

1

Haptic Glove

Project Report submitted in partial fulfillment of the requirement for the

degree of

Bachelor of Technology.

in

Electronics and Communication Engineering

under the Supervision of

Prof. T.S.Lamba

By

 Rahul Garg 101064

to

Jaypee University of Information and Technology

Waknaghat, Solan – 173234, Himachal Pradesh

2

Certificate

This is to certify that project report entitled “HAPTIC GLOVE”, submitted by Rahul Garg in partial

fulfillment for the award of degree of Bachelor of Technology in Electronics and Communication

Engineering to Jaypee University of Information Technology, Waknaghat, Solan has been carried

out under my supervision.

This work has not been submitted partially or fully to any other University or Institute for the award

of this or any other degree or diploma.

Date: Supervisor’s Name: Prof. T.S. Lamba

Designation: Dean (Academic&Research)

3

Acknowledgement

We take this opportunity to express our profound gratitude and deep regards to our

guide (Mentor) Prof T.S.Lamba for his exemplary guidance, monitoring and

constant encouragement throughout the course of this project. The blessing, help and

guidance given by him time to time shall carry us a long way in the journey of life on

which we are about to embark. We are obliged to all our faculty members of JUIT,

for the valuable information provided by them in their respective fields. We are

grateful for their cooperation during the period of ourproject. Lastly, we thank

almighty, our parents, brothers, sisters and friends for their constant encouragement

without which this project would not be possible.

Date: 31st July 31, 2014 Name of students:

 Rahul Garg

4

Table of Content
S.No Topic Page No.

 Abstract 6

1. Chapter-1 : Introduction to Haptic 7

 1.1 Haptics 7

 1.2 Current application of Haptics 7

 1.3 General Working of Haptics 8

 1.4 Significance of Hatpics as Technology 8

 1.5 Problems in Haptics 9

 1.6 Future of Haptics 9

 1.7 Implications of Haptics on teaching and learning 9

2. Chapter-2 : Software 11

 2.1 MATLAB 11

 2.2 Arduino IDE 11

3. Chapter- 3 :Hardware 13

 3.1 Arduino UNO R 13

 3.1.1 ATmega 16 14

 3.2 Flex Sensors 16

 3.3 Hall Effect Sensor 17

4. Chapter-4 : Work Done 19

 4.1 Making 3-D objects using MATLAB 19

 4.2 Basic Arduio programs 20

 4.3 Making Flex Sensors 20

 4.4 Interfacing Microcontroller with computer 28

 4.4.1 Understanding the register structure of USART of AVR 28

 4.4.2 Serial Interfacing using Matlab 32

 4.4.3 Serial Interfacing using MATLAB Alternate 36

5. Chapter-5 : Conclusions and Challenges Faced 37

 5.1 Conclusion 37

 5.2 Problems Faced 37

 5.3 Future Prospects of Haptics 38

8. Appendices 39

 A1 MATLAB Codes for creating 3-D objects 39

9. References 51

5

List of Figures

S.No Title Page No.

1. Chapter-1 : Introduction

 1.1 Basic Working 7

2. Chapter-2 : Software

 2.1 Arduino IDE 11

3. Chapter- 3 :Hardware

 3.1 Arduino UNO R 13

 3.2 Atmega-16 Pin Diagram 15

4. Chapter-4 : Work Done

 4.1 Working in Matlab 19

 4.2 Preparation for making Flex sensor 21

 4.3 Procedure of making Flex sensors 22

 4.4 Flex sensors using Method 1 23

 4.5 Flex sensors and readings using Method 2 25

 4.6 Flex Sensor 26

 4.7 Taking Reading From Flex Sensors 27

 4.8 Readings 28

 4.9 Data read in Matlab 33

 4.10 Showing serial interface 34

 4.11 COM6 Properties 35

 4.12 Data Transmitted From Microcontroller to Hyper Terminal 36

6

Abstract

 The objective of our project is to make a “HAPTIC GLOVE” which

is a wearable device that will provide tactile sensation through feedback of

virtual objects.

 Elaborating it further, it is a normal wearable glove, which has a few

sensors (primarily flex and force sensors) connected to the microprocessor,

such that the movement of the hand reflected in the changing values of the

sensors. The 3-D virtual objects are generated through MATLAB. Now

the main aim is that when we now try and hold this virtual object, we can

actually “feel” the object, which is not present in reality. If the object we

are holding is say a sphere, after enclosing the sphere in the hand, we will

not be able to close the hand completely, hence giving the effect of

holding a real object.

 Although many people don't realize it, tactile feedback is as

important as any of the other four major senses. It's not just about feeling a

soft cloth or a furry pet, but the tactile sensations help us accomplish

everyday tasks. Ever try tying your shoelaces while your hands are numb?

Your hands haven't lost their dexterity, but without the tactile sensation,

the task suddenly becomes a lot more difficult.

 We divided the project into three parts: software, hardware and

interfacing. The MATLAB part consists of an MCU serial interface (to

obtain object properties) and the 3-D objects created. To draw objects

from basic 3D shapes as well as animate them in various ways. We use

this as the visual feedback of our system where the user can see the object

that he/she is holding, get information about the shape of the object and

see it be picked up.

7

CHAPTER-1 : Introduction to Haptics

1.1 Haptics

Haptics technologies provide force feedback to users about the

physical properties and movements of virtual objects, represented by a

computer.

Historically, human-computer interaction has been visual- words, data or

images on a screen. Haptics on the other hand incorporates both

touch(tactile) and motion (Kinesthetic) elements.

For applications that simulate real physical properties such as weight,

momentum, friction, texture or resistance, haptics communicates these

properties through interfaces that let users ‘feel’ what is happening on the

screen.

