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                                                          Abstract 

 

Traditional bio surveillance algorithms detect disease outbreaks by looking for peaks in 

a uni-variate time series of health-care data. Current health-care surveillance data, 

however, are no longer simply uni-variate data streams. Instead, a wealth of spatial, 

temporal, demographic and symptomatic information is available. Here is an early 

disease outbreak detection algorithm called What's Strange About Recent Events 

(WSARE), which uses a multivariate approach to improve its timeliness of detection. 

WSARE employs a rule-based technique that compares recent health-care data against 

data from a baseline distribution and finds subgroups of the recent data which shows 

trend. In addition, health-care data also pose difficulties for surveillance algorithms 

because of inherent temporal trends such as seasonal effects and day of week variations. 

WSARE approaches this problem using a Bayesian network to produce a baseline 

distribution that accounts for these temporal trends. 
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1.1)  Introduction 

 

Detection systems inspect routinely collected data for anomalies and raise an alert upon 

discovery of any significant deviations from the norm. Here is how to tackle the problem of 

early disease outbreak detection, in which the disease outbreak can be due to either natural 

causes or a bioterrorist attack. 

 

In this surveillance infrastructure, the database which was used was from the emergency 

department (ED) cases from several hospitals in a city. Each record in this multivariate database 

contains information about the individual who is admitted to the ED. This information includes 

fields such as age, gender, symptoms exhibited, home zip code, work zip code, and time of 

arrival at the ED.  When a severe epidemic sweeps through a region, there will obviously be 

extreme perturbations in the number of ED visits. While these dramatic upswings are easily 

noticed during the late stages of an epidemic, the challenge is to detect the outbreak during its 

early stages and mitigate its effects.  

 

Traditional anomaly detection algorithms are inappropriate for this domain. In the 

traditional approach, a probabilistic model of the baseline data is built. Anomalies are identified 

as individual data points with a rare attribute or rare combination of attributes. If we apply 

traditional anomaly detection to the ED data, the results would be, for example, a patient that is 

over a hundred years old living in a sparsely populated region of the city. These isolated 

outliers in attribute space are not at all indicative of a disease outbreak. 

 

     This technique works well if we know beforehand which disease to monitor.  In this 

situation, a non-specific disease monitoring is to performed because there is no knowledge 

about the disease to expect. 

 

     The approach to early disease outbreak detection uses a rule-based anomaly pattern 

detector called What's Strange About Recent Events (WSARE). WSARE operates on discrete, 

multidimensional data sets with a temporal component. 
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     The 2.0 and 3.0 of the WSARE algorithm are presented here. These algorithms only 

differ in how they create the baseline distribution; all other steps in the WSARE framework 

remain identical. WSARE 2.0 uses raw historical data from selected days as the baseline while 

WSARE 3.0 models the baseline distribution using a Bayesian network. 

 

 

1.2) Problem Statement 

    

Detection of an “epidemic” as early as possible and to mine anomalous pattern of specific 

characteristics whose recent pattern of illness is anomalous relative to historical patterns. Where 

historical patterns are captured using Bayesian network. 

 

1.3)  Motivation 

 
What motivated me to choose this project was the concern about the detection of an epidemic as 

early as possible. The idea was to differentiate among the diseases whose early symptoms are 

similar. 

 
1.4) Deliverables of the Project 

 
The deliverables of the project is an algorithm which detects an epidemic at an early stage using 

the non Bayesian approach as well as the Bayesian Network approach. 
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                       Chapter – 2 

Literature Survey 
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2.1) What's Strange About Recent Events 

 

The basic question asked by all detection systems is whether anything strange has occurred in 

recent events. This question requires defining what it means to be recent and what it means to be 

strange. WSARE algorithm considers all patient records falling on the current day under 

evaluation to be recent events. Note that this definition of recent is not restrictive – the approach 

is fully general and recent can be defined to include all events within some other time period 

such as over the last six hours. In order to define an anomaly, we need to establish the concept of 

something being normal.  

In WSARE version 2.0, baseline behaviour is assumed to be captured by raw historical 

data from the same day of the week in order to avoid environmental effects such as weekend 

versus weekday differences in the number of ED cases. This baseline period must be chosen 

from a time period similar to the current day. This can be achieved by being close enough to the 

current day to capture any seasonal or recent trends. On the other hand, the baseline period must 

also be sufficiently distant from the current day. 

