INTERFACING A ACCELEROMETER
WITH A MICROCONTROLLER

Name — Yashu Garg
Enroll no. — 101236
Supervisor — Prof. Vivek Sehgal

May, 2014

Submitted
In
Partial Fulfillment of Degree of Bachelor of Technology
DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

AND
INFORMATION TECHNOLOGY
JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY,
WAKNAGHAT.

CERTIFICATE

This is to certify that the work entitled Interfacing an Accelerometer with a Microcontroller
submitted by Yashu Garg(101236) in partial fulfillment for award for degree of Bachelor of
Technology in Information Technology of JAYPEE UNIVERSITY OF INFORMATION
TECHNOLOGY has been carried out under my supervision. This work has not been submitted

partially or wholly to any other University for any award of this or any other degree.

Prof. Vivek Sehgal

(Associate Professor)

Department of Computer Science Engineering and Information Technology
Jaypee University of Information Technology

Waknaghat

Acknowledgement

“It is not possible to prepare a project without the assistance &

Encouragement of other people. This one is certainly no exception.”

On the very outset of this report, we would like to extend our sincere & heartfelt obligation towards
all the personages who have helped us in this endeavor. Without their active guidance, help,
cooperation & encouragement, we would not have made headway in the project.

We would like to show our greatest appreciation to Prof. Vivek Sehgal. We feel motivated every
time we get his encouragement. For his coherent guidance throughout the tenure of the project, we
feel fortunate to be taught by Prof. Vivek Sehgal, who gave us his unwavering support. Besides
being our mentor, he taught us that there is no substitute for hard work.

We will be always in debt of Prof. Punit Gupta for providing us his timely help and guidance.

We owe our heartiest thanks to Brig. (Retd.) S.P. Ghrera (HOD, CES/IT Department) who has

always inspired us to take initiatives and showed us the path for achieving our goal.
In the light of new developments and recent findings, we devote the task that was asked from us

at Jaypee University of Information Technology to “INTERFACING A ACCELEROMETER
WITH A MICROCONTROLLER”.

Yashu Garg(101236)

Table of Contents

1) Introduction
- What is a Microcontroller?

- Looking Inside Microcontroller

Microcontroller Vendors

Difference b/w Microprocessor & Microcontroller

Accelerometer

- Max 232 & Programmer

2) Previous Study
- Blinking a LED
- Displaying On a LCD

- Interfacing a Servo Motor with Arduino Uno

3) Interfacing ADXL 335 with Arduino Uno
- Circuit Diagram
- Pin Diagram
- Code

- Results

4) Future Scope
5) Conclusion
6) Tools & Techniques Used

7) References

Page No.

12
13
17

20
23
26

30

31
32
36

38
39
40
41

CHAPTER 1 - INTRODUCTION

What isa MICROCONTROLLER?

A microcontroller is a small computer on a single integrated circuit containing a processor core,
memory, and programmable input/output peripherals. Microcontrollers are designed for embedded
applications, in contrast to the microprocessors used in personal computers or other general
purpose applications.

Microcontrollers are used in automatically controlled products and devices, such as automobile
engine control systems, implantable medical devices, remote controls, office machines,
appliances, power tools, toys and other embedded systems.

Looking Inside the MICROCONTROLLER

e Read Only Memory (ROM)
Read Only Memory (ROM) is a type of memory used to permanently save the program being
executed. The size of the program that can be written depends on the size of this memory. ROM
can be built in the microcontroller or added as an external chip, which depends on the type of the
microcontroller. Both options have some disadvantages. If ROM is added as an external chip, the
microcontroller is cheaper and the program can be considerably longer. At the same time, a number
of available pins is reduced as the microcontroller uses its own input/output ports for connection
to the chip. The internal ROM is usually smaller and more expensive, but leaves more pins
available for connecting to peripheral environment. The size of ROM ranges from 512B to 64KB.

e Random Access Memory (RAM)
Random Access Memory (RAM) is a type of memory used for temporary storing data and
intermediate results created and used during the operation of the microcontrollers. The content of
this memory is cleared once the power supply is off. For example, if the program performs an
addition, it is necessary to have a register standing for what in everyday life is called the “sum”.
For that purpose, one of the registers in RAM is called the "sum™ and used for storing results of
addition. The size of RAM goes up to a few KBs.

e Electrically Erasable Programmable ROM (EEPROM)
The EEPROM is a special type of memory not contained in all microcontrollers. Its contents may
be changed during program execution (similar to RAM), but remains permanently saved even after

http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Input/output
http://en.wikipedia.org/wiki/Microprocessor
http://en.wikipedia.org/wiki/Personal_computer
http://en.wikipedia.org/wiki/Embedded_system

the loss of power (similar to ROM). It is often used to store values, created and used during
operation (such as calibration values, codes, values to count up to etc.), which must be saved after
turning the power supply off. A disadvantage of this memory is that the process of programming
is relatively slow. It is measured in milliseconds.

e Special Function Registers (SFR)

Special function registers are part of RAM memory. Their purpose is predefined by the
manufacturer and cannot be changed therefore. Since their bits are physically connected to
particular circuits within the microcontroller, such as A/D converter, serial communication module
etc., any change of their state directly affects the operation of the microcontroller or some of the
circuits. For example, writing zero or one to the SFR controlling an input/output port causes the
appropriate port pin to be configured as input or output. In other words, each bit of this register
controls the function of one single pin.

e Program Counter
Program Counter is an engine running the program and points to the memory address containing
the next instruction to execute. After each instruction execution, the value of the counter is
incremented by 1. For this reason, the program executes only one instruction at a time just as it is
written. However...the value of the program counter can be changed at any moment, which causes
a “jump” to a new memory location. This is how subroutines and branch instructions are executed.

