
DESIGNING A TOOL FOR MUTATION TESTING

PAWAN KUMAR - 091276

Under the Supervision of

Dr. PRADEEP KUMAR GUPTA
Sr. Lecturer, CSE & IT

May 2013

Submitted in partial fulfilment of the degree of

BACHELOR OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING AND
INFORMATION TECHNOLOGY

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY
WAKNAGHAT, SOLAN

Certificate

1

This is to certify that project report entitled “DESIGNING A TOOL FOR MUTATION

TESTING”, submitted by PAWAN KUMAR(091276) in partial fulfillment for the award of

degree of Bachelor of Technology in Computer Science Engineering to Jaypee University of

Information Technology, Waknaghat, Solan has been carried out under my supervision.

This work has not been submitted partially or fully to any other University or Institute for the

award of this or any other degree or diploma.

Date: Dr. PRADEEP KUMAR GUPTA
 Sr. Lecturer, CSE& IT

Acknowledgement

I would like to take this oppurtinity to express my sincere indebtness and sense of graditude

to all those who have contributed greatly towards the successful partial completion of my

project “Designing a tool for Mutation Testing”.

 It would not have been possible to see through the undertaken project without the guidance

and constant support of our guide Dr. Pradeep Kumar Gupta. For his coherent guidance I feel

2

fortunate to be taught by him, who gave me his unwavering support. I owe my heartiest

thanks to Brig. (Retd.) S.P.Ghrera (H.O.D.-CSE/IT Department) who’ve always inspired

confidence in me to take initiative.

As a final note, I am grateful to CSE and IT Department of Jaypee University of

Information and Technology ,who inspired me to undertake difficult tasks by their strength

of understanding my calibre and my requirements and taught me to work with patience and

provided constant encouragement to successfully complete the project.

Date: Pawan Kumar

Table of Content

1. 0 Introduction 1

1.1 Humans, Errors and Testing 1

1.2 Software Quality 3

1.3 Software Testing 4

3

1.4 Key Concepts 8

2.0 Mutation Testing 13

2.1 Introduction 13

2.2 Founding Principles of Mutation Testing 15

2.3 Related Work 16

2.4 Class Mutation 16

2.5 Class Mutation Techniques 17

2.6 Existing Mutation Testing Tools 24

2.7 Mutation Operators 28

3.0 Proposed Framework of the Tool 30

3.1 Software Engineering Approach 30

3.2 Project Process 32

3.3 The Problem of Mutation Analysis 35

4.0 Results 36

Conclusion 41

Appendix 42

List of Figures

Title Page No.

Fig 1.1 Errors, Faults and Failures in the process of programming and testing 5

Fig 2.1 Description of Mutation Testing 14

Fig 3.1 An incremental development model 31

Fig 3.2 Framework of the Tool 32

4

Fig 3.3 Generation of mutants 34

List of Tables

Title Page No.

Table 1.1 Typical Software Quality Factors 7

Table 2.1 A list of mutation Testing Tools 28

5

Abstract

Mutation testing takes a different approach to testing by asking questions about the efficacy

of test cases. It is a fault-based technique that measures the effectiveness of test suites for

fault localization, base on seeded faults. The fault detection effectiveness of a test suite is

defined as the percentage of faults that can be detected by that test suite. A mutation is a

change made to the source code by a mutation testing tool. Faults are introduced into the

program by creating a collection of faulty versions, called mutants. These mutants are created

from the original program by applying mutation operators which describe syntactic changes

to the original code. The test suite is then used to execute these mutants and to measure how

well it is able to find faults. A test case that distinguishes (returning a different result) the

program from one or more of its mutants is considered to be effective in finding faults. A

mutation score is a quantitative measurement of the quality of the test suite. This report

describes an automated mutation testing tool for Java programs. It describes the framework of

6

the proposed tool and how the various components of the tool are interconnected to each

other. Also it provides the various mutation operators present in the tool.

1. INTRODUCTION

Software testing is an integral part of software development cycle which is aimed at

evaluating an attribute or capability of a program or system and determining that it meets the

specified requirements. It is crucial for the quality of software and widely deployed by

programmers and testers. Due to the limited understanding of the principles of software,

Software testing still remains an art. The difficulty associated with software testing arises

from the complexity of software. It is practically not feasible to test a program with moderate

complexity completely. Testing is more than just debugging. The testing can be done to

assure the quality of the software, or to verify and validate the system, or to estimate the

reliability of the product. Testing can be used as a generic metric as well. Software testing is a

trade-off between budget, time and quality.

1.1 Humans, Errors and Testing

Errors are a part of our daily life. Humans make errors in their thoughts, in their actions, and

in the products that might result from their actions. Errors occur almost everywhere. Humans

7

can make errors in any field, for example in observation, in speech, in medical prescription,

in driving, in sports, and similarly even in software development. An error might be

insignificant in that it leads to a gentle friendly smile, such as when a slip of tongue occurs.

Or, an error may lead to a catastrophe, such as when an operator fails to recognize that a

relief valve on the pressurizer was stuck open and this resulted in a disastrous radiation leak.

To determine whether there are any errors in our thought, actions, and the products generated,

we resort to the process of testing. The primary goal of testing is to determine if the thoughts,

actions, and products are as desired, that is they conform to the requirements. Testing of

thoughts is usually designed to determine if a concept or method has been understood

satisfactorily. Testing of actions is designed to check if a skill that results in the actions has

been acquired satisfactorily. Testing of a product is designed to check if the product behaves

as desired. Both semantic and syntax errors arise during programming .Given that most

modern compilers are able to detect syntactic errors, testing focuses on semantic errors, also

known as faults that cause the program under test to behave incorrectly.

1.1.1 Errors, Faults and Failures

A programmer writes a program. An error occurs in the process of writing a program. A fault

is the manifestation of one or more errors. A failure occurs when a faulty piece of code is

executed leading to an incorrect state that propagates to the program’s output. The

programmer might misinterpret the requirements and consequently write incorrect code.

Upon execution, the program might display behaviour that does not match with the expected

behaviour, implying thereby that a failure has occurred. A fault in the program is also

commonly referred to as a bug or a defect. The term error and bug are by far the most

common ways of referring to something wrong in the program text that might lead to a

failure. In Figure 1.1, notice the separation of observable from observed behaviour. This

separation is important because it is the observed behaviour that might lead one to conclude

that a program has failed.

8

1.1.2 Test Automation

Testing of complex systems can be a human intensive task. Often one needs to execute

thousands of tests to ensure that, for example, a change made to a component of an

application does not cause previously correct code to malfunction. Execution of many tests

can be a tiring as well as error-prone. Hence, there is a tremendous need for automating

testing tasks.

Most software development organizations automate test- related tasks such as regression

testing, graphical user interface (GUI) testing, and I/O device driver testing. Unfortunately,

the process of test automation cannot be generalized. For example, automating regression

tests for an embedded device such as a pacemaker is quite different from that for an I/O

device driver that connects to the USB port of a PC. Such lack of generalization often leads to

specialized test automation tools developed in-house.

9

Fig 1.1 Errors, Faults and Failures in the process of programming and testing.

Nevertheless, there do exist general-purpose tools for test automation. While such tools might

not be applicable in all test environments, they are useful in many of them. Examples of such

tools include Eggplant, Marathon, and Pounder for GUI testing; eLoadExpert, DBMonster,

JMeter, WAPT, LoadRunner, and Grinder for performance or load testing; and Echleon,

TestTube, WinRunner and XTest for regression testing. Despite the existence of a large

number and variety of test automation tools, large development organizations develop their

own test automation tools due primarily to the unique nature of their test requirements.

1.2 Software Quality

We all want high-quality software. There exist several definitions of software quality. Also,

one quality attribute might be more important to a user than another quality attribute. In any

case, software quality is a multidimensional quantity and is measurable.

1.2.1 Quality Attributes

There exist several measures of software quality. These can be divided into static and

dynamic quality attributes. Static quality attributes refer to the actual code and related

documentation. Dynamic quality attributes relate to the behaviour of the application in use.

Static quality attributes include structured, maintainable, and testable code as well as the

availability of correct and complete documentation. We might come across complaints such

as “Product X is excellent, I like the features it offers, but its user manual stinks!” In this

case, the user manual brings down the overall product quality. If a maintenance engineer has

been assigned the task of doing corrective maintenance on an application code, he will most

likely need to understand portions of the code before he make any changes to it. This is where

attributes related to items such as code documentation, understandability, and structure come

into play. A poorly documented piece of code will be harder to understand and hence difficult

to modify. Further, poorly structured code might be harder to modify and difficult to test.

Dynamic quality attributes include software reliability, correctness, completeness,

consistency, usability, and performance. Reliability refers to the probability of failure-free

operation. Correctness refers to the correct operation of an application and is always with

reference to some artifact. For a tester, correctness is with respect to the requirements; for a

user, it is often with respect to a user manual. Completeness refers to the availability of all the

features listed in the requirements or in the manual. An incomplete software is one that does

10

not fully implement all the features required. Consistency refers to adherence to a common

set of conventions and assumptions. Usability refers to the ease with which an application can

be used. This is an area in itself and there exist techniques for usability testing. Psychology

plays an important role in the design of techniques for usability testing. Usability testing

refers to testing of a product by its potential users. The development organization invites a

selected set of potential users and asks them to test the product. Users in turn test for ease of

use, functionality as expected, performance, safety, and security. Usability testing is

sometimes referred to as user-centric testing. Performance refers to the time the application

takes to perform a requested task. Performance is considered as a non-functional requirement.

1.3 Software Testing

Software Testing is the process of Software Development Life Cycle (SDLC) which aims to

find errors in a program or system. It involves various activities to be performed whose aim is

to evaluate the capability or attributes of the software and determine that it meets its specified

requirements. Software is quite different from other physical processes which involve input

and output. Where software differs is in the manner in which it does not satisfy its

requirements. Software can fail in many bizarre ways unlike other physical systems which

fail in a relatively small set of ways. It is rare and almost impossible to detect all of the

different failure modes for the software.