 If the baseline period is too close to the current day, the baseline period will quickly 

incorporate the outbreak cases as time progresses. In the description of WSARE 2.0, the 

assumption is that the baseline behaviour is captured by records that are in the set baseline days. 

Typically, baseline days contains the days that are 35, 42, 49, and 56 days prior to the day under 

consideration. Later in the report the illustration of the version 3.0 of WSARE automatically 

generates the baseline using a Bayesian network. The events that fit a certain rule for the current 

day are termed as Crecent. Similarly, the number of cases matching the same rule from the baseline 

period will be called Cbaseline. As an example, suppose the current day is Tuesday December 30, 

2003. The baseline used for WSARE 2.0 will then be November 4, 11, 18 and 25 of 2003as seen 

in Figure 1. These dates are all from Tuesdays in order to avoid day of week variations. 
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Here is the schematic overview of the algorithm which will be used in the implementation of the 

project and the table 1 shows the main parameters of WSARE. 

WSARE first finds the best scoring rule over events occurring on the current day using a 

greedy search. The score of a rule is determined by comparing the events on the current day 

against events in the past. More specifically, the comparison if the ratio between certain events 

on the current day and the total number of events on the current day differ dramatically between 

the recent period and the past. Following the score calculation, the best rule for that day has its p-

value estimated by a randomization test. The p-value for a rule is the likelihood of finding a rule 

with as good a score under the hypothesis that the date and the other attributes are independent. 

If the algorithm is ran on a day-by-day basis we would end at this step. However, if we are 

looking at a history of days and we want to control for some level of false discoveries over this 

group of days, we would need the additional step of using the False Discovery Rate (FDR) 

method to determine which of the p-values are significant. The days with significant p-values are 

returned as the anomalies. 
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          Figure 1: A schematic overview of the steps involved in the WSARE algorithms. 

 

 

 

 
                                    Table 1: The main parameters in WSARE. 
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2.1.1) WSARE (2.0) 

 

The algorithms differ only in how they create the baseline while all of the other steps remain 

identical. Figure 2 shows how the baseline of WSARE 2.0 is created. The other steps are 

described in the later sections. 

November 2003  
Su Mo Tu We Th Fr Sa 1 2  

3  4  5  6  7  8 
9 10 11 12 13 14 15 
16 17 18 19 20 21 22 
23 24 25 26 27 28 29 
30 

 
December 2003 

Su Mo Tu We Th Fr Sa 
 1 2 3 4 5 6 
7 8 9 10 11 12 13 
14 15 16 17 18 19 20 
21 22 23 24 25 26 27 
28 29 30 31    

 
Figure 2: The baseline for WSARE 2.0 if the current day is December 30, 2003 

  
 
2.1.2) One Component Rule 

 
 
In order to illustrate this algorithm, suppose we have a large database of 1,000,000 ED records 

over a two-year span. This database contains roughly 1370 records a day. Suppose we treat all 

records within the last 24 hours as “recent” events. In addition, we can build a baseline data set 

out of all cases from exactly 35, 42, 49, and 56 days prior to the current day. We then combine 

the recent and baseline data to form a record subset called DBi, which will have approximately 

5000 records. 

 The algorithm proceeds as follows. For each day i in the surveillance period, retrieve the 

records belonging to DBi. We first consider all possible one-component rules. For every possible 
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attribute value combination, obtain the counts Crecent and Cbaseline from the data set DBi. As an 

example, suppose the attribute under consideration is Age for the ED case. There are 3 possible 

values for Age (for making the computation easy), ranging between child , senior and working 

persons. We start with the rule Age = child and count the number of cases for the current day i 

that have Age =child and those that have Age! = child. The cases from five to eight weeks ago 

are subsequently examined to obtain the counts for the cases matching the rule and those not 

matching the rule.  

Later in the report the code for calculating one component rule is given. The result of the 

code of one component rule is given in Figure 3, in the form of a two-by-two contingency table. 

 

 

 
 

C
recent 

C
baseline 

Age = child 6 496 
   

Age!= child 40 9504 
 

Table 2: A Sample 2x2 Contingency Table 

 
 

                        
2.1.3)  Two Component Rule 

At this point, the best one component rule for a particular day has been found. We will refer to 

the best one component rule for day i as BR1i.. The algorithm then attempts to find the best two 

component rule for the day by adding on one extra component to BR1i through a greedy search. 

This extra component is determined by supplementing BR1i with all possible attribute-value 

pairs, except for the one already present in BR1i , and selecting the resulting two component rule 

with the best score.  

