
1

INTERFACING A ACCELEROMETER

WITH A MICROCONTROLLER

Name – Yashu Garg

Enroll no. – 101236

Supervisor – Prof. Vivek Sehgal

May, 2014

Submitted

In

Partial Fulfillment of Degree of Bachelor of Technology

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

AND

INFORMATION TECHNOLOGY

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY,

WAKNAGHAT.

2

CERTIFICATE

This is to certify that the work entitled Interfacing an Accelerometer with a Microcontroller

submitted by Yashu Garg(101236) in partial fulfillment for award for degree of Bachelor of

Technology in Information Technology of JAYPEE UNIVERSITY OF INFORMATION

TECHNOLOGY has been carried out under my supervision. This work has not been submitted

partially or wholly to any other University for any award of this or any other degree.

Prof. Vivek Sehgal

 (Associate Professor)

Department of Computer Science Engineering and Information Technology

Jaypee University of Information Technology

Waknaghat

3

Acknowledgement

 “It is not possible to prepare a project without the assistance &

 Encouragement of other people. This one is certainly no exception.”

On the very outset of this report, we would like to extend our sincere & heartfelt obligation towards

all the personages who have helped us in this endeavor. Without their active guidance, help,

cooperation & encouragement, we would not have made headway in the project.

We would like to show our greatest appreciation to Prof. Vivek Sehgal. We feel motivated every

time we get his encouragement. For his coherent guidance throughout the tenure of the project, we

feel fortunate to be taught by Prof. Vivek Sehgal, who gave us his unwavering support. Besides

being our mentor, he taught us that there is no substitute for hard work.

We will be always in debt of Prof. Punit Gupta for providing us his timely help and guidance.

We owe our heartiest thanks to Brig. (Retd.) S.P. Ghrera (HOD, CES/IT Department) who has

always inspired us to take initiatives and showed us the path for achieving our goal.

In the light of new developments and recent findings, we devote the task that was asked from us

at Jaypee University of Information Technology to “INTERFACING A ACCELEROMETER

WITH A MICROCONTROLLER”.

Yashu Garg(101236)

4

Table of Contents

 Page No.

1) Introduction

 - What is a Microcontroller? 5

 - Looking Inside Microcontroller 5

 - Microcontroller Vendors 9

 - Difference b/w Microprocessor & Microcontroller 12

 - Accelerometer 13

 - Max 232 & Programmer 17

2) Previous Study

 - Blinking a LED 20

 - Displaying On a LCD 23

 - Interfacing a Servo Motor with Arduino Uno 26

3) Interfacing ADXL 335 with Arduino Uno

 - Circuit Diagram 30

 - Pin Diagram 31

 - Code 32

 - Results 36

4) Future Scope 38

5) Conclusion 39

6) Tools & Techniques Used 40

7) References 41

 `

5

CHAPTER 1 - INTRODUCTION

What is a MICROCONTROLLER?

A microcontroller is a small computer on a single integrated circuit containing a processor core,

memory, and programmable input/output peripherals. Microcontrollers are designed for embedded

applications, in contrast to the microprocessors used in personal computers or other general

purpose applications.

Microcontrollers are used in automatically controlled products and devices, such as automobile

engine control systems, implantable medical devices, remote controls, office machines,

appliances, power tools, toys and other embedded systems.

 Looking Inside the MICROCONTROLLER

 Read Only Memory (ROM)

Read Only Memory (ROM) is a type of memory used to permanently save the program being

executed. The size of the program that can be written depends on the size of this memory. ROM

can be built in the microcontroller or added as an external chip, which depends on the type of the

microcontroller. Both options have some disadvantages. If ROM is added as an external chip, the

microcontroller is cheaper and the program can be considerably longer. At the same time, a number

of available pins is reduced as the microcontroller uses its own input/output ports for connection

to the chip. The internal ROM is usually smaller and more expensive, but leaves more pins

available for connecting to peripheral environment. The size of ROM ranges from 512B to 64KB.

 Random Access Memory (RAM)

Random Access Memory (RAM) is a type of memory used for temporary storing data and

intermediate results created and used during the operation of the microcontrollers. The content of

this memory is cleared once the power supply is off. For example, if the program performs an

addition, it is necessary to have a register standing for what in everyday life is called the “sum”.

For that purpose, one of the registers in RAM is called the "sum" and used for storing results of

addition. The size of RAM goes up to a few KBs.