After jumping, the counter resumes even and monotonous automatic counting +1, +1, +1...

e Central Processor Unit (CPU)
As its name suggests, this is a unit which monitors and controls all processes within the
microcontroller and the user cannot affect its work. It consists of several smaller subunits, of which
the most important are:

e Instruction decoder is a part of the electronics which recognizes program instructions and
runs other circuits on the basis of that. The abilities of this circuit are expressed in the
"instruction set” which is different for each microcontroller family.

o Arithmetical Logical Unit (ALU) performs all mathematical and logical operations upon
data.

e Accumulator is an SFR closely related to the operation of ALU. It is a kind of working
desk used for storing all data upon which some operations should be executed (addition,
shift etc.). It also stores the results ready for use in further processing. One of the SFRs,
called the Status Register, is closely related to the accumulator, showing at any given time
the "status" of a number stored in the accumulator (the number is greater or less than zero
etc.).

e Oscillator

Even pulses generated by the oscillator enable harmonic and synchronous operation of all circuits
within the microcontroller. It is usually configured as to use quartz-crystal or ceramics resonator
for frequency stabilization. It can also operate without elements for frequency stabilization (like
RC oscillator). It is important to say that program instructions are not executed at the rate imposed
by the oscillator itself, but several times slower. It happens because each instruction is executed in
several steps. For some microcontrollers, the same number of cycles is needed to execute any
instruction, while it's different for other microcontrollers. Accordingly, if the system uses quartz
crystal with a frequency of 20MHz, the execution time of an instruction is not expected 50nS, but
200, 400 or even 800 nS, depending on the type of the microcontroller!

e Timers/Counters
Most programs use these miniature electronic "stopwatches” in their operation. These are
commonly 8- or 16-bit SFRs the contents of which is automatically incremented by each coming
pulse. Once the register is completely loaded, an interrupt is generated!

If these registers use an internal quartz oscillator as a clock source, then it is possible to measure
the time between two events. If the registers use pulses coming from external source, then such a
timer is turned into a counter.

e Watchdog timer
The Watchdog Timer is a timer connected to a completely separate RC oscillator within the
microcontroller.

If the watchdog timer is enabled, every time it counts up to the program end, the microcontroller
reset occurs and program execution starts from the first instruction. The point is to prevent this
from happening by using a special command. The whole idea is based on the fact that every
program is executed in several longer or shorter loops.

If instructions resetting the watchdog timer are set at the appropriate program locations, besides
commands being regularly executed, then the operation of the watchdog timer will not affect the
program execution.

If for any reason (usually electrical noise in industry), the program counter "gets stuck™ at some
memory location from which there is no return, the watchdog will not be cleared, so the register’s
value being constantly incremented will reach the maximum et voila! Reset occurs!

e Interrupt - electronics is usually faster than physical processes it should keep under
control. This is why the microcontroller spends most of its time waiting for something to
happen or execute. In other words, when some event takes place, the microcontroller does
something. In order to prevent the microcontroller from spending most of its time endlessly
checking for logic state on input pins and registers, an interrupt is generated. It is the signal
which informs the central processor that something attention worthy has happened. As its
name suggests, it interrupts regular program execution. It can be generated by different
sources so when it occurs, the microcontroller immediately stops operation and checks for
the cause. If it is needed to perform some operations, a current state of the program counter
is pushed onto the Stack and the appropriate program is executed. It's the so called interrupt
routine.

e Stack is a part of RAM used for storing the current state of the program counter (address)
when an interrupt occurs. In this way, after a subroutine or an interrupt execution, the
microcontroller knows from where to continue regular program execution. This address is
cleared after returning to the program because there is no need to save it any longer, and
one location of the stack is automatically available for further use. In addition, the stack
can consist of several levels. This enables subroutines’ nesting, i.e. calling one subroutine
from another.

There most commonly used Microcontroller in the world today

ATMEL AVR

The AVR is a modified Harvard architecture 8-bit RISC single chip microcontroller which was
developed by Atmel in 1996. The AVR was one of the first microcontroller families to use on-
chip flash memory for program storage, as opposed to one-time programmable ROM, EPROM,
or EEPROM used by other microcontrollers at the time.

http://en.wikipedia.org/wiki/Modified_Harvard_architecture
http://en.wikipedia.org/wiki/8-bit
http://en.wikipedia.org/wiki/Reduced_instruction_set_computer
http://en.wikipedia.org/wiki/Microcontroller
http://en.wikipedia.org/wiki/Atmel
http://en.wikipedia.org/wiki/Flash_memory
http://en.wikipedia.org/wiki/Programmable_read-only_memory
http://en.wikipedia.org/wiki/EPROM
http://en.wikipedia.org/wiki/EEPROM

