
A HIGHLY SCALABLE KEY

PRE-DISTRIBUTION SCHEME

IN
WIRELESS SENSOR NETWORK

 Name of Student - AAYUSH MITTAL

 Enrollment No. -101319

 Name of supervisor - Dr. YASHWANT SINGH

MAY - 2014

Project report submitted in partial fulfilment of the requirement for the degree of

Bachelor of Technology

 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY,

WAKNAGHAT

I

CONTENTS

CERTIFICATE... IV

ACKNOWLEDGEMENT ..V

ABSTRACT.. VI

Chapter 1: INTRODUCTION ..1

1.1 Introduction...1

1.2 Genesis of Problem...1

1.3 Problem Statement..2

1.4 Objective...2

1.5 Proposed System...2

1.6 Approach Used ...3

1.7 Organisation of Thesis ..3

Chapter 2: LITERATURE SURVEY..4

2.1 Introduction...4

2.2 Parts of a WSN ...4

2.3 Applications of WSN..5

2.4 Securing wireless sensor networks: a survey ...7

2.5 A key-management scheme for distributed sensor networks...........................7

2.6 A key management scheme for wireless sensor networks using deployment
knowledge ...8

2.7 Coverage Problem in Wireless Sensor Network: A Survey.............................8

Chapter 3: IMPLEMENTATION..10

3.1 Feasibility Study ...10
3.1.1 Operational feasibility ..10

II

3.1.2 Technical feasibility..10
3.1.3 Social feasibility ...10

3.2 Modules...11

3.3 Block Diagram..12

3.4 UML Diagrams ...12
3.4.1 Activity Diagram: ...13
3.4.2 Sequence Diagram:...14
3.4.3 Use Case Diagram ..15
3.4.4 Class Diagram...16

3.5 Data Flow Diagram:..17

3.6 Source code...18

3.7 Output: ..42

Chapter 4: CONCLUSION..46

References..47

III

TABLE OF FIGURES

S. no. Figures Page no.

1 Figure 1.1: Software Development Life Cycle 3

2 Figure 3.1: Block Diagram 12

3 Figure 3.2: Activity Diagram 13

4 Figure 3.3: Sequence Diagram 14

5 Figure3.4: Use Case Diagram 15

6 Figure3.5: Class Diagram 16

7 Figure3.6: Data Flow Diagram 17

8 Figure 3.7: Screen shot 1 42

9 Figure 3.8: Screen shot 2 42

10 Figure 3.9: Screen shot 3 43

11 Figure 3.10: Screen shot 4 43

12 Figure 3.11: Screen shot 5 44

13 Figure 3.12: Screen shot 6 44

14 Figure 3.13: Screen shot 7 45

IV

CERTIFICATE

This is to certify that the work titled “A HIGHLY SCALABLE KEY PRE-DISTRIBUTION

SCHEME IN WIRELESS SENSOR NETWORK” submitted by “AAYUSH MITTAL” in

partial fulfillment for the award of degree of B.Tech of Computer Science Engineering from

Jaypee University of Information Technology, Waknaghat has been carried out under my

supervision. This work has not been submitted partially or wholly to any other University or

Institute for the award of this or any other degree or diploma.

__________________ __________________

Signature of Student Signature of Supervisor

Name: Aayush Mittal Name: Dr. Yashwant Singh

Date Date

V

ACKNOWLEDGEMENT

On the very outset of this report, I would like to extend my sincere & heartfelt obligation towards
all the personages who have helped me in this endeavor. Without their active guidance, help,
cooperation & encouragement, I would not have made headway in the project.

I would like to show my greatest appreciation to Dr. Yashwant Singh (Assistant Professor). I
feel motivated every time I get his encouragement. For his coherent guidance throughout the
tenure of the project, I feel fortunate to be taught by Dr. Yashwant Singh, who gave me his
unwavering support. Besides being my mentor, he taught me that there is no substitute for hard
work.

Signature of the student ……………………..

Name of Student Aayush Mittal

Date ……………………..

VI

ABSTRACT

Given the sensitivity of the potential WSN applications and because of resource limitations, key
management emerges as a challenging issue for WSNs. One of the main concerns when
designing a key management scheme is the network scalability. Indeed, the protocol should
support a large number of nodes to enable a large scale deployment of the network. In this paper,
we propose a new scalable key management scheme for WSNs which provides a good secure
connectivity coverage. For this purpose, we make use of the unital design theory. We show that
the basic mapping from unitals to key pre-distribution allows us to achieve high network
scalability. Nonetheless, this naive mapping does not guarantee a high key sharing probability.
Therefore, we propose an enhanced unital-based key pre-distribution scheme providing high
network scalability and good key sharing probability approximately lower bounded by 1 − e−1
≈ 0.632. We conduct approximate analysis and simulations and compare our solution to those of
existing methods for different criteria such as storage overhead, network scalability, network
connectivity, average secure path length and network resiliency. Our results show that the
proposed approach enhances the network scalability while providing high secure connectivity
coverage and overall improved performance. Moreover, for an equal network size, our solution
reduces significantly the storage overhead compared to those of existing solutions.

1

Chapter 1: INTRODUCTION

1.1 Introduction

Wireless technology has expanded the limits of our world. Through this innovation, people have
been given freedom to work away from their desks or even outside. The newfound freedom that
people are beginning to enjoy with their computers has started making the world of technology
and nature blend. Wireless Sensor Networks are the next stage of this technology-nature
cohesion.

A wireless sensor network (WSN) consists of spatially distributed autonomous sensors to
monitor physical or environmental conditions, such as temperature, sound, pressure, etc. and to
cooperatively pass their data through the network to a main location. The more modern networks
are bi-directional, also enabling control of sensor activity. The development of wireless sensor
networks was motivated by military applications such as battlefield surveillance; today such
networks are used in many industrial and consumer applications, such as industrial process
monitoring and control, machine health monitoring, and so on.

The WSN is built of "nodes" – from a few to several hundreds or even thousands, where each
node is connected to one (or sometimes several) sensors. Each such sensor network node has
typically several parts: a radio transceiver with an internal antenna or connection to an external
antenna, a microcontroller, an electronic circuit for interfacing with the sensors and an energy
source, usually a battery or an embedded form of energy harvesting. A sensor node might vary in
size from that of a shoebox down to the size of a grain of dust, although functioning "motes" of
genuine microscopic dimensions have yet to be created. The cost of sensor nodes is similarly
variable, ranging from a few to hundreds of dollars, depending on the complexity of the
individual sensor nodes. Size and cost constraints on sensor nodes result in corresponding
constraints on resources such as energy, memory, computational speed and communications
bandwidth. The topology of the WSNs can vary from a simple star network to an advanced
multi-hop wireless mesh network. The propagation technique between the hops of the network
can be routing or flooding.