 Electrically Erasable Programmable ROM (EEPROM)

The EEPROM is a special type of memory not contained in all microcontrollers. Its contents may

be changed during program execution (similar to RAM), but remains permanently saved even after

http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Input/output
http://en.wikipedia.org/wiki/Microprocessor
http://en.wikipedia.org/wiki/Personal_computer
http://en.wikipedia.org/wiki/Embedded_system

6

the loss of power (similar to ROM). It is often used to store values, created and used during

operation (such as calibration values, codes, values to count up to etc.), which must be saved after

turning the power supply off. A disadvantage of this memory is that the process of programming

is relatively slow. It is measured in milliseconds.

 Special Function Registers (SFR)

Special function registers are part of RAM memory. Their purpose is predefined by the

manufacturer and cannot be changed therefore. Since their bits are physically connected to

particular circuits within the microcontroller, such as A/D converter, serial communication module

etc., any change of their state directly affects the operation of the microcontroller or some of the

circuits. For example, writing zero or one to the SFR controlling an input/output port causes the

appropriate port pin to be configured as input or output. In other words, each bit of this register

controls the function of one single pin.

 Program Counter

Program Counter is an engine running the program and points to the memory address containing

the next instruction to execute. After each instruction execution, the value of the counter is

incremented by 1. For this reason, the program executes only one instruction at a time just as it is

written. However…the value of the program counter can be changed at any moment, which causes

a “jump” to a new memory location. This is how subroutines and branch instructions are executed.

After jumping, the counter resumes even and monotonous automatic counting +1, +1, +1…

 Central Processor Unit (CPU)

As its name suggests, this is a unit which monitors and controls all processes within the

microcontroller and the user cannot affect its work. It consists of several smaller subunits, of which

the most important are:

 Instruction decoder is a part of the electronics which recognizes program instructions and

runs other circuits on the basis of that. The abilities of this circuit are expressed in the

"instruction set" which is different for each microcontroller family.

 Arithmetical Logical Unit (ALU) performs all mathematical and logical operations upon

data.

 Accumulator is an SFR closely related to the operation of ALU. It is a kind of working

desk used for storing all data upon which some operations should be executed (addition,

shift etc.). It also stores the results ready for use in further processing. One of the SFRs,

called the Status Register, is closely related to the accumulator, showing at any given time

the "status" of a number stored in the accumulator (the number is greater or less than zero

etc.).

7

 Oscillator

Even pulses generated by the oscillator enable harmonic and synchronous operation of all circuits

within the microcontroller. It is usually configured as to use quartz-crystal or ceramics resonator

for frequency stabilization. It can also operate without elements for frequency stabilization (like

RC oscillator). It is important to say that program instructions are not executed at the rate imposed

by the oscillator itself, but several times slower. It happens because each instruction is executed in

several steps. For some microcontrollers, the same number of cycles is needed to execute any

instruction, while it's different for other microcontrollers. Accordingly, if the system uses quartz

crystal with a frequency of 20MHz, the execution time of an instruction is not expected 50nS, but

200, 400 or even 800 nS, depending on the type of the microcontroller!

 Timers/Counters

Most programs use these miniature electronic "stopwatches" in their operation. These are

commonly 8- or 16-bit SFRs the contents of which is automatically incremented by each coming

pulse. Once the register is completely loaded, an interrupt is generated!

If these registers use an internal quartz oscillator as a clock source, then it is possible to measure

the time between two events. If the registers use pulses coming from external source, then such a

timer is turned into a counter.

 Watchdog timer

The Watchdog Timer is a timer connected to a completely separate RC oscillator within the

microcontroller.

If the watchdog timer is enabled, every time it counts up to the program end, the microcontroller

reset occurs and program execution starts from the first instruction. The point is to prevent this

from happening by using a special command. The whole idea is based on the fact that every

program is executed in several longer or shorter loops.

If instructions resetting the watchdog timer are set at the appropriate program locations, besides

commands being regularly executed, then the operation of the watchdog timer will not affect the

program execution.

8

If for any reason (usually electrical noise in industry), the program counter "gets stuck" at some

memory location from which there is no return, the watchdog will not be cleared, so the register’s

value being constantly incremented will reach the maximum et voila! Reset occurs!

 Interrupt - electronics is usually faster than physical processes it should keep under

control. This is why the microcontroller spends most of its time waiting for something to

happen or execute. In other words, when some event takes place, the microcontroller does

something. In order to prevent the microcontroller from spending most of its time endlessly

checking for logic state on input pins and registers, an interrupt is generated. It is the signal

which informs the central processor that something attention worthy has happened. As its

name suggests, it interrupts regular program execution. It can be generated by different

sources so when it occurs, the microcontroller immediately stops operation and checks for

the cause. If it is needed to perform some operations, a current state of the program counter

is pushed onto the Stack and the appropriate program is executed. It's the so called interrupt

routine.