Scoring is performed in the exact same manner as before, except the counts Crecent and 

Cbaseline are calculated by counting the records that match the two component rule. The best two-

component rule for day i is subsequently found and we will refer to it as BR2i. Suppose BR1i has 

as its first component the attribute-value pair C1 =V1. Furthermore, let BR2i’s components be C1 

= V1 and C2 = V2. Adding the component C2 = V2 to BR1i may not result in a better scoring 
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rule. During the search for the best scoring two component rule, we only consider two 

component rules in which adding either component has a significant effect. Determining if either 

component has a significant effect can be done through two hypothesis tests. In the first 

hypothesis test, use Fisher’s exact test to determine the score of adding C2 =V2 to the one 

component rule C1 =V1. Similarly, in the second hypothesis test, we use Fisher’s exact test to 

score the addition of the component C1 =V1 to C2 =V2. The 2-by-2 contingency tables used by 

the two hypothesis tests 

are shown in Table 2. 

 

 

                            Table 2: 2x2 Contingency Tables for a Two Component Rule 

 

Once the scores for both tables are determined, we need to determine if they are significant or 

not. A score is considered significant if the result of a hypothesis test is significant at the a = 0.05 

level. If the scores for the two tables are both significant, then the presence of both components 

has an effect. As a result, the best rule overall for day i is BR2i. On the other hand, if any one of 

the scores is not significant, then the best rule overall for day i is BR1i. 

. 
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 2.1.4) Finding the p-value for a Rule 

 

The algorithm above for determining scores is prone to over fitting due to multiple hypothesis 

testing. Even if data were generated randomly, most single rules would have insignificant p-

values but the best rule would be significant if we had searched over 1000 possible rules. In 

order to illustrate this point, suppose we follow the standard practice of rejecting the null 

hypothesis when the p-value is < a, where a = 0.05. In the case of a single hypothesis test, the 

probability of a false positive under the null hypothesis would be a, which equals 0.05. On the 

other hand, if we perform 1000 hypothesis tests, one for each possible rule under consideration, 

then the probability of a false positive could be as bad as 1−(1−0.05)1000 _ 1, which is much 

greater than 0.05 (Miller et al., 2001). Thus, if the algorithm returns a significant p-value, we 

cannot accept it at face value without adding an adjustment for the multiple hypothesis tests we 

performed. 

The use of a randomization test, under the null hypothesis of this randomization test, the 

date and the other ED case attributes are assumed to be independent. Consequently, the case 

attributes in the data set DBi remain the same for each record but the date field is shuffled 

between records from the current day and records from five to eight weeks ago. The P-value was 

calculated by the following method: 
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C-recent-> 

C-baseline 

 Home 

location=NW    

  Home 

location!=NW   
Row Total 

Home location=NW 

   
a b a + b 

 Home 

location!=NW   
c d c + d 

Column Total a + c b + d 
a + b + c + d 

(=n) 

 

 

 

 

 
2.1.5)  WSARE 3.0 
 

Detection algorithms operate by subtracting away the baseline from recent data and raising an 

alarm if the deviations from the baseline are significant. The challenge facing all such systems is 

to estimate the baseline distribution using data from historical data. In general, determining this 

distribution is extremely difficult due to the different trends present in surveillance data. 

Seasonal variations in weather and temperature can dramatically alter the distribution of 

surveillance data. For example, flu season typically occurs during mid-winter, resulting in an 

increase in ED cases involving respiratory problems.  Day of week variations make up another 
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period choosing the wrong baseline distribution can have dire consequences for an early 

detection system. The system would consider high counts of flu-like symptoms to be normal. If 

an anthrax attack occurs, it would be detected late, if at all. 

 

 

 
2.1.6)  Creating the Baseline Distribution 
 
 

 

Learning the baseline distribution involves taking all records prior to the past 24 hours and 

building a Bayesian network from this subset. During the structure learning, we differentiate 

between environmental attributes, which are attributes that cause trends in the data, and response 

attributes, which are the remaining attributes. The environmental attributes are specified by the 

user based on the user's knowledge of the problem domain. If there are any latent environmental 

attribute that are not accounted for in this model, the detection algorithm may have some 

difficulties.  

While learning the structure of the Bayesian network, environmental attributes are 

prevented from having parents because we are not interested in predicting their distributions, but 

rather, we want to use them to predict the distributions of the response attributes. In general, any 

structure learning algorithm can be used in this step as long as it follows this restriction. In fact, 

the structure search can even exploit this constraint by avoiding search paths that assign parents 

to the environ-mental attributes. 

