
1

DESIGNING A SUITE TO IMPLEMENT COMPRESSION

AND SECURITY ALGORITHMS FOR DATA AND IMAGE

Enrollment No. -101275

Name of Student- Shaini Gupta

Name of Supervisor- Dr. Pradeep Kumar Gupta

Submitted in partial fulfilment of the Degree of

Bachelor of Technology

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING,

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY,

WAKNAGHAT

2

TABLE OF CONTENTS

Chapter No. Topics Page No.

 Certificate III

 Acknowledgement IV

 Summary V

 List of figures VI

Chapter-1 1.1 Introduction 1

1.1.1 Brief about Shannon Fano Algorithm 1

1.1.2 Brief about Huffman Algorithm 2

 1.2 Goals of project 5

 1.3 Software and Hardware Requirement 5

 1.3.1 Software Tools 5

 1.3.2 Hardware Requirement Specification 6

Chapter-2 Literature Review 7

 2.1 Computer Forensics 7

 2.1.1 Incident Response 10

 2.1.2 Data Recovery 12

 2.2 Data Compression 13

 2.3 Existing Algorithm 17

 2.3.1 Shannon Fano Algorithm 17

 2.3.2 Huffman Algorithm 19

 2.4 Image Compression 19

3

2.4.1 Bit Plane Slicing 19

 2.4.2 Image Reconstruction 20

Chapter-3 Proposed Solution 21

 3.1 Shannon Fano Implementation Flow 21

 3.2 Huffman Implementation Flow 22

 3.3 Bit Plane Slicing Implementation flow 23

 3.4 Image reconstruction implementation flow 24

Chapter-4 Codes and output illustration 25

 4.1 Shannon Fano Algorithm Code 25

 4.2 Huffman Algorithm Code 28

 4.3 Bit plane slicing Code in MATLAB 34

 4.4 Image Reconstruction Code in MATLAB 36

Chapter-5 Conclusion and Future Scope 38

 References 40

4

CERTIFICATE

This is to certify that the work titled “Designing a suite to implement compression and

security algorithms for data and image” submitted by “Shaini Gupta” in partial fulfilment

for the award of degree of B.Tech of Jaypee University of Information Technology,

Waknaghat has been carried out under my supervision .This work has not been submitted

partially and wholly to any other University or Institute for the award of this or any other

degree or diploma.

Signature of Supervisor : _____________________

Name of Supervisor: Dr. Pradeep Kumar Gupta

Designation: Assistant Professor (Sr. Grade) Computer Science Department

Date : ___________________

5

ACKNOWLEDGEMENT

First of all I would like to acknowledge the almighty god for bestowing his good wishes and

giving me the strength at every moment of despair to complete this project.

It‘s incumbent on my part to thank my project guide Dr. Pradeep Kumar Gupta Dept. of

Computer Science and Information Technology, Jaypee University of Information

Technology, Waknaghat, Solan (H.P.) who has been a great support and guided me

throughout the completion of my project.

Last but not the least I would like to express my warm thanks to my respected parents and all

my friends for their support and their constructive suggestions, which enabled me to bring

improvement in my project.

Signature of Student: ____________________

Name of Student: Shaini Gupta

Date: __________________

6

SUMMARY

This project focuses on implementing and comparing the various algorithms of data

compression and image compression on the basis of various parameters like efficiency,

compression ratio, number of bits etc. This report covers Shannon Fano, Huffman algorithms

as a part of data compression techniques and Bit Plane Slicing as a part of image compression

techniques. Additionally I have added image reconstruction from its Bit planes. With this

report the compression technique has been investigated to yield results on their efficiency,

and a discussion is presented as to what issues have brought to bare on their efficiency

results. Data compression has emerged as an important enabling technology in a wide variety

of communication and storage applications, ranging from disk doubling operating systems

that provide extra storage space to facsimile standards that facilitate the flow of business

information and to the high definition audio and video standards that allow maximal use to be

made of scarce satellite transmission bandwidth. Bit Plane Slicing is the technique in which

instead of highlighting gray level ranges ,highlighting the contribution made to total image

appearance by specific bits may be desired. Separating a digital image into its bit planes is

useful for analyzing the relative importance played by each of the image, a process that aids

in determining the adequacy of the number of bits used to quantize each pixel.

_______________________ _________________________

Signature of Student Signature of Supervisor

Name: Shaini Gupta Name: Dr. Pradeep kumar Gupta

Date: ___________________ Date: _____________________

7

LIST OF FIGURES

FIGURE 1.1 A simple Shannon Fano tree 2

FIGURE 1.2 Example to demonstrate Huffman Algorithm 3

FIGURE 1.3 First phase of Huffman tree construction 3

FIGURE 1.4 Final tree after applying Huffman Algorithm 4

FIGURE 2.1 Statiscal model of Huffman encoder 15

FIGURE 2.2 Representation of various bit planes 20

FIGURE 2.3 Image reconstruction using 2, 3, 4 bit planes instead of 8 20

FIGURE 3.1 Steps of Shannon fano algorithm 21

FIGURE 3.2 Steps of Huffman algorithm 22

FIGURE 3.3 Steps of bit plane slicing 23

FIGURE 3.4 Steps of image reconstruction algorithm 24

FIGURE 4.1 Output Snapshot of Shannon fano algorithm 28

FIGURE 4.2 Output Snapshot of Huffman algorithm 34

FIGURE 4.3 Output Snapshot of conversion from RGB to grey scale 35

FIGURE 4.4 Output Snapshot of Representation of various Bit Planes 36

FIGURE 4.5 Output Snapshot of image reconstruction using four bit planes 37

8

CHAPTER 1:

1.1 INTRODUCTION

This project composed of compression techniques and resultant information derived from

investigation .This application suite of data compression technique allows for compression

techniques to be applied to a data file in succession for the purpose of optimal compression .

Additionally the complementary and inverse operation of decomposition can also be carried

out to restore the file to its original state in a loss less manner.

Data compression is emerging as an important enabling technology in a wide variety of

communication and storage applications, ranging from the facsimile standards that facilitate

the flow of business information to disk doubling operating systems that provide extra

storage space and to the high definition audio and video standards that allow maximal use to

be made of available satellite transmission bandwidth.