1.2 Current application of Haptics

Haptics tools are used in a variety of educational settings, both to teach

concepts and to train students in a specific technique.

(a) To teach physics: allow students to interact with experiments that

demonstrate gravity, friction, momentum and other fundamental

forces.

(b) To teach biology: create virtual models of molecules, and feel

their weight, size, shape and understand how they bond

(c) Aviation: Flight simulators combine visual and auditory elements

with haptic technology, including resistance and vibrations in

controls allowing student pilots to experience the kinds of sensations

they will feel when they fly a real plane.

8

1.3 General working of Haptic Devices

Haptics applications use specialized hardware to provide sensory

feedback that simulates physical properties and forces. Haptic interfaces

can take many forms, the most common configuration uses separate

mechanical linkages to connect a person’s fingers, sensors then translate

these motions into actions on screen and motors transmit feedback through

the linkages to the users fingers.

Advantage : Because the object and its environment are purely virtual, the

properties can be changed easily and its impact/effect can be seen and felt.

In the project, though we plan on implementing the entire cycle, even

implementing one side chain would be an achievement.

1.4 Significance of Haptics as a technology

The interface between humans and computers has been described as

information bottleneck. Computers store and process vast amounts of

data, whereas humans experience through the 5 senses.

But, computers typically only take advantage of one or two sensory

channels (sight and sound) to transmit information to people. Haptics

promises to open this bottleneck by adding a new channel of

communication, using the sense of touch, further expanding the notions of

bi-directional communication between humans and computers to include

sensory feedback.

It is a known fact that active learning strategies result in stronger

comprehension of subjects and Haptics provides that mechanism, putting

control and learning literally into the hands of users.

It also plays a vital role in assistive technology for the aid of visually

impaired.

HUMAN

HAND

MECHANICA

L LINKAGE

COMPUTER

Fig 1.1
Basic Working

9

1.5 Problems In haptics technology

Designing and implementing haptic devices can be extremely

complex, requiring highly specialized hardware and considerable

processing power. Also the costs involved can be considerably high.

Since the object is virtual, a compelling interaction with the device

requires that, all of the physical properties and forces involved be

programmed into the application.

Generally the devices have fixed installations, not easily portable.

Haptics is relatively young and offer somewhat crude experience to users

as of now.

Gathering raw materials for the device is difficult.

1.6 Future of Haptic Technology

Development and refining of various kinds of haptic interfaces will

continue, providing more lifelike interactions with virtual objects and

environment. Researchers will continue to investigate possible avenues for

haptics to complement real experiences.

Advantages in hardware will provide opportunities to produce haptic

haptic devices in smaller packages and haptic technology will find its way

into increasingly common place tools.

Additionally, consumer- grade haptic devices are starting to appear

on the market. As access to haptics increases, usage patterns and

preferences will inform best best practices and applications – ultimately

users will decide which activities are appropriately represented through

haptics and which are better left to the real world.

1.7 Implications of Haptics on teaching and learning

Research indicates that a considerable portion of people are

kinesthetic or tactile learners. Haptics opens the door to an entirely

10

different learning method and style, one that for many students provides

the best opportunity to learn.

Haptics technology has found its way into a range of commercial video

game controllers (Nintendo) including joysticks and steering wheels.

11

CHAPTER-2 : Software

2.1 MATLAB

 We used MATLAB (Matrix Laboratory) for our virtual object

simulations and interfacing with the microcontroller. It integrates

computation, visualization, and programming in an easy-to-use

environment where problems and solutions are expressed in familiar

mathematical notation.

 MATLAB is a numerical computing environment and fourth-

generation programming language. Developed by Math Works, MATLAB

allows matrix manipulations, plotting of functions and data,

implementation of algorithms, creation of user interfaces, and interfacing

with programs written in other languages, including C, C++, Java,

and Fortran.

 In our project we are using MATLAB for basically one purpose that is

to provide Graphical Interface to person. It is being used to create various

3D objects that we need for our project. All these 3D objects need to be

dynamic so they can be moved.

 Another thing which MATLAB is doing is receiving Signal from our

microprocessor, and according to that signal it moves our object in its

GUI.

2.2Arduino IDE

Arduino IDE is a suite of executable, open source software

development tools for the Arduino uno R microprocessor hosted on the

Windows platform. It includes the GNU GCC compiler for C and C++.

http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Fourth-generation_programming_language
http://en.wikipedia.org/wiki/Fourth-generation_programming_language
http://en.wikipedia.org/wiki/MathWorks
http://en.wikipedia.org/wiki/Matrix_(mathematics)
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/User_interface
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Fortran

12

We can directly compile ,create and upload program on our board using

IDE and a usb.

We are using Arduino IDE for programming our microprocessor. It

tells our our Microprocessor how to behave. In Arduino IDE we directly

write a program in it and it is uploaded on our microprocessor using a usb.

Fig 2.1 Arduino Ide

13

CHAPTER-3: Hardware

3.1 Arduino UNO R

 We have used an Arduino uno r development board in our project as

shown in Fig 3.1 .This development board can be used for interfacing of

sensors, motors and LCD. It has switches for boot loading, reset, motors

and power. It also has RS232 interface header. The board is compatible

with 16×2 and 16x1 alphanumeric LCD. This board contains two L293d

IC’s which can control 8 unidirectional & 4 bidirectional motors. One

switches is provided. The board also has 1 LED’s

 This Board is used for connecting our sensors with our pc. All the

signals which are generated in MALAB from pc is processed through this

board and is transmitted to the sensors, also the signals produced by

sensors are processed on this board and then is sent to MATLAB in our

PC.