Basic families

AVRs are generally classified into following:

e TinyAVR — the ATtiny series
e 0.5-16 kB program memory
e 6-32-pin package

o Limited peripheral set

e« MegaAVR — the ATmega series
e 4-512 kB program memory
e 28-100-pin package
« Extended instruction set (multiply instructions and instructions for handling larger
program memories)

o Extensive peripheral set

e XMEGA — the ATxmega series
e 16-384 kB program memory
e 44-64-100-pin package (A4, A3, Al)
o Extended performance features, such as DMA, "Event System", and cryptography
support.

o Extensive peripheral set with ADCs

Microchip PIC

PIC is a family of modified Harvard architecture microcontrollers made by Microchip Technology,

derived from the PIC1650,originally developed by General Instrument's Microelectronics Division.

The name PIC initially referred to "Peripheral Interface Controller™ now it is "PIC' only.

PICs are popular with both industrial developers and hobbyists alike due to their low cost, wide
availability, large user base, extensive collection of application notes, availability of low cost or
free development tools, and serial programming (and re-programming with flash memory)
capability.

The PIC architecture is characterized by its multiple attributes:

9

http://en.wikipedia.org/wiki/Atmel_AVR_ATtiny_comparison_chart
http://en.wikipedia.org/wiki/Analog-to-digital_converter
http://en.wikipedia.org/wiki/Modified_Harvard_architecture
http://en.wikipedia.org/wiki/Microcontroller
http://en.wikipedia.org/wiki/Microchip_Technology
http://en.wikipedia.org/wiki/General_Instrument

e Separate code and data spaces (Harvard architecture).

o A small number of fixed length instructions

e Most instructions are single cycle execution (2 clock cycles, or 4 clock cycles in 8-bit models),
with one delay cycle on branches and skips

e One accumulator (WO0), the use of which (as source operand) is implied (i.e. is not encoded
in the opcode)

o All RAM locations function as registers as both source and/or destination of math and other
functions.t®

e A hardware stack for storing return addresses

¢ A small amount of addressable data space (32, 128, or 256 bytes, depending on the family),
extended through banking

o Data space mapped CPU, port, and peripheral registers

Philips LPC

LPC is a family of 32-bit microcontroller integrated circuits by NXP Semiconductors (formerly
Philips Semiconductors). The LPC chips are grouped into related series that are based around
the same 32-bit ARM processor core, such as the Cortex-M4F, Cortex-M3, Cortex-MO+,
or Cortex-MO. Internally, each microcontroller consists of the processor core, static
RAM memory, flash memory, debugging interface, and various peripherals. The legacy LPC
families were based on the 8-bit 80C51 core.[? As of February 2011, NXP had shipped over one

billion ARM processor-based chips.

10

http://en.wikipedia.org/wiki/Harvard_architecture
http://en.wikipedia.org/wiki/Accumulator_(computing)
http://en.wikipedia.org/wiki/Opcode
http://en.wikipedia.org/wiki/PIC_microcontroller#cite_note-6
http://en.wikipedia.org/wiki/Microcontroller
http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/NXP_Semiconductors
http://en.wikipedia.org/wiki/32-bit
http://en.wikipedia.org/wiki/ARM_architecture
http://en.wikipedia.org/wiki/ARM_Cortex-M4F
http://en.wikipedia.org/wiki/ARM_Cortex-M3
http://en.wikipedia.org/wiki/ARM_Cortex-M0%2B
http://en.wikipedia.org/wiki/ARM_Cortex-M0
http://en.wikipedia.org/wiki/Static_RAM
http://en.wikipedia.org/wiki/Static_RAM
http://en.wikipedia.org/wiki/Flash_memory
http://en.wikipedia.org/wiki/Intel_MCS-51
http://en.wikipedia.org/wiki/NXP_LPC#cite_note-LPC-Website-2
http://en.wikipedia.org/wiki/ARM_Holdings

Motorola’s Free scale 68HC11

The 68HC11 (6811 or HC11 for short) is an 8-bit microcontroller (UC) family introduced by
Motorola in 1985. Now produced by Free scale Semiconductor, it descended from the Motorola
6800 microprocessor. It is a CISC microcontroller. The 68HC11 devices are more powerful and

more expensive than the 68HC08microcontrollers, and are used in barcode readers, hotel card

key writers, amateur robotics, and various other embedded systems. The MC68HC11A8 was the
first MCU to include CMOS EEPROM.

11

http://en.wikipedia.org/wiki/Microcontroller
http://en.wikipedia.org/wiki/Freescale_Semiconductor
http://en.wikipedia.org/wiki/Motorola_6800
http://en.wikipedia.org/wiki/Motorola_6800
http://en.wikipedia.org/wiki/Microprocessor
http://en.wikipedia.org/wiki/Complex_instruction_set_computer
http://en.wikipedia.org/wiki/Freescale_68HC08
http://en.wikipedia.org/wiki/Barcode
http://en.wikipedia.org/wiki/Embedded_system

Difference between Microcontrollers & Microprocessors

Microprocessor

Microcontroller

It is just a processor. Memory and 1/0
components have to be connected externally

Micro controller has external processor along
with internal memory and i/O components

Since memory and 1/O has to be connected
externally, the circuit becomes large.