Unlike most physical systems where manufacturing defects occur, most of the defects that

occur in software are design errors. Software usually does not suffer from corrosion and

wear-and-tear. Software generally does not change until its upgraded version is not available,

or until it reaches obsolescence. So, the design defects or bugs will remain buried in the

software or system, once the software is shipped.

A software module of considerable size will always have some defects present in it. It is not

because the programmers are careless or irresponsible, but because the complexity associated

with the software is generally intractable and humans have only limited ability to handle the

complexity. It is also true that for any complex systems, design defects can never be

completely ruled out.

Discovering the design defects in software is equally difficult, for the same reason of

complexity. Because software and any digital systems are not continuous, testing boundary

11

values are not sufficient to guarantee correctness. All the possible values need to be tested

and verified, but complete testing is infeasible. Exhaustively testing a simple program to add

only two integer inputs of 32-bits (yielding 2^64 distinct test cases) would take hundreds of

years, even if tests were performed at a rate of thousands per second. Obviously, for a

realistic software module, the complexity can be far beyond the example mentioned here. If

inputs from the real world are involved, the problem will get worse, because timing and

unpredictable environmental effects and human interactions are all possible input parameters

under consideration.

A further complication has to do with the dynamic nature of programs. If a failure occurs

during preliminary testing and the code is changed, the software may now work for a test

case that it didn't work for previously. But its behaviour on pre-error test cases that it passed

before can no longer be guaranteed. To account for this possibility, testing should be

restarted. The expense of doing this is often prohibitive.

Regardless of these limitations, testing is an integral part of software development life cycle.

It is broadly deployed in the every phase of development cycle. Typically, more than 50%

percent of the software development time is spent in testing the product. Testing is usually

performed for the following purposes:

To improve quality

As computers and software are used in critical applications, the outcome of a bug can be

severe at times. Bugs can cause huge losses. Bugs in critical systems have caused crashes of

the airplane, allowed space shuttle missions to go awry, halted trading on the stock market,

and even worse. Bugs can cause disasters. The so-called year 2000 (Y2K) bug has given birth

to a cottage industry of consultants and programming tools dedicated to making sure the

modern world doesn't come to a screeching halt on the first day of the next century. In a

computerized embedded world, the quality and reliability of software is a matter of life and

death.

Quality means the conformance to the specified design requirement. Being correct, the

minimum requirement of quality, means performing as required under specified

circumstances. Debugging, an another approach of software testing, is performed to find out

design defects made by the programmer. The imperfection of human nature makes it almost

12

impossible to make a moderately complex program correct the first time. Finding the

problems and get them fixed is the purpose of debugging in programming phase.

For Verification & Validation (V&V)

Another important purpose of testing is verification and validation (V&V). Testing can serve

as metrics. It is used as a tool in the V&V process. Testers can make claims based on

interpretations of the testing results, which either the product works under certain situations,

or it does not work. We can also compare the quality among different products under the

same specification, based on results from the same test.

We cannot test quality directly, but we can test related factors to make quality visible. Quality

has three sets of factors- functionality, engineering, and adaptability. These three sets of

factors can be thought of as dimensions in the software quality space. Each dimension may be

broken down into its component factors and considerations at successively lower levels of

detail. Table 1 illustrates some of the most frequently cited quality considerations.

Table 1.1 Typical Software Quality Factors

Functionality(exterior

quality)

Engineering (interior

quality)

Adaptability (future

quality)
Correctness Efficiency Flexibility
Reliability Testability Reusability
Usability Documentation Maintainability
Integrity Structure

Good testing provides measures for all relevant factors. The importance of any particular

factor varies from application to application. Any system where human lives are at stake must

place extreme emphasis on reliability and integrity. In the typical business system usability

and maintainability are the key factors, while for a one-time scientific program neither may

be significant. Our testing, to be fully effective, must be geared to measuring each relevant

factor and thus forcing quality to become tangible and visible.

Tests with the purpose of validating the product works are named clean tests, or positive tests.

The drawbacks are that it can only validate that the software works for the specified test

cases. A finite number of tests are not sufficient to validate that the software works for all

situations. On the contrary, only one failed test is sufficient enough to show that the software

does not work. The tests aiming at breaking the software, or showing that it does not work are

13

known as Dirty tests or negative tests. A piece of software must have sufficient exception

handling capabilities to survive a significant level of dirty tests.

A testable design is a design that can be easily validated, falsified and maintained. Because

testing requires significant time and cost, is a rigorous effort and design for testability is also

an important design rule for software development.

For reliability estimation

Software reliability has important relations with many aspects of software, including the

structure, and the amount of testing it has been subjected to. Based on an operational profile

(an estimate of the relative frequency of use of various inputs to the program), testing can

serve as a statistical sampling method to gain failure data for reliability estimation.

Software testing is not mature. It still remains an art, because we still cannot make it a

science. We are still using the same testing techniques invented 20-30 years ago, some of

which are crafted methods or heuristics rather than good engineering methods. Software

testing can be costly, but not testing software is even more expensive, especially in places

that human lives are at stake. Solving the software-testing problem is no easier than solving

the Turing halting problem. We can never be sure that a piece of software is correct. We can

never be sure that the specifications are correct. No verification system can verify every

correct program. We can never be certain that a verification system is correct either.

1.4 Key Concepts

1.4.1 Taxonomy

There is a number of testing methods and testing techniques available today, serving different

purposes in software development life cycle. Classified by source of test generation, software

testing can be classified in two categories: Black-box testing and White-box testing.

Classified by life-cycle phase, software testing can be classified into the following categories:

Unit testing, Integration testing, System testing, Regression testing and Beta testing.

Classified by the nature of the goal for which testing is performed, software testing can be

classified into three categories: Robustness testing, Stress testing, Performance testing and

Load testing.

1.4.2 Source of Test Generation

14

Test Generation is an essential part of testing; it is as wedded to testing as the earth is to the

sun. There are a variety of ways to generate tests. Tests could be generated from informally or

formally specified requirements and with or without the aid of the code that is under test.

Black-box testing

The black-box testing is a testing approach in which test data is generated from the specified

functional requirements without even considering the code of the program under

consideration. It is also termed as data-driven or requirements-based testing. As the tester is

only concerned with the functionality of the software, black-box testing is also referred as

functional testing which can be defined as a testing method whose main focus is on executing

the functions of the software and examining the input and output data of the software. The

tester treats the software under test as a black box - only the inputs, outputs and specification

are visible, and the functionality of the software is determined by observing the output set to

the corresponding input set. In this testing approach, multiple inputs are exercised and the

outputs are observed and compared against specification to validate the correctness of the

product. Test cases are generated from the specifications of the software. No details of the

code are considered while working on this approach of testing.

As the tester goes more and more deep in the input set, he will tend to explore more problems

regarding the software and thereafter his confidence regarding the quality of the software will

surely enhance. In an ideal case, the tester would want to exhaustively test the input set. But

this approach towards testing the combinations of valid inputs will be a tedious task for most

of the programs. Combinatorial explosion is the major roadblock in black-box testing. A

tester could never be sure whether the specification provided to him is either correct or

complete. Ambiguity is also another problem, due to limitations of the language used in the

specifications (usually natural language). Even if we use some type of formal or restricted

language, we may still fail to write down all the possible cases in the specification.

Sometimes, the specification itself becomes an intractable problem: it is not possible to

specify precisely every situation that can be encountered using limited words. Specification

problems contributes approximately 30 percent of all bugs in software. People can rarely

specify exactly what they want - they usually can tell whether a prototype is, or is not, what

they want after they have been finished.

15

The research in black-box testing mainly focuses on how to maximize the effectiveness of

testing with minimum cost, usually the number of test cases. It is not possible to exhaust the

input space, but it is possible to exhaustively test a subset of the input space. Partitioning is

one of the popular techniques used in black box testing. If we can partition the input space

and assume all the input values in a partition is equivalent, then we only need to test one

value in each partition to sufficiently cover the whole input space. Domain testing partitions

the input domain into regions, and consider the input values in each domain an equivalent

class. Domains can be exhaustively tested and covered by selecting a representative value(s)

in each domain. Boundary values are of special interest in this approach. Research in this

field has shown that test cases that explore boundary conditions have a higher payoff than test

cases that do not. Boundary value analysis requires one or more boundary values selected as

representative test cases. The difficulties with domain testing are that incorrect domain

definitions in the specification cannot be efficiently discovered.

White-box testing

Contrary to black-box testing, in this approach of testing, software is viewed as a white-box,

or glass-box, as the tester can see the structure and flow of the software under test. Testing

plans are made according to the details of the software implementation, such as programming

language, logic, and styles.

White-box testing refers to the test activity wherein code is used in the generation of or the

assessment of test cases. It is rare, and almost impossible, to use white-box testing in

isolation. As a test case contains of both inputs and expected outputs, one must use

requirements to generate test cases, the code is used as an additional artefact in the generation

process. However, there are techniques for generating tests exclusively from code and the

corresponding expected output from requirements. For example, tools are available to

generate tests to distinguish all mutants of a program under test or generate tests that force the

program under test to exercise a given path. In any case, when someone claims they are using

white-box testing, it is reasonable to conclude that they are using some forms of both black-

box and white-box testing.

Code could be used directly or indirectly for test generation. In the direct case, a tool, or a

human tester, examines the code and focuses on a given path to be covered. A test is

generated to cover this path. In the indirect case, tests generated using some black-box

16

testing techniques are assessed against some code-based coverage criterion. Additional tests

are then generated to cover the uncovered portions of code by analyzing which parts of the

code are feasible. Control flow, data flow and mutation testing can be used for direct as well

as indirect code-based test generation.