Fig 3.1
Arduino UNO R Development Board

14

3.1.1 ATmega -16

 ATmega16 is an 8-bit high performance microcontroller of Atmel’s

Mega

 AVR family with low power consumption. Atmega16 is based on

enhanced RISC (Reduced Instruction Set Computing) architecture with

131 powerful instructions. Most of the instructions execute in one machine

cycle. Atmega16 can work on a maximum frequency of 16MHz.

It has 16 KB programmable flash memory, static RAM of 1 KB and

EEPROM of 512 Bytes. The endurance cycle of flash memory and

EEPROM is 10,000 and 100,000, respectively.

It is a 40 pin microcontroller. There are 32 I/O (input/output) lines

which are divided into four 8-bit ports designated as PORTA, PORTB,

PORTC and PORTD.

Moreover, it also has various in-built peripherals

like USART, ADC, Analog Comparator, SPI, JTAG etc. Each I/O pin has

an alternative task related to in-built peripherals. The following figure Fig

3.2 shows the pin description of ATmega16.

http://www.engineersgarage.com/articles/avr-microcontroller
http://www.engineersgarage.com/embedded/avr-microcontroller-projects/serial-communication-atmega16-usart
http://www.engineersgarage.com/embedded/avr-microcontroller-projects/adc-circuit
http://www.engineersgarage.com/embedded/avr-microcontroller-projects/analog-comparator-circuit
http://www.engineersgarage.com/embedded/avr-microcontroller-projects/spi-serial-peripheral-interface-tutorial-circuit
http://www.engineersgarage.com/embedded/avr-microcontroller-projects/disable-jtag-port

15

It is placed on our Arduino UNO Board. Everything which we processing

on Board is being processed here. To use it we have to program it. It is

programed through Arduino Ide. It contains a small flash memory where

the program is stored. It works according to the program which we

program into it. It is very important part of the board. Every input and

output of our board is connected to it

Fig 3.2
Atmega-16 Pin Diagram

16

3.2 Flex Sensors

 Flex sensors also known as bend sensors are specially made sensors

which change their resistance depending on amount they are bent. They

convert change in bend into electrical energy. The more you bend the

sensor the more resistance they provide. They are available in market in

form of thin strips of varying lengths. They can be made unidirectional or

multi directional.

 Flex sensors are basically devices that convert physical parameter’s

to analog electrical signal. They are analog resistors and work as analog

voltage dividers. There are carbon resistive elements within a thin flexible

substrate. When this substrate is bent the sensor produces output according

to this bent radius. To use it we attach Flex sensors to a voltage divider

circuit. As we bend these sensors, change in resistance can be measured by

checking the changing voltage.

Today, there are various applications of Flex sensors some of which are

mentioned below.

1. In Robotics, Flex Sensors are used to determine joint movement and

placement in various robotics components.

2. They are used in bumper switches and pressure switches which are

used for various purposes.

3. These sensors can be used in gaming gloves to make virtual reality

possible in gaming.

4. For bio-metrics, the sensor can be placed on a moving joint of

athletic equipment to provide an electrical indication of movement or

placement.

Flex sensors are also used in auto controls, fitness products, measuring

devices, assistive technology, musical instruments, joysticks and many

more.

17

 In our project we are using Flex Sensors to determine the diameter of

the object in our Glove. The change in resistance as we are moving or

finger is being projected through this sensor. As we move our finger this

sensor is being bent. Due to this bend the resistance is changed. Due to

change in resistance the voltage changes. This change in voltage is being

given to our microprocessor which is further sent to our MATLAB. Then

according to this signal our MATLAB can know the diameter our hand

and it works accordingly.

3.3 Hall Effect sensor

A Hall Effect sensor is a transducer that varies its output voltage in

response to a magnetic field. Hall Effect sensors are used for proximity

switching, positioning, speed detection, and current sensing applications.

In its simplest form, the sensor operates as an analog transducer,

directly returning a voltage. With a known magnetic field, its distance

from the Hall plate can be determined. Using groups of sensors, the

relative position of the magnet can be deduced.

Frequently, a Hall sensor is combined with circuitry that allows the

device to act in a digital (on/off) mode, and may be called a switch in this

configuration. Commonly seen in industrial applications such as the

pictured pneumatic cylinder, they are also used in consumer equipment;

for example some computer printers use them to detect missing paper and

open covers.

When a beam of charged particles passes through a magnetic field,

forces act on the particles and the beam is deflected from its straight line

path. The beam of charged particles refers to the electrons flowing through

a conductor. When a current carrying conductor is placed in a magnetic

field perpendicular to the path of the electrons, the electrons are deflected

from its straight line path. Therefore, one side of the conductor becomes

negative portion and the other side becomes positive one. The transverse

voltage is measured and is known as Hall Voltage.

18

The charge separation continues until the force on the charged

particles from the electric field balances the force produced by magnetic

field. If the current is constant, then the Hall voltage is a measure of the

magnetic flux density. There are two forms of Hall Effect Sensors. One is

linear where the output voltage linearly varies with the magnetic flux

density. The other is known as threshold where there is a sharp drop of

output voltage at a particular magnetic flux density.

In our project we are using Hall Effect sensor to check the lift of our

hand from the surface. We put a magnet on the surface and move our hand

above it. When we move our hands up and down on top of that magnet,

there is change in the flux through the Hall Effect sensor. This change is

converted into voltage which is then transferred to the microprocessor

which processes the signal and send it to MATLAB.

19

CHAPTER-4 :Work Done

The making of 3-D objects in MATLAB with proper lights and material,

rotating them, and interfacing of the microcontroller have been

accomplished.

4.1Making 3-D objects using MATLAB

 We wrote MATLAB codes for creating 3-D objects like cylinder,

cube and sphere. These 3-D figures are the basic building blocks of final

graphical interface that would be visible to the user. We also performed

different operations on the objects like rotation, highlighting it, adjusting

camera angle etc. Adding to it, these are the virtual objects that we’ll be

working with.