 Stack is a part of RAM used for storing the current state of the program counter (address)

when an interrupt occurs. In this way, after a subroutine or an interrupt execution, the

microcontroller knows from where to continue regular program execution. This address is

cleared after returning to the program because there is no need to save it any longer, and

one location of the stack is automatically available for further use. In addition, the stack

can consist of several levels. This enables subroutines’ nesting, i.e. calling one subroutine

from another.

There most commonly used Microcontroller in the world today

ATMEL AVR

The AVR is a modified Harvard architecture 8-bit RISC single chip microcontroller which was

developed by Atmel in 1996. The AVR was one of the first microcontroller families to use on-

chip flash memory for program storage, as opposed to one-time programmable ROM, EPROM,

or EEPROM used by other microcontrollers at the time.

http://en.wikipedia.org/wiki/Modified_Harvard_architecture
http://en.wikipedia.org/wiki/8-bit
http://en.wikipedia.org/wiki/Reduced_instruction_set_computer
http://en.wikipedia.org/wiki/Microcontroller
http://en.wikipedia.org/wiki/Atmel
http://en.wikipedia.org/wiki/Flash_memory
http://en.wikipedia.org/wiki/Programmable_read-only_memory
http://en.wikipedia.org/wiki/EPROM
http://en.wikipedia.org/wiki/EEPROM

9

Basic families

AVRs are generally classified into following:

 TinyAVR — the ATtiny series

 0.5–16 kB program memory

 6–32-pin package

 Limited peripheral set

 MegaAVR — the ATmega series

 4–512 kB program memory

 28–100-pin package

 Extended instruction set (multiply instructions and instructions for handling larger

program memories)

 Extensive peripheral set

 XMEGA — the ATxmega series

 16–384 kB program memory

 44–64–100-pin package (A4, A3, A1)

 Extended performance features, such as DMA, "Event System", and cryptography

support.

 Extensive peripheral set with ADCs

Microchip PIC

PIC is a family of modified Harvard architecture microcontrollers made by Microchip Technology,

derived from the PIC1650,originally developed by General Instrument's Microelectronics Division.

The name PIC initially referred to "Peripheral Interface Controller'" now it is "PIC'" only.

PICs are popular with both industrial developers and hobbyists alike due to their low cost, wide

availability, large user base, extensive collection of application notes, availability of low cost or

free development tools, and serial programming (and re-programming with flash memory)

capability.

The PIC architecture is characterized by its multiple attributes:

http://en.wikipedia.org/wiki/Atmel_AVR_ATtiny_comparison_chart
http://en.wikipedia.org/wiki/Analog-to-digital_converter
http://en.wikipedia.org/wiki/Modified_Harvard_architecture
http://en.wikipedia.org/wiki/Microcontroller
http://en.wikipedia.org/wiki/Microchip_Technology
http://en.wikipedia.org/wiki/General_Instrument

10

 Separate code and data spaces (Harvard architecture).

 A small number of fixed length instructions

 Most instructions are single cycle execution (2 clock cycles, or 4 clock cycles in 8-bit models),

with one delay cycle on branches and skips

 One accumulator (W0), the use of which (as source operand) is implied (i.e. is not encoded

in the opcode)

 All RAM locations function as registers as both source and/or destination of math and other

functions.[6]

 A hardware stack for storing return addresses

 A small amount of addressable data space (32, 128, or 256 bytes, depending on the family),

extended through banking

 Data space mapped CPU, port, and peripheral registers

.

Philips LPC

LPC is a family of 32-bit microcontroller integrated circuits by NXP Semiconductors (formerly

Philips Semiconductors). The LPC chips are grouped into related series that are based around

the same 32-bit ARM processor core, such as the Cortex-M4F, Cortex-M3, Cortex-M0+,

or Cortex-M0. Internally, each microcontroller consists of the processor core, static

RAM memory, flash memory, debugging interface, and various peripherals. The legacy LPC

families were based on the 8-bit 80C51 core.[2] As of February 2011, NXP had shipped over one

billion ARM processor-based chips.