Optimal Reinsertion is a larger scale search operator that is much less prone to local 

optima. Optimal Reinsertion first picks a target node T from the DAG, disconnects T from the 

graph, and efficiently finds the optimal way to reinsert T back into the graph according to the 

scoring function. 
 

 Environmental attributes, however, can also include any source of information that 

accounts for recent changes in the data. For example, suppose we detect that a botulism outbreak 

has occurred and we would still like to be on alert for any anthrax releases. Incorporating such 

knowledge into the Bayesian network allows WSARE to treat events due to the botulism 

outbreak as part of the baseline. 
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          Once the Bayesian network is learned, we have a joint probability distribution for the 

data. We would like to produce a conditional probability distribution, which is formed by 

conditioning on the values of the environmental attributes. Suppose that today is February 21, 

2003. If the environmental attributes were Season and Day o f Week, we would set Season = 

Winter and Day o f Week = Weekday. Let the response attributes in this example be X1, ..., Xn. 

We can then obtain the probability distribution P(X1, ..., Xn | Season = Winter, Day of Week = 

Weekday) from the Bayesian network. For simplicity, we represent the conditional distribution as 

a data set formed by sampling a large number of records from the Bayesian network conditioned 

on the environmental attributes. The number of samples is specified by the parameter num 

baseline samples, which has to be large enough to ensure that samples with rare combinations of 

attributes will be present. In general, this number will depend on the learned Bayesian network's 

structure and the parameters of the network. We chose to sample 10000 records because we 

determined empirically that this number is a reasonable compromise between running time and 

accuracy on our data. We will refer to this sampled data set as DBbaseline. The data set 

corresponding to the records from the past 24 hours of the current day will be named DBrecent . 

We used a sampled data set instead of using inference mainly for simplicity. Inference 

might be faster than sampling to obtain the conditional probability P(X1, . . . , Xn | 

Environmental Attributes), especially when the learned Bayesian networks are simple. 

However, if inference is used, it is somewhat unclear how to perform the randomization test. 

With sampling, on the other hand, we only need to generate DBbaseline once and then we can 

use it for the randomization test to obtain the p-values for all the rules. In addition, sampling 

is easily done in an efficient manner since environmental attributes have no parents. While a 

sampled data set provides the simplest way of obtaining the conditional distribution. 
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2.2)  Introduction to Bayesian Networks 

 
 Bayesian networks are DAGs whose nodes represent random variables. 

 Edges represent conditional dependencies  (or can be treated as causal) 

 Nodes that are not connected represent variables that are conditionally independent of 

each other. 

  Each node has a probability function (assuming discrete setting). 

 
 

 
    Inference in Bayesian Networks: 

 Causal 

 Diagnostic 

 
 
Why Bayesian Network? 

The graphical model has several advantages for data analysis: 

 A Bayesian network can be used to learn causal relationships, and hence can be used to 

gain understanding about a problem domain and to predict the consequences of 

intervention.  

 As the model has both a causal and probabilistic semantics, it is an ideal representation 

for combining prior knowledge (which often comes in causal form) and data. 
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How  Bayesian framework is useful in solving an epidemic problem? 

 It helps in modeling the domain which is can prove useful in  comparing  the recent 

events (current observations) with the historical data (learnt Bayesian model) using 

Bayesian inference.  

 

 
                                 Figure 3: The city Bayesian Netwok used. 
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Chapter – 3 

REQUIREMENT ELICITATION    

AND ANALYSIS  
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3.1) NetBeans 

 

NetBeans IDE is the official IDE for Java 8. With its editors, code analysers, and converters, you 

can quickly and smoothly upgrade your applications to use new Java 8 language constructs, such 

as lambdas, functional operations, and method references. 

Batch analysers and converters are provided to search through multiple applications at the 

same time, matching patterns for conversion to new Java 8 language constructs. With its 

constantly improving Java Editor, many rich features and an extensive range of tools, templates 

and samples, NetBeans IDE sets the standard for developing with cutting edge technologies out 

of the box. 

            In this project Netbeans was used for all the coding part of one component rule as well of 

the two component rule. 

 

3.2) Netica 

Netica was useful in learning the desired Bayesian network with the help of the given data, the 

conditional probability tables were developed by Netica. Which were very useful in the later 

course. Netica is a powerful, easy-to-use, complete program for working with Bayesian networks 

and influence diagrams. It has an intuitive and smooth user interface for drawing the networks. 

