Jaypee University of Information Technology
Solan (H.P.)
LEARNING RESOURCE CENTER

Acc. NumS P p2.e2(Call Num:
General Guidelines:

¢ Library books should be used with great care.

¢ Tearing, folding, cutting of library books or making
any marks on them is not permitted and shall lead
to disciplinary action.

¢ Any defect noticed at the time of borrowing books
must be brought to the library staff inmediately.
Otherwise the borrower may be required to replace

- the book by a new copy.

@ The loss of LRC book(s) must be immediately
brought to the notice of the Librarian in writing.

Learning Resource Centre-JUIT

Wy

ON A PERFORMANCE OF INTERCONNECTION
NETWORK

By

PRAVEEN KUMAR - 021224
INDU BHUSHAN KUMAR - 021210

JAYPEE UNIVERSITY OF
INFORMATION TECHNOLOGY

MAY - 2006
Submitted in partial fulfillment of the Degree of
Bachelor of Technology

DEPARTMENT OF COMPUTER SCIENCE
ENGINEERING & INFORMATION TECHNOLOGY
JAYPEE UNIVERSITY OF INFORMATION
TECHNOLOGY — WAKNAGHAT

CERTIFICATE

This is to certify that the work entitled , “On a performance of Interconnection network”
submitted by Praveen Kumar (021224) and Indu Bhushan Kumar (021210) in partial
fulfillment for the award of degree of Bachelor of Technology in Computer Science
Engineering of Jaypee University of Information Technology has been carried out under
my supervision. This work has not been submitted partially or wholly to any other
University or Institute for the award of this or any other degree or diploma.

il
N ’“%’" S HAY
Mr. NITIN

ACKNOWLEDGMENT

Completion of B.Tech. dissertation is a marathon errand with various aspects to the project
work. One has to view the project from many different angles and many different permutation and
combination have to be worked out to make this project a success. In the project many new things
were worked out, Understanding interconnection network, a very new thing was a bit complex. To
this complacency, real life problems and worries added a new factor,

All these things made completion of the project as a sort of mission. Now as this mission is
completed and as we look back retrospect, we can sce those helping hands, which have helped us
in successful completion of this mission. It’s our heart felt to acknowledge them, here and right
now.

We are fortunate to have Mr. MITIN as our project guide. We are indebted to him for the
immense help and for the valuable aspects and different queries. All this has helped us in gaining a
deeper insight into the system with a lot of confidence. At same time, he kept us on our toes by his
valuable criticism. We are very thankful to all who have helped us in any way.

v

’ _
CONTENTS

X Page No.
ABSTRACT ...t X
Problem definition.coiuiieriiii e XI
Chapter] INTRODUCTION
1.1 Description 0f ABN......c..ooiiicniiiieeee s eeseeiseestsieeseeeee e esessteee e es e se e 1
1.2 Description of FDOTviviniiineiiiiiisi e, 2
1.2.1 Existing algorithm for Path-length of FDOT............coooueiieeieisi) 3
1.2.2 Routing Tag algorithm............oooviiiuiinneeee e 4
1.2.3 Complexity 0Of FDOT.......cocivimiriiiiieiiiiiis e e, 6
1.2.4 Reliability equation for FDOT Upper-bound..............ovvvivueeiueeisi 8
1.2.5 Reliability equation for FDOT Lower-bound..........o.oovvivroeinseoeseeei 8
1.3 Description of MDOTuuiiniiiiii e 8
1.3.1 Existing algorithm for Path-length of MDOT.........cocoiuiieiese 8
1.3.2 Routing Tag algorithm...........coooviiiiiiiiiis e 9
1.3.3 Complexity of MDOTcuuuiiiiiiinieiieie e 10
Chapter2 WORKING WITH ABNs
2.1 ABN Path-length and Routing Tag algorithm.ccoooveivresie] 11
22 ComplexXity 0f ABN.. ...ttt 12
2.3 Reliability analysis assumptions.eeumeeeremneineineein e 14
23.1 Reliability equation for ABN Upper-bound............ooevemneevuneeineessinianniinn 15
2.3.2 Reliability equation for ABN Lower-bound............ccooovuerevvieeremii i, 15
Chapter3 COMPARISON AND ANALYSIS
3.1 Points drawn out from ABN Reliability Upper-bound..............coovvvviiriinnnn, 16
3.2 Points drawn out from ABN Reliability Lower-bound....................coviii. .. 16
3.3 Points drawn out from FDOT Reliability Upper-bound.............cooovvveevniiinn 17
3.4 . Points drawn out from FDOT Reliability Upper-bound.................covvveiin. 17
3.5 Graphs of ReHability.........oivvniiiniiiiiie e s 18-19
Chapterd CONCLUSIONS
4.1 Conclusion based on Reliability and complexity.cocoveroveerreveseeeeereeossnn, 20
4.2 FUIIE SCOPEC.uiriiei i e 20
Appendix A ABN
Al ABN Path-length, Routing Tag source code..........c....oevveeerivnsineinoni, 2]
A2 Reliability source code (both upper-bound and lower-bound)...................... 23

!