1.1.1 Brief about Shannon Fano Algorithm:

The first well known method for effectively coding symbols is now known as Shannon Fano

coding. Claude Shannon at bell labs and R.M. Fano at MIT developed this method nearly

simultaneously. It depends on simply knowing the probability of each symbol‘s appearance

in a message. Given the probabilities, a table of codes could be constructed that has several

important properties:

 Different codes have different number of bits.

 Codes for symbols with the low probabilities have more bits, and codes for symbols

with high probabilities have fewer bits.

 Though the codes are of different bit lengths, they can be uniquely decoded.

The first two properties go hand in hand. Developing codes that vary in length according to

the probability of the symbol they are encoding makes data compression possible. And

arranging the codes as a binary tree solves the problem of decoding these variable-length

codes.

An example of the type of decoding tree used in Shannon-Fano coding is shown below.

Decoding an incoming code consists of starting at the root, then turning left or right at each

node after reading an incoming bit from the data stream. Eventually a leaf of the tree is

reached, and the appropriate symbol is decoded.

9

FIGURE 1.1 A simple Shannon fano tree

The tree structure shows how codes are uniquely defined though they have different numbers

of bits. The tree structure seems designed for computer implementations, but it is also well

suited for machines made of relays and switches, like the teletype machines of the 1950s.

While the table shows one of the three properties discussed earlier, that of having variable

numbers of bits, more information is needed to talk about the other two properties.

1.1.2 Brief about Huffman algorithm:

Huffman coding shares most characteristics of Shannon-Fano coding. It creates variable-

length codes that are an integral number of bits. Symbols with higher probabilities get shorter

codes. Huffman codes have the unique prefix attribute, which means they can be correctly

decoded despite being variable length. Decoding a stream of Huffman codes is generally

done by following a binary decoder tree.

Building the Huffman decoding tree is done using a completely different algorithm from that

of the Shannon-Fano method. The Shannon-Fano tree is built from the top down, starting by

assigning the most significant bits to each code and working down the tree until finished.

Huffman codes are built from the bottom up, starting with the leaves of the tree and working

progressively closer to the root.

The procedure for building the tree is simple and elegant. The individual symbols are laid out

as a string of leaf nodes that are going to be connected by a binary tree. Each node has a

weight, which is simply the frequency or probability of the symbol‘s appearance. The tree is

then built with the following steps:

 The two free nodes with the lowest weights are located.

 A parent node for these two nodes is created. It is assigned a weight equal to the sum

of the

 two child nodes.

10

 The parent node is added to the list of free nodes, and the two child nodes are

removed from

 the list.

 One of the child nodes is designated as the path taken from the parent node when

decoding a 0 bit. The other is arbitrarily set to the 1 bit.

The previous steps are repeated until only one free node is left. This free node is designated

the root of the tree.

This algorithm can be applied to the symbols used in the previous example. The five symbols

in our message are laid out, along with their frequencies, as shown:

TABLE: To demonstrate Huffman Algorithm

Symbol Count

A 15

B 7

C 6

D 6

E 5

These five nodes are going to end up as the leaves of the decoding tree. When the process

first starts, they make up the entire list of free nodes.

The first pass through the tree identifies the two free nodes with the lowest weights: D and E,

with weights of 6 and 5. (The tie between C and D was broken arbitrarily. While the way that

ties are broken affects the final value of the codes, it will not affect the compression ratio

achieved.) These two nodes are joined to a parent node, which is assigned a weight of 11.

Nodes D and E are then removed from the free list.

Once this step is complete, we know what the least significant bits in the codes for D and E

are going to be. D is assigned to the 0 branch of the parent node, and E is assigned to the 1

branch. These two bits will be the LSBs of the resulting codes.

On the next pass through the list of free nodes, the B and C nodes are picked as the two with

the lowest weight. These are then attached to a new parent node. The parent node is assigned

a weight of 13, and B and C are removed from the free node list. At this point, the tree looks

like that shown in Figure 1.3

11

FIGURE 1.2 First phase of Huffman tree construction

On the next pass, the two nodes with the lowest weights are the parent nodes for the B/C and

D/E pairs. These are tied together with a new parent node, which is assigned a weight of 24,

and the children are removed from the free list. At this point, we have assigned two bits each

to the Huffman codes for B, C, D, and E, and we have yet to assign a single bit to the code for

A.

Finally, on the last pass, only two free nodes are left. The parent with a weight of 24 is tied

with the A node to create a new parent with a weight of 39. After removing the two child

nodes from the free list, we are left with just one parent, meaning the tree is complete. The

final result looks like that shown in Figure1.4

FIGURE 1.3 Final tree constructed after applying Huffman Algorithm

Bit Plane Slicing is the technique in which instead of highlighting gray-level ranges,

highlighting the contribution made to total image appearance by specific bits may be desired.

Separating a digital image into its bit planes is useful for analyzing the relative importance

played by each bit of the image, a process that aids in determining the adequacy of the

number of bits used to quantize each pixel.

Also this type of decomposition is useful for image compression. As a consequence of the

language used (JAVA), the application suite can be considered portable across platforms by

the inherent property of the language executable. The language is assumed to function on

platform equipped with the appropriate run time environment. So far this is common place on

Windows, UNIX, and Mac Operating System. Also due to the ever growing Internet, Such

transparency of the use of an application is a desired quality. A final point is that the

12

application suite is maintainable with respect to addition of new codices (compression and

decompression techniques).

1.2 GOALS OF PROJECT:

This project involves dealing with data and image compression techniques. The goals were

to:

1. To study the different algorithms related to this topic and implement the best ones out

of them.

2. To check the implemented algorithm for various input data and their compression

ratio and time efficiency.

3. To draw a comparison among the various data compression techniques.

4. To implement image compression through bit plane slicing.

5. To implement image reconstruction.

6. To create its GUI for user convenience.

1.3 SOFTWARE AND HARDWARE REQUIREMENTS:

1.3.1 SOFTWARE TOOLS

 LANGUAGE USED:

The language used at front-end is JAVA. The reasons of selecting this

language are:

 Highly technical language.

 User friendly environment of working.

 Provide low cost solution to the project.

 GUI feature.

 Better designing aspects for developers.

13

 IDE USED:

The Integrated Development Environment is NetBeans IDE, Ecilpse, and MATLAB.

1.3.2 HARDWARE REQUIREMENT SPECIFICATION:

The required hardware combination for this project will be as following:

 Intel Pentium processor.