1.4.3 Life Cycle Phase based Testing

Testing activities take place throughout the software lifecycle. Each artifact produced is often

subject to testing at different levels of rigor and using different testing techniques. Testing is

often categorized based on the phase in which it occurs.

Programmers write code during the early coding phase. They test their code before it is

integrated with other system components. This type of testing is referred to as Unit testing.

When units are integrated and a large component or a subsystem formed, programmers do

Integration testing of the subsystem. Eventually when the entire system has been built, its

testing is referred to as System Testing. Test phases mentioned above differ in their timing

and focus. In unit testing, a programmer focuses on the unit or a small component that has

been developed. The goal is to ensure that unit functions correctly in isolation. In integration

testing, the goal is to ensure that a collection of components function as desired. Integration

errors are often discovered at this stage. The goal of system testing is to ensure that all the

desired functionality is in the system and works as per its requirements.

Often a selected set of customers is asked to test a system before commercialization. This

form of testing is known as Beta-testing. Errors reported by users of an application often lead

to additional testing and debugging. Often changes made to an application are much smaller

in their size when compared to the entire application. In such situations, one performs a

regression test. The goal of regression testing is to ensure that the modified system functions

as per its specifications. Test cases selected for regression testing include those designed to

test the modified code and any other code that might be affected by the modifications.

1.4.3 Goal directed Testing

There exists a variety of goals. Of course, finding any hidden errors is the prime goal of

testing, goal-oriented testing looks for specific types of failures. For example, the goal of

vulnerability testing is to detect if there is any way by which system under test can be

penetrated by unauthorized users.

17

Robustness Testing

Robustness testing refers to the task of testing an application for robustness against

unintended inputs. It differs from functional testing in that the tests for robustness are derived

from outside of the valid input space, whereas in the former the tests are derived from the

valid input space.

Stress Testing

In Stress testing one checks for the behaviour of an application under stress. Handling of

overflow of data storage, for example buffers, can be checked with the help of stress testing.

Web applications can be tested by stressing them with a large number and variety of requests.

The goal here is to find if the application continues to function correctly under stress.

Performance Testing

The term performance testing refers to that phase of testing where an application is tested

specifically with performance requirements in view. For example, a compiler might be tested

to check if it meets the performance requirements stated in terms of number of lines of code

compiled per second.

Load Testing

The term load testing refers to that phase of testing in which an application is loaded with

respect to one or more operations. The goal is to determine if the application continues to

perform as required under various load conditions. For example, a database server can be

loaded with requests from a large number of simulated users. While the server might work

correctly when one or two users use it, it might fail in various ways when the number of users

exceeds a threshold. During load testing one can determine whether the application is

handling exceptions in an adequate manner .

18

2. MUTATION TESTING

2.1 Introduction

Software Testing is the activity aimed at evaluating an attribute or capability of a program or

system and determining that it meets its required results. Mutation Testing is a fault based

testing technique that measures the effectiveness of a test suite. Unlike other fault-based

strategies that directly inject artificial faults into the program, this method generates simple

syntactic deviations called mutants of the original program with the help of a set of rules

known as Mutation Operators.

The goal of mutation testing is the generation of a test set that distinguishes the behavior of

the mutants from the original program. If a test set can distinguish a mutant from the original

program (i.e. produce different execution results), the mutant is said to be killed or

19

distinguished. Otherwise, the mutant is said to be a live mutant. A mutant may remain live

because either it is equivalent to the original program (i.e.it is functionally identical to the

original program although syntactically different) or the test set is inadequate to kill the

mutant. The ratio of distinguished mutants over the total number of mutants, measures the

adequacy of the test set. A test case is adequate if it is useful in detecting faults in a program.

If the original program and all the mutant programs generate the same output, the test case is

inadequate.

Our interest is in using the mutation technique to examine the adequacy of test data for

object-oriented programs. Obviously, the traditional mutation method can be applied to OO

programs. However, using an existing mutation system it is may not be sufficient to

adequately test OO programs because the existing mutation systems were developed in non-

OO programming environments. That is, the common programming errors that the traditional

mutation systems model were derived from non-OO programming experience and thus they

do not consider some kinds of errors likely to appear in OO programs.

In addition, the differences and new features in OO programming are likely to change the

requirements for mutation testing. For instance, the conventional mutation systems make

mutants of expressions, variables, and statements but do not mutate type and component (e.g.

a data structure) declarations. Traditional programming simply

20

makes use of the built-in types and entities of a language which are unlikely to contain many

errors, so you wouldn’t get much benefit by changing the declarations of those pre-defined

program entities. However, OO programs are composed of user-defined data types (classes)

and references to the user-defined types. It is very likely that user-defined components

contain many defects such as mutual dependency between members/classes, inconsistencies

or conflicts between the components developed by different programmers etc.

In object-oriented systems, mutation testing should also consider the relationships between

components even though it is presently aimed at testing a single method or a class. For

example, traditional mutation uses pre-fixed type compatibility (e.g. all arithmetic types are

considered compatible) to replace a variable with other variables of compatible types. This is

reasonable where there are only pre-defined built-in types. However, type compatibility of

OO programs should be flexible because programmers can declare as many types as they

want, which will change class structures. Compatibility thus needs to be dynamically

determined by considering cluster structure at the time mutation is performed.

The effectiveness of mutation testing, like other fault-based approaches, heavily depends on

the types of faults the mutation system is intended to represent, as they actually decide what

to test and point out where analysis should be done. In our opinion, it is mainly the flaws

21

Fig 2.1 Description of Mutation Testing

related to OO-specific features such as inheritance, polymorphism, and so on that the current

mutation systems fail to adequately handle.

2.2 Founding Principles of Mutation Testing

Mutation Testing is a powerful testing technique for achieving correct or close to correct,

programs. It rests on two fundamental principles. One principle is commonly known as the

competent programmer assumption. The other is known as the coupling effect.

2.2.1 The Competent Programmer Hypothesis

The competent programmer hypothesis (CPH) arises from a simple observation made of

practising programmers. The hypothesis states that given a problem statement, a programmer

writes a program P that is in the general neighbourhood of the set of correct programs.

A reasonable interpretation of the CPH is that the program written to satisfy a set of

requirements will be a few mutants away from a correct program. Thus, while the first

version of the program might be incorrect, it could be corrected by a series of simple

mutations. One might argue against the CPH by claiming something like “What about a

missing conditional as the fault? One would need to add the missing conditional in order to

arrive at a correct program.” Indeed, given a correct program P, one of its mutants is obtained

by removing the condition from a conditional statement. Thus, a missing conditional does

correspond to a simple mutant.

The CPH assumes that the programmer knows of an algorithm to solve the program at hand,

and if not, will find one prior to writing the program. It is thus safe to assume that when

asked to write a program to sort a list of numbers, a competent programmer knows of, and

makes use of, at least one sorting algorithm. Certainly mistakes could be made while coding

the algorithm. Such mistakes will lead to a program that can be corrected b applying one or

more first-order mutations.

2.2.2 The Coupling Effect

While CPH arises out of observations of programmer behaviour, the coupling effect is

observed empirically. The coupling effect has been paraphrased by DeMillo, Lipton, and

Sayward as follows:

22

Test data that distinguishes all programs differing from a correct one by only simple errors is

so sensitive that it also implicitly distinguishes more complex errors.

A seemingly simple first order mutant could be either equivalent to its program or not. For

some input, a non-equivalent mutant forces a slight perturbation in the state space of the

program under test. This perturbation takes place at the point of mutation and has the

potential of infecting the entire state of the program. It is during an analysis of the behaviour

of the mutant in relation to that of its parent that one discovers complex faults.

It may be easy to discover a fault that is a combination of many first-order mutations. Almost

any test will likely discover such a fault. It is the subtle faults that are close to first-order

mutations that are often difficult to detect. However, due to the coupling effect, a test set that

distinguishes first-order mutants is likely to cause an erroneous program under test to fail.

2.3 Related Work

Research in mutation testing focuses on four kinds of activities: 1) defining mutation

operators, 2) applying these mutation operators (experimentation), 3) developing tools, and 4)

reducing the cost of mutation analysis.

The first one involves defining new mutation operators for different languages. The second

research activity is experimentation with mutation operators. Empirical studies have

supported the effectiveness of mutation testing. The third kind of activities in mutation testing

research is developing mutation tools. Last but not least in terms of research activities is

investigating ways to reduce the cost of mutation analysis. The major cost of mutation

analysis arises from the computational expense of generating and running large numbers of

mutant programs. Mutation testing is a powerful but time-consuming technique which is

impractical to use without a reliable, fast and automated tool that generates mutants, runs the

mutants against a suite of tests, and reports the mutation score of the test suite.

2.4 Class Mutation

Class Mutation is a mutation technique for OO (Java) programs. The main difference from

the traditional mutation method is that it is targeted at plausible faults related to OO-specific

features that Java provides – class declarations and references, single inheritance, information

23

hiding, and polymorphism. Faults are introduced into the program by a set of new mutation

operators (predefined program modification rules).

2.5 Class Mutation Techniques

2.5.1 Polymorphic Types

In OO systems, it is common for a variable to have polymorphic types. That is, a variable

may at runtime refer to an object of a different type from its declaration and to objects of

different types at different times. This raises the possibility that not all objects that become

attached to the same variable correctly support the same set of features. This may also cause

runtime type errors which cannot always be detected at compile time. Two mutation

operators, CRT and ICE, were designed to address this feature.