A%

Appendix B FDOT
B.1 FDOT Path-length, Routing Tag source code.........ovveieiiiirniiiiiiienenn.n, 26
B.2 Rehability source code (both upper-bound and lower-bound)..................... 28

Appendix C MDOT
C.1 MDOT Path-length, Routing Tag source code..........oovuvvvnivieninienininnnn.. 31

Appendix D GRAPH

D.1 Corresponding Matlab 7.0.1 Program code fort=0tot=5..................c.ve. 32
D.2 Corresponding Matlab 7.0.1 Program code fort =0to t=1000................... 33
REFERENCES

VI

LIST OF FIGURES
No. Title Page No.
1.1 AT6X 16 ABNRetWOTK. ..o oveveeee e, 2
1.2 A2’ x 22FDOT network TR 3
1.3 A 2 X 2 MDOT NetWOTK...oeveeeeeee e, 8

VII

LIST OF TABLES
f No. Title Page No.
Table 3.1 ABN reliability upper-bound..................o 16
Table 3.2 ABN reliability lower-bound............................. e, 16
Table 3.3 FDOT reliability upper-bound.................coooeeiininnn. 17
Table 3.4 FDOT reliability lower-bound...................coooeenil. 17
i
l
|
|
VIII

LIST OF ABBREVIATION

¢ IN - Interconnection network

e MIN - Multistage interconnection network
¢ ABN - Augmented Baseline Network

¢ FDOT - Fault Tolerant Double tree

¢ MDOT- Modified Double Tree

¢ MTTF - Mean Time To Failure

e SE - Switching element

IX

ABSTRACT

In this project, the study of different regular and irregular multipath hybrid
multistage interconnection networks (MINs) named as Fault-tolerant Augmented Baseline
Networks (ABN), Fault-tolerant double-tree Networks (FDOT), and Modified double-tree
Networks (MDOT) have been carried out.

Two algorithms for calculating the path-length and the routing-tag algorithm of ABN
networks have been proposed. The existing reliability equations (in terms of upper and
lower bound of MTTF) of ABN and FDOT have been automated using certain assumptions.
In addition to this, the implementation of the path-length and routing tag algorithm of FDOT
and MDOT networks have also been carried out. Moreover, the complexities of path-length
and routing tag algorithm for ABN, FDOT and MDOT networks are calculated and
compared. All experimental and simulation results for the reliability analysis of network size
starting from 4 x 4 to 1024 x 1024 are provided. The reliability comparison results that
FDOT is better in comparison to ABN as the network size increases. Regarding the
comparison on complexities, the result shows that complexity of MDOT is low as compared
to complexities of ABN and FDOT. However, MDOT is not a fault-tolerant network and
regular ABN and irregular FDOT have the same complexities.

PROBLEM DEFINITION

1. To develop the path-length and routing tag algorithm for Fault-tolerant Augmented
Baseline Networks and automate its existing reliability equation for both upper and
lower bound.

2. To automate existing path-length, routing tag algorithm and reliability for Fault-
tolerant FDOT Networks and MDOT Networks.

1 3. To analyze the characteristics of the two networks viz ABN and FDOT based on
‘ reliability graphs and corresponding complexities

XI

Chapter 1

INTRODUCTION

With the present state of technology, building multiprocessor systems with
hundreds of processor is feasible. A vital component of these systems is the
interconnection network (IN) that enables the processors to communicate among
themselves or with memory units. Any processor in a multiprocessor system should be
able to directly address every shared memory module through the IN. As a result the
performance of a multiprocessor system rests primarily on the design of its IN [1].

A number of techniques have been proposed to increase the reliability of MINs.
The modest cost of unique-path MINs makes them attractive for large processor systems,
but their lack of fault-tolerance is major drawback. To mitigate this problem, three
hardware options are available: replicate the entire network, add extra stages, and/or
additional links,

The general goals for the design of fault-tolerant MINs are high reliability, good
performance even in the presence of faults, low cost. However fault tolerant MINs cannot
achieve all of these goals at the same time. Some of the networks fail to tolerate faults in
the first and/or last stages. Some others can tolerate faults at any stage but they are, in
general, too costly [2].

1.1 Description of ABN

This study involves MINs with redundant paths between every source-destination
pair. ABN (Augmented baseline network) is a network with N sources and N
destinations. We form two identical groups of N/2 sources and N/2 destinations. Each
group consists of a multiple path modified baseline network of size N/2. The modified
baseline network is a network with one less stage and feature links among switches
belonging to the same stage and forming several loops of switches. In the figure on the
next page, shown is 16 x 16 ABN networks [2].

0000 = i Wi
o001 - "

0C1i0

0011
0IGO
0101

0110
o1t

1000
1001

| |

THH

i

L

T3 O]
N,

i1}t

i
HHH O

0 L

Ll

10190
1011

1100 2
1101

1110
1Hn L

Il

A\
STAGE 1

Fig.1.1 - The 16 x 16 ABN Network

1.2 Description of FDOT

FDOT (Fault tolerant double tree network) is an irregular type of MIN. It consists
of a right half and a left half. Each half of the network resembles a binary tree. The left
and right trees are mirror images of each other. A dot network of size 2" x 2" has 2" input

and 2" output terminals and (2n-1) number of stages. Further, it has 2™ -3 switching
elements (SEs).

- (000

ULELH)

GG10

0011
0100
0101

0110

0t

1000
fool

1010

1011
110G
1101

1110
1111

LEFT HALF RIGHT HALP

e i gt wm we vy

o 1 ~ - ’r i ’0
1] —l] W ," ! 1
] = .