Since memory and 1/O are present internally,
the circuit is small.

Cannot be used in compact systems and hence
inefficient

Can be used in compact systems and hence it is
an efficient technique

Cost of the entire system increases

Cost of the entire system is low

Due to external components, the entire power
consumption is high. Hence it is not suitable
to used with devices running on stored power
like batteries.

Since external components are low, total
power consumption is less and can be used
with devices running on stored power like
batteries.

Most of the microprocessors do not have
power saving features.

Most of the micro controllers have power
saving modes like idle mode and power saving
mode. This helps to reduce power consumption
even further.

Since memory and 1/0 components are all
external, each instruction will need external
operation, hence it is relatively slower.

Since components are internal, most of the
operations are internal instruction, hence speed
is fast.

Microprocessor have less number of registers,
hence more operations are memory based.

Micro controller have more number of
registers, hence the programs are easier to
write.

Microprocessors are based on von Neumann
model/architecture where program and data
are stored in same memory module

Micro controllers are based on Harvard
architecture where program memory and Data
memory are separate

Mainly used in personal computers

Used mainly in washing machine, MP3 players

12

Microcontroller Used

The Microcontroller used as a part of this project is ATMEL’s AtMega 328P.

ATMEGA 328P MICROCONTROLLER

ATMEGA 328P

The ATmega328P is a single chip micro-controller created by Atmel and belongs to
the mega series.

The high-performance Atmel 8-bit AVR RISC-based microcontroller combines
Flash memory - 32 KB ISP

EEPROM - 1 KB

SRAM - 2 KB

23 general purpose 1/0 lines,

32 general purpose working registers

3 flexible timer/counters with compare modes, internal and external interrupts,
Serial Programmable USART

A byte-oriented 2-wire serial interface

SPI serial port

6-channel 10-bit A/D converter

Internal oscillator

13

http://en.wikipedia.org/wiki/Integrated_circuits
http://en.wikipedia.org/wiki/Micro-controller
http://en.wikipedia.org/wiki/Atmel
http://en.wikipedia.org/wiki/8-bit
http://en.wikipedia.org/wiki/Atmel_AVR
http://en.wikipedia.org/wiki/RISC
http://en.wikipedia.org/wiki/Flash_memory
http://en.wikipedia.org/wiki/In-system_programming
http://en.wikipedia.org/wiki/EEPROM
http://en.wikipedia.org/wiki/Static_random-access_memory
http://en.wikipedia.org/wiki/Processor_register
http://en.wikipedia.org/wiki/Counters
http://en.wikipedia.org/wiki/Interrupts
http://en.wikipedia.org/wiki/USART
http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
http://en.wikipedia.org/wiki/A/D_converter
http://en.wikipedia.org/wiki/Electronic_oscillator

e Software selectable power saving modes.
The device operates between 1.8-5.5 volts. By executing powerful instructions in a single clock
cycle, the device achieves throughputs approaching 1 MIPS per MHz, balancing power

consumption and processing speed.

ATmega168/328 Pin Mapping

(PCINT14/RESET) PC6 L1
(PCINT16/RXD) PDOL]2
(PCINT17/TXD) PD1 [}
(PCINT18/INTO) PD2[}«

(PCINT19/0C28B/INT1) PD3[]s
(PCINT20/XCK/TO) PD4 []s
vceyr

GND[Je
(PCINTE/XTALV/TOSC1) PBS[Jo
(PCINTZ/XTAL2/TOSC2) PB7 (10
(PCINT21/0COB/T1) PDS [}
(PCINT22/OCOA/AINO) PD6 12
(PCINT23/AIN1) PO7 3

. NTO/CLKOACP1) PBO[}1«

201 PCS (ADCS/SCL/PCINT13)
2717 PC4 (ADC4/SDA/PCINT12)
2607] PC3 (ADC3/PCINT11)

25071 PC2 (ADC2/PCINT10)

24171 PC1 (ADC1/PCINT9)

23071 PCO (ADCO/PCINTS)

2 JGND

2117] AREF

207 AVCC

197 PB5 (SCK/PCINTS)

18] PB4 (MISO/PCINT4)

17§ PB3 (MOSI/OC2A/PCINT3)
18f] PB2 (SS/IOC1B/PCINT2)
15 PB1 (OC1A/PCINT1)

14

http://en.wikipedia.org/wiki/Million_instructions_per_second#Million_instructions_per_second

What is an Accelerometer?

An accelerometer is a device that measures acceleration. The acceleration measured by an
accelerometer is not necessarily the coordinate acceleration (rate of change of velocity).

The accelerometer is a built-in electronic component that measures tilt and motion. It is also
capable of detecting rotation and motion gestures such as swinging or shaking.

The most common use for it is to activate auto screen rotation on mobile devices when the user
changes their orientation from portrait to landscape or vice-versa.

Another modern application for the accelerometer is to control the mobile device music player
with gestures (Sony Ericsson Shake control or Samsung Motion play technologies).
Accelerometers are also utilized for enriching the gaming controls (navigating by tilting the device
instead of by pressing keys).