http://en.wikipedia.org/wiki/Harvard_architecture
http://en.wikipedia.org/wiki/Accumulator_(computing)
http://en.wikipedia.org/wiki/Opcode
http://en.wikipedia.org/wiki/PIC_microcontroller#cite_note-6
http://en.wikipedia.org/wiki/Microcontroller
http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/NXP_Semiconductors
http://en.wikipedia.org/wiki/32-bit
http://en.wikipedia.org/wiki/ARM_architecture
http://en.wikipedia.org/wiki/ARM_Cortex-M4F
http://en.wikipedia.org/wiki/ARM_Cortex-M3
http://en.wikipedia.org/wiki/ARM_Cortex-M0%2B
http://en.wikipedia.org/wiki/ARM_Cortex-M0
http://en.wikipedia.org/wiki/Static_RAM
http://en.wikipedia.org/wiki/Static_RAM
http://en.wikipedia.org/wiki/Flash_memory
http://en.wikipedia.org/wiki/Intel_MCS-51
http://en.wikipedia.org/wiki/NXP_LPC#cite_note-LPC-Website-2
http://en.wikipedia.org/wiki/ARM_Holdings

11

Motorola’s Free scale 68HC11

The 68HC11 (6811 or HC11 for short) is an 8-bit microcontroller (µC) family introduced by

Motorola in 1985. Now produced by Free scale Semiconductor, it descended from the Motorola

6800 microprocessor. It is a CISC microcontroller. The 68HC11 devices are more powerful and

more expensive than the 68HC08microcontrollers, and are used in barcode readers, hotel card

key writers, amateur robotics, and various other embedded systems. The MC68HC11A8 was the

first MCU to include CMOS EEPROM.

http://en.wikipedia.org/wiki/Microcontroller
http://en.wikipedia.org/wiki/Freescale_Semiconductor
http://en.wikipedia.org/wiki/Motorola_6800
http://en.wikipedia.org/wiki/Motorola_6800
http://en.wikipedia.org/wiki/Microprocessor
http://en.wikipedia.org/wiki/Complex_instruction_set_computer
http://en.wikipedia.org/wiki/Freescale_68HC08
http://en.wikipedia.org/wiki/Barcode
http://en.wikipedia.org/wiki/Embedded_system

12

Difference between Microcontrollers & Microprocessors

Microprocessor Microcontroller

It is just a processor. Memory and I/O

components have to be connected externally

Micro controller has external processor along

with internal memory and i/O components

Since memory and I/O has to be connected

externally, the circuit becomes large.

Since memory and I/O are present internally,

the circuit is small.

Cannot be used in compact systems and hence

inefficient

Can be used in compact systems and hence it is

an efficient technique

Cost of the entire system increases Cost of the entire system is low

Due to external components, the entire power

consumption is high. Hence it is not suitable

to used with devices running on stored power

like batteries.

Since external components are low, total

power consumption is less and can be used

with devices running on stored power like

batteries.

Most of the microprocessors do not have

power saving features.

Most of the micro controllers have power

saving modes like idle mode and power saving

mode. This helps to reduce power consumption

even further.

Since memory and I/O components are all

external, each instruction will need external

operation, hence it is relatively slower.

Since components are internal, most of the

operations are internal instruction, hence speed

is fast.

Microprocessor have less number of registers,

hence more operations are memory based.

Micro controller have more number of

registers, hence the programs are easier to

write.

Microprocessors are based on von Neumann

model/architecture where program and data

are stored in same memory module

Micro controllers are based on Harvard

architecture where program memory and Data

memory are separate

Mainly used in personal computers Used mainly in washing machine, MP3 players

13

Microcontroller Used

The Microcontroller used as a part of this project is ATMEL’s AtMega 328P.

ATMEGA 328P MICROCONTROLLER

ATMEGA 328P

The ATmega328P is a single chip micro-controller created by Atmel and belongs to

the mega series.

The high-performance Atmel 8-bit AVR RISC-based microcontroller combines

 Flash memory - 32 KB ISP

 EEPROM - 1 KB

 SRAM - 2 KB

 23 general purpose I/O lines,

 32 general purpose working registers

 3 flexible timer/counters with compare modes, internal and external interrupts,

 Serial Programmable USART

 A byte-oriented 2-wire serial interface

 SPI serial port

 6-channel 10-bit A/D converter

 Internal oscillator

http://en.wikipedia.org/wiki/Integrated_circuits
http://en.wikipedia.org/wiki/Micro-controller
http://en.wikipedia.org/wiki/Atmel
http://en.wikipedia.org/wiki/8-bit
http://en.wikipedia.org/wiki/Atmel_AVR
http://en.wikipedia.org/wiki/RISC
http://en.wikipedia.org/wiki/Flash_memory
http://en.wikipedia.org/wiki/In-system_programming
http://en.wikipedia.org/wiki/EEPROM
http://en.wikipedia.org/wiki/Static_random-access_memory
http://en.wikipedia.org/wiki/Processor_register
http://en.wikipedia.org/wiki/Counters
http://en.wikipedia.org/wiki/Interrupts
http://en.wikipedia.org/wiki/USART
http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
http://en.wikipedia.org/wiki/A/D_converter
http://en.wikipedia.org/wiki/Electronic_oscillator

14

 Software selectable power saving modes.