- 4)
2 g e '\ A /- . 1 2
1 P !
3 ’ = v T 3
4 e 4"’ !
T ~ 1 4
5 ./ e \ -
: e SO ,*“ 5
l ’.' \‘t I
6 —— 7 = ™~
L..... a"' “‘%_;..___ .}
STAGE 1 2 3 4 §°

Fig.1.2 -The 2° x 2° FDOT NETWORK

1.2.1 Existing algorithm for Path-length of FDOT

For a given source-destination pair, there are multiple paths of different path-
lengths in a FDOT-k network. The number of possible paths between a given source-
destination pair varies from (k+1) to n x (k-1) for an N x N network, depending upon the
addresses of the source and destination terminals. The algorithm for allocation of path-
length gives the information about different possible paths between a source-destination
pair. The minimum path-length between a source-destination pair depends upon the N/k
bits of the source and the destination respectively i.c. d....... d;, do and sn-1...51,50 in
any subnetwork
The source S and destination D are represented as:

S = SI,J - Sn, (Sn-ls ----SDSO)Z

D=D;;= dy, (dn.1, ...d1,do)
Where s, and d, represents digits in a radix k number system.
In any subnetwork the possible path length algorithm is:
If
(51 @ du)+ (502 @ do) + oot (51 D dy) is zero
Then
Minimum path length is 2 and all paths of different lengths are possible i.e.
Paths of length 2, 4, 6... (2n-2), 2n-1)
Else ‘
If
(51 @ do)+(sn2 D du) + oot (52D dy) is zero
Then
All paths of length equal to or greater than 4 are possible
Else

[(8n-1 @ dn-1) + (Sa2 @ dp2) + ...l + (8 @ d;) is zero
Where (1<=j <= (n-1))

Then

All paths of length equal to or greater than 2j are possible

Else
Path of length 2n-1 (i.e. longest path) is possible only[2].

1.2.2 Routing Tag algorithm

Routing algorithm for FDOT-k network gives the information about the
distributed routing control tag required to establish a path between any source-destination
terminal pair for a given path length (if it exists).

If
2 <=x<=(2n-1)
Then
Routing tag =
Sn-]- (11 1) (Lx/2-|-1) .0. (d(ijzJ 5 LIRS do) . dn
(Where x is the path length which varies in step of 2)
Else
If
x=(2n-1)
Then
Routing tag =
Sn (11 1) (n-1) .(d(n.1) do) . do
Else
No tag is possible[1].

Example

Let the data be routed from S = 0000 to the various destinations of a 2* x 2* FT network.
The Path-lengths are calculated for sets of destinations and are summarized in the table.

S D Path length(s) available(x)
0000
0001 2,4,5
1000
1001

0010 4,5
0000 0011
1010
1011

0100 5
0101
0110
0111
1100
1101
: 1110
) 1111

1.2.3 Compiexity of FDOT |[8, 10]

Statement:

/b = find_n(N);

for(i=n-1;i>=0;i--)

{

if (s>>1) &j) " ((d>>1) & j))

break;

}

if(i<n-1)

printf ("n\the min_path is %d\n\n", k1 = (i + 1) * 2);
else

printf("\n\the min_path is %d\n\n", k1 =2 * n - 1);
for Gkl <=2 *n-1;kl++)

{
if (k1 >=2 && k1 <2*n- 1)

{

r[0] =s>>n;

for (1= 0; 1 < floor (k1/2) - 1 ; i++)

{
rfi+1]=1;

t

k=i+1;

Frequency

2n

Total Steps

0(0)
O(n)
0(0)
o(1)

0(1)

o(1)
o(1)
0(0)
o(1)

O(n)

o(1)

O(1)

O(n?)

O(1)

O(1)

Statement Frequency Total Steps !

rlk++] =0; 1 o) ;

for(i = floor(k1/2) - 1; i >=0; i--) n/2 O(n/2)
{
rik++] =(d>>i) & 1; 1 O(1) J
i } . |
: !
] k] =d>>n; 1 o(1) |
; 7 _
i printf("the routing tag for possible path = %d is :", k1); 1 Oo(1) [
g |
| |

|

| |

The Complexity of this program will be the highest power of n. :|

Complexity of FDOT = O (n?).

Where ‘O’ is called “Big Oh” Notation.

1.2.4 Reliability of FDOT Upper-bound
) RFDOT__UB (t) =[1_ (1 —e —?\ml) 2] N/2 . [1_ (1 —e —)\3 t) 2] N/AAHN/A+N/ET. .+] [1_ (1_ e 7k2d 1)2] N/

’ MTTFrpor_us (t) =+ " Repot us (t).dt [2]

1.2.5 Reliability of FDOT Lower-bound
RFDOT_LB (t) =[1_ (1 _e —)\3mt) 2] N/4 . [1_ (1 —e —)\3 t) 2] N/A4+N/8+.. +1(n-3) . [1_ (1__ e _)\Zdt)z] N/4

MTTFrpor s (t) =« §"Repor 18 (t).dt

1.3 Description of MDOT

MDOT is an irregular fault tolerant MIN also known as four-tree network.
MDOT is similar to FDOT, the slight change between the two is regarding the
connections of MDOT. It’s basically the modified form of FDOT. A FT network of size
2" X 2" is subdivided in two identical groups, each consisting of a MDOT network of size
2" x
2", which are arranged one above the other. The two groups are formed based on the
most significant bit (MSB) of the source-destination terminals.