1.2 Genesis of Problem

Wireless sensor networks (WSNs) are increasingly used in critical applications within several
fields including military, medical and industrial sectors. Given the sensitivity of these
applications, sophisticated security services are required. Key management is a corner stone for
many security services such as confidentiality and authentication which are required to secure
communications in WSNs. The establishment of secure links between nodes is then a
challenging problem in WSNs. Because of resource limitations, symmetric key establishment is

2

one of the most suitable paradigms for securing exchanges in WSNs. On the other hand, because
of the lack of infrastructure in WSNs, we have usually no trusted third party which can attribute
pair wise secret keys to neighboring nodes, that is why most existing solutions are based on key
pre-distribution.

1.3 Problem Statement

A host of research work dealt with symmetric key pre-distribution issue for WSNs and many
solutions have been proposed In the existing system many disadvantages occur: the design of key
rings (blocks of keys) is strongly related to the network size, these solutions either suffer from
low scalability (number of supported nodes), or degrade other performance metrics including
secure connectivity, storage overhead and resiliency in the case of large networks.
Therefore, this project includes implementation of a security protocol in the network which
provides node authentication and confidentiality. In addition to stronger security measures, the
simulation results demonstrate removed dependency from the fixed infrastructure approach.

1.4 Objective

The main objective of my project is:

 To achieve a naive mapping from unital design to key pre-distribution and analyse the
high scalability of the network.

 To enhance unital based key pre-distribution scheme that maintains a good key sharing
probability while enhancing the network scalability.

1.5 Proposed System

In this proposed system, our aim is to tackle the scalability issue without degrading the other
network performance metrics. For this purpose, we target the design of a scheme which ensures a
good secure coverage of large scale networks with a low key storage overhead and a good
network resiliency. To this end, we make use, of the unital design theory for efficient WSN key
pre-distribution. We conduct approximate analysis and simulations and compare our solution to
those of existing methods for different criteria such as storage overhead, network scalability,
network connectivity, average secure path length and network resiliency. Our results show that
the proposed approach enhances the network scalability while providing high secure connectivity
coverage and overall improved performance.

3

1.6 Approach Used

Approach used in developing this project is waterfall model. The following figure shows the
various aspects of waterfall model approach of SDLC (Software Development Life Cycle).

Figure 1.1: Software Development Life Cycle

1.7 Organisation of Thesis
In Chapter 2, we have discussed the literature survey in which we have seen the various features
of WSN and its applications. We also discuss various key distribution scheme which are present
and their drawbacks.

In Chapter 3 we have done feasibility study and requirement analysis. We have discussed the
various designs like Data Flow Diagrams, Flow Chart, and Use Case etc. Next part includes
coding which discusses the basic functioning, the working of clusters, etc.

In Chapter 4 we have thereby concluded our report.

4

Chapter 2: LITERATURE SURVEY

2.1 Introduction

A WSN is formed by densely deployed sensor nodes in an application area. In most
deployments, the sensor nodes have self-organizing capabilities, to form an appropriate structure
in order to collaboratively perform a particular task. Wireless Sensor Networks are found
suitable for applications such as surveillance, precision agriculture, smart homes, automation,
vehicular traffic management, habitat monitoring, and disaster detection. . Although the primary
goal of such an ad-hoc network is correct and efficient route establishment between source and
destination so that messages may be delivered in a timely manner but military tactical and other
security-sensitive operations are still the main applications of ad hoc networks. One main
challenge in design of these networks is their vulnerability to security attacks.

Ad hoc networks are a new paradigm of wireless communication for mobile hosts (which we call
nodes). In an ad hoc network, there is no fixed infrastructure such as base stations or mobile
switching centers. Mobile nodes that are within each other’s radio range communicate directly
via wireless links, while those that are far apart rely on other nodes to relay messages as routers.
The key constraints in the development of WSNs are limited battery power, cost, memory
limitation, limited computational capability, and the physical size of the sensor nodes. In
particular, it takes advantage of multiple routes between nodes to defend routing against denial
of service attacks and cryptography schemes to prevent from malicious attacks by intruders and
to build a highly secure and highly available key management service, which forms the core of
our security framework.

2.2 Parts of a WSN
While we associate a computer with a PC, the technical definition of a computer is a thing that
computes, be it human or machine. Most sensors or WSN consist of five crucial components.
These components include a number of sensors, such as temperature, moisture, and vibration
sensors, a power source, in the case of older motes, 2 AA batteries, a radio transmitter/receiver,
and an electric.

Sensors: When motes are under construction, their intended purpose often dictates the sensors
that are added to the mote. The mote in Figure 2 contains three types of sensors: temperature,
moisture, and vibration. This is a fairly typical mote, but some motes have many more functions.
There are motes that take photographs of the surroundings, sense motion, measure light intensity,
and much more. The sensors are attached to the mote base and communicate readings to the
electronic brain.

Power Source: The power source for the mote also depends the mote’s intended use. If the mote
is designed to last a very long time, say one year, it will have a larger power source than a mote

5

that is only meant to run for a month. The power sources usually range between a couple of AA
batteries, and a watch battery, but with the new smart-dust motes, also called “Spec,” they can
collect enough energy to sustain themselves from ambient light, or even vibrations. The power
source is connected to the mote base and provides energy required to run the sensors, electronic
brain, and radio.

Radio: The radio consists of a radio transmitter and a radio receiver. Both of these parts must
exist for any mote to fully communicate with the other motes. The radio, when transmitting,
receives information from the electronic brain and broadcasts the data to other motes according
to the network connections. In the other direction, when receiving, the radio receives information
from another mote’s radio and transmits it to the electronic brain. The radio is connected to the
mote base.

The Electronic Brain: The older motes’ brains consist of a microprocessor and some flash
memory. Many of them have connectors to add other processes and sensors with ease. The
MEMS motes also contain an analog-digital converter. The basic functions of the electronic
brain are to make decisions and deal with collected data. The electronic brain stores collected
data in its memory until enough information has been collected. Once this point is reached, the
microprocessor portion of the electronic brain then puts the data in “envelopes,” or packages of
data formatted for greatest transferring efficiency. These envelopes are then sent to the radio for
broadcast. The brain also communicates with other motes to maintain the most effective network
in much the same way it deals with data. The electronic brain is connected to the base and
interacts with the sensors and radio.

2.3 Applications of WSN
 Area monitoring

Area monitoring is a common application of WSNs. In area monitoring, the WSN is
deployed over a region where some phenomenon is to be monitored. A military example
is the use of sensors detect enemy intrusion; a civilian example is the geo-fencing of gas
or oil pipelines.

 Health care monitoring

The medical applications can be of two types: wearable and implanted. Wearable devices
are used on the body surface of a human or just at close proximity of the user. The
implantable medical devices are those that are inserted inside human body. There are
many other applications too e.g. body position measurement and location of the person,
overall monitoring of ill patients in hospitals and at homes.