 Processor Speed – 1.7GHz or above.

 RAM - 256 MB or above.

 HDD – 20 GB or above.

 VGA Monitor.

 Scroll mouse, Multimedia keyboard, CD-Drive.

14

CHAPTER 2:

LITERATURE REVIEW

2.1 COMPUTER FORENSICS

Computer forensics (sometimes known as computer forensic science) is a branch of digital

forensic science pertaining to legal evidence found in computers and digital storage media.

The goal of computer forensics is to examine digital media in a forensically sound manner

with the aim of identifying, preserving, recovering, analyzing and presenting facts and

opinions about the information. Although it is most often associated with the investigation of

a wide variety of computer crime, computer forensics may also be used in civil proceedings.

The discipline involves similar techniques and principles to data recovery, but with additional

guidelines and practices designed to create a legal audit trail. Evidence from computer

forensics investigations is usually subjected to the same guidelines and practices of other

digital evidence. It has been used in a number of high profile cases and is becoming widely

accepted as reliable with U.S. and European court systems.

In the early 1980s personal computers became more accessible to consumers, leading to their

increased use in criminal activity (for example, to help commit fraud). At the same time,

several new "computer crimes" were recognized (such as hacking). The discipline of

computer forensics emerged during this time as a method to recover and investigate digital

evidence for use in court. Since then computer crime and computer related crime has grown

exponentially, and even has jumped 67% between 2002 and 2003. Today it is used to

investigate a wide variety of crime, including child pornography, fraud, espionage, cyber

stalking, murder and rape. The discipline also features in civil proceedings as a form of

information gathering (for example, Electronic discovery).

Forensic techniques and expert knowledge are used to explain the current state of a digital

artefact, such as a computer system, storage medium (e.g. hard disk or CD-ROM), an

electronic document (e.g. an email message or JPEG image). The scope of a forensic analysis

can vary from simple information retrieval to reconstructing a series of events. In a 2002

book Computer Forensics authors Kruse and Heiser define computer forensics as involving

―the preservation, identification, extraction, documentation and interpretation of computer

15

data‖. They go on to describe the discipline as "more of an art than a science", indicating that

forensic methodology is backed by flexibility and extensive domain knowledge. However,

while several methods can be used to extract evidence from a given computer the strategies

used by law enforcement are fairly rigid and lacking the flexibility found in the civilian

world.

Use as evidence:

In court, computer forensic evidence is subject to the usual requirements for digital evidence.

This requires that information be authentic, reliably obtained, and admissible. Different

countries have specific guidelines and practices for evidence recovery. In the United

Kingdom, examiners often follow Association of Chief Police Officers guidelines that help

ensure the authenticity and integrity of evidence. While voluntary, the guidelines are widely

accepted in courts in Wales, England, and Scotland.

Forensic process:

A portable Tableau write blocker attached to a Hard Drive Computer forensic investigations

usually follow the standard digital forensic process (acquisition, analysis and reporting).

Investigations are performed on static data (i.e. acquired images) rather than "live" systems.

This is a change from early forensic practices where a lack of specialist tools led to

investigators commonly working on live data.

Techniques:

A number of techniques are used during computer forensics investigations.

 Cross-drive analysis:

A forensic technique that correlates information found on multiple hard drives. The

process, still being researched, can be used to identify social networks and for

perform anomaly detection.

 Live analysis:

The examination of computers from within the operating system using custom

forensics or existing sys admin tools to extract evidence.

16

The practice is useful when dealing with Encrypting File Systems, for example, where

the encryption keys may be collected and, in some instances, the logical hard drive

volume may be imaged (known as a live acquisition) before the computer is shut

down.

 Stochastic forensics:

A method which uses stochastic properties of the computer system to investigate

activities lacking digital artifacts. Its chief use is to investigate data theft.

 Deleted files:

A common technique used in computer forensics is the recovery of deleted files.

Modern forensic software has their own tools for recovering or carving out deleted

data. Most operating systems and file systems do not always erase physical file data,

allowing investigators to reconstruct it from the physical disk sectors. File carving

involves searching for known file headers within the disk image and reconstructing

deleted materials.

 Steganography:

One of the techniques used to hide data is via steganography, the process of hiding

data inside of a picture or digital image. This process is often used to hide

pornographic images of children as well as information that a given criminal does not

want to have discovered. Computer forensics professionals can fight this by looking at

the hash of the file and comparing it to the original image (if available.) While the

image appears exactly the same, the hash changes as the data changes.

 Volatile data:

When seizing evidence, if the machine is still active, any information stored solely in

RAM that is not recovered before powering down may be lost. One application of

"live analysis" is to recover RAM data (for example, using Microsoft's COFEE tool,

Windows SCOPE) prior to removing an exhibit. Capture GUARD Gateway bypasses

Windows login for locked computers, allowing for the analysis and acquisition of

physical memory on a locked computer.

RAM can be analyzed for prior content after power loss, because the electrical charge

stored in the memory cells takes time to dissipate, an effect exploited by the cold boot

attack.

17

The length of time that data is recoverable is increased by low temperatures and

higher cell voltages. Holding unpowered RAM below −60 °C helps preserve residual

data by an order of magnitude, improving the chances of successful recovery.

However, it can be impractical to do this during a field examination.

Some of the tools needed to extract volatile data, however, require that a computer be

in a forensic lab, both to maintain a legitimate chain of evidence, and to facilitate

work on the machine. If necessary, law enforcement applies techniques to move a

live, running desktop computer. These include a mouse jiggler, which moves the

mouse rapidly in small movements and prevents the computer from going to sleep

accidentally. Usually, an uninterruptible power supply (UPS) provides power during

transit.

However, one of the easiest ways to capture data is by actually saving the RAM data

to disk. Various file systems that have journaling features such as NTFS and Reiser

FS keep a large portion of the RAM data on the main storage media during operation,

and these page files can be reassembled to reconstruct what was in RAM at that time.

Analysis tools

A number of open source and commercial tools exist for computer forensics investigation.

Typical forensic analysis includes a manual review of material on the media, reviewing the

Windows registry for suspect information, discovering and cracking passwords, keyword

searches for topics related to the crime, and extracting e-mail and pictures for review.