Another popular mobile phone feature based on an accelerometer is turn-to-mute. It allows user to
mute an incoming call, silence an alarm or pause the mobile music player simply by turning the
device face down.

Accelerometer Used

The Accelerometer used as a part of this project is ADXL 335.

ADXL 335

15

http://en.wikipedia.org/wiki/Proper_acceleration

The ADXL335 is a small, thin, low power, complete 3-axis accelerometer with signal conditioned
voltage outputs. The product measures acceleration with a minimum full-scale range of +3 g. It
can measure the static acceleration of gravity in tilt-sensing applications, as well as dynamic
acceleration resulting from motion, shock, or vibration.

Qo) Q Q
4 > = =
® 16 15 14 13
N ADXL335 12 T Xour
TOP VIEW
Not o Sceie)
sT)2 1 CInC
z Y
o — 10 T Your
Datashest _‘ul
of i +X 8 CINC
7 8

comfJw
NCl o

PIN DIAGRAM — ADXL335

The user selects the bandwidth of the accelerometer using the CX, CY, and CZ capacitors at the
XOUT, YOUT, and ZOUT pins. There are few bandwidths that can be selected to suit the task
needed. They range from 0.5 Hz to 1600 Hz for the X and Y axes and from 0.5 Hz to 550 Hz for
the Z axis.

The ADXL335 contains a Polysilicon surface-micro machined structure built on top of a silicon
wafer. Polysilicon springs suspend the structure over the surface of the wafer and provide a
resistance against acceleration forces. A differential capacitor, consisting of independent fixed
plates and plates attached to the moving mass, measures the deflection of the structure.
Acceleration unbalances the capacitor, which in turn, results in a sensor output with amplitude
proportional to the acceleration experienced.

16

Mechanical Sensor

The ADXL335 uses a single structure for sensing the three axes. Therefore, the axes’ sense
direction is orthogonal and has little cross-axis sensitivity. Mechanical misalignment is the
principal source of cross-axis sensitivity. However, this misalignment can be calibrated out at the
system level.

-Performance

Innovative design techniques make sure that high performance is achieved by the ADXL335. For
this reason, there is no quantization error or no monotonic behavior, and temperature hysteresis is
very low (usually less than 3mg over the -25 T to +70 C temperature range).

MAX232

The MAX232 is an IC, that converts signals from an RS-232 serial port to signals suitable for use
in TTL compatible digital logic circuits. The MAX232 is a dual driver/receiver and typically
converts the RX, TX, CTS and RTS signals.

The drivers provide RS-232 voltage level outputs (approx. = 7.5 V) from a single + 5V supply via
on-chip charge pumps and external capacitors. This makes it useful for implementing RS-232 in

17

http://en.wikipedia.org/wiki/RS-232
http://en.wikipedia.org/wiki/Transistor-transistor_logic
http://en.wikipedia.org/wiki/Volt
http://en.wikipedia.org/wiki/Charge_pump

devices that otherwise do not need any voltages outside the 0 V to + 5 V range, as power
supply design does not need to be made more complicated just for driving the RS-232 in this case.

The receivers reduce RS-232 inputs (which may be as high as + 25 V), to standard 5V TTL levels.
These receivers have a typical threshold of 1.3 V, and a typical hysteresis of 0.5 V.

(TOP VIEW)
C1+ [1 o 16] Vee
Vs [] 2 15]] GND
Ci-[|3 14] T1I0OUT
c2+[]4 13[] R1IN
c2-[|s 12[]R1OUT
Vs-[] 6 11[] T1IN
T20UT [7 10{] T2IN
R2IN [| 8 9]] R20UT

18

http://en.wikipedia.org/wiki/Power_supply
http://en.wikipedia.org/wiki/Power_supply
http://en.wikipedia.org/wiki/Transistor-transistor_logic
http://en.wikipedia.org/wiki/Hysteresis

Programmer

The programmer used is ARDUINO UNO BOARD. The Arduino Uno is a microcontroller board
based on the ATmega328P. It has 14 digital input/output pins (of which 6 can be used as PWM
outputs), 6 analog inputs, a 16 MHz ceramic resonator, a USB connection, a power jack, an ICSP
header, and a reset button. It contains everything needed to support the microcontroller; simply
connect it to a computer with a USB cable or power it with a AC-to-DC adapter or battery to get
started.

MADE @)

INITALY —
oy o O

Ramtah .

Tx o
e axsms” ARDUINO

L
Y AU RG G

T L Al
N j,:: 2]

=1 RST D13 e
i AREF D12 e

Arduino on =L

D10 L

po M
D8 |
p7 b—

D6 L

Digital Input/Output

PWM

A0 D5

s D4 f—
>

- 2 D3 X
5

— i3 Z D2 |
h=]

— a4 £ p1 =

—] s po 22

GND

I
Pin diagram Arduino Uno

19

CHAPTER 2 -PREVIOUS STUDY

As this project was altogether new and different, it needed the study of basics of Hardware,
circuits. Thus | had to go through the basic libraries for coding in Arduino, Implemented
the basic circuits & programs and then went through with the Project .