6

 Air pollution monitoring

Wireless sensor networks have been deployed in several cities (Stockholm, London and
Brisbane) to monitor the concentration of dangerous gases for citizens. These can take
advantage of the ad hoc wireless links rather than wired installations, which also make
them more mobile for testing readings in different areas.

 Forest fire detection

A network of Sensor Nodes can be installed in a forest to detect when a fire has started.
The nodes can be equipped with sensors to measure temperature, humidity and gases
which are produced by fire in the trees or vegetation. The early detection is crucial for a
successful action of the firefighters; thanks to Wireless Sensor Networks, the fire brigade
will be able to know when a fire is started and how it is spreading.

 Landslide detection

A landslide detection system makes use of a wireless sensor network to detect the slight
movements of soil and changes in various parameters that may occur before or during a
landslide. Through the data gathered it may be possible to know the occurrence of
landslides long before it actually happens.

 Water quality monitoring

Water quality monitoring involves analyzing water properties in dams, rivers, lakes &
oceans, as well as underground water reserves. The use of many wireless distributed
sensors enables the creation of a more accurate map of the water status, and allows the
permanent deployment of monitoring stations in locations of difficult access, without the
need of manual data retrieval.

 Natural disaster prevention

Wireless sensor networks can effectively act to prevent the consequences of natural
disasters, like floods. Wireless nodes have successfully been deployed in rivers where
changes of the water levels have to be monitored in real time.

 Machine health monitoring

Wireless sensor networks have been developed for machinery condition-based
maintenance (CBM) as they offer significant cost savings and enable new
functionality. In wired systems, the installation of enough sensors is often limited by the
cost of wiring. Previously inaccessible locations, rotating machinery, hazardous or
restricted areas, and mobile assets can now be reached with wireless sensors.

7

 Data logging

Wireless sensor networks are also used for the collection of data for monitoring of
environmental information; this can be as simple as the monitoring of the temperature in
a fridge to the level of water in overflow tanks in nuclear power plants. The statistical
information can then be used to show how systems have been working. The advantage of
WSNs over conventional loggers is the "live" data feed that is possible.

2.4 Securing wireless sensor networks: a survey
The significant advances of hardware manufacturing technology and the development of

efficient software algorithms make technically and economically feasible a network composed of

numerous, small, low-cost sensors using wireless communications, that is, a wireless sensor

network. WSNs have attracted intensive interest from both academia and industry due to their

wide application in civil and military scenarios. In hostile scenarios, it is very important to

protect WSNs from malicious attacks. Due to various resource limitations and the salient features

of a wireless sensor network, the security design for such networks is significantly challenging.

In this article, a comprehensive survey of WSN security issues was presented that were

investigated by researchers in recent years and that shed light on future directions for WSN

security.

2.5 A key-management scheme for distributed sensor networks
Distributed Sensor Networks (DSNs) are ad-hoc mobile networks that include sensor nodes with
limited computation and communication capabilities. DSNs are dynamic in the sense that they
allow addition and deletion of sensor nodes after deployment to grow the network or replace
failing and unreliable nodes. DSNs may be deployed in hostile areas where communication is
monitored and nodes are subject to capture and surreptitious use by an adversary. Hence DSNs
require cryptographic protection of communications, sensor capture detection, key revocation
and sensor disabling. In this paper, a key-management scheme designed to satisfy both
operational and security requirements of DSNs were presented.

8

2.6 A key management scheme for wireless sensor networks using
deployment knowledge
To achieve security in wireless sensor networks, it is important to he able to encrypt messages
sent among sensor nodes. Keys for encryption purposes must he agreed upon by communicating
nodes. Due to resource constraints, achieving such key agreement in wireless sensor networks is
nontrivial. Many key agreement schemes used in general networks, such as Diffie-Hellman and
public-key based schemes, are not suitable for wireless sensor networks. Pre-distribution of
secret keys for all pairs of nodes is not viable due to the large amount of memory used when the
network size is large. Recently, a random key pre-distribution scheme and its improvements have
been proposed. A common assumption made by these random key pre-distribution schemes is
that no deployment knowledge is available. Noticing that in many practical scenarios, certain
deployment knowledge may be available a priori, we propose a novel random key pre-
distribution scheme that exploits deployment knowledge and avoids unnecessary key
assignments. It was shown that the performance (including connectivity, memory usage, and
network resilience against node capture) of sensor networks can he substantially improved with
the use of our proposed scheme. The scheme and its detailed performance evaluation are
presented in this paper.

2.7 Coverage Problem in Wireless Sensor Network: A Survey
The coverage of WSN has answered the questions about quality of service (surveillance) which
can be provided by WSN. Therefore, maximizing coverage using the resource constrained nodes
is a non-trivial problem. Generally, there are many different criterions (factors) can affect the
coverage performance of WSN.

Deployment strategy: random versus deterministic. A Deterministic sensor placement can be
applied to a small to medium sensor network in a friendly environment and random deployment,
where sensor nodes are distributed within the field stochastically and independently.

Sensing model: there are two mainly two different sensing models: one is Boolean sensing model
where each sensor has a fixed sensing area and a sensor can only sense the environment or detect
events within its sensing area and In reality, sensor detection is imprecise hence needs to be
expressed in probabilistic terms.

9

Algorithm Characteristics: a coverage scheme can operate in either a centralized or distributed.
In centralized, information from all nodes needs to be transferred to the central node. In
distributed (localized) scheme, the coverage algorithm is executed based on information from
only some nodes in WSN, and the decision is made locally.

Sensor mobility: the coverage performance of stationary sensor network can be determined by
the initial network configuration, and it remains unchanged over time after deployment.
Contrarily, mobile sensor network can improve or maintain coverage performance by sensor
mobility. It is extremely valuable in situations where deployment mechanisms fail or coverage
maintenance.

Current researches in coverage of WSN focus on evaluating the coverage performance and
improving the coverage performance with some of the primary limitations:

Firstly, in the literature most existing works assume that the boundary of sensing and
communication of sensor node is a perfect circle which is a known and static radius in
considering the coverage problem. However, the sensing ranges are very irregular and dynamic
in real situation for wireless sensor network, which usually employ low quality radio modules to
reduce the cost.

Secondly, in applications where nodes move around in a certain pattern, mobility could further
be exploited to improve coverage and connectivity. On the one hand, mobility poses challenges
in guaranteeing coverage at all times, while on the other hand, it enables nodes to cover areas
that would have been left uncovered using only static nodes.

Although many schemes have been proposed and progress has been made in coverage problems
of WSN, there are still many open research issues. Effective coverage scheme should be
proposed to implement real applications but limited to theoretical study. Therefore, most existing
centralized solutions need to be developed include the distributed and localized algorithms or
protocols.