The device operates between 1.8-5.5 volts. By executing powerful instructions in a single clock

cycle, the device achieves throughputs approaching 1 MIPS per MHz, balancing power

consumption and processing speed.

http://en.wikipedia.org/wiki/Million_instructions_per_second#Million_instructions_per_second

15

What is an Accelerometer?

An accelerometer is a device that measures acceleration. The acceleration measured by an

accelerometer is not necessarily the coordinate acceleration (rate of change of velocity).

The accelerometer is a built-in electronic component that measures tilt and motion. It is also

capable of detecting rotation and motion gestures such as swinging or shaking.

The most common use for it is to activate auto screen rotation on mobile devices when the user

changes their orientation from portrait to landscape or vice-versa.

Another modern application for the accelerometer is to control the mobile device music player

with gestures (Sony Ericsson Shake control or Samsung Motion play technologies).

Accelerometers are also utilized for enriching the gaming controls (navigating by tilting the device

instead of by pressing keys).

Another popular mobile phone feature based on an accelerometer is turn-to-mute. It allows user to

mute an incoming call, silence an alarm or pause the mobile music player simply by turning the

device face down.

Accelerometer Used

The Accelerometer used as a part of this project is ADXL 335.

ADXL 335

http://en.wikipedia.org/wiki/Proper_acceleration

16

The ADXL335 is a small, thin, low power, complete 3-axis accelerometer with signal conditioned

voltage outputs. The product measures acceleration with a minimum full-scale range of ±3 g. It

can measure the static acceleration of gravity in tilt-sensing applications, as well as dynamic

acceleration resulting from motion, shock, or vibration.

PIN DIAGRAM – ADXL335

The user selects the bandwidth of the accelerometer using the CX, CY, and CZ capacitors at the

XOUT, YOUT, and ZOUT pins. There are few bandwidths that can be selected to suit the task

needed. They range from 0.5 Hz to 1600 Hz for the X and Y axes and from 0.5 Hz to 550 Hz for

the Z axis.

The ADXL335 contains a Polysilicon surface-micro machined structure built on top of a silicon

wafer. Polysilicon springs suspend the structure over the surface of the wafer and provide a

resistance against acceleration forces. A differential capacitor, consisting of independent fixed

plates and plates attached to the moving mass, measures the deflection of the structure.

Acceleration unbalances the capacitor, which in turn, results in a sensor output with amplitude

proportional to the acceleration experienced.

·

17

Mechanical Sensor

The ADXL335 uses a single structure for sensing the three axes. Therefore, the axes’ sense

direction is orthogonal and has little cross-axis sensitivity. Mechanical misalignment is the

principal source of cross-axis sensitivity. However, this misalignment can be calibrated out at the

system level.

·Performance

Innovative design techniques make sure that high performance is achieved by the ADXL335. For

this reason, there is no quantization error or no monotonic behavior, and temperature hysteresis is

very low (usually less than 3mg over the -25 ̊C to +70 ̊C temperature range).

MAX232

The MAX232 is an IC, that converts signals from an RS-232 serial port to signals suitable for use

in TTL compatible digital logic circuits. The MAX232 is a dual driver/receiver and typically

converts the RX, TX, CTS and RTS signals.

The drivers provide RS-232 voltage level outputs (approx. ± 7.5 V) from a single + 5 V supply via

on-chip charge pumps and external capacitors. This makes it useful for implementing RS-232 in

http://en.wikipedia.org/wiki/RS-232
http://en.wikipedia.org/wiki/Transistor-transistor_logic
http://en.wikipedia.org/wiki/Volt
http://en.wikipedia.org/wiki/Charge_pump

18

devices that otherwise do not need any voltages outside the 0 V to + 5 V range, as power

supply design does not need to be made more complicated just for driving the RS-232 in this case.

The receivers reduce RS-232 inputs (which may be as high as ± 25 V), to standard 5 V TTL levels.

These receivers have a typical threshold of 1.3 V, and a typical hysteresis of 0.5 V.

http://en.wikipedia.org/wiki/Power_supply
http://en.wikipedia.org/wiki/Power_supply
http://en.wikipedia.org/wiki/Transistor-transistor_logic
http://en.wikipedia.org/wiki/Hysteresis

19

Programmer

The programmer used is ARDUINO UNO BOARD. The Arduino Uno is a microcontroller board

based on the ATmega328P. It has 14 digital input/output pins (of which 6 can be used as PWM

outputs), 6 analog inputs, a 16 MHz ceramic resonator, a USB connection, a power jack, an ICSP

header, and a reset button. It contains everything needed to support the microcontroller; simply

connect it to a computer with a USB cable or power it with a AC-to-DC adapter or battery to get

started.