2.1.1. Incident Response

Incident response is an organized approach to addressing and managing the aftermath of a

security breach or attack (also known as an incident). The goal is to handle the situation in a

way that limits damage and reduces recovery time and costs. An incident response plan

includes a policy that defines, in specific terms, what constitutes an incident and provides a

step-by-step process that should be followed when an incident occurs.

An organization's incident response is conducted by the computer incident response team, a

carefully selected group that, in addition to security and general IT staff, may include

representatives from legal, human resources, and public relations departments.

18

According to the SANS Institute, there are six steps to handling an incident most effectively:

 Preparation: The organization educates users and IT staff of the importance of

updated security measures and trains them to respond to computer and network

security incidents quickly and correctly.

 Identification: The response team is activated to decide whether a particular event is,

in fact, a security incident. The team may contact the CERT Coordination Center,

which tracks Internet security activity and has the most current information on viruses

and worms.

 Containment: The team determines how far the problem has spread and contains the

problem by disconnecting all affected systems and devices to prevent further damage.

 Eradication: The team investigates to discover the origin of the incident. The root

cause of the problem and all traces of malicious code are removed.

 Recovery: Data and software are restored from clean backup files, ensuring that no

vulnerabilities remain. Systems are monitored for any sign of weakness or recurrence.

 Lessons learned: The team analyzes the incident and how it was handled, making

recommendations for better future response and for preventing a recurrence.

Digital forensics and incident response are two of the most critical fields in all of information

security. The staggering number of reported breaches in the last year has shown that the

ability to rapidly respond to attacks is a vital capability for all organizations. Unfortunately,

the standard IT staff member is simply unable to effectively respond to security incidents.

Successful handling of these situations requires specific training in a number of very

technical areas including file system implementation, operating system design, and

knowledge of possible network and host attack vectors. During this training, students will

learn both the theory around digital forensics and incident response as well as gain valuable

hands-on experience with the same types of evidence and situations they will see in real-

world investigations. The class is structured so that a specific analysis technique is discussed

and then the students immediately analyze staged evidence using their newly gained

knowledge. Not only does this approach reinforce the material learned, but it also gives the

investigator a number of new skills as the course proceeds. Upon completion of the training,

students will be able to effectively preserve and analyze a large number of digital evidence

sources, including both on-disk and in-memory data. These skills will be immediately usable

http://whatis.techtarget.com/definition/CERT-Computer-Emergency-Readiness-Team
http://searchsecurity.techtarget.com/definition/virus
http://searchsecurity.techtarget.com/definition/worm

19

in a number of investigative scenarios, and will greatly enhance even experienced

investigators' skill set. Students will also leave with media that contains all the tools and

resources used throughout the training.

2.1.2 DATA RECOVERY

Data recovery generally involves things that are broken - whether hardware or software.

When a computer crashes and won't start back up, when an external hard disk, thumb drive,

or memory card becomes unreadable, then data recovery may be required. Frequently, a

digital device that needs its data recovered will have electronic damage, physical damage, or

a combination of the two. If such is the case, hardware repair will be a big part of the data

recovery process. This may involve repairing the drive's electronics, or even replacing the

stack of read / write heads inside the sealed portion of the disk drive.

If the hardware is intact, the file or partition structure is likely to be damaged. Some data

recovery tools will attempt to repair partition or file structure, while others look into the

damaged file structure and attempt to pull files out. Partitions and directories may be rebuilt

manually with a hex editor as well, but given the size of modern disk drives and the amount

of data on them, this tends to be impractical.

By and large, data recovery is a kind of "macro" process. The end result tends to be a large

population of data saved without as much attention to the individual files. Data recovery jobs

are often individual disk drives or other digital media that have damaged hardware or

software. There are no particular industry-wide accepted standards in data recovery.

Computer forensics has aspects data recovery. Data recovery procedures may be brought into

play to recover deleted files intact. But frequently the CFE must deal with purposeful

attempts to hide or destroy data that require skills outside those found in the data recovery

industry.

Most often, data recovery deals with one disk drive or the data from one system. The data

recovery house will have its own standards and procedures and works on reputation, not

certification. Electronic discovery frequently deals with data from large numbers of systems,

or from servers with that may contain many user accounts. E-discovery methods are based on

proven software and hardware combinations and are best planned for far in advance

(although lack of pre-planning is very common).

20

Computer forensics may deal with one or many systems or devices may be fairly fluid in the

scope of demands and requests made, often deals with missing data, and must be defensible -

and defended - in court.

2.2 DATA COMPRESSION

The primary purpose of this chapter is to explain various data-compression techniques. Data

compression seeks to reduce the number of bits used to store or transmit information. It

encompasses a wide variety of software and hardware compression techniques which can be

so unlike one another that they have little in common except that they compress data. The

LZW algorithm used in the CompuServe GIF specification, for example, has virtually

nothing in common with the CCITT G.721 specification used to compress digitized voice

over phone lines. The field has grown in the last 25 years to a point where this is simply not

possible. What this book will cover are the various types of data compression commonly used

on personal and midsized computers, including compression of binary programs, data, sound,

and graphics. Furthermore, this book will either ignore or only lightly cover data-

compression techniques that rely on hardware for practical use or that require hardware

applications.

 Many of today‘s voice-compression schemes were designed for the worldwide fixed

bandwidth digital telecommunications networks. These compression schemes are

intellectually interesting, but they require a specific type of hardware tuned to the fixed

bandwidth of the communications channel. Different algorithms that don‘t have to meet this

requirement are used to compress digitized voice on a PC, and these algorithms generally

offer better performance. Some of the most interesting areas in data compression today,

however, do concern compression techniques just becoming possible with new and more

powerful hardware. Lossy image compression, like that used in multimedia systems, for

example, can now be implemented on standard desktop platforms. This book will cover

practical ways to both experiment with and implement some of the algorithms used in these

techniques.

The Data-Compression Lexicon, with a History:

Like any other scientific or engineering discipline, data compression has a vocabulary that at

first seem overwhelmingly strange to an outsider. Terms like Lempel-Ziv compression,

arithmetic coding, and statistical modelling get tossed around with reckless abandon. While

21

the list of buzzwords is long enough to merit a glossary, mastering them is not as daunting a

project as it may first seem. With a bit of study and a few notes, any programmer should hold

his or her own at a cocktail-party argument over data compression techniques.

The Two Kingdoms:

Data-compression techniques can be divided into two major families lossy and lossless.