10

Chapter 3: IMPLEMENTATION

3.1 Feasibility Study

“FEASIBILTY STUDY” is a test of system proposal according to its workability, impact of the

organization, ability to meet needs and effective use of the resources. The feasibility of the

project is analyzed in this phase. During system analysis the feasibility study of the proposed

system is to be carried out. This is to ensure that the proposed environment must be feasible. For

feasibility analysis, some understanding of the major requirements for system is essential.

The key objective of the feasibility study is to weigh up two types of feasibility. They are:

 Operational feasibility

 Technical feasibility

 Social feasibility

3.1.1 Operational feasibility

Operational feasibility is necessary as it ensures that the project developed is a successful one.

As the execution process of the proposed work is very much user friendly, the operational

feasibility of the project is high.

3.1.2 Technical feasibility

Technical feasibility analysis makes a comparison between the level of technology available and

that is needed for the project development of the project. The level of technology consists of the

factors like software tools, machine environment, and platform developed and so on.

3.1.3 Social feasibility

The aspect of study is to check the level of acceptance of the system by the user. This includes

the process of training the user to use the system efficiently. The user must not feel threatened by

the system, instead must accept it as a necessity. His level of confidence must be raised so that he

is also able to make some constructive criticism, which is welcomed, as he is the final user of the

system

11

3.2 Modules
1) Node Deployment
2) Key Generation
3) Key Pre-distribution Technique
4) Secure Transmission with Energy

Node Deployment

The first module is Node deployment, where the node can be deployed by specifying the number
of nodes in the network. After specifying the number of nodes in the network, the nodes are
deployed. The nodes are deployed with unique ID (Identity) number so that each can be
differentiated. And also nodes are deployed with their energy levels.

Key Generation

After the Node deployment module, the key generation module is developed, where the number
of nodes and number of blocks should be specified, so that the key will be generated. The key is
symmetric key and the key is displayed in the text area given in the node.

Key Pre-distribution Technique:

In this module, we generate blocks of m order initial design, where each block corresponds to a
key set. We pre-load then each node with t completely disjoint blocks where t is a protocol
parameter that we will discuss later in this section. In lemma 1, we demonstrate the condition of
existence of such t completely disjoint blocks among the unital blocks. In the basic approach
each node is pre-loaded with only one unital block and we proved that each two nodes share at
most one key. Contrary to this, pre-loading each two nodes with t disjoint unital blocks means
that each two nodes share between zero and keys since each two unitals blocks share at most one
element. After the deployment step, each two neighbors exchange the identifiers of their keys in
order to determine the common keys. This approach enhances the network resiliency since the
attackers have to compromise more overlap keys to break a secure link. Otherwise, when
neighbors do not share any key, they should find a secure path composed of successive secure
link

Secure Transmission with Energy

In this module, the node distance is configured and then the nodes with their neighbor
information are displayed. So the nodes which is near by the node, is selected and the energy
level is first calculated to verify the secure transmission. After that the data is uploaded and sent
to the destination node. Where in the destination node, the key is verified and then the data is
received

12

3.3 Block Diagram
In the figure below, block diagram is representing the steps of implementation with
methodologies used during implementation.

 Figure 3.1: Block Diagram

3.4 UML Diagrams
UML stands for Unified Modeling Language. UML is a standardized general-purpose modeling
language in the field of object-oriented software engineering. The standard is managed, and was
created by, the Object Management Group.
The goal is for UML to become a common language for creating models of object oriented
computer software. In its current form UML is comprised of two major components: a Meta-
model and a notation. In the future, some form of method or process may also be added to; or
associated with, UML.
The Unified Modeling Language is a standard language for specifying, Visualization,
Constructing and documenting the artifacts of software system, as well as for business modeling
and other non-software systems.
The UML represents a collection of best engineering practices that have proven successful in the
modeling of large and complex systems.
The UML is a very important part of developing objects oriented software and the software
development process. The UML uses mostly graphical notations to express the design of
software projects.

The Primary goals in the design of the UML are as follows:

1. Provide users a ready-to-use, expressive visual modeling Language so that they can
develop and exchange meaningful models.

2. Provide extendibility and specialization mechanisms to extend the core concepts.
3. Be independent of particular programming languages and development process.
4. Provide a formal basis for understanding the modeling language.
5. Encourage the growth of OO tools market.
6. Support higher level development concepts such as collaborations, frameworks, patterns

and components.
7. Integrate best practices.

Node Deployment Key Generation Key Distribution

Data TransmissionKey Verification
and Receiving

Energy Calculation

13

3.4.1 Activity Diagram:
Activity diagrams are graphical representations of workflows of stepwise activities and actions
with support for choice, iteration and concurrency. In the Unified Modeling Language, activity
diagrams can be used to describe the business and operational step-by-step workflows of
components in a system. An activity diagram shows the overall flow of control.

SERVERCLIENT

Connecting..

FILE RECEIVED

IP Address

File to Send

NO

Yes

Connecting..

socket
connection

TRANSACTION
FAILED

ROUTER

IP Address

check
NO

File Not
Received

Start File
Receiving

Yes

Key Verification

Yes

Connecting..

SENDING

File received

File Transfered

Key Generation

IP Address

FILE Recieving

YES

Client socket
connection

File sending Failed

Key Verification

File Recieving Error

NO

Figure 3.2: Activity Diagram

14

3.4.2 Sequence Diagram:
A sequence diagram in Unified Modeling Language (UML) is a kind of interaction diagram that
shows how processes operate with one another and in what order. It is a construct of a Message
Sequence Chart. Sequence diagrams are sometimes called event diagrams, event scenarios, and
timing diagrams.

SENDING NODE RECEIVING NODE
ROUTER

Socket Connection with
key generation

Socket Connection

Start File Transfer

Routing

Bytes Received

File Transfer Success

Acknowledgem ent

Bytes Transferred

Routing Finish

File Received

Key Verification

File Transfer failed

Key verification success

Key Verificatin Success

Key Verification Failed

File transfer Failed

Figure 3.3: Sequence Diagram

15

3.4.3 Use Case Diagram
A use case diagram in the Unified Modeling Language (UML) is a type of behavioral diagram

defined by and created from a Use-case analysis. Its purpose is to present a graphical overview

of the functionality provided by a system in terms of actors, their goals (represented as use

cases), and any dependencies between those use cases.

NODE
NODE

Node Deployment

socket connection

ROUTER

transferring

File to transfer with
key generated

Receive a File

Key Verification

Key Generation

Key Distribution

 Figure3.4: Use Case diagram

16

3.4.4 Class Diagram
In software engineering, a class diagram in the Unified Modeling Language (UML) is a type of
static structure diagram that describes the structure of a system by showing the system's classes,
their attributes, operations (or methods), and the relationships among the classes. It explains
which class contains information.