LEFT HALF ‘ RIGI'T 1IALP
i-_“—_—--ﬂ\ “ ’,—.--'-.—..___l 0
B "~ ,f -
. s
1 , S 1
2 i | ~\ .~ !
i = L |

. ",(—.m -5’1., 3

I . I ’ '

4 3 = — -t 4
5 PO T | / \\I(’f \ ! 4
1 P W 1)

6 ‘ ../ a’ ‘\ _. 1
r - TN ¢
9 L] ,./ -~ N __, o

' N
STACE) 2 3 i 75

Fig.1.3-The 2° x 2° MDOT NETWORK

1.3.1 Existing algorithm for Path-length of MDOT

The possible path lengths between a particular source-destination pair vary from 2
to 2m-1 for a 2" x 2" network. The path-length algorithm follows:
If

[Gaz @ do2) + (03 @ dyg) +oennenn. +(s1 @ dy))]is zero

(@ Represents an exclusive - OR and “+’ represents an OR operation)

Then
Minimum path length is 2 and all paths of different lengths are possible i.e,
Path of length 2, 4,6 ... (2m - 2}, 2m—1).

Else
If
[Gr2 @ du)+(sns D dug) 4o, +(5:D d, 7] is zero
Then
All path of length equal to or greater than 4 are possible
Else
If
(502 @ dpo)+ (503 @ dog) 4. +(s;D dj] is zero
{Where 1<=j<= (n-2)}
Then
All path of length equal to or greater than 2j are possible
Else

Path of length 2m-1 (i.e, longest path) is possible only [3].
1.3.2 Routing Tag algorithm
The routing tag algorithm gives the information about the distributed routing control

required to establish a path between any source — destination terminal pair for a given
path length.

If
2<=x<(2m-1)
Then
Routing tag =
Sn_1. (1.1 1) (fogJ-l) 0. (d(ijzJ_l) do) . dn~l
(Where x is the path length which varies in step of 2)
Else
If
x=(2m-1)
Then
Routing tag =
Sn-1.(1.1 1)(Lx/2J) (d(Lx/zJ) dO)-dn-l
Else

No tag is possible [3].

1.3.3 Complexity of MDOT [8,10]

Statement

//b = find_n(N);
fori=n-1;i>0;i--)
{

if{((s>>1) &j) " ((d>>1) &})))
break;

}
iffi<n-1)
{
printf("\n\n the min_path is %d\n\n", (i + 1) * 2);

printf("other possible paths are :");
Statement

forG=(i+1)*2;,j<2*n-1;j+=2)
printf("%d ,".j);
printf("%d", 2 * n - 1);
}
clse

printf("\n\nthe min_path is %d\n\n", 2 * n - 1);

Frequency

Frequency

2nl

Total Steps

0(0)
O(m)
O(1)

O(1)
O(1)

0(0)
O(1)
o(1l)
O(1)

o(1)

Total Steps

O(2n)
o(1)
o(1)
o(1)
o(1)

o)

The Complexity of this program will be the highest power of n.

Complexity of MDOT = O (n).

Where ‘O’ is called “Big Oh” Notation.

Chapter 2

{ WORKING WITH ABNs

There was no algorithm as such for calculating path-length. However, there was
routing scheme provided for the network but still no algorithm was available for its
implementation and that is what we have tried here to develop.

2.1 Path length and routing algorithm for ABN network [2]

Binary function
Input--a, n, b []
Qutput--binary

Initialize i,]
Fori<-(n-1)toi<- 0
do b[i] <-a%?2

If a/2=1

Then b [i-1] =a/2
For j<~(i-2)toj <- 0
do b[j] <-0
break

Else
a<-a/2
Log function
Input number
Output log value

Initialize b, count
b<-2
count <- 1

While true
do b<-(2*b)
count<-(count+1)
Ifb=a
Then break

Return count-2
Path-length and hence routing

Input n
1 Output path length

11

Initialize i , count

Fori<Oton

Do count<-count+1
If (i! = (n-1))
Then print.

Print minimum path length=count

: Example

!

i Let the data be routed from S = 0000 to the various destinations of a 16 x 16 ABN |

: network. The Path-lengths are calculated for sets of destinations and are summarized in ;
the table.

S D Path length(s) available(x)
0000
0001 2,4 ';
1000 1
1001

0010 g

0000 0011 f
1010 4 i
1011 |

0100 |
0101 i
0110 ;
0111 4 |
1100
1101
1110
1111

2.2 Complexity of ABN network [8,10]
Statement Frequency Total Steps
void binary(int a,int n) 1 o)
{ 0 0
int i,j; 1 o(1)
for(i=(n-1);i>=0;i--) ' n O(n)
{ | 0 0O(0)
b[i]=a%2; 1 O(1)
if(a/2==1) 1 o(1)
Statement Frequency Total Steps i
. §
{ | 0 0(0) }}
b[i-1]=a/2; 1 o(1) E
for(j=i-2;j>=0;j--) n*n O(n?) 'j
b[j]=0; 1 (1)
break; 1 o(1)
} 0 O(0)
else 1 o(1)
a=a/2; t o)
} | 0 0(0)
} 0 O0)
int log_base2(int a) 1 o) :
. 0 0(0) f
[int b=2; 1 o(1) 1
13