Lossy data compression concedes a certain loss of accuracy in exchange for greatly increased

compression. Lossy compression proves effective when applied to graphics images and

digitized voice. By their very nature, these digitized representations of analog phenomena are

not perfect to begin with, so the idea of output and input not matching exactly is a little more

acceptable. Most lossy compression techniques can be adjusted to different quality levels,

gaining higher accuracy in exchange for less effective compression. Until recently, lossy

compression has been primarily implemented using dedicated hardware. In the past few

years, powerful lossy-compression programs have been moved to desktop CPUs, but even so

the field is still dominated by hardware implementations.

Lossless compression consists of those techniques guaranteed to generate an exact duplicate

of the input data stream after a compress/expand cycle. This is the type of compression used

when storing database records, spreadsheets, or word processing files. In these applications,

the loss of even a single bit could be catastrophic.

Data Compression = Modelling + Coding

In general, data compression consists of taking a stream of symbols and transforming them

into codes. If the compression is effective, the resulting stream of codes will be smaller than

the original symbols. The decision to output a certain code for a certain symbol or set of

symbols is based on a model. The model is simply a collection of data and rules used to

process input symbols and determine which code(s) to output. A program uses the model to

accurately define the probabilities for each symbol and the coder to produce an appropriate

code based on those probabilities.

Modelling and coding are two distinctly different things. People frequently use the term

coding to refer to the entire data-compression process instead of just a single component of

that process. You will hear the phrases ―Huffman coding‖ or ―Run-Length Encoding,‖ for

example, to describe a data-compression technique, when in fact they are just coding methods

22

used in conjunction with a model to compress data. Using the example of Huffman coding, a

breakdown of the compression process looks something like this:

FIGURE 2.1: Statistical model of Huffman encoder

In the case of Huffman coding, the actual output of the encoder is determined by a set of

probabilities. When using this type of coding, a symbol that has a very high probability of

occurrence generates a code with very few bits. A symbol with a low probability generates a

code with a larger number of bits.

We think of the model and the program‘s coding process as different because of the countless

ways to model data, all of which can use the same coding process to produce their output. A

simple program using Huffman coding, for example, would use a model that gave the raw

probability of each symbol occurring anywhere in the input stream.

A more sophisticated program might calculate the probability based on the last 10 symbols in

the input stream. Even though both programs use Huffman coding to produce their output,

their compression ratios would probably be radically different.

So when the topic of coding methods comes up at your next cocktail party, be alert for

statements like ―Huffman coding in general doesn‘t produce very good compression ratios.‖

This would be your perfect opportunity to respond with ―That‘s like saying Converse

sneakers don‘t go very fast. I always thought the leg power of the runner had a lot to do with

it.‖ If the conversation has already dropped to the point where you are discussing data

compression, this might even go over as a real demonstration of wit.

The Dawn Age:

Data compression is perhaps the fundamental expression of Information Theory. Information

Theory is a branch of mathematics that had its genesis in the late 1940s with the work of

Claude Shannon at Bell Labs. It concerns itself with various questions about information,

including different ways of storing and communicating messages.

23

Data compression enters into the field of Information Theory because of its concern with

redundancy. Redundant information in a message takes extra bit to encode, and if we can get

rid of that extra information, we will have reduced the size of the message.

Information Theory uses the term entropy as a measure of how much information is encoded

in a message. The word entropy was borrowed from thermodynamics, and it has a similar

meaning. The higher the entropy of a message, the more information it contains.

The entropy of a symbol is defined as the negative logarithm of its probability. To determine

the information content of a message in bits, we express the entropy using the base 2

logarithm:

Number of bits = - Log base 2 (probability)

The entropy of an entire message is simply the sum of the entropy of all individual symbols.

Entropy fits with data compression in its determination of how many bits of information are

actually present in a message. If the probability of the character ‗e‘ appearing in this

manuscript is 1/16, for example, the information content of the character is 4 bits. So the

character string ―eeeee‖ has a total content of 20 bits. If we are using standard 8-bit ASCII

characters to encode this message, we are actually using 40 bits. The difference between the

20 bits of entropy and the 40 bits used to encode the message is where the potential for data

compression arises.

One important fact to note about entropy is that, unlike the thermodynamic measure of

entropy, we can use no absolute number for the information content of a given message. The

problem is that when we calculate entropy, we use a number that gives us the probability of a

given symbol. The probability figure we use is actually the probability for a given model, not

an absolute number. If we change the model, the probability will change with it. How

probabilities change can be seen clearly when using different orders with a statistical model.

A statistical model tracks the probability of a symbol based on what symbols appeared

previously in the input stream. The order of the model determines how many previous

symbols are taken into account. An order-0 model, for example, won‘t look at previous

characters. An order-1 model looks at the one previous character, and soon. The different

order models can yield drastically different probabilities for a character. The letter ‗u‘ under

an order-0 model, for example, may have only a 1 percent probability of occurrence. But

24

under an order-1 model, if the previous character was ‗q,‘ the ‗u‘ may have a 95 percent

probability.

This seemingly unstable notion of a character‘s probability proves troublesome for many

people. They prefer that a character have a fixed ―true‖ probability that told what the chances

of its ―really‖ occurring are. Claude Shannon attempted to determine the true information

content of the English language with a ―party game‖ experiment. He would uncover a

message concealed from his audience a single character at a time. The audience guessed what

the next character would be, one guess at a time, until they got it right. Shannon could then

determine the entropy of the message as a whole by taking the logarithm of the guess count.

Other researchers have done more experiments using similar techniques.

While these experiments are useful, they don‘t circumvent the notion that a symbol‘s

probability depends on the model. The difference with these experiments is that the model is

the one kept inside the human brain. This may be one of the best models available, but it is

still a model, not an absolute truth. In order to compress data well, we need to select models

that predict symbols with high probabilities. A symbol that has a high probability has low

information content and will need fewer bits to encode. Once the model is producing high

probabilities, the next step is to encode the symbols using an appropriate number of bits.

2.3 EXISTING ALGORITHM

2.3.1 SHANNON FANO:

This is a basic information theoretic algorithm. A simple example will be used to illustrate

the algorithm:

 Symbol A B C D E

 Count 15 7 6 6 5

Encoding for the Shannon-Fano Algorithm:

 A top-down approach

25

 Sort symbols according to their frequencies/probabilities, e.g., ABCDE.

 Recursively divide into two parts, each with approx. same number of counts.