ROUTER

IPADDRESS
FILEBYTES
KEY
ROUTER
ACK

RECIEVE()
SEND()
KEY VERIFICATION()

SENDING NODE

FILE
KEY GENERATION
IPADDRESS
FILEBYTES
PORTNUMBER
ACK

SOCKETCON()
SEND()
KEY GENERATION

RECEIVING NODE

FILE
KEY
RECSTATUS
FILEBYTES
ACK

SOCKETCON()
RECEIVE()
KEY VERIFICATION()

Figure 3.5 Class Diagram

17

3.5 Data Flow Diagram:
The DFD is also called as bubble chart. It is a simple graphical formalism that can be used to
represent a system in terms of input data to the system, various processing carried out on this
data, and the output data is generated by this system.
The data flow diagram (DFD) is one of the most important modeling tools. It is used to model
the system components. These components are the system process, the data used by the process,
an external entity that interacts with the system and the information flows in the system.

S T A R T

N O D E D E P L O Y E M E N T

N O D E S C R E A T I O N

K E Y G E N E R A T I O N

K E Y D I S T R I B U T I O N

K E Y R E C E I V I N G

S E C U R E
D A T A T R A N S M I S S I O N

S T O P

Figure 3.6: Data Flow Diagram

18

3.6 Source code

package com.mycompany.design;
import com.multicast.MulticastRx;
import com.multicast.TrippleDes;
import java.awt.Color;
import java.io.BufferedReader;
import java.io.DataInputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.ObjectOutputStream;
import java.net.Socket;
import java.net.UnknownHostException;
import java.security.NoSuchAlgorithmException;
import java.util.Iterator;
import java.util.Random;
import java.util.Set;
import java.util.Vector;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.crypto.KeyGenerator;
import javax.crypto.SecretKey;
import javax.swing.JFileChoose;
import javax.swing.JOptionPane;
import javax.swing.table.DefaultTableModel;

public class Node_Design extends javax.swing.JFrame
{

 private static final long serialVersionUID = 2L;

public Action action;

public String source;

 int port;

 public int enc;

 public int energy;

19

 public String dis;

 public MulticastRx mrx;

Receive receive;

String mpcrPath;

public String path;

static Random rr = new Random();

 int ii = rr.nextInt(108945000);

 String hhh = ii+"";

 String ekey ;

 public Node_Design()
throws UnknownHostException
{

 initComponents();

 jTextArea2.setEditable(false);

 jTextArea3.setEditable(false);

 jTextArea5.setEditable(false);

 jTextField3.setEditable(false);

 jTextField6.setEditable(false);

 jButton2.setVisible(false);

 init();

 }

 public Node_Design(String key)

20

throws UnknownHostException
{

 initComponents();

 this.getContentPane().setBackground(Color.PINK);

 ekey = key;

 jButton2.setVisible(false);

 jTextArea2.setEditable(false);

 jTextArea3.setEditable(false);

jTextArea5.setEditable(false);

 jTextField3.setEditable(false);

 jTextField6.setEditable(false);

 jButton5.setVisible(false);

 jPanel1.setVisible(false);

 jPanel3.setVisible(false);

 jPanel2.setVisible(false);

 init();

 }

 private void init()
{
 action = new Action();

 source = action.getSource();

 setTitle(source);

 energy = action.getEnergy();

21

 jTextField3.setText("" + energy);

 jLabel5.setText(source);

 port = action.getPort();

 receive = new Receive(this, port, action);

 }

private void initComponents()
{

 jLabel1 = new javax.swing.JLabel();

 jLabel2 = new javax.swing.JLabel();

 jLabel5 = new javax.swing.JLabel();

 jTextField3 = new javax.swing.JTextField();

 jLabel9 = new javax.swing.JLabel();

 jLabel10 = new javax.swing.JLabel();

 jLabel11 = new javax.swing.JLabel();

 jLabel12 = new javax.swing.JLabel();

 jTextField5 = new javax.swing.JTextField();

 jButton2 = new javax.swing.JButton();

 jTextField6 = new javax.swing.JTextField();

 jLabel13 = new javax.swing.JLabel();

 jTextField7 = new javax.swing.JTextField();

 jTextField8 = new javax.swing.JTextField();

 jButton4 = new javax.swing.JButton();

 jButton1 = new javax.swing.JButton();

22

 jButton5 = new javax.swing.JButton();

 jPanel3 = new javax.swing.JPanel();

send = new javax.swing.JButton();

 get_energy = new javax.swing.JButton();

 jLabel6 = new javax.swing.JLabel();

 jScrollPane5 = new javax.swing.JScrollPane();

 jTextArea5 = new javax.swing.JTextArea();

 jTextField2 = new javax.swing.JTextField();

 get_Neighbor = new javax.swing.JButton();

 file_browse = new javax.swing.JButton();

 cancel = new javax.swing.JButton();

 jScrollPane1 = new javax.swing.JScrollPane();

 jTextArea1 = new javax.swing.JTextArea();

 jPanel1 = new javax.swing.JPanel();

 jPanel2 = new javax.swing.JPanel();

 jScrollPane3 = new javax.swing.JScrollPane();

 jTextArea3 = new javax.swing.JTextArea();

 jScrollPane2 = new javax.swing.JScrollPane();

 jTextArea2 = new javax.swing.JTextArea();

 jLabel3 = new javax.swing.JLabel();

 jLabel8 = new javax.swing.JLabel();

 distance_config = new javax.swing.JButton();

 jTextField1 = new javax.swing.JTextField();

23

 jLabel7 = new javax.swing.JLabel();

 jLabel4 = new javax.swing.JLabel();

 setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE);

 setTitle("Node");

 setMinimumSize(new java.awt.Dimension(930, 700));

 getContentPane().setLayout(null);

 jLabel1.setFont(new java.awt.Font("Times New Roman", 1, 24));

 jLabel1.setForeground(new java.awt.Color(0, 0, 153));

 jLabel1.setText("A HIGHLY SCALABLE KEY PRE-DISTRIBUTION SCHEME FOR
WSN");

 getContentPane().add(jLabel1);

 jLabel1.setBounds(80, 10, 800, 40);

 jLabel2.setFont(new java.awt.Font("Times New Roman", 1, 14));

 jLabel2.setText("Energy");

 getContentPane().add(jLabel2);

 jLabel2.setBounds(570, 57, 60, 20);

 jLabel5.setFont(new java.awt.Font("Times New Roman", 1, 14));

 getContentPane().add(jLabel5);

 jLabel5.setBounds(660, 90, 90, 0);

24

 jTextField3.addActionListener(new java.awt.event.ActionListener()
{

 public void actionPerformed(java.awt.event.ActionEvent evt)
{

 jTextField3ActionPerformed(evt);