Pin diagram Arduino Uno

20

CHAPTER 2 –PREVIOUS STUDY

As this project was altogether new and different, it needed the study of basics of Hardware,

circuits. Thus I had to go through the basic libraries for coding in Arduino, Implemented

the basic circuits & programs and then went through with the Project .

The basic programs implemented were

Blinking an LED

Hardware Required

 Arduino Uno Board

 LED’S

 AtMega 328P

Circuit

21

Schematic

Code

 #include <Blink.h>

int led = 13;

void setup()

{

 pinMode(led, OUTPUT);

}

void loop()

{

 digitalWrite(led, HIGH);

 delay(1000);

 digitalWrite(led, LOW);

 delay(1000);

}

22

Results

ORIGNAL CIRCUIT

 BLINKING LED

23

Displaying On a LCD Screen

Hardware Required

 Arduino Board

 LCD Screen

 Pin headers to solder to the LCD display pins

 10k Variable Resistance

 Breadboard

 Hook-up wire

Circuit

24

Schematic

Code

#include <LiquidCrystal.h>

LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

void setup()

{

 lcd.begin(16, 2);

 lcd.print("hello, world!");

}

void loop()

{

 lcd.setCursor(0, 1);

 lcd.print(millis()/1000);}

25

Results

 DISPLAYING ON A LED

26

Interfacing Servo Motor with Arduino Uno

Hardware Required

 Arduino Uno Board

 Servo Motor

 Hook Up Wires

Circuit

27

Schematic

Code for Arduino

#include <Servo.h>

Servo servo1; Servo servo2;

void setup() {

 pinMode(1,OUTPUT);

 servo1.attach(14); //analog pin 0

 //servo1.setMaximumPulse(2000);

 //servo1.setMinimumPulse(700);

 servo2.attach(15); //analog pin 1

 Serial.begin(19200);

 Serial.println("Ready");

}

28

void loop() {

 static int v = 0;

 if (Serial.available()) {

 char ch = Serial.read();

 switch(ch) {

 case '0'...'9':

 v = v * 10 + ch - '0';

 break;

 case 's':

 servo1.write(v);

 v = 0;

 break;

 case 'w':

 servo2.write(v);

 v = 0;

 break;

 case 'd':

 servo2.detach();

 break;

 case 'a':

 servo2.attach(15);

 break;

 }

 }

 Servo::refresh();

}

Processing Code

import processing.serial.* ;

int gx = 15;

int gy = 35;

int spos=90;

float leftColor = 0.0;

float rightColor = 0.0;

29

Serial port;

void setup()

{

 size(720, 720);

 colorMode(RGB, 1.0);

 noStroke();

 rectMode(CENTER);

 frameRate(100);

 println(Serial.list());

 port = new Serial(this, Serial.list()[1], 19200);

}

void draw()

{

 background(0.0);

 update(mouseX);

 fill(mouseX/4);

 rect(150, 320, gx*2, gx*2);

 fill(180 - (mouseX/4));

 rect(450, 320, gy*2, gy*2);

}

void update(int x)

{

 spos= x/4;

 port.write("s"+spos);

 leftColor = -0.002 * x/2 + 0.06;

 rightColor = 0.002 * x/2 + 0.06;

 gx = x/2;

 gy = 100-x/2;

}

30

Chapter 3: INTERFACING A ACCELEROMETER WITH A

MICROCONTROLLER

Hardware Required

 Arduino Uno Board

 ADXL 335 Accelerometer

 Hook Up Wires

Circuit

- Connect the Vcc of ADXL 335 to the 3.3V pin of the UNO Board

- The X out , Y out, Z out of ADXL 335 to the Analog 0 ,1 ,2 Pins of the UNO Board

- Connect the Gnd Pin of ADXL 335 to Gnd Pin of the UNO Board

31

Schematic

Working

An accelerometer is a device that measures acceleration. The acceleration measured by an

accelerometer is not necessarily the coordinate acceleration (rate of change of velocity).

The accelerometer is a built-in electronic component that measures tilt and motion. It is also

capable of detecting rotation and motion gestures such as swinging or shaking.

 Whenever an accelerometer is aligned in a certain direction it gives the degree

of tilt in that direction. This is what our Project does.

After making all the connections shown above, we tilt the accelerometer in different orientations

and notice that there is some changes in the reading shown in the Serial Monitor.