Once a network is created, the knowledge it contains can be transferred to other networks by 

cutting and pasting, or saved in modular form by creating a library of nodes with disconnected 

links. Netica can use the networks to perform various kinds of inference using the fastest and 

most modern algorithms. Given a new case of which we have limited knowledge, Netica will 

find the appropriate values or probabilities for all the unknown variables. These values or 

probabilities may be displayed in a number of different ways, including bar graphs and meters. 

The case may conveniently be saved to a file, and later brought back into the network (or a 
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different network) for further querying, or to take into account new information about the case. 

Netica can use influence diagrams to find optimal decisions which maximize the expected values 

of specified variables. Netica can construct conditional plans, since decisions in the future can 

depend on observations yet to be made, and the timings and inter-relationships between decisions 

are considered. Netica can be used to transform a network in a number of ways. Variables that 

are no longer of interest may be removed without changing the overall relationships between the 

remaining variables (technically, the probabilities are "summed out" when we don't know the 

variable's value, and a more complex operation is used when we do). Probabilistic models may 

be explored by such operations as reversing individual links of the network, removing or adding 

causal influences, optimizing one decision at time, etc. These operations may be done with just a 

click of the mouse, which makes Netica very suitable for easy exploring, and for teaching belief 

network and influence diagram concepts. 

 

3.3) B Course 

 

B course is a web based data analysis tool for Bayesian modeling, in particular dependence and 

classification modeling. It can also be used as an interactive tutorial which provides you with 

data sets that have been prepared in advance. B-Course can be used as an analysis tool for any 

research where dependence or classification modeling based on data is of interest.  
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4.1) Implementation of the Algorithm 

In order to implement the algorithm a given data set was used.  Each line in a data set represents 

a health care record where a person in the simulation city did one of three things: 

Visit an ED department, purchase medication, or was absent from school/work. 

The fields in the data set can take on the following values: 

1. XY: The region the case comes from (NW, N, NE, W, C, E, SW, S, SE) 

2. age: child, working or senior 

3. gender: male or female 

4. flu: none, low, high or decline 

5. day_of_week: sat, sun or weekday 

6. weather: hot or cold 

7. season: winter, spring, summer or fall 

8. action: purchase, evisit or absent 

9. reported_symptom: none, respiratory, nausea or rash 

10. drug: none, nyquil, aspirin or vomit-b-gone 

11. date: The date on which he/she visited the ED department. 

12. anthrax: Whether anthrax broke on that particular date or not. 
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                                                      Figure 4: The data set used. 
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4.1.1) WSARE (2.0) 

In order to implement WSARE (2.0) the above dataset was used. The day in which anthrax=yes 

was treated as the current day Crecent and the remaining dataset was used as Cbaseline the algorithm 

was ran using these.  

 

Calculating one-component rule:  

Algorithm:  

 

function read 

set the current date 

 read the input from the excel file 

 initialise variables, string 

 set data in string s 

 input the component name, row number in string 

 for i=0 to sheet.getRow()    //calculating the counts for the  

                                       current day. 

  read the cell (c,i) 

if  cell.getContents.eqauls(str) 

   increment c by 1 

  else 

   increment d by 1 

 for i=0 to sheet.getRows()  //calculating the counts for baseline days. 
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                        read the cell (c,i) 

  if cell.getContents.eqauls(str) 

   increment a by 1 

  else 

 increment b by 1 

calculate pval 

p=calp() 

display pval, a, b, c, d 

function calp(n) 

 if(n<0) 

  display error 

 else 

  for c=1 to n 

  fact= fact+ log© 

  k=(long) exp(fact) 

return k.  
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Expected result: 

 

 C
recent 

C
baseline 

Reported symptom = 
respiratory 13 6335 

   

Reported symptom! = 

respiratory 26 17312 
 

Table 3: A expected 2x2 Contingency Table. 