 }

 });

 getContentPane().add(jTextField3);

 jTextField3.setBounds(640, 50, 120, 30);

 jLabel9.setFont(new java.awt.Font("Tahoma", 3, 14));

 jLabel9.setText("NODE DEPLOYEMENT");

 getContentPane().add(jLabel9);

 jLabel9.setBounds(50, 80, 180, 30);

 jLabel10.setFont(new java.awt.Font("Tahoma", 3, 14));

 jLabel10.setText("Node");

 getContentPane().add(jLabel10);

 jLabel10.setBounds(20, 140, 80, 30);

jLabel11.setFont(new java.awt.Font("Tahoma", 3, 14));

 jLabel11.setText("BLOCK GENERATION");

 getContentPane().add(jLabel11);

 jLabel11.setBounds(470, 100, 180, 30);

25

 jLabel12.setFont(new java.awt.Font("Tahoma", 3, 12));

 jLabel12.setText("Node Size");

 getContentPane().add(jLabel12);

 jLabel12.setBounds(370, 150, 90, 30);

 getContentPane().add(jTextField5);

 jTextField5.setBounds(480, 150, 190, 30);

 jButton2.setFont(new java.awt.Font("Tahoma", 1, 12));

jButton2.setText("Distribute Key");

 jButton2.addActionListener(new java.awt.event.ActionListener()
{

 public void actionPerformed(java.awt.event.ActionEvent evt)
{

 jButton2ActionPerformed(evt);

 }

 }
);

 getContentPane().add(jButton2);

 jButton2.setBounds(810, 150, 140, 30);

 getContentPane().add(jTextField6);

 jTextField6.setBounds(690, 260, 240, 40);

 jLabel13.setFont(new java.awt.Font("Tahoma", 1, 14));

 jLabel13.setText(" Block size");

26

 getContentPane().add(jLabel13);

 jLabel13.setBounds(370, 200, 80, 30);

 getContentPane().add(jTextField7);

 jTextField7.setBounds(480, 200, 190, 30);

 jTextField8.addKeyListener(new java.awt.event.KeyAdapter()
{

 public void keyTyped(java.awt.event.KeyEvent evt)
{

 jTextField8KeyTyped(evt);

 }

 }
);

 getContentPane().add(jTextField8);

 jTextField8.setBounds(90, 140, 180, 30);

 jButton4.setFont(new java.awt.Font("Tahoma", 1, 12));

 jButton4.setText("Generate Key");

 jButton4.addActionListener(new java.awt.event.ActionListener()
{

public void actionPerformed(java.awt.event.ActionEvent evt)
{

 jButton4ActionPerformed(evt);

 }

 });

 getContentPane().add(jButton4);

27

 jButton4.setBounds(680, 150, 120, 30);

 jButton1.setText("Received key");

 jButton1.addActionListener(new java.awt.event.ActionListener()
{

 public void actionPerformed(java.awt.event.ActionEvent evt)
{

 jButton1ActionPerformed(evt);

 }

 });

 getContentPane().add(jButton1);

 jButton1.setBounds(550, 270, 110, 30);

 jButton5.setText("DEPLOY");

 jButton5.addActionListener(new java.awt.event.ActionListener()
{

 public void actionPerformed(java.awt.event.ActionEvent evt)
{

 jButton5ActionPerformed(evt);

 }

 });

 getContentPane().add(jButton5);

jButton5.setBounds(120, 190, 100, 30);

 jPanel3.setBackground(new java.awt.Color(255, 204, 204));

 jPanel3.setLayout(null);

28

 send.setFont(new java.awt.Font("Times New Roman", 1, 14));

send.setText("Send To");

 send.addActionListener(new java.awt.event.ActionListener()
{

 public void actionPerformed(java.awt.event.ActionEvent evt)
{

 sendActionPerformed(evt);

 }

 });

 jPanel3.add(send);

 send.setBounds(130, 410, 100, 25);

 get_energy.setFont(new java.awt.Font("Times New Roman", 1, 14));

 get_energy.setText("get Energy");
 get_energy.addActionListener(new java.awt.event.ActionListener()
{

 public void actionPerformed(java.awt.event.ActionEvent evt)
{
 get_energyActionPerformed(evt);

 }

 });

 jPanel3.add(get_energy);

 get_energy.setBounds(20, 410, 100, 25);

 jLabel6.setFont(new java.awt.Font("Times New Roman", 1, 14));

 jLabel6.setText(".");

29

 jPanel3.add(jLabel6);
 jLabel6.setBounds(240, 420, 180, 30);

 jTextArea5.setColumns(20);

 jTextArea5.setRows(5);

 jScrollPane5.setViewportView(jTextArea5);

 jPanel3.add(jScrollPane5);

 jScrollPane5.setBounds(10, 300, 370, 96);

 jPanel3.add(jTextField2);
 jTextField2.setBounds(0, 230, 200, 30);

 get_Neighbor.setFont(new java.awt.Font("Times New Roman", 1, 14));

 get_Neighbor.setText("get Neighbor Route");

 get_Neighbor.addActionListener(new java.awt.event.ActionListener()
{

 public void actionPerformed(java.awt.event.ActionEvent evt)
{

 get_NeighborActionPerformed(evt);

 }

 });

jPanel3.add(get_Neighbor);
 get_Neighbor.setBounds(220, 240, 160, 30);

 file_browse.setFont(new java.awt.Font("Times New Roman", 1, 14));

 file_browse.setText("Browse File");

 file_browse.addActionListener(new java.awt.event.ActionListener()
{

30

 public void actionPerformed(java.awt.event.ActionEvent evt)
{

 file_browseActionPerformed(evt);

 }

 });

 jPanel3.add(file_browse);
 file_browse.setBounds(50, 170, 120, 25);

 cancel.setFont(new java.awt.Font("Times New Roman", 1, 14));

 cancel.setText("Cancel");

 cancel.addActionListener(new java.awt.event.ActionListener()
{

 public void actionPerformed(java.awt.event.ActionEvent evt)
{

 cancelActionPerformed(evt);

 }

 });

 jPanel3.add(cancel);

 cancel.setBounds(210, 170, 100, 25);

 jTextArea1.setColumns(20);

 jTextArea1.setRows(5);

 jScrollPane1.setViewportView(jTextArea1);

 jPanel3.add(jScrollPane1);
 jScrollPane1.setBounds(20, 40, 380, 120);

31

 getContentPane().add(jPanel3);

 jPanel3.setBounds(0, 250, 410, 470);

 getContentPane().add(jPanel1);

 jPanel1.setBounds(440, 270, 10, 10);

 jPanel2.setBackground(new java.awt.Color(255, 204, 204));
 jPanel2.setLayout(null);

 jTextArea3.setColumns(20);

 jTextArea3.setRows(5);

 jScrollPane3.setViewportView(jTextArea3);

 jPanel2.add(jScrollPane3);

 jScrollPane3.setBounds(140, 220, 300, 100);

 jTextArea2.setColumns(20);

 jTextArea2.setRows(5);
 jScrollPane2.setViewportView(jTextArea2);

 jPanel2.add(jScrollPane2);

 jScrollPane2.setBounds(140, 120, 300, 70);

 jLabel3.setFont(new java.awt.Font("Times New Roman", 1, 14));

jLabel3.setText("Received Data");

jPanel2.add(jLabel3);
 jLabel3.setBounds(10, 240, 110, 17);

 jLabel8.setFont(new java.awt.Font("Times New Roman", 1, 14));