 Symbol Count log(1/p) Code Subtotal (# of bits)

 ------ ----- -------- --------- --------------------

 A 15 1.38 00 30

 B 7 2.48 01 14

 C 6 2.70 10 12

 D 6 2.70 110 18

 E 5 2.96 111 15

 TOTAL (# of bits): 89

DETAILED DESCRIPTION:

A Shannon-Fano tree is built according to a specification designed to define an effective code

table. The actual algorithm is simple:

 For a given list of symbols, develop a corresponding list of probabilities or frequency

counts so that each symbol‘s relative frequency of occurrence is known.

 Sort the lists of symbols according to frequency, with the most frequently occurring

symbols at the top and the least common at the bottom.

 Divide the list into two parts, with the total frequency counts of the upper half being

as close to the total of the bottom half as possible.

 The upper half of the list is assigned the binary digit 0, and the lower half is assigned

the digit 1. This means that the codes for the symbols in the first half will all start with

0, and the codes in the second half will all start with 1.

 Recursively apply the steps 3 and 4 to each of the two halves, subdividing groups and

adding bits to the codes until each symbol has become a corresponding code leaf on

the tree.

2.3.2 HUFFMAN ALGORITHM:

 1. Scan text to be compressed and tally occurrence of all characters.

 2. Sort or prioritize characters based on number of occurrences in text.

26

 3. Build Huffman code tree based on prioritized list.

 4. Perform a traversal of tree to determine all code words.

 5. Scan text again and create new file using the Huffman codes.

2.4 IMAGE COMPRESSION

2.4.1 BIT PLANE SLICING

Instead of highlighting gray-level ranges, highlighting the contribution made to total image

appearance by specific bits might be desired.

Suppose that each pixel in an image is represented by 8 bits. Imagine that the image is

composed of eight 1-bit planes, ranging from bit-plane 0 for the least significant bit to bit

plane7 for the most significant bit. In terms of 8-bit bytes, plane 0 contains all the lowest

order bits in the bytes comprising the pixels in the image and plane 7 contains all the high-

order bits.

Note that the higher-order bits (especially the top four) contain the majority of the visually

significant data. The other bit planes contribute to more subtle details in the image.

Separating a digital image into its bit planes is useful for analyzing the relative importance

played by each bit of the image, a process that aids in determining the adequacy of the

number of bits used to quantize each pixel. Also, this type of decomposition is useful for

image compression. Bit plane slicing is a part of spatial domain. With the help of Bit plane

slicing we are able to get image compression. With the help of bit plane slicing we are able to

reconstruct any image.

FIGURE 2.2 Representation of various bit planes

27

2.4.2 IMAGE RECONSTRUCTION

It is basically a process in which image is reconstructed with the help of various bit planes

which are extracted from the original image. With this technique, number of bits to represent

a pixel, is reduced significantly .Thus leads to its compression.

FIGURE 2.3 Image reconstruction using 2, 3 and 4 bit planes respectively instead of 8.

28

CHAPTER 3:

PROPOSED SOLUTION

3.1 SHANNON FANO IMPLEMENTATION FLOW:

Created read file function for

reading input string

Input:

Filename, String

Created frequency function

for calculating occurrence of

each symbol

Created sorting function for

arrange symbols in order of

its frequency

Calculated code for each

symbol

Calculated number of bits

used to represent a symbol

Calculated probability of

occurrence of each symbol

Calculated compressed bits

per symbol

Finally calculated

compression ratio using

existing formula

FIGURE 3.1 Steps of Shannon fano algorithm

29

3.2 HUFFMAN ALGORITHM IMPLEMENTATION FLOW:

FIGURE 3.2 Steps of Huffman algorithm

Created read file function for

reading input string

Input:

Filename, String

Created frequency function

for calculating occurrence of

each symbol

Created sorting function for

arrange symbols in order of

its frequency

Calculated code for each

symbol

Calculated number of bits

used to represent a symbol

Calculated probability of

occurrence of each symbol

Calculated compressed bits

per symbol

Finally calculated

compression ratio using

existing formula

30

3.3 BIT PLANE SLICING IMPLEMENTATION FLOW:

Steps to implement bit plane slicing for grey/colour /RGB images are:

 Input image with the help of MATLAB function imread() whose parameter is input

image itself.

 A function rgbtogray() is used then as bit plane slicing is only possible for gray scale

images.

 Representation of image with the help of figure, imshow function. This figure

function creates a new figure object using default property values and

imshow displays the image in a MATLAB figure window

 Division of various planes with the help of bitget function which has 2 parameters i.e.

input image and one bit parameter and it returns the value of the bit at position bit in

input image.

 Finally, Representation of bitplanes with the help of figure, imshow, logical function.

Logical it will return value in the form of true or false that is value at that bit exists or

not.

Input image with the help

of imread function

Used function rgbtogray for

conversion of image into

grey scale

Representation of this grey

scale image with the help

of imshow function

Division of image into

various planes with the

help of bitget function

Representation of various bit

planes using figure,imshow and

logical function

FIGURE 3.3 Steps of bit plane slicing

31

3.4 IMAGE RECONSTRUCTION IMPLEMENTATION FLOW:

 Firstly an input image is shown with the help of show function.

 Then an array of zeros is created with the help of zeros function whose size is equal to

that of an input image.

 Then bitset function is applied on this array and this function returns the value of

input image with position bit set to 1 and so on and gets its value from bitget funtion.

 uint8 function converts the elements of an array into unsigned 8-bit (1-byte) integers

of class uint8.

 Finally the resulting image is displayed by any combination of bit planes.

Input image is shown with

the help of imread function

Displaying image with the

help of imshow function

Array of zeroes created with

the help of zeros function and

size equivalent to input image.

Bitget function returns the value

corresponding to bit planes of

input image this value is set to

with the help of bitset function.

uint8 function converts the

elements of an array into

unsigned 8-bit (1-byte) integers

The resulting image is

displayed by any combination

of various bit planes.