I also made a surface for table, two cylinders to depict our fingers. I

have also interfaced our microcontroller with MATLAB

 Fig 4.1 Working in MATLAB

20

Now the input is taken from Arduino. And we can select the virtual

object which we wanted. Then we wait for signal from Arduino. After

signal is received we can see the changes in MATLAB.

4.2Basic Arduino Programs

 We wrote a few basic programs like blinking of LED’s and working

of motors using ‘Arduino ide’ programming language, just to get familiar

with the development board and its working. We wrote code so that our

microcontroller can work with MATLAB and can be serially interfaced

with it. It connects various sensors to our pc so that we can know what is

happening. It defines how our microcontroller should work. Arduino has

various pins on its board. We program it according to the pins in which we

connect our sensors. We directly assign value to various pins so that it can

work as needed. We program it in a way that it is serially interfaced with

our pc i.e. MATLAB.

4.3 Making Flex Sensors and usage

We made flex sensors in the laboratory by using two different

methods, described below.

Method – 1

Given below is the description of materials used and the procedure that we

followed for making Flex Sensors.

Materials used

1. Anti Static Bags 10x15cm

2. Masking Tape (2.4 cm and 1.1cm).

21

3. Jumper Wires

Tools used

1. Pencil

2. Wire Stripper

3. Pen Knife

Preparation

1. Cut 2 pieces of 0.8cm by 15cm, and 1 piece of 1.7cm by 15cm

from Anti Static Bag.

2. Take jumper wires and measure 5cm of wire than strip it.

3. Make a loop back down to the base where the insulation starts,

and twist the wires together a little so that it stays there.

4. Do this for two jumper wires.

5. Take the thin masking tape (1.1cm in width), measure 17cm and

cut it.

6. Cut another strip like this

7. Take the thicker masking tape (2.4cm in width), measure 19cm

and cut it.

Procedure

1. Using the thinner masking tape (1.1cm) with the sticky side facing

up, Place the conductive bag piece (.8cm by 15 cm) that we just

cut, right in the middle of it.

2. Make sure there's a border of sticky tape all around. Smooth it out.

Fig 4.2
Preparation for making Flex sensors

22

3. Take one of the jumper wire connectors and place it slightly off-

center onto the edge as shown.

4. Check that the exposed loop wire should be kept within the black

conductive piece.

5. Allow a 0.5cm of insulated wire part to be within the black piece

as well.

6. Do the same with another piece.

7. Take the large conductive bag piece that we cut just now (1.7cm

by 15 cm), and fold it in half, lengthwise.

8. Lengthwise, align the 2 thin pieces and match the sticky border

together

9. Place the large piece that we just folded into half into the

sandwich.

10. Wrap this whole thing up.

11. Take the thicker masking tape piece and with the sticky side

up, place two unstripped jumper wires right in the middle of it.

12. Place the sensor on top of the wires, right smack in the middle.

13. Fold the sticky edges up of the thicker masking tape onto the

sensor.

 Fig 4.3
Procedure of making Flex sensors

23

Shown below (Fig 4.4) are the flex sensor and intermediate steps in making of flex

sensors by us using Method 1.

Method-2

Given below is the description of materials used and the procedure that we

followed for making Flex Sensors using second method.

Materials Required

1. Aluminum foil

2. Resistive Foam

3. Adhesive Tape

4. Connecting wires

Preparation

1. Take Adhesive Tape and cut two strips of 1cm by 8cm each.

Fig 4.4
 Flex sensors using Method 1

24

2. Cut 2 pieces of 0.8cm by 8cm from Aluminium foil.

3. Take the foam and cut a strip of .8 by 8cm.

4. Take jumper wires and measure 5cm of wire than strip it.

5. Make a loop back down to the base where the insulation starts,

and twist the wires together a little so that it stays there.

6. Do this for two jumper wires.

Procedure

1. Using the Adhesive tape with the sticky side facing up, Place the

Aluminium foil (.8cmby 8 cm) that we just cut, right in the middle

of it.

2. Make sure there's a border of Adhesive tape all around. Smooth it

out.

3. Take one of the jumper wire connectors and place it slightly off-

center onto the edge.

4. Check that the exposed loop wire should be kept within the black

conductive piece. (No peeking out on the sides!!!).

5. Allow a 0.5cm of insulated wire part to be within the black piece

as well.

6. Do the same with another piece.

7. Lengthwise, align the 2 pieces and match the sticky border

together

8. Place the conductive foam piece that we just folded into half into

the sandwich.

9. Wrap this whole thing up and we are done.

The final results of this method and a glimpse of readings is shown below

in Fig 5.

25

Now we got many problems with our homemade Flex sensors therefore we

had to purchase Flex sensors from market

Fig 4.5
Flex sensors and readings using Method 2

26

After that we Calculated the value of voltage across our flex sensor for

different angles it was bent by attaching a resistor of 22 kilo ohms in series

with the sensor. We measure the voltage across the terminals of Flex

sensor.

Fig 4.6
Flex sensors

27

This circuit will work as a voltage divider circuit and due the change in

value of resistance the value of voltage across flex sensor gets altered. Due

to this change in voltage our PC can know how much Diameter of our

Hand is there. Voltages for various angles have been depicted in the

diagram below.

Fig 4.7
taking readings from Flex sensor

28

4.4 Interfacing Microcontroller board with Computer

4.4.1 Understanding the register structure of USART of AVR

First we need to understand the USART of AVR

microcontroller and write the code to initialize the USART and use it

to send and receive data.