32

 jLabel8.setText("Available Nodes");

 jPanel2.add(jLabel8);

 jLabel8.setBounds(20, 130, 120, 17);

distance_config.setFont(new java.awt.Font("Times New Roman", 1, 14));

distance_config.setText("Distance Configure");

 distance_config.addActionListener(new java.awt.event.ActionListener()
{

 public void actionPerformed(java.awt.event.ActionEvent evt)
{

distance_configActionPerformed(evt);

 }

 });

 jPanel2.add(distance_config);

 distance_config.setBounds(270, 70, 170, 25);

 jTextField1.setFont(new java.awt.Font("Times New Roman", 1, 14));

 jPanel2.add(jTextField1);

 jTextField1.setBounds(150, 70, 100, 30);

 jLabel7.setFont(new java.awt.Font("Times New Roman", 1, 14));

 jLabel7.setText("Enter the Distance");

 jPanel2.add(jLabel7);

 jLabel7.setBounds(20, 70, 120, 20);

33

 jLabel4.setFont(new java.awt.Font("Times New Roman", 1, 14));

jLabel4.setText("Source Name :");

 jPanel2.add(jLabel4);

 jLabel4.setBounds(110, 20, 100, 17);

 getContentPane().add(jPanel2);

 jPanel2.setBounds(440, 320, 490, 390);

 setSize(new java.awt.Dimension(987, 790));

 setLocationRelativeTo(null);

 }

 private void distance_configActionPerformed(java.awt.event.ActionEvent evt)
{

 dis = jTextField1.getText();

 try {
 Integer.parseInt(dis);

 }
catch (NumberFormatException f)
{

 JOptionPane.showMessageDialog(null, f + "\n" + "Type only Numbers.......", "Error", 2);

 }

 if (dis.equals(""))
{

 JOptionPane.showMessageDialog(null, "Enter the Distance.");

 }

34

else
{

 mrx = new MulticastRx(this);

 new com.multicast.MulticastTx(source, dis, port);

 distance_config.setEnabled(false);

 }

 }
 private void file_browseActionPerformed(java.awt.event.ActionEvent evt)
{
 StringBuffer buffer;

 String strLine;

 File file = null;

 JFileChooser Chooser = new JFileChooser();

 Chooser.setMultiSelectionEnabled(true);

 Chooser.setFileSelectionMode(JFileChooser.FILES_ONLY);

 int result = Chooser.showDialog(this, "Open");

 if (result == JFileChooser.APPROVE_OPTION)
{

file = Chooser.getSelectedFile();

 }

 try
{

 FileInputStream fstream = new FileInputStream(file);

 DataInputStream ins = new DataInputStream(fstream);

 BufferedReader br = new BufferedReader(new InputStreamReader(ins));

35

 buffer = new StringBuffer();
 while ((strLine = br.readLine()) != null)
{

buffer.append(strLine + "\n");

 }

 jTextArea1.setText(buffer.toString() + "\n");
 }
catch (Exception e)
{

 System.out.println(e);

 }

}
 private void get_NeighborActionPerformed(java.awt.event.ActionEvent evt)
{
if
(jTextArea2.getText().equals(""))
{

 JOptionPane.showMessageDialog(null, "Neighbour Nodes are not there.");

 }
else if (jTextField2.getText().equals(""))
{

 JOptionPane.showMessageDialog(null, "Enter the Destination");

}
else
{

 Vector<String> path = new Vector<String>();

 path.add(source);

 action.routing(mrx, path, jTextField2.getText());

 }

 }
 private void cancelActionPerformed(java.awt.event.ActionEvent evt)

36

{
 jTextArea1.setText(null);

 }

 private void jTextField3ActionPerformed(java.awt.event.ActionEvent evt)
{
 }
 private void jButton4ActionPerformed(java.awt.event.ActionEvent evt)
{

 String kk = null;
 jTextField6.setText(ekey);

 }
 private void jButton2ActionPerformed(java.awt.event.ActionEvent evt)
{

 }

 private void jButton2ActionPerformed(java.awt.event.ActionEvent evt, SecretKey key)
{
 }
 private void jButton1ActionPerformed(java.awt.event.ActionEvent evt)
{
 try {

 String dec = new TrippleDes().decrypt(ekey);

 jTextField6.setText(ekey);

 jPanel3.setVisible(true);

 jPanel2.setVisible(true);
 }
catch (Exception ex)
{

 Logger.getLogger(Node_Design.class.getName()).log(Level.SEVERE, null, ex);

 }

37

 }
 private void jButton5ActionPerformed(java.awt.event.ActionEvent evt)
{
 try
{
 String gg = jTextField8.getText();
 ekey = new TrippleDes().encrypt(gg);

 int a = Integer.parseInt(gg);
 for (int i = 1; i < a; i++) {

try
{

 new Node_Design(ekey).setVisible(true);
 }
catch (UnknownHostException ex)
{

 Logger.getLogger(Node_Design.class.getName()).log(Level.SEVERE, null, ex);

 }
 JOptionPane.showMessageDialog(null, "Node Deployed.", "", 2);

 }

 }
catch (Exception ex)
{

 Logger.getLogger(Node_Design.class.getName()).log(Level.SEVERE, null, ex);

 }

 }
 private void jTextField8KeyTyped(java.awt.event.KeyEvent evt)
{
 jButton5.setVisible(true);

 }
private void get_energyActionPerformed(java.awt.event.ActionEvent evt)
{

 mpcrPath = receive.allPaths.get(receive.allPaths.firstKey());

38

 jLabel6.setText(mpcrPath + " [" + receive.allPaths.firstKey()
 + "]");

}

private void sendActionPerformed(java.awt.event.ActionEvent evt)
{
 String text = jTextArea1.getText();

 if (text.equals(""))
{

 JOptionPane.showMessageDialog(null, "Enter the Message.");

 }
else
{

 Vector<String> path = action.getPath(mpcrPath);

 action.sendData(mrx, path, text);
 JOptionPane.showMessageDialog(null, "Data Sending.....");

 JOptionPane.showMessageDialog(null, "Data Sent Successfully.....");

 }
 }
 public static void main(String args[])
{

 for
(javax.swing.UIManager.LookAndFeelInfojavax.swing.UIManager.getInstalledLookAndFeels())
{

 if ("Nimbus".equals(info.getName()))
{
 javax.swing.UIManager.setLookAndFeel(info.getClassName());

 break;

 }

 }

 }

39

catch (ClassNotFoundException ex)
{

java.util.logging.Logger.getLogger(Node_Design.class.getName()).log(java.util.logging.Level.S
EVERE, null, ex);

