReader br13=new BufferedReader(new FileReader(j));
BufferedWriter ty13=new BufferedWriter(new FileWriter(m13));
l=null;
while((line=br13.readLine())!=null)
{
l=line.replace("class m", "class m13");
line = l;
l=line.replace('<', '>');
ty13.write(l);
}
ty13.flush();
ty13.close();
}
}

import java.io.*;
public class as {
public static void main(String[] args)throws IOException
{
int dm=0,flag=-1,lm=13;
BufferedReader in1  = new BufferedReader(new FileReader("C:/Users/PARIMAL 
ROYCHAUDHURY/workspace/test/src/out.txt"));
BufferedReader mn1  = new BufferedReader(new FileReader("C:/Users/PARIMAL 
ROYCHAUDHURY/workspace/test/src/out1.txt"));
String lineFromInput  = null ;
String lineFromMutant = null;
while((lineFromInput = in1.readLine())!=null&&(lineFromMutant = 
mn1.readLine())!=null)
{
if(lineFromInput.equals(lineFromMutant))
{   
flag=1;
 }
else
{ 
flag=0;
break;
}
}

             if(flag==0)
{
 dm++;
 }
BufferedReader in2  = new BufferedReader(new FileReader("C:/Users/PARIMAL 
ROYCHAUDHURY/workspace/test/src/out.txt"));
BufferedReader mn2  = new BufferedReader(new FileReader("C:/Users/PARIMAL 
ROYCHAUDHURY/workspace/test/src/out2.txt"));
lineFromInput = null ;
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lineFromMutant = null;
while((lineFromInput = in2.readLine())!=null&&(lineFromMutant = 
mn2.readLine())!=null)
{
if(lineFromInput.equals(lineFromMutant))
{   
flag=1;
}
else

            { 
flag=0;
break;
}
}
if(flag==0)
{
dm++;

    
}
BufferedReader in3 = new BufferedReader(new FileReader("C:/Users/PARIMAL 
ROYCHAUDHURY/workspace/test/src/out.txt"));
BufferedReader mn3 = new BufferedReader(new FileReader("C:/Users/PARIMAL 
ROYCHAUDHURY/workspace/test/src/out3.txt"));
lineFromInput = null ;
lineFromMutant = null;
while((lineFromInput = in3.readLine())!=null&&(lineFromMutant = 
mn3.readLine())!=null)
{
if(lineFromInput.equals(lineFromMutant))
{   
flag=1;
}
else
{ 
flag=0;
break;
}
}
if(flag==0)

           {
dm++;
}
BufferedReader in4 = new BufferedReader(new FileReader("C:/Users/PARIMAL 
ROYCHAUDHURY/workspace/test/src/out.txt"));
BufferedReader mn4 = new BufferedReader(new FileReader("C:/Users/PARIMAL 
ROYCHAUDHURY/workspace/test/src/out4.txt"));
lineFromInput  = null ;
lineFromMutant = null;
while((lineFromInput = in4.readLine())!=null&&(lineFromMutant = 
mn4.readLine())!=null)
{
if(lineFromInput.equals(lineFromMutant))
{   
flag=1;
}
else

            { 
 flag=0;
break;
}
}
if(flag==0)
{
dm++;
}
BufferedReader in5 = new BufferedReader(new FileReader("C:/Users/PARIMAL 
ROYCHAUDHURY/workspace/test/src/out.txt"));
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BufferedReader mn5 = new BufferedReader(new FileReader("C:/Users/PARIMAL 
ROYCHAUDHURY/workspace/test/src/out5.txt"));
lineFromInput = null ;
lineFromMutant = null;

      
while((lineFromInput = in5.readLine())!=null&&(lineFromMutant = 
mn5.readLine())!=null)
{
if(lineFromInput.equals(lineFromMutant))
{   
flag=1;
}
else
{ 
flag=0;
break;
}
}
if(flag==0)
{
dm++;
}
BufferedReader in6 = new BufferedReader(new FileReader("C:/Users/PARIMAL 
ROYCHAUDHURY/workspace/test/src/out.txt"));
BufferedReader mn6 = new BufferedReader(new FileReader("C:/Users/PARIMAL 
ROYCHAUDHURY/workspace/test/src/out6.txt"));
lineFromInput  = null ;
lineFromMutant = null;
while((lineFromInput = in6.readLine())!=null&&(lineFromMutant = 
mn6.readLine())!=null)
{