Like many microcontrollers, AVR also has a dedicated

hardware for serial communication this part is called the USART -

Universal Synchronous Asynchronous Receiver Transmitter. This

special hardware makes life as a programmer easier.

USART automatically senses the start of transmission of RX

line and then inputs the whole byte and when it has the byte it

Fig 4.8
readings

29

informs you (CPU) to read that data from one of its registers. The

USART of AVR is very versatile and can be setup for various

different mode as required by our application.

The USART of the AVR is connected to the CPU by the following

six registers.

 UDR - USART Data Register: Actually this is not one but two

register but when you read it you will get the data stored in receive buffer

and when you write data to it goes into the transmitter’s buffer. This

important to remember it.

 UCSR - USART Control and status Register: As the name suggests

it is used to configure the USART and it also stores some status about the

USART. There are three kind of this register: the UCSRA, UCSRB and

UCSRC.

 UBRRH and UBRRL: This is the USART Baud rate register, it is

16BIT wide so UBRRH is the High Byte and UBRRL is Low byte. But as

we are using C language it is directly available as UBRR and compiler

manages the 16BIT access.

Explaining the registers:

UCSRA: USART Control and Status Register A

Bit No 7 6 5 4 3 2 1 0

Name RXC TXC UDRE FE DOR PE U2X MPCM

Initial Val 0 0 1 0 0 0 0 0

RXC this bit is set when the USART has completed receiving a byte from

the host (may be your PC) and the program should read it fromUDR

TXC This bit is set (1) when the USART has completed transmitting a

byte to the host and your program can write new data to USART via UDR

UCSRB: USART Control and Status Register B

30

Bit No 7 6 5 4 3 2 1 0

Name RXCIE TXCIE UDRIE RXEN TXEN UCSZ2 RXB8 TXB8

Initial Val 0 0 0 0 0 0 0 0

RXCIE: Receive Complete Interrupt Enable - When this bit is written

one the the associated interrupt is enabled.

TXCIE: Transmit Complete Interrupt Enable - When this bit is written

one the associated interrupt is enabled.

RXEN: Receiver Enable - When you write this bit to 1 the USART

receiver is enabled. The normal port functionality of RX pin will be

overridden. So you see that the associated I/O pin now switch to its

secondary function, i.e. RX for USART.

TXEN: Transmitter Enable - As the name says!

UCSZ2: USART Character Size

UCSRC: USART Control and Status Register C

Bit No 7 6 5 4 3 2 1 0

Name URSEL UMSEL UPM1 UPM0 USBS UCSZ1 UCSZ0 UCPOL

Initial Val 0 0 0 0 0 0 0 0

IMPORTANT : The UCSRC and the UBRRH (discussed below) register

shares same address so to determine which register user want to write is

decided with the 7th(last) bit of data if its 1 then the data is written to

UCSRC else it goes to UBRRH. This seventh bit is called the

URSEL: USART register select.

UMSEL: USART Mode Select - This bit selects between asynchronous

and synchronous mode. As asynchronous mode is more popular with

USART we will be using that.
UMSEL Mode

0 Asynchronous

31

1 Synchronous

USBS: USART Stop Bit Select - This bit selects the number of stop bits

in the data transfer.
USBS Stop Bit(s)

0 1 BIT

1 2 BIT

UCSZ: USART Character size - These three bits (one in the UCSRB)

selects the number of bits of data that is transmitted in each frame.

Normally the unit of data in MCU is 8BIT (C type "char") and this is most

widely used so we will go for this. Otherwise you can select 5,6,7,8 or 9

bit frames!
UCSZ2 UCSZ1 UCSZ0 Character Size

0 0 0 5Bit

0 0 1 6Bit

0 1 0 7Bit

0 1 1 8Bit
1 0 0 Reserved

1 0 1 Reserved

1 1 0 Reserved

1 1 1 9Bit

UBRR: USART Baud Rate Register:
This is the USART Baud rate register, it is 16BIT wide so UBRRH is the

High Byte and UBRRL is Low byte. But as we are using C language it is

directly available as UBRR and compiler manages the 16BIT access. This

register is used by the USART to generate the data transmission at

specified speed (say 9600Bps.)UBRR value is calculated according to

following formula.

Where fosc is your CPU frequency say 16MHz

32

Before we start interfacing our device, we need to find out the COM port

number of the Serial port to which our AVR is connected, since a PC can

have several COM ports, each may have some peripheral connected to it

like a Modem. Serial Ports on PC are numbered like COM1, COM2 ...

COMn etc.

Thus the port number can be found as follows:

1. Right Click on "My Computer" icon in Windows Desktop.

2. Select "Properties"

3. The System Properties will open up. Go to the "Hardware" Tab.

4. In Hardware tab select "Device Manager" button. It will open up

device manager.

5. In Device Manager Find the Node "Ports (COM & LPT)"

6. Expand the port node in device manager and depending on the type

of connection we can see the available ports.

In our case, the port is COM6.

4.4.2 Serial interfacing using MATLAB

With the new control and instrument toolbox/app of MATLAB, now there

is more value attached to interfacing. As a lot of operations can be

performed with the data read from the controller, obtained via interfacing.

Steps for interfacing with MATLAB:

1. Open the instrument and control toolbox of MATLAB.

2. Then from the “Test and measurement tool” window, click on the

“Serial” tab.

3. Then click on COM6

4. Click on the “Connect” tab

33

5. The click on the configure tab, and set the properties as desired. (as

in the hyper terminal)

6. If all the connections and properties are set right, the device will be

connected.

7. Go to communicate tab, and depending on whether we are receiving

data from microcontroller or sending data to microcontroller,

change the reading or writing environment.

8. Now click on read to get data from microcontroller and we can see

the data read in the below tab.