The basic programs implemented were

Blinking an LED

Hardware Required
e Arduino Uno Board

e LED’S
e AtMega 328P

Circuit

B -
i)
@ o
o

www.arduino_cc

POWER avaocn @

-
w
&'—'n
ZH5/ Gnd Vin 0 12 345

20

Schematic

| | I Arduinol
ava sV Vin
Power
— RsT D13
— AREF 012 [
H D11 PWM
Arduino — 2200
010 P
DQ PWM
_g D8 fr—
é o7 LED1
= —
£ pg faw A\
E Pa
[=]
— A a D5 [r—
— 5 D4 f—
. oa o
&
— A3 T D2 fo—
2
—_— a7 o1 =
—] 45 Do ==
GND

Code

#include <Blink.h>
int led = 13;
void setup()

pinMode(led, OUTPUT);

}
void loop()

{
digitalWrite(led, HIGH);
delay(1000);
digitalWrite(led, LOW);
delay(1000);

}

21

Results

ORIGNAL CIRCUIT

BLINKING LED

22

Displaying On a LCD Screen

Hardware Required

Arduino Board

LCD Screen

Pin headers to solder to the LCD display pins
10k Variable Resistance

Breadboard

Hook-up wire

Circuit

www_arduino.cc

ANALOG IN .
n 0 1

2 3 45

23

Schematic

3V3 5V vin
Power
= RST D13 f—
i AREF D12
Arduino on =
Di0 ==
Do |
5
(=%
L S D8 e
o
< % 07—
S pg M
10K potentiometer 3_3 PWM
5o
—1 0 2 ps _—|
—_— AT D4
— ~ g D3 |Rom
& |
— A3 = D2
3 |
— a1 S D1 =
- A5 Do ==
GND

Vss

Vo

RS

R/W

DBO

DB1

DB2

DB3

DB4

DB5

DB6

DB7

LED+

LED-

an

Code
#include <LiquidCrystal.h>
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);
void setup()

Icd.begin(16, 2);

Icd.print("hello, world!");
}

void loop()

Icd.setCursor(0, 1);
Icd.print(millis()/1000);}

24

Results

DISPLAYING ON A LED

25

Interfacing Servo Motor with Arduino Uno

Hardware Required

e Arduino Uno Board
e Servo Motor
e Hook Up Wires

Circuit

= oo

Arduino = FuFgy

26

Schematic

Arduingl

RST

AREF

AD
Al
A2
A3
Ad

AS

ava sv

ndu) Bofeuy

Power

Arduino

GND

Win

Digital Input’Output

D13
D2
D11

Do

D7

D5

D3

D2

8]

@

P

T

[ETEET
= z =

o
v

E
B
IA

Code for Arduino

#include <Servo.h>

Servo servol; Servo servoz2;

void setup() {

pinMode(1,0UTPUT);

servol.attach(14); //analog pin 0
/Iservol.setMaximumPulse(2000);
[Iservol.setMinimumPulse(700);

servo2.attach(15); //analog pin 1

Serial.begin(19200);
Serial.printin("Ready");

Iw r |i—'

27

Servo

f—— 1|5 v

void loop() {
static intv =0;

if (Serial.available()) {
char ch = Serial.read();

switch(ch) {
case '0'...'9":
v=v*10+ch-'0"
break;
case's".
servol.write(v);
v=0;
break;
case 'w".
servo2.write(v);
v=0;
break;
case 'd":
servo2.detach();
break;
case 'a".
servo2.attach(15);
break;
}

¥

Servo::refresh();

¥

Processing Code

import processing.serial.* ;

int gx = 15;
int gy = 35;
int spos=90;

float leftColor = 0.0;
float rightColor = 0.0;

28

Serial port;

void setup()

{
size(720, 720);
colorMode(RGB, 1.0);
noStroke();
rectMode(CENTER);
frameRate(100);

printIn(Serial.list());

port = new Serial(this, Serial.list()[1], 19200);
}

void draw()

background(0.0);
update(mouseX);
fill(mouseX/4);

rect(150, 320, gx*2, gx*2);
fill(180 - (mouseX/4));
rect(450, 320, gy*2, gy*2);

ks

void update(int x)

{
spos= x/4;
port.write("'s"+spos);
leftColor = -0.002 * x/2 + 0.06;
rightColor = 0.002 * x/2 + 0.06;
gx = x/2;
gy = 100-x/2;

29

Chapter 3: INTERFACING A ACCELEROMETER WITHA
MICROCONTROLLER

Hardware Required

e Arduino Uno Board
e ADXL 335 Accelerometer
e Hook Up Wires

Circuit

- Connect the Vcc of ADXL 335 to the 3.3V pin of the UNO Board
- The Xout, Y out, Z out of ADXL 335 to the Analog 0,1 ,2 Pins of the UNO Board
- Connect the Gnd Pin of ADXL 335 to Gnd Pin of the UNO Board

- TX 1
w rx Arduino

-
()
7]
o
=
o

www.arduino.cc

POWER anacoc v @
S5V6ndd9V D 12345

L
.o
.« e 0 ® 0 0 9 0 B 666 G e e e e e e
. e
. e . o o 0 ® 6 0 0 0 0 0 0 e

30

Schematic

Part2

Triple Axis
Accelerometer
Breakout .
ADXL335 Arduino
Uno
(Rev3)

il
TTETTTETTTTT

fritzing

Working

An accelerometer is a device that measures acceleration. The acceleration measured by an
accelerometer is not necessarily the coordinate acceleration (rate of change of velocity).