Accelerometers are widely used in our motion Gaming Consoles, Mobile Phones etc.

http://en.wikipedia.org/wiki/Proper_acceleration

32

Code for Arduino Uno

#include < accelerometer.h>

const int xpin = 0;

const int ypin = 1;

const int zpin = 2;

void setup()

{

 Serial.begin(9600);

}

void loop()

{

 Serial.print("BEG");

 Serial.print("X"); Serial.print(analogRead(xpin));

 Serial.print("Y"); Serial.print(analogRead(ypin));

 Serial.print("Z"); Serial.print(analogRead(zpin));

 Serial.println();

 delay(50);

}

Communication Code to retrieve data

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

using System.IO.Ports;

using System.Threading;

namespace ADXL335

{

 public partial class Form1 : Form

 {

 public Form1()

 {

 InitializeComponent();

 }

33

 private SerialPort serial_port_;

 private Thread thread_;

 private void refresh_button_Click(object sender, EventArgs e)

 {

 portlist_comboBox.Items.Clear();

 foreach (string s in SerialPort.GetPortNames())

 {

 portlist_comboBox.Items.Add(s);

 }

 }

 private void connect_button_Click(object sender, EventArgs e)

 {

 if ("Connect" == connect_button.Text)

 {

 if (-1 == portlist_comboBox.SelectedIndex)

 {

 MessageBox.Show("Select com port");

 return;

 }

 string port_name = portlist_comboBox.SelectedItem.ToString();

 serial_port_ = new SerialPort(port_name, 9600);

 serial_port_.Open();

 thread_ = new Thread(read_serial_port);

 thread_.Start();

 connect_button.Text = "Disconnect";

 }

 else

 {

 try

 {

 thread_.Abort();

 serial_port_.Close();

 }

 catch

 {

 }

 connect_button.Text = "Connect";

 }

 }

 private void read_serial_port()

34

 {

 while (serial_port_.IsOpen)

 {

 try

 {

 string str = serial_port_.ReadLine();

 set_axis(str);

 }

 catch (TimeoutException) { }

 }

 }

 delegate void SetTextCallback(string newText);

 private string str_;

 private void set_axis(string text)

 {

 if (this.X_progressBar.InvokeRequired)

 {

 SetTextCallback d = new SetTextCallback(set_axis);

 this.Invoke(d, new object[] { text });

 }

 else

 {

 str_ += text;

 int i1 = str_.IndexOf("BEG");

 int i2 = str_.IndexOf("BEG", 1 + i1);

 if ((-1 != i1) && (-1 != i2))

 {

 string current = str_.Substring(0, i2);

 current = current.Substring(current.IndexOf("BEG"));

 str_ = str_.Substring(i2);

 int beg_index = current.IndexOf("BEG");

 int x_index = current.IndexOf("X");

 int y_index = current.IndexOf("Y");

 int z_index = current.IndexOf("Z");

 if ((0 != beg_index) || (3 != x_index) || (-1 == y_index) || (-1 == z_index))

 {

 MessageBox.Show("Error " + current + ", beg_index = " +

beg_index.ToString() + ", x_index = " + x_index.ToString() + ", y_index = "

+ y_index.ToString() + ", z_index = " + z_index.ToString());

 return;

 }

35

 int x = Convert.ToInt32(current.Substring(x_index + 1, y_index - x_index - 1));

 int y = Convert.ToInt32(current.Substring(y_index + 1, z_index - y_index - 1));

 int z = Convert.ToInt32(current.Substring(z_index + 1));

 if (x > X_progressBar.Maximum) x = X_progressBar.Maximum;

 if (y > Y_progressBar.Maximum) y = Y_progressBar.Maximum;

 if (z > Z_progressBar.Maximum) z = Z_progressBar.Maximum;

 if (x < X_progressBar.Minimum) x = X_progressBar.Minimum;

 if (y < Y_progressBar.Minimum) y = Y_progressBar.Minimum;

 if (z < Z_progressBar.Minimum) z = Z_progressBar.Minimum;

 X_progressBar.Value = x;

 Y_progressBar.Value = y;

 Z_progressBar.Value = z;

 }

 }

 }

 private void Form1_FormClosed(object sender, FormClosedEventArgs e)

 {

 try

 {

 serial_port_.Close();

 }

 catch

 {

 }

 }

 }

}

36

Results using Serial Monitor

 CIRCUIT WITH ADXL 335 ACCELEROMETER

 CODE FOR ARDUINO

37

38

CHAPTER 4 – FUTURE SCOPE

Accelerometers are used in tilt sensing applications in Cell phones and also find use in Motion

gaming consoles. The various other fields in which accelerometers can be useful are:

Vibration Analysis

Measuring the frequency, strength, and signature of vibrations is useful in many machine health

and industrial monitoring applications. The accelerometers are capable of determining the above

parameters over a wide frequency and displacement range.