Now, the advantage provided by MATLAB is that, the data read from the

microcontroller can now be exported and used by MATLAB for other

purposes.

Fig 4.9

Data Read in MATLAB

34

Now click on the export button and a window pops up where you can

select what all data needs to be transported.

From the drop down menu we can select the data destination as one of the

following

1. MATLAB workspace

2. MATLAB variables

3. .mat file

4. Function

5. Structure

Fig 4.10

35

Fig 4.10 (a) and (b)

36

 4.4.3 Serial interfacing using MATLAB alternate way

There is an alternate way of connecting Arduino with

MATLAB. For this we need to download Arduino support package

from mathworks.in .in this file there are basic codes for Arduino

board which we are going to upload on our microprocessor. Now add

that folder in MATLAB path.

Now we can directly access our microprocessor from MATLAB

using specific com port.

Fig 4.9 (c)

Structure of the imported data using the the “uiimport” command from .mat file

37

CHAPTER-5: Conclusions And Problems Faced

5.1 Conclusion

Finally I conclude that my project was not a big success because in the

finally days of our working our codes were burnt. But rest was

completed. Working on this project helped me to gain knowledge on

MATLAB, Arduino IDE and many prospects of our microcontroller.

The project was divided into two parts, one was software and the other

was Hardware. The Software Part we were able to complete but we

couldn’t complete the Hardware Part because our components were

burnt. Our project give us deep understanding of MATLAB.

5.2 Problems Faced

It is almost impossible that take up a task and there are no challenges faced

or problems encountered. Here are the problems we faced, some we

overcame, but some couldn’t and hence looked for alternate methods.

1. We found that flex sensors are expensive and would take up the

entire cost of the project, and thus thought of making them ourselves.

We found a lot of sites showing how to make flex sensors on the

cheap, and a common element in them was ESD bags. It was difficult

to understand what exactly is an ESD bag, are they truly what we

think they are, and then make others, especially vendors understand

what it is we are really looking for. Then find where can we find

them. When we finally asked for our ESD bags to be couriered, it

was found that the presence of bubble wrap over it made its working

inappropriate. We did not give up and found another way, this time

they worked, but were not accurate and their working wasn’t were

clear to us. So finally we dropped the idea of making them on our

own but purchase them instead, and this time not online.

2. We were almost lost when we were working on the interfacing, as

nobody we knew had done it, or the ones that had done it, did it for

38

PIC. We asked almost all teachers of all departments, but did not

know what was wrong. We had done everything step-by-step,

learned about the avr registers, learned about db9, cross connection,

checked the cable, changed computers, tried new software,

everything we thought could possibly be faulty, but we could not

find anything and there was still no communication. Finally as of

some magic happened, we trial all permutations and combination by

hit and trial, and by slight modifications in the code and pressing the

reset button, we had our output and that moment joy knew no

boundaries. Then we rechecked it to make sure it was not a fluke,

and understood the working even more carefully and came out

successfully.

3. Another challenge we faced is to calibrate different sensors properly

so that our glove should work as required especially the part where

we have to stop the glove from moving we were unable to implement

it.

4. Getting equation of different functions is quite tedious and take lots

of time.

5. Another problem that I faced was my microcontroller got burnt

damaging the glove and some sensors.

5.3: Future Prospects of Haptic Glove

 Haptic Technology is a new age technology which is developing at a

very fast pace. This technology provide us with lifelike interactions with

virtual objects and environment. As we have researched for this project we

are pretty much sure that this technology has a bright future. According to

us Haptic Glove Technology can be used for various purposes live Remote

surgery, controlling Robotic hand, Virtual Reality Gaming Experience,

Teleoperators, interventional radiology, Holograph interaction. It can also

be used to control hands of robots like mass rover making us feel that we

are actually there. Research is being done in many fields using this

technology so that we can understand better how things actually work by

adding another sense to virtual reality i.e. a sense of touch.

39

Appendices

Appendix A1: MATLAB Codes

Various Functions

UnitCcylinder

function cylinder=UnitCcylinder(res)

%unit sphere in a format consistent with hierarchical

%modeler

%the input parameter is related to the sphere resolution.

%Range 1-10. Higher number is better approximation

%1=> 4-sided tube

%1.5=> 8-sided tube

%2=> 48 faces

%3=> 80 faces

%5=>136 faces

%10=>272 faces

%range check

if (res>10)

 res=10;

elseif (res<1)

 res=1;

end

res=1/res;

[x,y,z]=meshgrid(-1-res:res:1+res, ...

 -1-res:res:1+res, -1:1:1);

w=sqrt(x.^2+y.^2);

cylinder=isosurface(x,y,z,w,1);

UnitCube

function cube=UnitCube

%unit cube in a format consistent with hieracrhical

40

%modeler

%Define a cube

cube.vertices=[0 0 0; 1 0 0; 1 1 0; 0 1 0; ...

 0 0 1; 1 0 1; 1 1 1; 0 1 1;] ;

cube.faces=[1 2 6 5; 2 3 7 6; 3 4 8 7; 4 1 5 8; ...

 1 2 3 4; 5 6 7 8;] ;

cube.vertices = cube.vertices * 2 - 1;

UnitCylinder

function cylinder=UnitCylinder(res)

%unit sphere in a format consistent with hieracrhical

%modeler

%The input paramenter is related to the sphere resolution.

%Range 1-10. Higher number is better approximation

%1=> 4-sided tube

%1.5=> 8-sided tube

%2=> 48 faces

%3=> 80 faces

%5=>136 faces

%10=>272 faces

%range check

if (res>10)

 res=10;

elseif (res<1)

 res=1;

end

res=1/res;

[x,y,z]=meshgrid(-1-res:res:1+res, ...