The accelerometer is a built-in electronic component that measures tilt and motion. It is also
capable of detecting rotation and motion gestures such as swinging or shaking.

Whenever an accelerometer is aligned in a certain direction it gives the degree

of tilt in that direction. This is what our Project does.

After making all the connections shown above, we tilt the accelerometer in different orientations
and notice that there is some changes in the reading shown in the Serial Monitor.

Accelerometers are widely used in our motion Gaming Consoles, Mobile Phones etc.

31

http://en.wikipedia.org/wiki/Proper_acceleration

Code for Arduino Uno

#include < accelerometer.h>
const int xpin = 0;
const int ypin = 1,
const int zpin = 2;

void setup()

Serial.begin(9600);
}

void loop()
{

Serial.print("BEG");

Serial.print("X"); Serial.print(analogRead(xpin));
Serial.print("Y"); Serial.print(analogRead(ypin));
Serial.print("Z"); Serial.print(analogRead(zpin));
Serial.printin();

delay(50);

Communication Code to retrieve data

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Windows.Forms;
using System.lO.Ports;

using System.Threading;

namespace ADXL335
{

public partial class Form1 : Form

{
public Form1()

{
k

InitializeComponent();

32

private SerialPort serial_port_;
private Thread thread_;

private void refresh_button_Click(object sender, EventArgs e)

{

portlist_comboBox.ltems.Clear();
foreach (string s in SerialPort.GetPortNames())

{
portlist_comboBox.ltems.Add(s);
}
}
private void connect_button_Click(object sender, EventArgs €)
{
if ("Connect™" == connect_button.Text)
{
if (-1 == portlist_comboBox.SelectedIndex)
{
MessageBox.Show("Select com port™);
return;
}
string port_name = portlist_comboBox.Selectedltem.ToString();
serial_port_ = new SerialPort(port_name, 9600);
serial_port_.Open();
thread_ = new Thread(read_serial_port);
thread_.Start();
connect_button.Text = "Disconnect";
}
else
{
try
thread_.Abort();
serial_port_.Close();
}
catch
{
}
connect_button.Text = "Connect";
}
}

private void read_serial_port()

33

¢ while (serial_port_.IsOpen)
{
try
{
string str = serial_port_.ReadLine();
set_axis(str);
:gatch (TimeoutException) { }
}
}

delegate void SetTextCallback(string newText);
private string str_;

private void set_axis(string text)

{
if (this.X_progressBar.InvokeRequired)

{
SetTextCallback d = new SetTextCallback(set_axis);
this.Invoke(d, new object[] { text });
}
else
{
str_ += text;
intil =str_.IndexOf("BEG");
inti2 = str_.IndexOf("BEG", 1 +i1);
if (-11=11) && (-1 '=1i2))

string current = str_.Substring(0, i2);
current = current.Substring(current.IndexOf("BEG"));
str_ = str_.Substring(i2);

int beg_index = current.IndexOf("BEG");
int x_index = current.IndexOf("X");
inty_index = current.IndexOf("Y");
int z_index = current.IndexOf("Z");

if (0 '= beg_index) || (3 '= x_index) || (-1 == y_index) || (-1 == z_index))
{

MessageBox.Show("Error " + current + ", beg_index = " +
beg_index.ToString() +", x_index =" + x_index.ToString() + ", y_index ="
+y_index.ToString() + ", z_index =" + z_index.ToString());
return;

¥

34

int x = Convert.ToInt32(current.Substring(x_index + 1, y_index - x_index - 1));
int y = Convert.ToInt32(current.Substring(y_index + 1, z_index - y_index - 1));
int z = Convert. ToInt32(current.Substring(z_index + 1));

if (x > X_progressBar.Maximum) x = X_progressBar.Maximum;
if (y > Y_progressBar.Maximum) y =Y_progressBar.Maximum;
if (z > Z_progressBar.Maximum) z = Z_progressBar.Maximum;

if (x < X_progressBar.Minimum) x = X_progressBar.Minimum;
if (y <Y_progressBar.Minimum) y =Y _progressBar.Minimum;
if (z < Z_progressBar.Minimum) z = Z_progressBar.Minimum;

X_progressBar.Value = x;
Y_progressBar.Value = y;
Z_progressBar.Value = z;
¥
ky
¥

private void Form1_FormClosed(object sender, FormClosedEventArgs €)
{

try

{

serial_port_.Close();

ky

catch

¥
k
¥
k

35

Results using Serial Monitor

CIRCUIT WITH ADXL 335 ACCELEROMETER

File Edit Sketch Tools Help

sketch_mayl4a §

const int xpin = 0;

sketch_may14a | Arduino 1.0.5-2 -0

~
const int ypin = 1;
const int zpin = 2;

void setup()
{

Serial.begin(9600) ;
b

woid loop)

{
Serial.print{"EEG");
Serial.print{” X-"); Serial.print(analogRead(xpin}};
Serial.print(" ¥-"); Serial.print|analosRead(ypin));
Serial.print{” Z-"); Serial.print(analogRead(zpin}};
Serial.println();
delay(1000);

Mo

315PM
< 542014

CODE FOR ARDUINO

36

37

CHAPTER 4 - FUTURE SCOPE

Accelerometers are used in tilt sensing applications in Cell phones and also find use in Motion
gaming consoles. The various other fields in which accelerometers can be useful are:

Vibration Analysis

Measuring the frequency, strength, and signature of vibrations is useful in many machine health
and industrial monitoring applications. The accelerometers are capable of determining the above
parameters over a wide frequency and displacement range.