    
if(lineFromInput.equals(lineFromMutant))
{   
flag=1;
}

 else
{ 
flag=0;
break;
}
}
if(flag==0)
{
dm++;
}
BufferedReader in7 = new BufferedReader(new FileReader("C:/Users/PARIMAL 
ROYCHAUDHURY/workspace/test/src/out.txt"));
BufferedReader mn7 = new BufferedReader(new FileReader("C:/Users/PARIMAL 
ROYCHAUDHURY/workspace/test/src/out7.txt"));
lineFromInput = null ;
lineFromMutant = null;
while((lineFromInput = in7.readLine())!=null&&(lineFromMutant = 
mn7.readLine())!=null)
{
if(lineFromInput.equals(lineFromMutant))
{   
flag=1;
}
else
{ 
flag=0;
 break;
}
}
if(flag==0)
{
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dm++;
 }
BufferedReader in8 = new BufferedReader(new FileReader("C:/Users/PARIMAL 
ROYCHAUDHURY/workspace/test/src/out.txt"));
BufferedReader mn8 = new BufferedReader(new FileReader("C:/Users/PARIMAL 
ROYCHAUDHURY/workspace/test/src/out8.txt"));
lineFromInput  = null ;
lineFromMutant = null;
while((lineFromInput = in8.readLine())!=null&&(lineFromMutant = 
mn8.readLine())!=null)
{
if(lineFromInput.equals(lineFromMutant))
{   
flag=1;
}
else
{ 
flag=0;
break;
}
}
if(flag==0)
{
dm++;
}
BufferedReader in9 = new BufferedReader(new FileReader("C:/Users/PARIMAL 
ROYCHAUDHURY/workspace/test/src/out.txt"));
BufferedReader mn9 = new BufferedReader(new FileReader("C:/Users/PARIMAL 
ROYCHAUDHURY/workspace/test/src/out9.txt"));
lineFromInput  = null ;
lineFromMutant = null;
while((lineFromInput = in9.readLine())!=null&&(lineFromMutant = 
mn9.readLine())!=null
{
 if(lineFromInput.equals(lineFromMutant))
{   
flag=1;
}
else
{ 
flag=0;
 break;
}
}
if(flag==0)
{
dm++;

            }
BufferedReader in10 = new BufferedReader(new FileReader("C:/Users/PARIMAL 
ROYCHAUDHURY/workspace/test/src/out.txt"));

BufferedReader mn10 = new BufferedReader(new FileReader("C:/Users/PARIMAL 
ROYCHAUDHURY/workspace/test/src/out10.txt"));
lineFromInput = null ;

          lineFromMutant = null;
while((lineFromInput = in10.readLine())!=null&&(lineFromMutant =   
mn10.readLine())!=null)
{
if(lineFromInput.equals(lineFromMutant))
{   
flag=1;
}
else
{ 
flag=0;
break;
}
}
if(flag==0)
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{
dm++;
}
BufferedReader in11 = new BufferedReader(new   FileReader("C:/Users/PARIMAL 
ROYCHAUDHURY/workspace/test/src/out.txt"));
BufferedReader mn11 = new BufferedReader(new FileReader("C:/Users/PARIMAL 
ROYCHAUDHURY/workspace/test/src/out11.txt"));
lineFromInput = null ;
lineFromMutant = null;
while((lineFromInput = in11.readLine())!=null&&(lineFromMutant = 
mn11.readLine())!=null)
{
if(lineFromInput.equals(lineFromMutant))
{   
flag=1;
}
else
{ 
flag=0;
break;
}
}
if(flag==0)
{
dm++;
}
BufferedReader in12 = new BufferedReader(new FileReader("C:/Users/PARIMAL 
ROYCHAUDHURY/workspace/test/src/out.txt"));
BufferedReader mn12 = new BufferedReader(new FileReader("C:/Users/PARIMAL 
ROYCHAUDHURY/workspace/test/src/out12.txt"));
lineFromInput = null ;
lineFromMutant = null;
while((lineFromInput = in12.readLine())!=null&&(lineFromMutant = 
mn12.readLine())!=null)
{
if(lineFromInput.equals(lineFromMutant))
{   
flag=1;
}
else
{ 
flag=0;
break;
}
}
if(flag==0)
{
dm++;
}
BufferedReader in13 = new BufferedReader(new FileReader("C:/Users/PARIMAL 
ROYCHAUDHURY/workspace/test/src/out.txt"));
BufferedReader mn13 = new BufferedReader(new FileReader("C:/Users/PARIMAL 
ROYCHAUDHURY/workspace/test/src/out13.txt"));
lineFromInput = null ;
lineFromMutant = null;
while((lineFromInput = in13.readLine())!=null&&(lineFromMutant = 
mn13.readLine())!=null)
{
if(lineFromInput.equals(lineFromMutant))
{   
flag=1;
}
else
{ 
flag=0;
break;
}
}
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if(flag==0)
{
dm++;
}
System.out.println ("No. Of  Live Mutants "+lm);
System.out.println ("No.of  Killed Mutants "+dm);
int MS= (dm*100)/13;
System.out.println("Mutant Score is "+MS+"%");
 }
 }
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