int count=1; 1 o) |

while(1) 2n O(2n)
{ 0 0(0)
b=2%b; 1 o(1)
count++; 1 o(1) |
if(b=—=a) 1 O(1)
g break; 1 o(1) ; .
} 0 (1) !
: i
! ;
Statement Frequency Total Steps i
i
return (count-2); 1 O(1))
) 0 0() (
void routing(int n) 1 o(1) fkf
{ 0 0(0) -
int i,count=0; 1 o) l{
printf("n\n\n THE ROUTING-TAG FOR THE PARTICULAR l’I
\nCOMBINATION\nOF SOURCE AND DESTINATION 1S”); 1 O(1) Ll’
for(i=0;i<ﬁ;i++) n O(n) {
{ 0 O(0) i:i
printf("%d",b[i]); 1 O(1) -
count++; . o .
if(it=n-1) 1 O(1) _:
printf(" . "); 1 o(1) ‘;
} 0 0O(0) [
14 H

printf("\n\nTHE MINIMUM PATH LENGTH IS : %d",count); 1 O(1)

} 0 0(0)

The Complexity of this program will be the highest power of n.

Complexity of ABN = O (n?).

Where ‘O’ is called “Big Oh” Notation.

2.3 Reliability analysis

The reliability of ABN in terms of Mean Time to Failure (MTTF) is analyzed. The
assumptions used are:

1) Switch failures occurs independently in a network with a failure rate of) for 2x2
crossbar switches (A = 10°® per hr).

2) Failures of multiplexers and demultiplexers also occur independently with a
failure rates of Ay, and Ny respectively , which can be different from A based on the
gate counts, we can assume Ay = A /4 .

We consider the 2x2 switch and its associated DEMUX as a single component
(SEzq) , 50 Mg = 2 A can be assigned to this group of elements also let \; be the failure
T rate for the 3x3 switch (SE;) ,then based on gate count \; = 2.25 A (3]

15 !

2.3.1 Upper bound:

Expression for the upper bound of the ABN reliability is:
Rapnup) =[1- (1~ mY) I L [1- (1 —e 739] 00D 1. (1 e P 2

MTTFABN_UB)=, ImRABNﬁUB (t)-dt

2.3.2 Lower bound:

Expression for the lower bound of the ABN reliability is:

Ramx_ts ()= [1- (1-¢773m) TV L [1- (1 - 739 00D (11— Py)™

MTTFABN_LB)=, ImRABN_LB (t)'dt

16

Chapter 3

COMPARISON AND ANALYSIS

In this chapter, we will draw different graphs in terms of reliability and Path-
length and draw conclusion based on the graphs.

3.1 Points drawn out from ABN Reliability upper bound

Kceping t and Am (order of 1e — 6) fix, we can have points for MTTF and n.
At t =5 seconds and switch failure rate, Am = 0.000045

N MTTF
4 5.847650
8 4.513927
16 3.373369
32 2.049566
64 1.200479
128 0.736502
256 0.466385
512 0.301469
1024 0.197636

3.2 Points for ABN Reliability Lower-bound

AT t = 5§ seconds and switch failure rate, Am = 0.000045

N MTTF

4 5.041469
8 4.430859
16 3.048297
32 1.054849
64 0.926867
128 0.555431
256 0.346488
512 0.221705
1024 0.144294

17

il

3.3 Points drawn out for FDOT Reliability upper bound

Keeping t and Am (order of le — 6) fix, we can have points for MTTF and n.
At t =35 seconds and switch failure rate, Am = 0.000045

I

N MTTF i
4 3.621916

8 2.939288 |

16 2.169978 .,
32 1.517644
64 1.053646
128 ' 0.734022
256 0.513109
512 0.359676
1024 0.252644

3.4 Points for FDOT Reliability Lower-bound

AT t=35 seconds and switch failure rate, Am = 0.000045

RSTrTarT thgy — e

N MTTF ;
i
z 6.651063 !
8 4.522378 3
16 2.173333 Jt
32 1.097199 f
64 0.630571 iy
128 0.384727 !
256 0.242635
512 0.116251
i 1024 0.102053

18

2 o
fan)
T
(0]
>
p—
“ T T | = m
5] e T e s e i =
m ! ” ; ! “ 1 e
= (@ iy 1 e e L e e S B e
- U - . . 1 I I | | I | | |
= e~ O | ! ! s
by = W Wm m,u,.\\\.\\\\r e [=]
- I 1 1] »
— A A (' F,, | | | |
0 1 I 1 I
I] I
m T 1 ! M _ [" | I I m
: il e :
iR ; : Lk
= i S , | e
a i b I SR S U e -9
F | | | | 1 | | If
1 I I 1 1 ¥
d I | | I I i
= o I ! : r I o
> O e s o e et Tt et ot b s e
N w | | | | 1 1 [
B w | | | | | " ” | m
1 | 1 1 I 1 I)
% T e I o0
| I 1 | 1
=z i SE g S 7
= v I TR e e R S R i e R S
] | 1 1 1 i =
< Il | | | |
P e = sty " Sy
“ rr_IJJ m _ | | | 1 1 il o
S Gt o o eSS AR S RS S I D L
E=l s i bl e : L
a4 g
= | i F |
1]
9. &8 ot Bt CH ey gl ghzs lneiola) =
R «UID.U F _l | | | i | | 1 o~
f C s { 1 | I 1]
SR sy S i |
= LT3 =B L e e el Al et 8
Sl P B msegil o R
= 5 E < TS . R T R B i R
(o) . B O o e o ol Erol vos e gidio - o
e
S 4L
W 5= v
TS en