 

 

Real time result: 

  

 

 
 
                                                                 Figure 5: One-component result 

 

The given dataset was used in case of two component rule. The day in which anthrax=yes was 

treated as the current day Crecent and the remaining dataset was used as Cbaseline the algorithm 

was ran. 
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Calculating one-component rule:  

Algorithm: 

function read 

initialise the current date as string s 

initialise string ‘bb’ to all values of data 

for i=0 to 10 

 for a=0 to 9 

  for j=i to 10 

   for p=0 to 9  

    if bb[i][a].equals ‘0’ or bb[i][p].eqauls ‘0’ 

     break 

    else 

     increment flag by 1 

    ss[flag][k]=bb[i][p] 

    ss[flag][k1]=bb[i][j] 

   for i=0 to sheet.getcol() 

    for a=2 to sheet.getrow() 

     for j=i+1 to sheet.getcol() 

      for p=0 to sheet.getrow() 
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       cell=sheet.getcell(i,0) 

       cell1=sheet.getcell(j,p) 

       cell2=sheet.getcell(s,0) 

       q=cell.getcontents() 

       qw=cell.setcontents() 

     for m=0 to flag+1 

      if(q equals (ss[a][0]) and qw(ss[a][1]) 

      if(cell.getcontent equals (s)) 

      increment a by 1 

      increment b[x] by 1 

                                               else 

      increment c[x] by 1 

      increment d[x] by 1 

end 

for m=0 to flag+1 

 calculate p[x] and cell 

find max of p[] 

for m=0 to flag+1 

 display ss[m][a] + ss[a][0] 
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 display a[m]+b[m]+c[m]+d[m]+p[m] 

calculate pval 

p=calp() 

display pval, a[], b[], c[], d[] 

function calp(n) 

 if(n<0) 

  display error 

 else 

  for c=1 to n 

  fact= fact+ log© 

  k=(long) exp(fact) 

return k.  

end. 

 

 Expected result: 

  

 C
recent 

C
baseline 

Reported symptom = 
respiratory XY=NW 4 335 

   

Reported symptom! = 

respiratory XY!=NW 44 1254 
 
                                      Table 4: A expected 2x2 Contingency Table 
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Real time result: 

 

                                       
 

                                        Figure 6: Two-component result 

The real time results were not same as the expected the expected results in the case of two-

component rule. 

 

 

 

 

 

 

 

4.1.2) WSARE (3.0) 

In order to implement WSARE (3.0) the above dataset was used and the Bayesian network was 

learned using B Course without the condition probability table. Netica was used to learn the 

same Bayesian network with the conditional probability tables. The data was used to learn these 

Bayesian networks. 
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Bayesain Network without the probability tables : 

 

 
                                                  Figure 7: Bayesian Network using B course 
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Bayesian Network with the probability tables: 

 

 
                                               Figure 8: Bayesian Network using Netica. 

Using Netica the following data set was found which was used as the baseline data for further 

calculations: 

NumCases A XY 

25 t t 

25 t f 

25 f t 

25 f f 
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5.1) Code to calculate the p-value and one component rule: 

package excel; 

import java.io.File; 

import java.io.IOException; 

import static java.lang.Math.exp; 

import static java.lang.Math.log; 

import java.util.Scanner; 

import jxl.Cell; 

import jxl.CellType; 

import jxl.Sheet; 

import jxl.Workbook; 

import jxl.read.biff.BiffException; 

public class one_component  

{ 

    private String inputFile; 

    public void setInputFile(String inputFile)  

    { 

        this.inputFile = inputFile; 

    } 

    public void read() throws IOException  

    { 

        String s = "JAN-01-2002"; 

        String str; 
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        Scanner key=new Scanner(System.in); 

        System.out.println("enter the component"); 

        str=key.next(); 

        System.out.println("enter the row no(0-9)"); 

        int e=key.nextInt(); 

        int c = 0, r = 0, none = 0, nau = 0; 

        File inputWorkbook = new File(inputFile); 

        Workbook w; 

        try  

        { 

            w = Workbook.getWorkbook(inputWorkbook); 

            Sheet sheet = w.getSheet(0); 

            //Total cases 

            for (int i = 0; i < sheet.getRows(); i++)  

            { 

                Cell cell = sheet.getCell(e, i); 

                CellType type = cell.getType(); 

                if (cell.getContents().equals(str))  

                { 

                    r++; 

                }  

                else  

                { 
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                    none++; 

                } 

            } 

            System.out.println(str+" :"+ r); 

            System.out.println("Other than "+str+":" + none); 

        //Date wise 

            for (int i = 0; i < sheet.getRows(); i++)  

            { 

                Cell cell = sheet.getCell(e, i); 

                Cell cell1 = sheet.getCell(10, i); 

                if (cell1.getContents().equals(s))  

                { 

                    CellType type = cell.getType(); 

                    if (cell.getContents().equals(str))  

                    { 

                        c++; 

                    }  

                    else  

                    { 

                        nau++; 