CRT (Compatible Reference Type replacement)

This operator replaces a reference type with compatible types in a cluster2. The compatible

types are the names of other types (classes) that meet the widening/narrowing reference

conversion rules in the Java language specification. For instance, the class type S can be

replaced with the class type T provided that S is a subclass of T, or S can be replaced with the

interface type K provided that S implements K.

class T { … }
class S extends T implements K { … }
class U extends S { … }
interface K { … }

Original code:
S s = new S();

CRT Mutants:
a) T s = new S();
b) K s = new S();
c) U s = new S();

ICE (class Instance Creation Expression changes)

While CRT handles the declared types, the ICE operator was designed to change the runtime

type of an object. Java ‘instance creation expression’ creates an object of the class specified

in the expression. The ICE operator replaces the class name in ‘instance creation expression’

with compatible class names. This results in calling the constructors of compatible types,

which will create the objects of the replaced types.

For example, the original code above can have two mutants created by the ICE operator.

24

ICE Mutants:
a) S s = new T();
b) S s = new U();

Mutant a) will call the constructor in class T creating an object of type T (resulting in

compilation errors), while mutant b) creates an object of type U through the constructor of

class U.

PNC (new method call with child class type)

The POI operator changes the instantiated type of an object reference. This causes the object

reference to refer to an object of a type that is different from the declared type.

In the example below, class Parent is the parent of class Child.

Original Code:
Parent a;
a = new Parent();

PNC Mutant:
Parent a;
a = new Child();

PMD (Member variable declaration with parent class type)

The PMD operator changes the declared type of an object reference to the parent of the

original declared type. The instantiation will still be valid (it will still be a descendant of the

new declared type). To kill this mutant, a test case must cause the behavior of the object to be

incorrect with the new declared type.

In the example below, class Parent is the parent of class Child.

Original Code:
Child b;
b = new Child();

PMD Mutant:
Parent b;
b = new Child();

PPD (Parameter variable declaration with child class type)

The PPD operator is the same as the PMD, except that it operates on parameters rather than

instance and local variables. It changes the declared type of a parameter object reference to be

that of the parent of its original declared type.

In the example below, class Parent is the parent of class Child.

Original Code:
boolean equals (Child o)
{…..}

25

PPD Mutant:
boolean equals (Parent o)
{…..}

2.5.2 Inheritance

Although a powerful and useful abstraction mechanism, incorrect use of inheritance can lead

to a number of faults. We define five mutation operators to try to test the various aspects of

using inheritance, covering variable shadowing, method overriding, the use of super, and

definition of constructors.

Variable shadowing can cause instance variables that are defined in a subclass to shadow (or

hide) member variables of the parent. However, this powerful feature can cause an incorrect

variable to be accessed. Thus it is necessary to ensure that the correct variable is accessed

when variable shadowing is used, which is the intent of the IHD and IHI mutation operators.

IHD (Hiding variable deletion)

The IHD operator deletes a hiding variable, a variable in a subclass that has the same name

and type as a variable in the parent class. This causes references to that variable to access the

variable defined in the parent (or ancestor). This mutant can only be killed by a test case that

is able to show that the reference to the parent variable is incorrect.

Original Code:
class List {
 int size ;

}
class Stack extends List {
int size;
... ...
}

IHD Mutant:
class List {
 int size;

}
class Stack extends List}
int size;
... ...
}

IHI (Hiding variable insertion)

The IHI operator inserts a hiding variable into a subclass. It is a reverse case of IHD. By

inserting a hiding variable, two variables (a hiding variable and a hidden variable) of the

same name become to be exist. Newly defined and overriding methods in a subclass

26

reference the hiding variable although inherited methods reference the hidden variable as

before.

Original Code:
class List {
int size;
... ...
}
class Stack extends List {
... ...
}

IHI Mutant:
class List {
int size;
... ...
}
class Stack extends List {
int size;
... ...
}

IOD (Overriding method deletion)

The IOD operator deletes an entire declaration of an over- riding method in a subclass so that

references to the method uses the parent's version.The mutant act as if there is no overriding

method for the method.

Original Code:
class Stack extends List {
... ...
void push (int a) {... }
}

IOD Mutant:
class Stack extends List {
... ...
void push (int a) {... }
}

IOP (Overridden method calling position change)

Sometimes, an overriding method in a child class needs to call the method it overrides in the

parent class. This may happen if the parent's method uses a private variable v, which means

the method in the child class may not modify v directly.

Original Code:
class List {
... ...
void SetEnv()
{size = 5; ... }
}
class Stack extends List {
... ...
void SetEnv() {
super.SetEnv();
size = 10;
}

27

}

IOP Mutant:
class List {
... ...
void SetEnv()
{size = 5; ... }
}
class Stack extends List {
... ...
void SetEnv() {
size = 10;
super.SetEnv();
}
}

2.5.3 Encapsulation

It is important to note that poor access definitions do not always cause faults initially, but can

lead to faulty behavior when the class is integrated with other classes, modified, or inherited

from.

AMC (Access modifier change)

The AMC operator changes the access level for instance variables and methods to other

access levels. The purpose of the AMC operator is to guide testers to generate test cases that

ensure that accessibility is correct.

2.5.4 Method Overloading

A class type may have more than one method with the same name as long as they have

different signatures. There is more possibility of an unintended method being called, even if

the correct method name is given, when several versions of the same name method are

available.

In order to handle the method overloading feature, we manipulate parameters in method

declarations and arguments in method invocation expressions. The CRT operator contributes

to examining this feature as it changes the types of method parameters in method

declarations. We also propose the POC, VMR, AOC, and AND operators for the method

overloading feature.

POC (method Parameter Order Change)

28

The POC operator changes the order of parameters in method declarations if the method has

more than one parameter. For example, the Log Message class in our case study has five

overloading constructors, and two of them are:

Original Code:
1. public LogMessage(int level, String logKey, Object[]
inserts) {…}
2. public LogMessage(int level, String logKey, Object
insert) {…}

POC mutant:
public LogMessage(String logKey, int level, Object[]
inserts) {…}

AOC (Argument Order Change)

The AOC operator changes the order of arguments in method invocation expressions , if there

is more than one argument.

Original code:
Trace.entry(“Logger”, “addLogCatalogue”);

AOC Mutant:
Trace.entry (“addLogCatalogue”, “Logger”);

2.5.5 Exceptional Handling

Catch Clauses Deletion (CCD)

In some case, more than one exception could be raised by a single piece of code. To handle

this type of situation, two or more catch clauses can specify, each catch block can catch a

different type of exception.

The CCD removes catch clauses one by one when there is more than one catch clauses(no

effect whether or not the finally clause exist in the code). CCD working is given by the

following codes:-

Original code:
1. class ccd {
2. try {………}
3. catch (ArithmeticException e){……}
4. catch (ArrrayIndexOutOfBoundsException e){……}
5. catch (ArrayStoreException e){………}
6. catch (IllegalArgumentException e){…} }

CCD mutant:
1. class ccd{
2. try{……}
3. catch (ArithmeticException e){……}
4.catch(ArrrayIndexOutOfBoundsException e){………}
5. catch(ArrayStoreException e) {....... .}

Throw Statement Deletion (TSD)

29

TSD operator deletes the throw statement that is shown by the following codes with the

different outputs –

Original code:
1. class tsd{
2. try{
3. System.out.println("1st time exception throw");
4. Throw new NullPointerException("demo"); }
5. catch (NullPointerExceptione){
6. System.out.println("exception throw");
7. throw e; } } }

TSD mutant:
1. class tsd{
2. try{
3. System.out.println("1st time exception throw"); }
4. catch(NullPointerException e){
5. System.out.println("exception throw");
6. throw e; } } }

Finally Clause Deletion (FCD)

The FCD operator delete this finally clause and produce an output difference.

Original code:
1. class fcd{
2. try{……………….
3. …………{catch(……){
4. …………}catch(……){…}
5. ...}finally{……………}

FCD mutants:
1. class fcd{
2. try{……………….
3. …………{catch(……..){
4. …………}catch(……){…}

2.5.6 String Handling Operators

Value Change Operators (VCO):

String Methods

charAt()

setCharAt()

getChars()

substring()

replace()

deleteCharAt()

30

Original code: Mutants:
s.charAt(4); s.charAt(5);
s.setCharAt(6); s.setCharAt(7);
getChars(10,14,str,0); getChars(11,15,str,1);
substring(5,6); substring(6,7);
replace(5,7,”new”); replace(6,8,”new”);
deleteCharAt(3); deleteCharAt(4);

2.6 EXISTING MUTATION TESTING TOOLS

Since mutation testing was proposed in 1987, a number of mutation testing tools have

developed in academic world. Mothra is one of the most widely known mutation testing

systems for FORTRAN in the early historical development of mutation testing. It was the

first tool that implemented mutation analysis as a complete software testing environment.

Following the introduction of mutation operators for the programming language C, the first

mutation testing tool for C program was developed, called Proteum. After that as Java

became more popular, many mutation tools for java were developed. One of the most widely

known one is MuJava, which not only supports traditional mutation operators but also

provides class-level mutation operators.

In recent years, a number of open source mutation tools have also been implemented for

many programming languages. For example, PesTer is a mutation testing tool for Python and

PyUnit tests. Nester is a mutation tool for C# code. SQLMutation is a mutation testing tool

for database queries. Then SourceForge has an open source mutation tool for java called

Jester. However, the efficiency of mutation testing depends largely on the mutation operators

and the mutation operators that Jester uses have proven to be rather unstable.

2.6.1 muJava

µJava (muJava) is a mutation testing tool for Java programs. It automatically generates

mutants for both traditional mutation testing and class-level mutation testing. µJava can test

individual classes as well as packages of multiple classes. Tests are supplied by the users as

sequences of method calls to the classes under test encapsulated in methods in separate

classes.

µJava is the result of a collaboration between two universities, Korea Advanced Institute of

Science and Technology (KAIST) in S. Korea and George Mason University in the USA. The

research collaborators are Yu Seung Ma, PhD candidate at KAIST in Korea, Dr. Yong Rae

31

Kwon, Professor at KAIST in Korea, and Dr. Jeff Offutt, Professor at George Mason

University in the USA. Most of the software development was done by YuSeung.