m

e a - = = = hﬂu.ﬂy 5 —— — E—r——— |--

20

| ol | | | I | .‘.,l _.m
7. = s e el eniie T el e e S e e ey
| f |
i E D sl S S S
= NO O | | P Y =)
el e la o a e | il = S e e e o =
< <C LL LWL | [1 1 1 !
| | 1 | | | 4
“7 1 | 1 1 I ,_
| b |3 SRR e ol
j Sl AT | [o (e e e v s T R R m’W
L | " " _ ! |
I I i |
| | {2 =
||||||||||||||||| F\\\\\\\L\\\\‘||||||||||..,,h\\0
7 | l if M~
| 1 | [}
| |] 1 | I
® | 1 | ! f
I i I I i 0
.E — S — e ——_—— - —— = = B e | - O
w | | I ©
P ! | | I ,,” , m
b , ; N
| r 1 o ¥
m === T e e e et i i I
| [| | o)
se— S : |
= 2 i [St A s =
S i M e | o ey
Il | ! |] | I
- | | | | A I |
1 I I I 1
S SR e TN T e 8 TS Exiic Ll £ 0 S o) S
0 | I ,3
..F | A 1
.oOL 7 | | i | " o
bR B s St s e
. | | 1 | |
o i L |
= o SR A S, Ul
W TR = e e e i = e s Mt
A 5= e R o A e | 1
R R L e
C -— ~ o o o o (=] o o o
o d11N
o
Lag]

Chapter 4

CONCLUSIONS
4.1 Based on reliability graph:

The graphs drawn for ABN and FDOT upper, and lower bounds of MTTF results
that reliability of FDOT upper and lower bounds are better in comparison to ABN upper
and lower bound. As the network, size increases the results becomes more exciting.

Hence, the irregular FDOT network is more reliable as compared to regular ABN
network. However, sufficient work has been done by various researchers on regular type
of MINs but despite irregular networks being more reliable than regular network little
attention has been paid to irregular MINS.

Based on Complexity analysis:

The result shows that complexity of MDOT is small (complexity of MDOT
network is O (n)) as compared to complexities of ABN and FDOT (complexity of both
ABN and FDOT network is O (n?)). However, MDOT is not a fault-tolerant network and
regular ABN and irregular FDOT have the same complexities.

4.2 Future scdpes

1. Search for more new topological designs and analysis of static and dynamic,
regular and irregular MINs with increased improvement in performance and
reliability.

2. Combining multiple layers of sub networks to improve reliability and

performance.

The use of MINs in ATM applications.

4. Generating Systems of Equations for Performance Evaluation of Multistage
Interconnection Networks needs more exploration.

e

21

APPENDIX A: ABN

A.1 ABN Path-Length, Routing Tag Source Code

#include<stdio.h>
: #include<conio.h>

int b [10];

void binary (int, int);
int log_base?2 (int);
void routing (int); Pyﬂ

void main ()

{

e;

e

int N, src, dst, n, 1;

clrser ();

printf ("ENTER THE NO OF SOURCE OR DESTINATION N<N=2"x>: ");
scanf ("%d", &N); '
printf ("n\n\nENTER THE VALUE FOR SOURCE (0 to %d):", N-1); W
scanf ("%d", &src);

printf ("\n\n\nENTER THE VALUE FOR DESTINATION (0 to %d):", N-1);
scanf ("%d", &dst);

n=log_base2 (N),

binary (dst,(n+2));

routing (n+2);

getch ();

}

e e s an

e

I

Void binary (int a, int n)
Lo
nt 1,); i
for(i=(n-1);i>=0;i--) i
{
b[i}=a%?2;
if(a/2==1)
{
b[i-1]=a/2,
for(j=i-2;j>=0;j--)
b[j]=0;
break;
}

a=a/2;

" else

22

}
int log_base2(int a)

{

int b=2,;

int count=1;

while(1)
{
b=2%b;
count++;
if(b==a)

break;

¥

return (count-2);

}

void routing(int n)
{
int i,count=0;
printf("n\n\nTHE ROUTING-TAG FOR THE PARTICULAR
COMBINATION\OF SOURCE AND DESTINATION IS \nin\t\t\t\t\t: ");
for(i=0;i<n;i++)
{
printf ("%d",b[i);
count+-+;
if(it=n-1)
printf(" . ");
}

printf("n\nTHE MINIMUM PATH LENGTH IS : %d" ,count);

}

23

A.2 Reliability source code
Upper bound:

#include<stdio h>
#include<conijo. h>
#include<math.h>

int log_2(int);

int main(void)

int N, /fsize of the network
n; //log of N to the base 2
unsigned long int Tm, //total time in milli-secondg
t;
double T, /fupper time limit
fa //failure rate of 2%7 crossbar switch
fm, //failure rate of a multiplexer
125 /Mailure rate of a 2%9 switch
3, //ailure rate of a 3*3 switch
Y, ¥1,y2, y3;

long double integral = ();

clrscr();

printf{("\n\n enter the size of network(N), upper limit of time in seconds(T),"
"\n failure rate of 2% crossbars switches (f)");

scanf ("%d%If%If", &N, &T, &9);

n=log 2(N);
fm =f/4;