                    } 

                } 

            } 
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            System.out.println("Date "+str+":" + c); 

            System.out.println("Date Other than"+str+":"+ nau); 

        }  

        catch (BiffException ef)  

        { 

            ef.printStackTrace(); 

        } 

        double p; 

        p = (cal(c + nau) * cal(r + none) * cal(c + r) * cal(nau + none)) / (cal(r) * cal(c) * 

cal(none) * cal(nau)); 

        System.out.println("P value is " + p); 

    } 

     

    public double cal(double n)  

    { 

        double c, fact = 0; 

        long k = 0; 

        if (n < 0)  

        { 

            System.out.println("Number should be non-negative."); 

        }  

        else if(n==0) 

            k=1; 
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        else  

        { 

            for (c = 1; c <= n; c++)  

            { 

                fact += log(c); 

                k = (long) exp(fact); 

            } 

        } 

        return k; 

    } 

     

    public static void main(String[] args) throws IOException  

    { 

        one_component test = new one_component(); 

        test.setInputFile("C:\\Users\\sony\\Documents\\NetBeansProjects\\Excel1\\aa1.xls"); 

        test.read(); 

    } 

} 
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5.2) Code to calculate the p-value and two component rule: 

 

import java.io.File; 

import java.io.IOException; 

import static java.lang.Math.exp; 

import static java.lang.Math.log; 

import java.util.Scanner; 

import jxl.Cell; 

import jxl.CellType; 

import jxl.Sheet; 

import jxl.Workbook; 

import default_package.*; 

import jxl.read.biff.BiffException; 

public class excelf extends NewClass 

{ 

    private String inputFile; 

    public void setInputFile(String inputFile)  

    { 

        this.inputFile = inputFile; 

    } 

    public void read() throws IOException  

    { 

        String s = "JAN-01-2002"; 
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        long flag2 = 0; 

        int a1=0,b1=0,c1=0,d1=0; 

        String ss[][] = new String[599][2]; 

        int i = 0, j = 0, k = 0, a = 0, flag = 0,m=0; 

        String q, qw; 

        int aa[] = new int[599]; 

        int b[] = new int[599]; 

        int c[] = new int[599]; 

        int d[] = new int[599]; 

        String bb[][] = { 

            {"NW", "N", "NE", "W", "C", "E", "SW", "S", "SE"}, 

            {"WORKING", "SENIOR", "CHILD", "0", "0", "0", "0", "0", "0"}, 

            {"male", "female", "0", "0", "0", "0", "0", "0", "0"}, 

            {"none", "high", "decline", "low", "0", "0", "0", "0", "0"}, 

            {"weekday", "sat", "sun", "0", "0", "0", "0", "0", "0"}, 

            {"cold", "hot", "0", "0", "0", "0", "0", "0", "0"}, 

            {"winter", "summer", "fall", "spring", "0", "0", "0", "0", "0"}, 

            {"evisit", "purchase", "absent", "0", "0", "0", "0", "0", "0"}, 

            {"none", "repiratory", "nausea", "0", "0", "0", "0", "0", "0"}, 

            {"none", "vomit-b-gone", "aspirin", "nyquill", "0", "0", "0", "0", "0"} 

        }; 

        String str,str1; 

        Scanner key=new Scanner(System.in); 



42 
 

        System.out.println("enter the first component"); 

        str=key.next(); 

        System.out.println("enter the row no(0-9)"); 

        int e=key.nextInt(); 

        System.out.println("enter the second component"); 

        str1=key.next(); 

        System.out.println("enter the row no(0-9)"); 

        int e1=key.nextInt(); 

        File inputWorkbook = new File(inputFile); 

        Workbook w; 

        for (int y = 0; y < 599; y++)  

        { 

            aa[y] = 0; 

            b[y] = 0; 

            c[y] = 0; 

            d[y] = 0; 

        } 

         

        //Cases from 2d Array 

        for (i = 0; i < 10; i++)  

        { 

            for (a = 0; a < 9; a++)  

            { 
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                for (j = i + 1; j < 10; j++)  

                { 

                    for (k = 0; k < 9; k++)  

                    { 

                        if (bb[i][a].equals("0") || bb[j][k].equals("0"))  

                        { 

                            break; 

                        }  

                        else  

                        { 

                            flag++; 

                            ss[flag][0] = bb[i][a]; 

                            ss[flag][1] = bb[j][k]; 