 }
catch (InstantiationException ex)
{

java.util.logging.Logger.getLogger(Node_Design.class.getName()).log(java.util.logging.Level.S
EVERE, null, ex);

}
catch (IllegalAccessException ex)
{

java.util.logging.Logger.getLogger(Node_Design.class.getName()).log(java.util.logging.Level.S
EVERE, null, ex);

 }
catch (javax.swing.UnsupportedLookAndFeelException ex)
{

java.util.logging.Logger.getLogger(Node_Design.class.getName()).log(java.util.logging.Level.S
EVERE, null, ex);
 }

java.awt.EventQueue.invokeLater(new Runnable() {

public void run()
{

 try {
 KeyGenerator keyGen = KeyGenerator.getInstance("DES");

 SecretKey key = keyGen.generateKey();
 new Node_Design("").setVisible(true);

 }
catch (UnknownHostException ex)
{

40

 Logger.getLogger(Node_Design.class.getName()).log(Level.SEVERE, null, ex);

 }

 }

 });

 }

 private javax.swing.JButton cancel;

private javax.swing.JButton distance_config;

 private javax.swing.JButton file_browse;
 private javax.swing.JButton get_Neighbor;

private javax.swing.JButton get_energy;

private javax.swing.JButton jButton1;

 private javax.swing.JButton jButton2;

 private javax.swing.JButton jButton4;

 private javax.swing.JButton jButton5;

private javax.swing.JLabel jLabel1;
 private javax.swing.JLabel jLabel10;

 private javax.swing.JLabel jLabel11;

 private javax.swing.JLabel jLabel12;

private javax.swing.JLabel jLabel13;

 private javax.swing.JLabel jLabel2;

private javax.swing.JLabel jLabel3;

private javax.swing.JLabel jLabel4;

private javax.swing.JLabel jLabel5;

41

 private javax.swing.JLabel jLabel6;

 private javax.swing.JLabel jLabel7;

private javax.swing.JLabel jLabel8;
 private javax.swing.JLabel jLabel9;

private javax.swing.JPanel jPanel1;

 private javax.swing.JPanel jPanel2;

 private javax.swing.JPanel jPanel3;

private javax.swing.JScrollPane jScrollPane1;

private javax.swing.JScrollPane jScrollPane2;

 private javax.swing.JScrollPane jScrollPane3;

private javax.swing.JScrollPane jScrollPane5;

 private javax.swing.JTextArea jTextArea1;

public javax.swing.JTextArea jTextArea2;

public javax.swing.JTextArea jTextArea3;

 public javax.swing.JTextArea jTextArea5;

private javax.swing.JTextField jTextField1;
 private javax.swing.JTextField jTextField2;

private javax.swing.JTextField jTextField3;

private javax.swing.JTextField jTextField5;

private javax.swing.JTextField jTextField6;

private javax.swing.JTextField jTextField7;

 private javax.swing.JTextField jTextField8;

private javax.swing.JButton send;

42

3.7 Output:

Figure 3.7: Screen shot 1

Figure 3.8: Screen shot 2

43

Figure 3.9: Screen shot 3

Figure 3.10: Screen shot 4

44

Figure 3.11: Screen shot 5

Figure 3.12: Screen shot 6

45

Figure 3.13: Screen shot 7

46

Chapter 4: CONCLUSION

We proposed, in this work, a scalable key management scheme which ensures a good secure
coverage of large scale WSN with a low key storage overhead and a good network resiliency.
We make use of the unital design theory. We showed that a basic mapping from unitals to
key pre-distribution allows achieving high network scalability while giving a low direct
secure connectivity coverage. We proposed then an efficient scalable unital-based key pre-
distribution scheme providing high network scalability and good secure connectivity
coverage. We discuss the solution parameter and we propose adequate values giving a very
good trade-off between network scalability and secure connectivity. We conducted analytical
analysis and simulations to compare our new solution to existing ones, the results showed
that our approach ensures a high secure coverage of large scale networks while providing
good overall performances.

47

References
[1] Y. Zhou, Y. Fang, and Y. Zhang, “Securing wireless sensor networks: a survey,” IEEE
Commun. Surv. Tuts., vol. 10, no. 1–4, pp. 6–28, 2008.

[2] L. Eschenauer and V. D. Gligor, “A key-management scheme for distributed sensor
networks,” in Proc. 2002 ACM CCS, pp. 41–47.

[3] H. Chan, A. Perrig, and D. Song, “Random key predistribution schemes for sensor
networks,” in IEEE SP, pp. 197–213, 2003.

[4] W. Du, J. Deng, Y. Han, S. Chen, and P. Varshney, “A key management scheme for
wireless sensor networks using deployment knowledge,” in Proc. 2004 IEEE INFOCOM, pp.
586–597.

[5] C. Castelluccia and A. Spognardi, “A robust key pre-distribution protocol for multi-phase
wireless sensor networks,” in Proc. 2007 IEEE Securecom, pp. 351–360.

[6] D. Liu and P. Ning, “Establishing pairwise keys in distributed sensor networks,” in Proc.
2003 ACM CCS, pp. 52–61.

[7] Z. Yu and Y. Guan, “A robust group-based key management scheme for wireless sensor
networks,” in Proc. 2005 IEEE WCNC, pp. 1915–1920.

[8] S. Ruj, A. Nayak, and I. Stojmenovic, “Fully secure pairwise and triple key distribution in
wireless sensor networks using combinatorial designs,” in Proc. 2011 IEEE INFOCOM, pp.
326–330.

[9] S. Zhu, S. Setia, and S. Jajodia, “Leap: efficient security mechanisms for large-scale
distributed sensor networks,” in Proc. 2003 ACM CCS, pp. 62–72.

48

[10] S. A. C¸ amtepe and B. Yener, “Combinatorial design of key distribution mechanisms
for wireless sensor networks,” IEEE/ACM Trans. Netw., vol. 15, pp. 346–358, 2007.

[11] A. Perrig, R. Szewczyk, V. Wen, D. E. Culler, and J. D. Tygar, “Spins: security
protocols for sensor netowrks,” in Proc. 2001 ACM MOBICOM, pp. 189–199.

[12] B. Maala, Y. Challal, and A. Bouabdallah, “Hero: hierarchcal key management protocol
for heterogeneous WSN,” in Proc. 2008 IFIP WSAN, pp. 125–136.

[13] W. Bechkit, Y. Challal, and A. Bouabdallah, “A new scalable key predistribution
scheme for WSN,” in Proc. 2012 IEEE ICCCN, pp. 1–7.

[14] J. Zhang and V. Varadharajan, “Wireless sensor network key management survey and
taxonomy,” J. Netw. Comput. Appl., vol. 33, no. 2, pp. 63–75, 2010.

[15] S. A. C¸ amtepe and B. Yener, “Key distribution mechanisms for wireless sensor
networks: a survey,” Technical Report TR-05-07, Mar. 2005.