 -1-res:res:1+res, -1:1:1);

41

w=sqrt(x.^2+y.^2);

cylinder=isosurface(x,y,z,w,1);

UnitSphere

function sphere=UnitSphere(res)

%unit sphere in a format consistent with hieracrhical

%modeler

%The input paramenter is related to the sphere resolution.

%Range 1-10. Higher number is better approximation

%1=>octahedron

%1.5=> 44 faces

%2=> 100 faces

%2.5 => 188 faces

%3=> 296 faces

%5=> 900 faces

%10=>3600 faces

%range check

if (res>10)

 res=10;

elseif (res<1)

 res=1;

end

res=1/res;

[x,y,z]=meshgrid(-1-res:res:1+res, ...

 -1-res:res:1+res, -1-res:res:1+res);

w=sqrt(x.^2+y.^2+z.^2);

sphere=isosurface(x,y,z,w,1);

UnitSurface

42

function surface=UnitSurface(res)

%unit flat surface in a format consistent with hieracrhical

%modeler

%The input paramenter is related to the sphere resolution.

%Range 1-10. Higher number is better approximation

%1=> 8 triangular faces

%2=> 32 faces

%5=>200 faces

%10=>800 faces

%20=>3200 faces

%50=>20000 faces

%range check

if (res>100)

 res=100;

elseif (res<1)

 res=1;

end

res=1/res;

[x,y,z]=meshgrid(-1:res:1, ...

 -1:res:1, -1:1:1);

w=z;

surface=isosurface(x,y,z,w,0);

rotateZ

function objOut = rotateZ(objIn,a)

%hierarchical rotate function for structs and cell arrays

a=a/57.29; %degrees to radians

if (iscell(objIn)) %a list of structs

43

 for i=1:length(objIn)

 objOut{i}=objIn{i};

 V=objOut{i}.vertices;

 V=[cos(a)*V(:,1)-sin(a)*V(:,2), ...

 sin(a)*V(:,1)+cos(a)*V(:,2), ...

 V(:,3)];

 objOut{i}.vertices=V;

 end

 elseif (isstruct(objIn)) %must be a single struct

 V=objIn.vertices;

 V=[cos(a)*V(:,1)-sin(a)*V(:,2), ...

 sin(a)*V(:,1)+cos(a)*V(:,2), ...

 V(:,3)];

 objOut=objIn;

 objOut.vertices=V;

 else

 error('input must be s struct or cell array')

 end

rotateY

function objOut = rotateY(objIn,a)

%hierarchical rotate function for structs and cell arrays

a=a/57.29; %degrees to radians

if (iscell(objIn)) %a list of structs

 for i=1:length(objIn)

 objOut{i}=objIn{i};

 V=objOut{i}.vertices;

 V=[cos(a)*V(:,1)+sin(a)*V(:,3), ...

 V(:,2), ...

44

 -sin(a)*V(:,1)+cos(a)*V(:,3)];

 objOut{i}.vertices=V;

 end

 elseif (isstruct(objIn)) %must be a single struct

 V=objIn.vertices;

 V=[cos(a)*V(:,1)+sin(a)*V(:,3), ...

 V(:,2), ...

 -sin(a)*V(:,1)+cos(a)*V(:,3)];

 objOut=objIn;

 objOut.vertices=V;

 else

 error('input must be s struct or cell array')

 end

combine

function objOut = combine(varargin)

%Takes a list of opjects (structs and cell arrays) and

%returns a cell array

num=length(varargin);

if (num==0)

 error('must have at least one input object');

end

objOut={};

for i=1:num

45

 if (iscell(varargin{i})) %a list of structs

 objOut=[objOut, varargin{i}];

 elseif (isstruct(varargin{i})) %must be a single struct

 objOut=[objOut, {varargin{i}}];

 else

 error('input must be s struct or cell array')

 end %if (iscell(varargin(i)))

end

matcode

clc

clear all

%make a table

table=UnitCube;

table.facecolor=[222/255, 191/255, 150/255]; % A light brown wood-ish

color

table.facelighting='flat';

table.edgecolor=[175/255, 124/255, 54/255]; % A darker color for outline

table=scale(table,2,2,.2);

table=translate(table,0,0,-1.2);

%make hand (namely little sticks)

cylHand = UnitCcylinder(10);

L1 = 1;

L2 = 1;

radius = 0.03;

arm1 = translate(scale(cylHand,radius,radius,L1/2),-.57,0,L1/2);

arm1 = rotateX(arm1, 90);

arm1 = translate(arm1, -.25, 0, -.4);

arm1.facecolor = 'blue';

arm2 = translate(scale(cylHand,radius,radius,L2/2),.55,0,L2/2);

46

arm2 = rotateX(arm2, 90);

arm2 = translate(arm2, .25, 0, -.4);

arm2.facecolor = 'green';

hand = combine(arm1, arm2);

%plot table and hands

background = combine(table, hand);

renderpatch(background);

axis off;

axis([-2, 2, -2, 2, -4, 4]);

grid on

daspect([1 1 1])

light('position',[10,-10,10])

%Do a persptective transform

set(gca,'projection','perspective')

set(gca,'CameraViewAngle',6)

%The frame background color

set(gcf,'color', [183/255, 248/255, 1])

xlabel('x');ylabel('y');zlabel('z');

view(7,20)

drawnow;

disp('Initializing serial...')

initialized=0;

mcu=serial('COM6',...

 'Baudrate',9600,...

 'Stopbits',1,...

 'Parity','none',...