FIGURE 3.4 Steps of image reconstruction algorithm

32

CHAPTER 4:

CODES AND OUTPUT ILLUSTRATION:

4.1 SHANNON FANO CODE:

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.File;

import java.io.FileReader;

import java.io.FileWriter;

import java.io.Writer;

import java.util.Scanner;

public class ShaFano

 {

 public static void main(String[] args) throws Exception

{

 Scanner keyboard = new Scanner(System.in);

 String fileName;

 String dir = "C:\\shiny\\";

 System.out.print("Enter File Name: ");

 fileName = keyboard.nextLine();

 dir = dir + fileName + ".txt";

 File freq = new File(dir);

 Writer writer = new FileWriter(freq);

Writer output = new BufferedWriter(writer);

 System.out.print("Write into file: ");

 String input = keyboard.nextLine();

 output.write(input);

 output.close();

 readFile(freq);

 }

 private static void readFile(File freq) throws Exception

{

 FileReader read = new FileReader(freq);

 BufferedReader br = new BufferedReader(read);

 String str = br.readLine();

 frequency(str);

 }

 private static void frequency(String str)

 {

 char sentence[] = str.toCharArray();

 int len = sentence.length;

 char done[] = new char[len];

 int count[] = new int[len];

 long code[] = new long[len];

 int nob[] = new int[len];

33

 double prob[]= new double[len];

 double log[]=new double[len];

 double cbits=0;

 int fre = 0;

 double cratio;

 for(int i=0;i<len;i++)

 {

int k = 0;

 int flag=0;

 while(k!=fre)

 {

 if(sentence[i]==done[k])

 {

 flag++;

 break;

 }

 else

 k++;

 }

 if(flag!=0)

 {

count[k]++;

continue;

 }

 else

 {

 done[fre] = sentence[i];

 count[fre]++;

 fre++;

 }

 }

 //-----------------------------------SORTING-----------------------------------

 for(int inc = 0; inc<fre; inc++)

 {

 int max=count[inc];

 char maxc = done[inc];

int maxi = inc;

 int swap;

 char swapc;

 for(int inc2 = inc; inc2<fre; inc2++)

 {

 if(max<count[inc2])

 {

max = count[inc2];

 maxc = done[inc2];

 maxi = inc2;

 }

 }

34

 swap = count[inc];

 count[inc] = max;

 count[maxi] = swap;

 swapc = done[inc];

 done[inc] = maxc;

 done[maxi] = swapc;

 }

 // --------------------------------No. of Bits Used------------------------------------

 for(int l=0; l<fre;l++)

 {

 if(l==fre -1)

 {

 nob[l] = (l)*count[l];

 }

 else

{

 nob[l] = (l+1) * count[l];

 }

}

 //----------------------------------PROBABILITY---------------------------------------

 for(int l=0;l<fre;l++)

 {

 prob[l]=(double)count[l]/(double)len;

 log[l]=Math.log(1/prob[l])/Math.log(2);

 }

 //--------------------------------compressed bits per symbol---------------------------

 for(int l=0;l<fre;l++)

 {

 cbits+=(prob[l]*log[l]);

 }

 System.out.println("Shannon Fano Compression");

 System.out.println("Sym Fre Code No_of_Bits Log(1/P)");

//------------------------------------- CODE ---

 int a=1;

 for(int l=0;l<fre;l++)

 {

 if(l==0)

code[l]=0;

 else

 {

 if(l==fre-1)

 {

code[l] = code[l-1] + 1;

 }

 else

 {

 a*=10;

 code[l]=a+code[l-1];

 }

35

 }

 System.out.println(done[l]+" = " + count[l] + "-------->"

+ code[l] + "---------->" + nob[l]+ "------------>"+prob[l]);

 }

 System.out.println("Compressed bits per symbol = " + cbits);

 cratio=8/cbits;

 System.out.println("Compression Ratio= " + cratio);

 }

}

 RESULT OR INFERENCE:

 Easy to implement.

 Compression ratio is more .

 Less efficient.

 Code of each symbol is easily calculated in this case.

FIGURE 4.1 Output snapshot of Shannon fano algorithm

4.2 HUFFMAN CODE:

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.File;

import java.io.FileReader;

import java.io.FileWriter;

import java.io.Writer;

import java.util.Scanner;

36

public class Huffman

{

 public static void main(String[] args) throws Exception

{

 Scanner keyboard = new Scanner(System.in);

 String fileName;

 String dir = "C:\\shiny\\";

 System.out.print("Enter File Name: ");

 fileName = keyboard.nextLine();

 dir = dir + fileName + ".txt";

 File freq = new File(dir);

Writer writer = new FileWriter(freq);

Writer output = new BufferedWriter(writer);

 System.out.print("Write into file: ");

 String input = keyboard.nextLine();

 output.write(input);

 output.close();

 readFile(freq);

 }

 private static void readFile(File freq) throws Exception

 {

 FileReader read = new FileReader(freq);

BufferedReader br = new BufferedReader(read);

 String str = br.readLine();

 frequency(str);

 }

 private static void frequency(String str)

 {

 char sentence[] = str.toCharArray();

37

 int len = sentence.length;

 char done[] = new char[len];

int count[] = new int[len];

 long code[] = new long[len];

 int nob[] = new int[len];

 double prob[]= new double[len];

 double log[]=new double[len];

 double cbits=0;

 int fre = 0;

 double cratio;

 for(int i=0;i<len;i++)

 {

 int k = 0;

 int flag=0;

 while(k!=fre)

{

 if(sentence[i]==done[k])

 {

flag++;

 break;

 }

 else

 k++;

 }

if(flag!=0)

 {

 count[k]++;

 continue;

 }

38

 else

 {

 done[fre] = sentence[i];

 count[fre]++;

 fre++;

 }

 }

//-----------------------------------SORTING-----------------------------------

 for(int inc = 0; inc<fre; inc++)

 {

 int max=count[inc];

 char maxc = done[inc];

 int maxi = inc;

 int swap;

 char swapc;

 for(int inc2 = inc; inc2<fre; inc2++)

 {

if(max<count[inc2])

 {

max = count[inc2];

 maxc = done[inc2];

 maxi = inc2;

 }

 }

 swap = count[inc];

 count[inc] = max;

 count[maxi] = swap;

 swapc = done[inc];

 done[inc] = maxc;

39

done[maxi] = swapc;

 }

 // --------------------------------No. of Bits Used------------------------------------

 for(int l=0; l<fre;l++)

 {

 if(l==fre -1)

 {

nob[l] = (l)*count[l];

 }

 else

 {

 nob[l] = (l+1) * count[l];

 }

 }

 //----------------------------------PROBABILITY---------------------------------------

 for(int l=0;l<fre;l++)