2=p4F

[3=205%7¢

Tm = (unsigned long int) T * 1000;

fort=1;t< Tm; t++)

{

Y = pow(1 - pow(] - exp(-fim*t), 2), N/2)* /fin calculation of
pow(1 - pow(1 - exp(-13*t), 2), N/4*(n - 3))* //y we have assumed
pow(1 - pow(1 - exp(-f2*t), 2), N/4); /fan interval of

//1ms each.

integral += y;

}

printf("\n\n\n the value of MTTF is : %Lf » integral/1000);

getch();

24

B

return 0;

}

int log_2(int j)
{

inti,n=0;
for(i=1;i<j;i+=1)
n++;

return n;

}

Lower bound:
#include<stdio.h>
#include<conio.h>
#include<math.h>

int log_2(int);

int main(void)

{
int N, /{size of the network
n; /Mlog of N to the base 2
unsigned long int Tm, //total time in milli-seconds
t;
double T, /fupper time limit
f, //failure rate of 2*2 crossbar switch
2, //failure rate of a 2*2 switch
13, //failure rate of a 3*3 switch
¥, ¥1, ¥2, y3;

long double integral = 0;

clrser();

printf("\n'\n enter the size of network(N), upper limit of time in seconds(T),"
"\n failure rate of 2*2 crossbar switches(f)");

scanf("%d%If%If", &N, &T, &f);

n=log 2(N);
f2=2%f,
f3=225*f;

Tm = (unsigned long int) T * 1000;

for(t = 1; t < Tm; t++)

25

y = pow(l - pow(l - exp(-2*f3*t), 2), N/8)*
pow(1 - pow(1l - exp(-2*{3*t), 2), N*(n - 4)/8)*
pow(1 - pow(1 - exp(-f2*t), 2), N/4);

integral +=y;
}

printf ("\n\n\n the value of MTTF is : %Lf" , integral/1000);

getch ();
return 0;

}

int log_2(int)
{

inti,n=90;
fori=1;i<j;1i+=1)
n++;

refurn n;

}

26

APPENDIX B: FDOT
B.1 FDOT Path-length, Routing Tag source code

#include<stdio.h>
#include<conio.h>
#include<math.h>

int log_2(int);

int main(void)
{

intN, k, n, s, d, i, j = 1,kl, 1[20];

clrser();

printf{("\n enter the value for N for the N*N FDOT network\n(N should be power of 2)
\1.1");

scanf("%d", &N);
printf{"\n enter the value of an FDOT - k network'n(k should be a power of 2} \n");
scanf("%d", &k);

n=log 2(N/k);
//printf("n\in%d\n\n" , n),

printf("\n enter the value for source \n(the value must lie between 0 & %d)", N - 1);
scanf("%d", &s); ‘
printf{"\n enter the value for destination \n(the value must lie between 0 & %d)", N -

1);
scanf{"%d", &d);
//b = find_n(N);
for(i=n-1;i>=0;i-)

if(((s>>1) &) (d>>1) &j))
break;
}

ifli<n-1)
printf("\n\nthe min_path is %dwn\n", kl=(G+1)*2)
;glitf("\n\nthe min_path is %d\n\n", k1 =2 *n-1);
for(; k1 <=2 *n-1; kl-++)

ifikl >=2 && k1l <2*n-1)

{

27

0] =s>>n;
for(i = 0; i < floor(k1/2) - 1 ; i++)
{

k fi+1]=1;
}
k=i+1;
l'[k++] =0;
for(i = floor(k1/2) - 1; 1 >=0; i--)
{
rk++]=d>) & 1;
}
r{k] =d >>n;

printf("the routing tag for possible path = %d is :", k1);

for(i = 0; 1 <=k; i++)

{
printf("%d%c", t[i], \);
}
¢lse :.
{ -z

1{0]=s>>n;

for(i=0;i<n-1;i++)

{

i+ 1]=1;
}
k=i+1;
fori=n-1;i>=0;i--)
{

rkH]=(d>>i) & 1;
}

|
k] =d >>n; |
printf("\n\nthe routing tag for possible path = %d is :", k1); |

4 for(i=0; 1 <=k, i++)
A {

28

printf ("%d%c", t{i], .);

}
printf{"\n\n");

A |
} |

getch();
return O;

}

int log_2(int j)
{

inti,n=20;

for(i=1;i<j;i+=1)

n++;
return n;
}
B.2 FDOT Reliability source code
Upper-bound: S
#include<stdio.h> J

#include<conio.h>
#include<math.h>

int log_2(int);

int main(void)

{
int N; /fsize of the network
unsigned long int Tm, //total time in milli-seconds
t

double T, /lupper time limit
f, //failure rate of 2*2 crossbar switch
fin, //failure rate of a multiplexer
2, . /ffatlure rate of a 2*2 swiich
3, {/failure rate of a 3*3 switch
Y, ¥1,¥2,y3;

long double integral = 0;

clrscr();
printf("\n\n enter the size of network(N), upper limit of time in seconds({T),"
"\n failure rate of 2*2 crossbar switches(f)");

e

29

scanf("%d%If%If", &N, &T, &f);

4 fim=1{/4,
Il R=2*f
’ f3=225%*f

Tm = (unsigned long int) T * 1000;

for(t =1; t < Tm; t++)