 'FlowControl','none');

fopen(mcu)

try

 while (true)

 disp('Getting serial input...')

 tline = fgetl(mcu);

 result = sscanf(tline, '%d');

47

 if numel(result)==9

 objectSelected = result(1);

 dIn = result(2);

 dOut = result(3);

 isSolid = result(4);

 temperature = result(5);

 isFull = result(6);

 objectGripped = result(7);

 objectLifted = result(8);

 height = result(9);

 % scale dimensions to fit on the Matlab Screen

 dIn = dIn/20;

 dOut = dOut/20;

 % Foreground with the object and stuff

 % 1. Get input from the MCU

 % 2. Draw object if necessary

 % 3. Move object if necessary

 % 4. Update

 % Parameters inputted: inner diameter, outer diameter,

temperature, object

 % selected? object gripped? displacement from table, hasHandle,

isSolid,

 % isFull, object lifted?

 if (objectSelected)

 res=20;

 % make a closed end cylinder

 cyl1=CSGcylinder(0,0,0,dOut,'z',res);

 cube1=CSGcube(0,0,-dOut+0.05,dOut+0.05,res);

 body=CSGintersection(cyl1,cube1);

 if (~isSolid)

 % subtract by a smaller cylinder

48

 cyl2=CSGcylinder(0,0,0,dIn,'z',res);

 cube2=CSGcube(0,0,-dIn+0.05,dIn+0.05,res);

 hole=CSGintersection(cyl2,cube2);

 body=CSGsubtract(body,hole);

 end

 object = body;

 objectSurface = CSGtoSurface(object, res);

 if(temperature >= Tthresh)

 Tgradient = [1, 1-(temperature+30)/100, 0]; % color of the

object scaled to temperature

 else

 Tgradient = [0, (temperature+20)/100, 1];

 end

 objectSurface.facecolor = Tgradient;

 if(isFull)

 cylFull = UnitCylinder(2);

 lengthFull = dOut*0.4;

 radiusFull = dIn - 0.02;

 inContent =

translate(scale(cylFull,radiusFull,radiusFull,lengthFull-.02),.01,0,-

lengthFull/1.8);

 inContent.facecolor = [6/255, 249/255, 0];

 objectSurface = combine(objectSurface, inContent);

 end

 if(objectGripped)

 arm1 = translate(arm1, (-dOut - max(arm1.vertices(:,1))), 0,

0);

 arm2 = translate(arm2, (dOut - min(arm2.vertices(:,1))),0, 0);

 objectSurface = combine(objectSurface, arm1, arm2);

 if(objectLifted)

 movingObject = translate(objectSurface, 0, 0, height);

49

 scene = combine(table, movingObject);

 else

 scene = combine(table, objectSurface);

 end

 else

 scene = combine(table, objectSurface);

 end

 figure(1);

 clf

 renderpatch(scene);

 axis off;

 axis([-2, 2, -2, 2, -4, 4]);

 grid on

 daspect([1 1 1])

 light('position',[10,-10,10])

 %Do a persptective transform

 set(gca,'projection','perspective')

 set(gca,'CameraViewAngle',6)

 %The frame background color

 set(gcf,'color', [183/255, 248/255, 1])

 xlabel('x');ylabel('y');zlabel('z');

 view(7,20)

 drawnow;

 else

 figure(1)

 clf

 %plot table and hands

 background = combine(table, hand);

 renderpatch(background);

 axis off;

50

 axis([-2, 2, -2, 2, -4, 4]);

 grid on

 daspect([1 1 1])

 light('position',[10,-10,10])

 %Do a persptective transform

 set(gca,'projection','perspective')

 set(gca,'CameraViewAngle',6)

 %The frame background color

 set(gcf,'color', [183/255, 248/255, 1])

 xlabel('x');ylabel('y');zlabel('z');

 view(7,20)

 drawnow;

 end % if(objectSelected)

 end % if nuel(result) == 6;

 end % while(true)

catch

 fclose(mcu)

 disp('Serial closed')

 disp(lasterror.message)

end

51

References

1. Haptics:

http://en.wikipedia.org/wiki/Haptic_technology

http://www.immersion.com/haptics-technology/what-is-haptics/

http://electronics.howstuffworks.com/everyday-tech/haptic-

technology.htm

https://software.intel.com/en-us/blogs/2013/05/08/making-touch-

more-realistic-advances-in-haptic-technology

2. 3-D objects and modeling:
http://www.nbb.cornell.edu/neurobio/land/PROJECTS/Hierarchy/

3. ATmega 16:

http://www.atmel.in/Images/doc8154.pdf

4. Flex Sensors:

http://mech207.engr.scu.edu/SensorPresentations/Jan%20%20Flex%

20Sensor%20Combined.pdf

http://www.youtube.com/watch?v=yOV17hp1Ulw

http://hackaday.com/2012/02/28/building-a-flex-sensor-from-

component-packing-materials/

http://www.instructables.com/id/DIY-Bend-Sensor-Using-only-

Velostat-and-Masking-T/

5. RS 232:

 http://www.engineersgarage.com/articles/what-is-rs232

http://en.wikipedia.org/wiki/Haptic_technology
http://www.immersion.com/haptics-technology/what-is-haptics/
http://electronics.howstuffworks.com/everyday-tech/haptic-technology.htm
http://electronics.howstuffworks.com/everyday-tech/haptic-technology.htm

52

6. USART:
 http://www.engineersgarage.com/embedded/avr-microcontroller-

projects/serial-communication-atmega16-usart

7. Computer Graphics:[2] Shih-Liang (Sid) Wang, ‘Introducing Fundamentals

of Computer Graphics Using MATLAB’

8. Arduino: www.arduino.cc, www.mathworks.in.

http://www.engineersgarage.com/embedded/avr-microcontroller-projects/serial-communication-atmega16-usart
http://www.engineersgarage.com/embedded/avr-microcontroller-projects/serial-communication-atmega16-usart
http://www.arduino.cc/