 {

prob[l]=(double)count[l]/(double)len;

 log[l]=Math.log(1/prob[l])/Math.log(2);

 }

 //--------------------------------compressed bits per symbol---------------------------

 for(int l=0;l<fre;l++)

 {

 cbits+=(prob[l]*nob[l]);

 }

 System.out.println("Huffman Compression");

40

 System.out.println("Sym Fre Code No_of_Bits Log(1/P)");

//------------------------------------- CODE ---

 int a=1;

 for(int l=0;l<fre;l++)

 {

 if(l==0)

 code[l]=0;

 else

 {

 if(l==fre-1)

 {

 code[l] = code[l-1] + 1;

 }

else

 {

 a*=10;

 code[l]=a+code[l-1];

 }

}

 System.out.println(done[l]+" = " + count[l] + "-------->"

+ code[l] + "---------->" + nob[l]+ "------------>"+prob[l]);

 }

System.out.println("Compressed bits per symbol = " + cbits);

 cratio=8/cbits;

 System.out.println("Compression Ratio= " + cratio);

 }}

41

RESULT OR INFERENCE:

 Easy to implement.

 Compression ratio is more.

 Less efficient.

 Code of each symbol is easily calculated in this case.

FIGURE 4.2 Output snapshot of Huffman algorithm

4.3 BIT PLANE SLICING CODE IN MATLAB:

clc

c=imread('C:\Users\Dell\Desktop\download.jpg');

%figure,imshow(c);

d=rgb2gray(c);

%figure,imshow(d);

B=bitget(d,1);

figure,imshow(logical(B));

title(' plane 1');

B=bitget(d,2);

figure,imshow(logical(B));

title(' plane 2');

B=bitget(d,3);

figure,imshow(logical(B));

title(' plane 3');

B=bitget(d,4);

figure,imshow(logical(B));

title(' plane 4');

B=bitget(d,5);

42

figure,imshow(logical(B));

title(' plane 5');

B=bitget(d,6);

figure,imshow(logical(B));

title(' plane 6');

B=bitget(d,7);

figure,imshow(logical(B));

title(' plane 7');

B=bitget(d,8);

figure,imshow(logical(B));

title(' plane 8');

RESULT OR INFERENCE:

 Good and ample amount of knowledge of MATLAB is required

 Little bit of difficulty in handling the bit planes.

 Difficulty in understanding some of MATLAB functions.

 Overall this algorithm used for implementation is easy.

FIGURE 4.3 Output Snapshot of conversion from rgb to grey scale

43

FIGURE 4.4 Output Snapshot of Representation of various Bit Planes

4.4 IMAGE RECONSTRUCTION CODE IN MATLAB:

clc

c=imread('C:\Users\Dell\Desktop\download.jpg');

figure,imshow(c);

title('Original Image');

B=zeros(size(c));

B=bitset(B,8,bitget(c,8));

B=bitset(B,7,bitget(c,7));

B=bitset(B,6,bitget(c,6));

B=bitset(B,5,bitget(c,5));

%B=bitset(B,4,bitget(c,4));

%B=bitset(B,3,bitget(c,3));

%B=bitset(B,2,bitget(c,2));

%B=bitset(B,1,bitget(c,1));

B=uint8(B);

figure,imshow(B);

title('Compressed Image');

44

RESULT OR INFERENCE:

 Good and ample amount of knowledge of MATLAB is required

 Little bit of difficulty in handling the bit planes.

 Difficulty in understanding some of MATLAB functions.

 Overall this algorithm used for implementation is easy.

FIGURE 4.5 Output Snapshot of image reconstruction using four bit planes

45

CHAPTER 5:

5.1 CONCLUSION AND FUTURE SCOPE

By encoding characters using EBCDIC or ASCII, I clearly am not going to be very close to

an optimum method. Since every character is encoded using the same number of bits, I

introduce lots of error in both directions, with most of the codes in a message being too long

and some being too short.

Solving this coding problem in a reasonable manner was one of the first problems tackled by

practitioners of Information Theory. Two approaches that worked well were Shannon- Fano

coding and Huffman coding—two different ways of generating variable-length codes when

given a probability table for a given set of symbols.

Huffman coding, named for its inventor D.A. Huffman, achieves the minimum amount of

redundancy possible in a fixed set of variable-length codes. This doesn‘t mean that Huffman

coding is an optimal coding method. It means that it provides the best approximation for

coding symbols when using fixed-width codes. The problem with Huffman or Shannon-

Fano coding is that they use an integral number of bits in each code. If the entropy of a

given character is 2.5 bits, the Huffman code for that character must be either 2 or 3 bits, not

2.5. Because of this, Huffman coding can‘t be considered an optimal coding method, but it is

the best approximation that uses fixed codes with an integral number of bits. Here are our

future objectives:

DATA ENCRYPTION:

Data Encryption is the process of encoding messages or information in such a way

that only authorized parties could read it. Encryption doesn't prevent hacking but it

reduces the likelihood that the hacker will be able to read the data that is encrypted.

DATA DECRYPTION:

Data Decryption is the reverse operation of encryption. For secret-key encryption, you

might know both the key and IV that were used to encrypt the data. For public-key

encryption, you must know either the public key (if the data was encrypted using the

private key) or the private key (if the data was encrypted using the public key).

46

IMAGE ENCRYPTION:

Image Encryption is the conversion of image into a form, called a cipher text , that

cannot be easily understood by unauthorized person.

 IMAGE DECRYPTION:

Image Decryption is the process of converting encrypted image back into its original

form, so it could be understood.

47

REFERENCES

1. Mark Nelson and Jean-loup Gailly, The Data Compression Book, Second edition,

M&T books,

2. A Compression & Encryption Algorithm on DNA Sequences Using Dynamic Look

up Table and Modified Huffman Techniques Published Online September 2013 in

MECS (http://www.mecs-press.org/)

3. D.E.Knuth Dynamic Huffman coding J.Algorithms, 1985, pp.163-180.

4. R.C. Gonzalez and R.E. Woods, “Digital Image Processing” , Second edition

Pearson Prentice Hall, 2008.

5. Anil K. Jain, Fundamentals of Digital Image Processing, Prentice Hall, 1989.

6. William K. Pratt & John Wile, Digital Image Processing, 3rd Edition, 2001.

	SECTION04242000000000000000