Other applications where vibration monitoring maybe useful are:

 Structural Vibration - analysis and identification of vibration sources and problems in

structures

 Product Testing - vibration and shock testing to identify potential design problems

 Acceptance Testing - testing and analysis to ensure products comply with specified

vibration tolerance limits

 Workplace Vibration - measurement and analysis of vibration from hand tools and other

equipment

Inertial Navigation

In inertial navigation acceleration sensors can be used for making distance measurements. Inertial

measurements are frequently required in the tracking of planes, boats, and automobiles over long

distances and longtime constants. Inertial navigation is an extremely demanding application for

sensors and many factors contribute to the performance of an inertial navigation system.

Alignment, scale factor errors, and offset errors are crucial, because a constant error in these

readings will result in a quadratic ally growing position error as given in the following equation:

Tilt / Angle Sensing

Angle sensing is the measurement of angles with an acceleration-based sensor. In most cases, these

measurements are made using the Earth's G field as a reference. For angles less than 200, you can

approximate the sine function with a linear response. Then the relationship between angle and

Vout is:

Angle = (Vout-Offset_Voltage)/Scale Factor

39

CHAPTER 5 – CONCLUSION

Through this Project, I got the basic idea of working with Microcontrollers and its applications.

Accelerometers are devices that are used to sense tilt & motion. This project taught me about

Accelerometers as well as interfacing it with Microcontrollers. The working & function of

Components like MAX 232 and Arduino Uno board were also understood really well. Thus this

Project enriched my knowledge and was found to be very beneficial.

40

CHAPTER 6 – TOOLS & TECHNIQUES USED

Proteus - It is a software for microprocessor simulation, schematic capture, and printed circuit

board (PCB) design. It is developed by Lab center Electronics. It combines the ISIS schematic

capture and ARES PCB layout programs to provide a powerful, integrated and easy to use suite of

tools for professional PCB Design.

Arduino IDE - The Arduino integrated development environment (IDE) is a cross-

platform application written in Java, and is derived from the IDE for the Processing programming

language and the Wiring projects. It is designed to introduce programming to artists and other

newcomers unfamiliar with software development. It includes a code editor with features such

as syntax highlighting, brace matching, and automatic indentation, and is also capable of compiling

and uploading programs to the board with a single click. A program or code written for Arduino

is called a "sketch".

Frit zing - Frit zing is an open source software initiative to support designers and artists ready to

move from physical prototyping to actual product. It was developed at the University of Applied

Sciences of Potsdam. The software is created in the spirit of Processing and Arduino and allows a

designer, artist, researcher, or hobbyist to document their Arduino-based prototype and create

a PCB layout for manufacturing.

http://en.wikipedia.org/wiki/Microprocessor
http://en.wikipedia.org/wiki/Printed_circuit_board
http://en.wikipedia.org/wiki/Printed_circuit_board
http://en.wikipedia.org/w/index.php?title=Labcenter_Electronics&action=edit&redlink=1
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Cross-platform
http://en.wikipedia.org/wiki/Cross-platform
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Processing_(programming_language)
http://en.wikipedia.org/wiki/Processing_(programming_language)
http://en.wikipedia.org/wiki/Wiring_(development_platform)
http://en.wikipedia.org/wiki/Syntax_highlighting
http://en.wikipedia.org/wiki/Brace_matching
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Potsdam
http://en.wikipedia.org/wiki/Processing_(programming_language)
http://en.wikipedia.org/wiki/Arduino
http://en.wikipedia.org/wiki/Printed_circuit_board

41

CHAPTER 7 – REFRENCES

- [1] Edward A. Lee and Sanjit A. Seshia, Introduction to Embedded

Systems, A Cyber-Physical Systems Approach

- [2] Sangiovanni-Vincentelli, A., Zeng, H., Di Natale, M., Marwedel,

Embedded Systems Development

WEB REFRENCES

- http://autosysprogs.blogspot.in/2011/02/adxl335-accelerometer.html

- http://medialappi.net/lab/equipment/sensors/adxl335/

- http://en.wikipedia.org/

- http://www.arduino.cc/

http://leeseshia.org/index.html
http://leeseshia.org/index.html
http://autosysprogs.blogspot.in/2011/02/adxl335-accelerometer.html
http://medialappi.net/lab/equipment/sensors/adxl335/
http://en.wikipedia.org/
http://www.arduino.cc/

42

43