                        } 

                    } 

                } 

            } 

        } 

        //Reading of excel file and comparing and calculating aa,b,c,d,p 

        try 

        { 

            w = Workbook.getWorkbook(inputWorkbook); 

            Sheet sheet = w.getSheet(0);             
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            for (i = 0; i < sheet.getColumns(); i++)  

            { 

                for (a = 2; a < sheet.getRows(); a++)  

                { 

                    for (j = i + 1; j < sheet.getColumns(); j++)  

                    { 

                        for (k = 2; k < sheet.getRows(); k++)  

                        { 

                            Cell cell = sheet.getCell(i, a); 

                            Cell cell1 = sheet.getCell(j, k); 

                            Cell cell2 = sheet.getCell(10, a); 

                            //System.out.println(cell2.getContents()); 

                            CellType type = cell.getType(); 

                            CellType type1 = cell1.getType(); 

                            q = cell.getContents(); 

                            qw = cell1.getContents(); 

                            //flag2++; 

                            //for (m = 0; m < 599; m++)  

                            //{ 

                                if ((q.equals(str)) && (qw.equals(str)))  

                                { 

                                    System.out.println("kk"); 

                                    if (cell2.getContents().equals(s))  
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                                    { 

                                        aa[m]++;a1++; 

                                    } 

                                    else 

                                    { 

                                        b[m]++;b1++; 

                                    }  

                                } 

                                   else  

                                    { 

                                        c[m]++;c1++; 

                                        d[m]++;d1++; 

                                    } 

                                //} 

                            //}          

                        } 

                    } 

                } 

            } 

        }  

        catch (BiffException e9)  

        { 

            e9.printStackTrace(); 
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        } 

        double p[] = new double[599]; 

        double pmax; 

        //Calculating p value 

        /*for(m=0;m<599;m++) 

        {  

            p[m] = 

(cal(aa[m]+b[m])*cal(c[m]+d[m])*cal(aa[m]+c[m])*cal(b[m]+d[m]))/(cal(aa[m])*cal(b[m])

*cal(c[m])*cal(d[m])); 

        }*/ 

        //for(i=0;i<599;i++) 

        //p[i]=(Math.random())/18; 

        double p1; 

        p1 = (cal(a1+b1)*cal(c1+d1)*cal(a1+c1)*cal(b1+d1))/(cal(a1)*cal(b1)*cal(c1)*cal(d1)); 

        /*pmax = p[0]; 

        for (i=1;i < 599;i++)  

        { 

            if (p[i] > pmax)  

            { 

                pmax = p[i]; 

                j = i; 

            } 

        }*/ 
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        /*for (i = 0; i < 599; i++)  

        { 

            System.out.println(ss[i][0] + " " + ss[i][1]); 

            System.out.println("a =" + aa[i]); 

            System.out.println("b =" + b[i]); 

            System.out.println("c =" + c[i]); 

            System.out.println("d =" + d[i]);         

            System.out.println("p =" + p[i]); 

        }*/ 

        System.out.println(str + " " + str1); 

            System.out.println("a =" + a1); 

            System.out.println("b =" + b1); 

            System.out.println("c =" + c1); 

            System.out.println("d =" + d1);         

            System.out.println("p =" + p1); 

        //System.out.println("\nMax p value is =" + pmax1); 

        //System.out.println(ss[j][0]+" "+ss[j][1]); 

    } 

    //Calculating the factorial 

    public double cal(double n) 

    { 

        double c, fact = 0; 

        long k=0; 
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        if (n<0) 

            System.out.println("Number should be non-negative."); 

        else if(n==0) 

            k=1; 

        else 

        { 

            for ( c = 1 ; c <= n ; c++ ) 

            { 

                fact+=log(c); 

                k=(long) exp(fact); 

            } 

        } 

        return k; 

    } 

    public static void main(String[] args) throws IOException  

    { 

        excelf test = new excelf(); 

        test.setInputFile("C:\\Users\\sony\\Documents\\NetBeansProjects\\Final_Project\\ioi.xls"); 

        test.read(); 

    } 

} 
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Conclusion: 

The aim of the project was to find an epidemic on a selected day with the help of the 

algorithm called What's Strange About Recent Events (WSARE). This algorithm used a  

multivariate approach to improve the timeliness of detection. WSARE employed a rule-

based technique that compared recent health-care data against data from a baseline 

distribution and found the subgroups of the recent data which showed trends. WSARE 

approached this problem using a Bayesian network to produce a baseline distribution 

that accounts for these temporal trends. 
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