 µJava uses two types of mutation operators, class level and method level. The class level

mutation operators were designed for Java classes by Ma, Kwon and Offutt, and were in turn

designed from a categorization of object-oriented faults by Offutt, Alexander. µJava creates

object-oriented mutants for Java classes according to 24 operators that are specialized to

object-oriented faults. Method level (traditional) mutants are based on the selective operator

set by Offutt. After creating mutants, µJava allows the tester to enter and run tests, and

evaluates the mutation coverage of the tests.

2.6.2 Jester

Jester offers a way to the default set of mutation operations, but problems concerning

performance and reliability of the tool, as well as a limited range of possible mutation

operators (based only on string substitution) remain. Moreover, the mutation operators

offered by Jester are nor context-aware, and often lead to broken code. It is worth mentioning

that Jester’s approach is to generate, compile and run unit tests against a mutant. The process

repeats for every mutant of the SUT and, thus is inefficient. Because of these major

disadvantages, Jester was not a successful tool.

2.6.3 Jumble

Jumble is a class level mutation testing tool that works in conjunction with JUnit. The

purpose of mutation testing is to measure of the adequacy of test cases. A single mutation is

performed on the code under consideration; the corresponding test cases are then executed. If

the modified code fails the tests, then this increases confidence in the tests. Conversely, if the

modified code passes the tests this indicates a testing deficiency.

Jumble was developed in 2003-2006 by a commercial company in New Zealand, Reel Two

(www.reeltwo.com), and is now available as open source under the GPL licence.

JUnit has become the de facto unit testing framework for the Java language. A class and its

corresponding JUnit test is a sensible granularity at which to apply mutation testing. With

Java it is feasible to perform mutation testing either at the source code or byte-code level.

Jester is a mutation testing tool which operates at the source code level. While Jester proves

32

useful, it is hampered by the costly cycle of modifying the source, compiling the source, and

running the tests.

Jumble is a new mutation tester operating directly on class files. It uses the byte-code

engineering library (BCEL) to directly modify class files thereby drastically cutting the time

taken for each mutation test cycle.

Jumble has been designed to operate in an industrial setting with large projects. Heuristics

have been included to speed the checking of mutations, for example, noting which test fails

for each mutation and running this first in subsequent mutation checks. Significant effort has

been put into ensuring that it can test code which runs in environments such as the Apache

webserver. This requires careful attention to class path handling and co-existence with foreign

class-loaders.

At ReelTwo, Jumble is used on a continuous basis within an agile programming environment

with approximately 400,000 lines of Java code under source control. This checks out project

code every fifteen minutes and runs an incremental set of unit tests and mutation tests for

modified classes.

2.6.4 Proteum

Proteum is the first tool to support the testing of C programs based on mutation testing at the

unit level. With the proposition of the criterion Interface mutation, that uses a set of mutant

operators developed to model integration errors, the Proteum/IM has been developed. At the

integration level, Interface mutation is also effective in detecting faults. Recently, Proteum

and Proteum/IM have been integrated in a testing environment, named Proteum/IM 2.0. In

this way, the tester can use the same concept during the unit and the integration testing

phases.

The Proteum family is composed of the following tools:

Proteum: supports the unit testing of C programs. It has 71 operators, categorized into four

mutation classes: Statement(15), Operator(46), Variable(7) and constant(3).

Proteum/IM: supports the integration testing of C programs based on the Interface Mutation

criterion. It has 33 operators divided into two groups: 24 of them Group I, and 9 of Group II.

33

It provides mechanisms for the assessment of test case adequacy for testing the interactions

among the units of a given program.

Proteum/IM 2.0: is an evolution of Proteum and Proteum/IM. It is a single, integrated

environment that provides facilities to investigate low-cost and incremental testing strategies

based on mutation.

Proteum/FSM: supports the application of mutation testing to validate Finite State Machine

based specifications. It has 9 mutant operators. These operators are based on the error classes

defined by Chow and on heuristics about typical errors made by designers during the creation

of Finite State Machines.

Proteum/ST: supports the application of mutation testing to validate statecharts based

specifications. Statecharts are an extension to Finite State Machines. The approach taken to

implement Proteum/FSM makes it easier to extend the ideas, concepts and tools to

Statecharts considering hierarchy, concurrency, history and other statechart features.

Proteum/ST is divided into three categories: 9 Finite State Machine operators; 11 Extended

FSM(EFSM) operators; and 17 Statecharts-feature based operators.

2.6.5 Judy

Judy is an implementation of the FAMTA Light approach developed in Java with AspectJ

extensions. The core features of Judy are high mutation testing process performance,

advanced mutant generation mechanism, integration with professional development

environment tools, full automation of mutation testing process and support for the latest

version of Java, enabling it to run mutation testing against the most recent Java software

systems or components.

Judy, like MuJava, supports traditional mutation operators. These were initially defined for

procedural programs and have been identified by Offutt as selective mutation operators.

These operators are to minimize the number of mutation operators, whilst maximizing testing

strength. The latter was measured by Offutt and Lee by computing the non selective mutation

scores of the test sets that were 100% adequate for selective mutation.

34

Table 2.1 A list of mutation Testing Tools

Language Tool Year
Fortran PIMS 1976

FMS 1978
PMS 1978
EXPER 1978
Mothra 1988

COBOL CMS.1 1980
C Proteum 1993

PMothra 1993
CMothra 1989
Proteum/IM 2000

C# Nester 2001
Java Jester 2001

µJava 2002
Lava 2005

Python Pester 2001

2.7 Mutation Operators

Mutation operators are designed to model simple programming mistakes that programmers

make. Faults in the programs could be much more complex than the simple mistakes

modelled by a mutation operator. However, it has been found that, despite the simplicity of

mutations, complex faults are discovered while trying to distinguish mutants from their

parent. We apply one or more mutation operators to P to generate a variety of mutants. A

mutation operator might generate no mutants or one or more mutants. The input statement

and declarations are not mutated at all.

While it is possible to categorize mutation operators into a few generic categories, the

operators themselves are dependent on the syntax of the programming language. For

example, for a program written in ANSI C, one needs to use mutation operators for C. A Java

program is mutated using mutation operators designed for the java language.

There are at least three reasons for the dependence of mutation operators on language syntax.

First, given that the program being mutated is syntactically correct, a mutation operator must

produce a mutant that is also syntactically correct. To do so requires that a valid syntactic

construct be mapped to another valid syntactic construct in the same language.

35

Second, the domain of a mutation operator is determined by the syntax rules of a

programming language. For example, in java, the domain of a mutation operator that replaces

one relational operator by another is {<,<=,>,>=,!=,==}.

Third, peculiarities of language syntax have an effect on the kind of mistakes that a

programmer could make. The aspects of a language such as procedural versus object oriented

are captured in the language syntax.

Mujava uses two types of mutation operators. The traditional mutation operators are

developed from procedural languages. Object Oriented languages have additional class level

mutation operators. They work on the features of object oriented languages like inheritance,

polymorphism and dynamic binding.

Mothra uses 22 traditional mutation operators on Fortran. However, running all these mutant

operates generate a huge number of mutants and not all of them are effective because of

overlaps. The idea of selective mutation was introduced by Wong and Mathur and later

experimentally validated by Offutt. Selective mutation states that a subset of all the mutation

operators is sufficient to provide same effectiveness as non-selective mutation.

24 class mutation operators were identified for Java classes by Ma, Kwon and Offutt for

testing object-oriented and integration issues. There is yet any research on applying selective

mutation on these operators. A major issue with class mutation operators is that they are

applicable in different levels – intra-method, inter-method, intra-class and inter-class.

Traditional mutation operators are all intra-method operators. In general the class mutation

operators are intra-class, but inter-class operators are important for traditional integration

testing and seldom used subsystem testing.

3. PROPOSED FRAMEWORK OF TOOL

Now that we know what mutation is and what mutants look like, let us understand how

mutation is used for assessing the adequacy of test set. The problem of test assessment using

mutation can be stated as follows:

36

Let P be a program under test, T be a test set for P, and R the set of requirements that P must

meet. Suppose that P has been tested against all tests in T and found to be correct with respect

to R on each test case. We want to know “How good is T?”

Mutation offers a way of answering the question stated above. A quantitative assessment of

the goodness of T is obtained by computing a mutation score of T. Mutation score is a

number between 0 and 1. A score of 1 means that T is adequate with respect to mutation. A

score lower than 1 means that T is inadequate with respect to mutation. An inadequate test set

can be enhanced by the addition of test cases that increase the mutation score.

3.1 Software Engineering Approach

We followed SDLC (System Development Life Cycle) for the various phases of project

development.

3.1.1 System Development Life Cycle

The Systems Development Life Cycle (SDLC), or Software Development Life Cycle in

systems engineering and software engineering, is the process used by the developers to

develop software with the help of certain models defined in software engineering.

Software Development Life Cycle (SDLC) is a process used by a software developer to

develop an information system for the software under consideration, including its

requirements, designing, coding, testing and maintainability. Any SDLC should result in a

high quality software that not just meets its customer expectations but also reaches

completion within the given time frame and whose cost estimates works effectively and

efficiently in the current Information Technology infrastructure, and is inexpensive to

maintain and cost-effective to enhance.

Computer systems are complex and often link multiple traditional systems potentially

supplied by different software vendors. To manage this level of complexity, a number of

SDLC models have been created: waterfall, spiral, build and fix, incremental, and rapid

prototyping.