Other applications where vibration monitoring maybe useful are:

o Structural Vibration - analysis and identification of vibration sources and problems in
structures

e Product Testing - vibration and shock testing to identify potential design problems

e Acceptance Testing - testing and analysis to ensure products comply with specified
vibration tolerance limits

e Workplace Vibration - measurement and analysis of vibration from hand tools and other
equipment

Inertial Navigation

In inertial navigation acceleration sensors can be used for making distance measurements. Inertial
measurements are frequently required in the tracking of planes, boats, and automobiles over long
distances and longtime constants. Inertial navigation is an extremely demanding application for
sensors and many factors contribute to the performance of an inertial navigation system.
Alignment, scale factor errors, and offset errors are crucial, because a constant error in these
readings will result in a quadratic ally growing position error as given in the following equation:

EosError = 12 AccErmor« T<

Tilt / Angle Sensing

Angle sensing is the measurement of angles with an acceleration-based sensor. In most cases, these
measurements are made using the Earth's G field as a reference. For angles less than 200, you can
approximate the sine function with a linear response. Then the relationship between angle and
Vout is:

Angle = (Vout-Offset_Voltage)/Scale Factor

38

CHAPTER 5 - CONCLUSION

Through this Project, | got the basic idea of working with Microcontrollers and its applications.
Accelerometers are devices that are used to sense tilt & motion. This project taught me about
Accelerometers as well as interfacing it with Microcontrollers. The working & function of
Components like MAX 232 and Arduino Uno board were also understood really well. Thus this

Project enriched my knowledge and was found to be very beneficial.

39

CHAPTER 6 —TOOLS & TECHNIQUES USED

Proteus - It is a software for microprocessor simulation, schematic capture, and printed circuit
board (PCB) design. It is developed by Lab center Electronics. It combines the ISIS schematic
capture and ARES PCB layout programs to provide a powerful, integrated and easy to use suite of
tools for professional PCB Design.

Arduino IDE - The Arduino integrated development environment (IDE) is a cross-
platform application written in Java, and is derived from the IDE for the Processing programming
language and the Wiring projects. It is designed to introduce programming to artists and other
newcomers unfamiliar with software development. It includes a code editor with features such
as syntax highlighting, brace matching, and automatic indentation, and is also capable of compiling
and uploading programs to the board with a single click. A program or code written for Arduino
is called a "sketch".

Frit zing - Frit zing is an open source software initiative to support designers and artists ready to
move from physical prototyping to actual product. It was developed at the University of Applied
Sciences of Potsdam. The software is created in the spirit of Processing and Arduino and allows a
designer, artist, researcher, or hobbyist to document their Arduino-based prototype and create
a PCB layout for manufacturing.

40

http://en.wikipedia.org/wiki/Microprocessor
http://en.wikipedia.org/wiki/Printed_circuit_board
http://en.wikipedia.org/wiki/Printed_circuit_board
http://en.wikipedia.org/w/index.php?title=Labcenter_Electronics&action=edit&redlink=1
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Cross-platform
http://en.wikipedia.org/wiki/Cross-platform
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Processing_(programming_language)
http://en.wikipedia.org/wiki/Processing_(programming_language)
http://en.wikipedia.org/wiki/Wiring_(development_platform)
http://en.wikipedia.org/wiki/Syntax_highlighting
http://en.wikipedia.org/wiki/Brace_matching
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Potsdam
http://en.wikipedia.org/wiki/Processing_(programming_language)
http://en.wikipedia.org/wiki/Arduino
http://en.wikipedia.org/wiki/Printed_circuit_board

CHAPTER 7 — REFRENCES

- [1] Edward A. Lee and Sanjit A. Seshia, Introduction to Embedded
Systems, A Cyber-Physical Systems Approach

- [2] Sangiovanni-Vincentelli, A., Zeng, H., Di Natale, M., Marwedel,
Embedded Systems Development

WEB REFRENCES

- http://autosysprogs.blogspot.in/2011/02/adxI335-accelerometer.html

- http://medialappi.net/lab/equipment/sensors/adx|335/

- http://en.wikipedia.org/

- http://www.arduino.cc/

41

http://leeseshia.org/index.html
http://leeseshia.org/index.html
http://autosysprogs.blogspot.in/2011/02/adxl335-accelerometer.html
http://medialappi.net/lab/equipment/sensors/adxl335/
http://en.wikipedia.org/
http://www.arduino.cc/

42

43