The approach which we followed for the development of the tool is Incremental

development. The incremental development model is a method of software

37

http://en.wikipedia.org/wiki/Software_development

development where the model is designed, implemented and tested incrementally (a little

more is added each time) until the product is fully developed as per the stated requirements. It

involves both development and maintenance. This model combines the elements of

the waterfall model with the iterative philosophy of prototyping. In this model, there is an

overall lower risk of project failure.

The tool is decomposed into a number of components, each of which is designed and

implemented separately. Firstly, the mutation operators are being defined for the tool. After

that some mutants are generated of a source code. Then the source code and all the mutants

are being run on the test cases to check their adequacy. Next, some more operators are added

to the tool and thereafter it generates more mutants of the original program. In this way the

tool is being developed and the incremental process model helps in adding more and more

functionality at each stage of the product development.

3.2 Project Process

3.2.1 Requirement Phase

This is the starting phase of the project development and consisted of following:

38

Fig 3.1 An incremental development model

http://en.wikipedia.org/wiki/Software_development
http://en.wikipedia.org/wiki/Prototyping
http://en.wikipedia.org/wiki/Waterfall_model
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Software_design

 Literature Survey and Research: In this phase, I learned about various aspects of mutation

testing. Also learned about mutation operators and how they are applied in practise. I came to

know about the traditional mutation operators and class level mutation operators. Also, I

learned about some existing mutation testing tools like mujava, how they are run, how they

differ from each other and what different functionalities that they perform which make them

different from the one another.

Analysis: After going through a lot of research and literature survey, I analysed that the

Eclipse version 3.5 (Java platform) would be a good platform to develop the tool. Eclipse is

a multi-language software development environment comprising an integrated development

environment and an extensible plug-in system. Also, I analysed that Java would be the

language for which the tool will work initially. After that other object oriented languages will

also be included in the tool.

3.2.2 Design Phase

This phase is the most important phase of the project development:

Framework and Implementation

39

Fig 3.2 Framework of the tool

In this phase, the framework of the tool is modeled. Also It was decided how the various

components of the tool will be interconnected to meet the specified requirements. The

framework of the tool is depicted in Fig 3.2. The various steps of implementing the tool is

given below:

Step 1 Program execution

The first step in assessing the adequacy of a test set T with respect to program P and

requirements R is to execute P against each test case in T. Let P(t) denote the observed

behaviour of P when executed against t. Generally, the observed behaviour is expressed as a

set of values of output variables in P. However, it might also relate to the performance of P.

Step 2 Mutant Generation

The next step in test-adequacy assessment is the generation of mutants. The mutants are

generated with the help of Mutation Operators that are defined in the tool. A mutant can be

generated from P by altering the arithmetic operators such that any occurrence of the addition

operator (+) is replaced by the subtraction operator (-). By mutating the program as

mentioned above, we obtain various mutants of the program which are known as Live

Mutants(L). These mutants are live because we have not yet distinguished them from the

original program. Distinguishing a mutant from its parent is also known as killing a mutant.

40

Fig 3.3 Generation of Mutants

Step 3 Select the next mutant

In this step, we select the next mutant to be considered. This mutant must not be selected

earlier. At this point a loop is starting that will cycle through all mutants in L until each

mutant has been selected. If there are live mutants in L, which have never been selected in

any previous step, then a mutant is selected arbitrarily. The selected mutant is removed from

L.

Step 4 Mutant execution

Having selected a mutant M, we know attempt to find whether at least one of the tests in T

can distinguish it from its parent P. To do so, we need to execute M against tests in T. Thus at

this point we enter another loop that is executed for each selected mutant. The loop

terminates when all tests are exhausted or M is distinguished by some test, whichever

happens earlier. We have selected a mutant M for execution against a test set t. Then we

execute M against t and check if the output generated by executing M against t is same or

different from that generated by executing P against t.

Step 5 Distinguished and Live Mutants

After executing all mutants, we check for the Live and Distinguished mutants. When none of

the tests in T is able to distinguish mutant M from its parent P, then M is placed back into the

set of Live Mutants and when any one of the test case in T is able to distinguish the mutant

M from its parent P, then that mutant is called Killed or Distinguished Mutant.

Step 6 Computation of mutation Score

This is the final step in the assessment of test adequacy. Mutant score can be computed as the

total number of Distinguished Mutants by the total number of Live Mutant. As evident from

the formula above, a mutation score is always between 0 and 1. If a test set T distinguishes all

mutants, then the mutation score is 1. If T does not distinguish any mutant, then the mutant

score is 0. The score of 0 does not imply that the test set is inadequate. In this case, the set of

mutants generated is insufficient to assess the adequacy of the test set. In practise, it is rare to

find such a situation.

3.3 The Problem of Mutation Analysis

41

Although Mutation Testing is able to effectively assess the quality of a test set, it still suffers

from a number of problems. One problem that prevents Mutation Testing from becoming a

practical testing is the high computational cost of executing the enormous number of mutants

against a test set. The other problem related to the amount of human effort involved in using

Mutation Testing is the human oracle problem. The human oracle problem refers to the

process of checking the original program’s output with each test case. Strictly speaking this is

not a problem unique to Mutation Testing. In all forms of testing, once a set of inputs has

been arrived at, there remains the problem of checking output. However, mutation testing is

effective precisely because it is demanding and this can lead to an increase in the number of

test cases thereby increasing the oracle cost. This oracle cost is often the most expensive part

of the overall testing activity.

4. Results
Original Program:

public class kk
{
public static void main(String args[])
{
int a=0;
int u=10;
int l=a+u;
int c=a-u;
int d=a*u;
int f=a/u;
if(a<u)
System.out.println("a is less than u");
System.out.println(l);
System.out.println(c);
System.out.println(d);
System.out.println(f);
}
}

Mutated code1
public class kk
{
public static void main(String args[])
{
int a=0;

42

int u=10;
int l=a-u;
int c=a-u;
int d=a*u;
int f=a/u;
if(a<u)
System.out.println("a is less than u");
System.out.println(l);
System.out.println(c);
System.out.println(d);
System.out.println(f);
}
}

Mutated code2
public class kk
{
public static void main(String args[])
{
int a=0;
int u=10;
int l=a*u;
int c=a-u;
int d=a*u;
int f=a/u;
if(a<u)
System.out.println("a is less than u");
System.out.println(l);
System.out.println(c);
System.out.println(d);
System.out.println(f);
}
}

Mutated code3
public class kk
{
public static void main(String args[])
{
int a=0;
int u=10;
int l=a/u;
int c=a-u;
int d=a*u;
int f=a/u;
if(a<u)
System.out.println("a is less than u");
System.out.println(l);
System.out.println(c);
System.out.println(d);
System.out.println(f);
}
}

Mutated code 4
public class kk
{
public static void main(String args[])
{
int a=0;
int u=10;
int l=a+u;
int c=a/u;
int d=a*u;
int f=a/u;
if(a<u)
System.out.println("a is less than u");
System.out.println(l);

43

System.out.println(c);
System.out.println(d);
System.out.println(f)
}
}

Mutated code 5
public class kk
{
public static void main(String args[])
{
int a=0;
int u=10;
int l=a+u;
int c=a+u;
int d=a*u;
int f=a/u;
if(a<u)
System.out.println("a is less than u");
System.out.println(l);
System.out.println(c);
System.out.println(d);
System.out.println(f);
}
}

Mutated code 6
public class kk
{
public static void main(String args[])
{
int a=0;
int u=10;
int l=a+u;
int c=a*u;
int d=a*u;
int f=a/u;
if(a<u)
System.out.println("a is less than u");
System.out.println(l);
System.out.println(c);
System.out.println(d);
System.out.println(f);
}
}

Mutated code 7
public class kk
{
public static void main(String args[])
{
int a=0;
int u=10;
int l=a+u;
int c=a-u;
int d=a/u;
int f=a/u;
if(a<u)
System.out.println("a is less than u");
System.out.println(l);
System.out.println(c);
System.out.println(d);
System.out.println(f);
}
}

Mutated code 8
public class kk

44

{
public static void main(String args[])
{
int a=0;
int u=10;
int l=a+u;
int c=a-u;
int d=a+u;
int f=a/u;
if(a<u)
System.out.println("a is less than u");
System.out.println(l);
System.out.println(c);
System.out.println(d);
System.out.println(f);
}
}

Mutated code 9
public class kk
{
public static void main(String args[])
{
int a=0;
int u=10;
int l=a+u;
int c=a-u;
int d=a-u;
int f=a/u;
if(a<u)
System.out.println("a is less than u");
System.out.println(l);
System.out.println(c);
System.out.println(d);
System.out.println(f);
}
}

Mutated code 10
public class kk
{
public static void main(String args[])
{
int a=0;
int u=10;
int l=a+u;
int c=a-u;
int d=a*u;
int f=a+u;
if(a<u)
System.out.println("a is less than u");
System.out.println(l);
System.out.println(c);
System.out.println(d);
System.out.println(f);
}
}

Mutated code 11
public class kk
{
public static void main(String args[])
{
int a=0;
int u=10;
int l=a+u;
int c=a-u;
int d=a*u;

45

int f=a-u;
if(a<u)
System.out.println("a is less than u");
System.out.println(l);
System.out.println(c);
System.out.println(d);
System.out.println(f);
}
}

Mutated code 12
public class kk
{
public static void main(String args[])
{
int a=0;
int u=10;
int l=a+u;
int c=a-u;
int d=a*u;
int f=a*u;
if(a<u)
System.out.println("a is less than u");
System.out.println(l);
System.out.println(c);
System.out.println(d);
System.out.println(f);
}
}

Mutated code 13
public class kk
{
public static void main(String args[])
{
int a=0;
int u=10;
int l=a+u;
int c=a-u;
int d=a*u;
int f=a/u;
if(a>u)
System.out.println("a is less than u");
System.out.println(l);
System.out.println(c);
System.out.println(d);
System.out.println(f);
}
}

46

CONCLUSION

Mutation testing is not meant as a replacement for code coverage, but as a complementary

approach that is useful in detecting those pieces of the code that are executed by running

tests, but are not fully tested. It is not widely used in software engineering due to the limited

performance of the existing tools and lack of support for standard unit testing and build tools.

My target of the project is to develop a feasible mutation testing tool with minimal human

involvement and significant performance improvement. The tool would provide almost

complete automation to the tester. Good coverage is an important criterion and efficient

mutation testing provides significantly better coverage than other techniques.

47

APPENDIX

CODING

import java.io.*;
public class kk
{
public static void main(String args[]) throws IOException
{
File j = new
File("C:/Users/PARIMALROYCHAUDHURY/workspace/test/src/m.java");
File m1 = new File("C:/Users/PARIMAL
ROYCHAUDHURY/workspace/test/src/m1.java");
File m2 =new File("C:/Users/PARIMAL
ROYCHAUDHURY/workspace/test/src/m2.java");
File m3 =new File("C:/Users/PARIMAL
ROYCHAUDHURY/workspace/test/src/m3.java");
File m4 =new File("C:/Users/PARIMAL
ROYCHAUDHURY/workspace/test/src/m4.java");
File m5 =new File("C:/Users/PARIMAL
ROYCHAUDHURY/workspace/test/src/m5.java");
File m6 =new File("C:/Users/PARIMAL
ROYCHAUDHURY/workspace/test/src/m6.java");

48

File m7 =new File("C:/Users/PARIMAL
ROYCHAUDHURY/workspace/test/src/m7.java");
File m8 =new File("C:/Users/PARIMAL
ROYCHAUDHURY/workspace/test/src/m8.java");
File m9 =new File("C:/Users/PARIMAL
ROYCHAUDHURY/workspace/test/src/m9.java");
File m10=new File("C:/Users/PARIMAL
ROYCHAUDHURY/workspace/test/src/m10.java");
File m11=new File("C:/Users/PARIMAL
ROYCHAUDHURY/workspace/test/src/m11.java");
File m12=new File("C:/Users/PARIMAL
ROYCHAUDHURY/workspace/test/src/m12.java");
File m13=new File("C:/Users/PARIMAL
ROYCHAUDHURY/workspace/test/src/m13.java");
m1.createNewFile();
m2.createNewFile();
m3.createNewFile();
m4.createNewFile();
m5.createNewFile();
m6.createNewFile();
m7.createNewFile();
m8.createNewFile();
m9.createNewFile();
m10.createNewFile();
m11.createNewFile();
m12.createNewFile();
m13.createNewFile();
if(m1.isFile())
{
System.out.println("file1 exists");
}
if(m2.isFile())
{
System.out.println("file2 exists");
}
if(m3.isFile())
{
System.out.println("file3 exists");
}
if(m4.isFile())
{
System.out.println("file4 exists");
}
if(m5.isFile())
{
System.out.println("file5 exists");
}
if(m6.isFile())
{
System.out.println("file6 exists");
}
if(m7.isFile())
{
System.out.println("file7 exists");
}
if(m8.isFile())
{
System.out.println("file8 exists");
}
if(m9.isFile())
{
System.out.println("file9 exists");
}
if(m10.isFile())
{
System.out.println("file10 exists");
}
if(m11.isFile())

49

{
System.out.println("file11 exists");
}
if(m12.isFile())
{
System.out.println("file12 exists");
}
if(m13.isFile())
{
System.out.println("file13 exists");
}
BufferedReader br1=new BufferedReader(new FileReader(j));
BufferedWriter ty1=new BufferedWriter(new FileWriter(m1));
String line;
String l=null;
while((line=br1.readLine())!=null)
{
l=line.replace("class m", "class m1");
line = l;
l=line.replace('+', '-');
ty1.write(l);
}
ty1.flush();
ty1.close();
BufferedReader br2=new BufferedReader(new FileReader(j));
BufferedWriter ty2=new BufferedWriter(new FileWriter(m2));
l=null;
while((line=br2.readLine())!=null)
{
l=line.replace("class m", "class m2");
line = l;
l=line.replace('+', '*');
ty2.write(l);
}
ty2.flush();
ty2.close();
BufferedReader br3=new BufferedReader(new FileReader(j));
BufferedWriter ty3=new BufferedWriter(new FileWriter(m3));
l=null;
while((line=br3.readLine())!=null)
{
l=line.replace("class m", "class m3");
line = l;
l=line.replace('+', '/');
ty3.write(l);
}
ty3.flush();
ty3.close();
BufferedReader br4=new BufferedReader(new FileReader(j));
BufferedWriter ty4=new BufferedWriter(new FileWriter(m4));
l=null;
while((line=br4.readLine())!=null)
{
l=line.replace("class m", "class m4");
line = l;
l=line.replace('-', '/');
ty4.write(l);
}
ty4.flush();
ty4.close();
BufferedReader br5=new BufferedReader(new FileReader(j));
BufferedWriter ty5=new BufferedWriter(new FileWriter(m5));
l=null;
while((line=br5.readLine())!=null)
{
l=line.replace("class m", "class m5");
line = l;
l=line.replace('-', '+');

50

ty5.write(l);
}
ty5.flush();
ty5.close();
BufferedReader br6=new BufferedReader(new FileReader(j));
BufferedWriter ty6=new BufferedWriter(new FileWriter(m6));
l=null;
while((line=br6.readLine())!=null)
{
l=line.replace("class m", "class m6");
line = l;
l=line.replace('-', '*');
ty6.write(l);
}
ty6.flush();
ty6.close();
BufferedReader br7=new BufferedReader(new FileReader(j));
BufferedWriter ty7=new BufferedWriter(new FileWriter(m7));
l=null;
while((line=br7.readLine())!=null)
{
l=line.replace("class m", "class m7");
line = l;
l=line.replace('*', '/');
ty7.write(l);
}
ty7.flush();
ty7.close();
BufferedReader br8=new BufferedReader(new FileReader(j));
BufferedWriter ty8=new BufferedWriter(new FileWriter(m8));
l=null;
while((line=br8.readLine())!=null)
{
l=line.replace("class m", "class m8");
line = l;
l=line.replace('*', '+');
ty8.write(l);
}
ty8.flush();
ty8.close();
BufferedReader br9=new BufferedReader(new FileReader(j));
BufferedWriter ty9=new BufferedWriter(new FileWriter(m9));
l=null;
while((line=br9.readLine())!=null)
{
l=line.replace("class m", "class m9");
line = l;
l=line.replace('*', '-');
ty9.write(l);
}
ty9.flush();
ty9.close();
BufferedReader br10=new BufferedReader(new FileReader(j));
BufferedWriter ty10=new BufferedWriter(new FileWriter(m10));
l=null;
while((line=br10.readLine())!=null)
{
l=line.replace("class m", "class m10");
line = l;
l=line.replace('/', '+');
ty10.write(l);
}
ty10.flush();
ty10.close();
BufferedReader br11=new BufferedReader(new FileReader(j));
BufferedWriter ty11=new BufferedWriter(new FileWriter(m11));
l=null;
while((line=br11.readLine())!=null)

51

{
l=line.replace("class m", "class m11");
line = l;
l=line.replace('/', '-');
ty11.write(l);
}
ty11.flush();
ty11.close();
BufferedReader br12=new BufferedReader(new FileReader(j));
BufferedWriter ty12=new BufferedWriter(new FileWriter(m12));
l=null;
while((line=br12.readLine())!=null)
{
l=line.replace("class m", "class m12");
line = l;
l=line.replace('/', '*');
ty12.write(l);
}
ty12.flush();
ty12.close();
BufferedReader br13=new BufferedReader(new FileReader(j));
BufferedWriter ty13=new BufferedWriter(new FileWriter(m13));
l=null;
while((line=br13.readLine())!=null)
{
l=line.replace("class m", "class m13");
line = l;
l=line.replace('<', '>');
ty13.write(l);
}
ty13.flush();
ty13.close();
}
}

import java.io.*;
public class as {
public static void main(String[] args)throws IOException
{
int dm=0,flag=-1,lm=13;
BufferedReader in1 = new BufferedReader(new FileReader("C:/Users/PARIMAL
ROYCHAUDHURY/workspace/test/src/out.txt"));
BufferedReader mn1 = new BufferedReader(new FileReader("C:/Users/PARIMAL
ROYCHAUDHURY/workspace/test/src/out1.txt"));
String lineFromInput = null ;
String lineFromMutant = null;
while((lineFromInput = in1.readLine())!=null&&(lineFromMutant =
mn1.readLine())!=null)
{
if(lineFromInput.equals(lineFromMutant))
{
flag=1;
 }
else
{
flag=0;
break;
}
}

 if(flag==0)
{
 dm++;
 }
BufferedReader in2 = new BufferedReader(new FileReader("C:/Users/PARIMAL
ROYCHAUDHURY/workspace/test/src/out.txt"));
BufferedReader mn2 = new BufferedReader(new FileReader("C:/Users/PARIMAL
ROYCHAUDHURY/workspace/test/src/out2.txt"));
lineFromInput = null ;

52

lineFromMutant = null;
while((lineFromInput = in2.readLine())!=null&&(lineFromMutant =
mn2.readLine())!=null)
{
if(lineFromInput.equals(lineFromMutant))
{
flag=1;
}
else

 {
flag=0;
break;
}
}
if(flag==0)
{
dm++;

}
BufferedReader in3 = new BufferedReader(new FileReader("C:/Users/PARIMAL
ROYCHAUDHURY/workspace/test/src/out.txt"));
BufferedReader mn3 = new BufferedReader(new FileReader("C:/Users/PARIMAL
ROYCHAUDHURY/workspace/test/src/out3.txt"));
lineFromInput = null ;
lineFromMutant = null;
while((lineFromInput = in3.readLine())!=null&&(lineFromMutant =
mn3.readLine())!=null)
{
if(lineFromInput.equals(lineFromMutant))
{
flag=1;
}
else
{
flag=0;
break;
}
}
if(flag==0)

 {
dm++;
}
BufferedReader in4 = new BufferedReader(new FileReader("C:/Users/PARIMAL
ROYCHAUDHURY/workspace/test/src/out.txt"));
BufferedReader mn4 = new BufferedReader(new FileReader("C:/Users/PARIMAL
ROYCHAUDHURY/workspace/test/src/out4.txt"));
lineFromInput = null ;
lineFromMutant = null;
while((lineFromInput = in4.readLine())!=null&&(lineFromMutant =
mn4.readLine())!=null)
{
if(lineFromInput.equals(lineFromMutant))
{
flag=1;
}
else

 {
 flag=0;
break;
}
}
if(flag==0)
{
dm++;
}
BufferedReader in5 = new BufferedReader(new FileReader("C:/Users/PARIMAL
ROYCHAUDHURY/workspace/test/src/out.txt"));

53

BufferedReader mn5 = new BufferedReader(new FileReader("C:/Users/PARIMAL
ROYCHAUDHURY/workspace/test/src/out5.txt"));
lineFromInput = null ;
lineFromMutant = null;

while((lineFromInput = in5.readLine())!=null&&(lineFromMutant =
mn5.readLine())!=null)
{
if(lineFromInput.equals(lineFromMutant))
{
flag=1;
}
else
{
flag=0;
break;
}
}
if(flag==0)
{
dm++;
}
BufferedReader in6 = new BufferedReader(new FileReader("C:/Users/PARIMAL
ROYCHAUDHURY/workspace/test/src/out.txt"));
BufferedReader mn6 = new BufferedReader(new FileReader("C:/Users/PARIMAL
ROYCHAUDHURY/workspace/test/src/out6.txt"));
lineFromInput = null ;
lineFromMutant = null;
while((lineFromInput = in6.readLine())!=null&&(lineFromMutant =
mn6.readLine())!=null)
{

if(lineFromInput.equals(lineFromMutant))
{
flag=1;
}

 else
{
flag=0;
break;
}
}
if(flag==0)
{
dm++;
}
BufferedReader in7 = new BufferedReader(new FileReader("C:/Users/PARIMAL
ROYCHAUDHURY/workspace/test/src/out.txt"));
BufferedReader mn7 = new BufferedReader(new FileReader("C:/Users/PARIMAL
ROYCHAUDHURY/workspace/test/src/out7.txt"));
lineFromInput = null ;
lineFromMutant = null;
while((lineFromInput = in7.readLine())!=null&&(lineFromMutant =
mn7.readLine())!=null)
{
if(lineFromInput.equals(lineFromMutant))
{
flag=1;
}
else
{
flag=0;
 break;
}
}
if(flag==0)
{

54

dm++;
 }
BufferedReader in8 = new BufferedReader(new FileReader("C:/Users/PARIMAL
ROYCHAUDHURY/workspace/test/src/out.txt"));
BufferedReader mn8 = new BufferedReader(new FileReader("C:/Users/PARIMAL
ROYCHAUDHURY/workspace/test/src/out8.txt"));
lineFromInput = null ;
lineFromMutant = null;
while((lineFromInput = in8.readLine())!=null&&(lineFromMutant =
mn8.readLine())!=null)
{
if(lineFromInput.equals(lineFromMutant))
{
flag=1;
}
else
{
flag=0;
break;
}
}
if(flag==0)
{
dm++;
}
BufferedReader in9 = new BufferedReader(new FileReader("C:/Users/PARIMAL
ROYCHAUDHURY/workspace/test/src/out.txt"));
BufferedReader mn9 = new BufferedReader(new FileReader("C:/Users/PARIMAL
ROYCHAUDHURY/workspace/test/src/out9.txt"));
lineFromInput = null ;
lineFromMutant = null;
while((lineFromInput = in9.readLine())!=null&&(lineFromMutant =
mn9.readLine())!=null
{
 if(lineFromInput.equals(lineFromMutant))
{
flag=1;
}
else
{
flag=0;
 break;
}
}
if(flag==0)
{
dm++;

 }
BufferedReader in10 = new BufferedReader(new FileReader("C:/Users/PARIMAL
ROYCHAUDHURY/workspace/test/src/out.txt"));

BufferedReader mn10 = new BufferedReader(new FileReader("C:/Users/PARIMAL
ROYCHAUDHURY/workspace/test/src/out10.txt"));
lineFromInput = null ;

 lineFromMutant = null;
while((lineFromInput = in10.readLine())!=null&&(lineFromMutant =
mn10.readLine())!=null)
{
if(lineFromInput.equals(lineFromMutant))
{
flag=1;
}
else
{
flag=0;
break;
}
}
if(flag==0)

55

{
dm++;
}
BufferedReader in11 = new BufferedReader(new FileReader("C:/Users/PARIMAL
ROYCHAUDHURY/workspace/test/src/out.txt"));
BufferedReader mn11 = new BufferedReader(new FileReader("C:/Users/PARIMAL
ROYCHAUDHURY/workspace/test/src/out11.txt"));
lineFromInput = null ;
lineFromMutant = null;
while((lineFromInput = in11.readLine())!=null&&(lineFromMutant =
mn11.readLine())!=null)
{
if(lineFromInput.equals(lineFromMutant))
{
flag=1;
}
else
{
flag=0;
break;
}
}
if(flag==0)
{
dm++;
}
BufferedReader in12 = new BufferedReader(new FileReader("C:/Users/PARIMAL
ROYCHAUDHURY/workspace/test/src/out.txt"));
BufferedReader mn12 = new BufferedReader(new FileReader("C:/Users/PARIMAL
ROYCHAUDHURY/workspace/test/src/out12.txt"));
lineFromInput = null ;
lineFromMutant = null;
while((lineFromInput = in12.readLine())!=null&&(lineFromMutant =
mn12.readLine())!=null)
{
if(lineFromInput.equals(lineFromMutant))
{
flag=1;
}
else
{
flag=0;
break;
}
}
if(flag==0)
{
dm++;
}
BufferedReader in13 = new BufferedReader(new FileReader("C:/Users/PARIMAL
ROYCHAUDHURY/workspace/test/src/out.txt"));
BufferedReader mn13 = new BufferedReader(new FileReader("C:/Users/PARIMAL
ROYCHAUDHURY/workspace/test/src/out13.txt"));
lineFromInput = null ;
lineFromMutant = null;
while((lineFromInput = in13.readLine())!=null&&(lineFromMutant =
mn13.readLine())!=null)
{
if(lineFromInput.equals(lineFromMutant))
{
flag=1;
}
else
{
flag=0;
break;
}
}

56

if(flag==0)
{
dm++;
}
System.out.println ("No. Of Live Mutants "+lm);
System.out.println ("No.of Killed Mutants "+dm);
int MS= (dm*100)/13;
System.out.println("Mutant Score is "+MS+"%");
 }
 }

References

1. Aditya P. Mathur, “Foundations of Software Testing,” Pearson, 2008, pp. 1-689.
2. Herbert Schildt, “The Complete Reference Java,” Tata McGraw-Hill, 2006, pp. 1-

1024.
3. Kapil Kumar, P.K.Gupta and Roshan Parjapat “New mutants generation for

testing java programs,” SPRINGER, Computer Networks and Information

Technologies , Vol. 142, No1, pp. 290-294, 2011.
4. Yu-seung Ma and Jeff Offutt “Description of Class Mutation Operators for Java,”

2005.
5. Lech Madeyski and Norbert Radyk “Judy – a mutation testing tool for java,”

Institute of Informatics, Wroc law University of Technology, POLAND, pp 1-27.
6. http://www.cs.gmu.edu/~offutt/mujava/
7. http://www.academictutorials.com/testing/introduction.asp/
8. http://jumble.sourceforge.net/

57

http://www.academictutorials.com/testing/introduction.asp

	Certificate
	Acknowledgement
	1.4 Key Concepts
	1.4.1 Taxonomy
	1.4.2 Source of Test Generation
	Test Generation is an essential part of testing; it is as wedded to testing as the earth is to the sun. There are a variety of ways to generate tests. Tests could be generated from informally or formally specified requirements and with or without the aid of the code that is under test.
	1.4.3 Life Cycle Phase based Testing
	Testing activities take place throughout the software lifecycle. Each artifact produced is often subject to testing at different levels of rigor and using different testing techniques. Testing is often categorized based on the phase in which it occurs.
	Programmers write code during the early coding phase. They test their code before it is integrated with other system components. This type of testing is referred to as Unit testing. When units are integrated and a large component or a subsystem formed, programmers do Integration testing of the subsystem. Eventually when the entire system has been built, its testing is referred to as System Testing. Test phases mentioned above differ in their timing and focus. In unit testing, a programmer focuses on the unit or a small component that has been developed. The goal is to ensure that unit functions correctly in isolation. In integration testing, the goal is to ensure that a collection of components function as desired. Integration errors are often discovered at this stage. The goal of system testing is to ensure that all the desired functionality is in the system and works as per its requirements.
	Often a selected set of customers is asked to test a system before commercialization. This form of testing is known as Beta-testing. Errors reported by users of an application often lead to additional testing and debugging. Often changes made to an application are much smaller in their size when compared to the entire application. In such situations, one performs a regression test. The goal of regression testing is to ensure that the modified system functions as per its specifications. Test cases selected for regression testing include those designed to test the modified code and any other code that might be affected by the modifications.
	1.4.3 Goal directed Testing
	There exists a variety of goals. Of course, finding any hidden errors is the prime goal of testing, goal-oriented testing looks for specific types of failures. For example, the goal of vulnerability testing is to detect if there is any way by which system under test can be penetrated by unauthorized users.