{
y =pow(1 - pow(l - exp(-fm*t), 2), N/2)* //in calculation of
pow(1 - pow(1 - exp(-f3*t), 2), N + 1)* //y we have assumed
pow(1 - pow(1l - exp(-f2*t), 2), N/4); /fan interval of
//1ms each.
integral +=y;
} 1

printf("\n\n\n the value of MTTF is : %Lf", integral/1000);

getch();
return 0;

}

Lower-bound:

#include<stdio.h>
#include<conio.h>
#include<math.h>

int log_2(int);

int main(void)

{
int N, //size of the network
n; //log of N to the base 2
unsigned long int Tm, //total time in milli-seconds
t;

double T, /fupper time limit
f, /ffailure rate of 2*2 crossbar switch
fim, /ffailure rate of a multiplexer
2, [/failure rate of a 2*2 switch
f3, //failure rate of a 3*3 switch
Y. ¥1,¥2, ¥3;

long double integral = 0;

3‘- | clrscr();

printf("\n\n enter the size of network(N), upper limit of time in seconds(T),"

30

"\n failure rate of 2*2 crossbar switches(f)");
scanf("%d%l{%lf", &N, &T, &f);

7 n=log 2(N});

fim=1£/4;

f2=2%*f;

f3=225*f,

Tm = (unsigned long int) T * 1000;

for(t=1;t<Tm, t++)

{
y =pow(1l - pow(l - exp(-fim*t), 2), N/4)* //in calculation of
pow(1 - pow(1 - exp(-fB’*t), 2), (N + 1)*(n - 3))* //y we have assumed
pow(1 - pow(1 - exp(-{2*1), 2), N/4); //an interval of
//1ms each.
integral +=y;
}
printf("\n\n\n the value of MTTF is : %Lf" , integral/1000);
getch();
return 0;
) ‘7"1
int log_2(int j) J
{
inti,n=0;
fori=1;1<j;1+=1)
nt+;
return n;
}

31

APPENDIX C: MDOT »
C.1 MDOT Path-length, Routing Tag source code

#include<stdio.h>
#include<conio.h>

int log_2(int),
int main(void)

{
intN,k,n,s,d,1,]=1;

clrscr(); _

printf("enter the vatue for N for the N¥N MDOT network(N should be power of 2) \n");
scanf("%d", &N);

printf("\n enter the value of an MDOT - k networkn(k should be a power of 2) \n");
scanf("%d", &k); ‘

n=log 2(N/k);
/printf("n\n%d\n\n" , n);

printf("n enter the value for source \n(the value must lic between 0 & %d): ", N - 1),

scanf("%d", &s); j

printf("\n enter the value for destination \n(the value must lie between 0 & %d): ", N - q
1);
scanf("%d", &d);

/b = find n(N);

for(i=n-1;i>0;i--)

{
if(((s>>1) &N (d>>1) &j))
break;

}

ifi<n-1)

{
printf("\n\nthe min_path is %d\n\n", (i + 1) * 2);
printf("other possible paths are :");
forG=@{+1)*2;j<2*n-1;j+=2)
printf("%d ,".j);
printf("%d", 2 * n - 1);

}

else
i printf("\n\nthe min_path is %d\n\n", 2 * n - 1);
getch();

32

e

return 0;

3

int log_2(int j)
{

inti,n=0;

for(i=1;i<j;i+=1)
n++;

return n;

}

APPENDIX D: GRAPH
D.1 Corresponding Matlab 7.0.1 Program code

/* Matlab 7.0.1 program
Fort=0 to t=35s

hold on

x ={64 128 256 512 1024];

a = [1.200479 0.736502 0.466385 0.301469
L = [0.926867 0.555431 0.346488 0.221705
¢ = [1.053646 0.734022 0.513109 0.356978
d = [0.810830 0.566806 0.397547 0.279342

plot(x, a,'-rs');
plot (x, b,'-b+');
plot(x, c,’-g*');
plotix, d,'-co');

box on
axis tight
grid on

title ('MTTF vg. Size')
xlabel ('8izet)
ylabel ('MTTF'}

legend('ABN~UB','ABN-LB','FDOT—UB’,'FDOTVLB')

0.197636]
0.144294]
0.252644]
0.196508]

33

D.2 Corresponding Matlab 7.0.1 Program code

/* Matlab 7.0.1 program
N fort=0tot= 1000

hold on

x =[64 128 256 512 1024];

a = [1.200486 0.736502 0.466385 0.301469 0.197636]
b = [0.9268638 0.555431 0.346488 0.221705 0.144294]
c [1.053646 0.734022 0.513109 0.359676 0.252644]
d = [0.810830 0.566806 0.397547 0.279342 0.1956508]

ploti{x, a,'-rs');
plot{x, b, "-b+');
plot{x, ¢, '-g*');
plot(x, d,'-co'};

box on
axis tight
grid on

title (*MTTF vg. Size')
xlabel{'Size')
ylabel {'MTTF')

legend ('ABN-UB*, 'ABN-LB’', 'FDOT-UB', 'FDOT-LE ")

34

REFERENCES

Research Papers

[1] Bansal, P. K., Singh K., and Joshi, R. C., “Quad tree: a cost-effective fault-
tolerant multi-stage interconnection network,” IEEE INFOCOM, 20, pp. 860-866,
May 4-8, 1992.

[2] Bansal, P. K., Joshi, R. C., Singh K., and Siroha, G. P., “Fault-tolerant augmented
baseline multi-stage interconnection network,” IEEE TENCON, Vol.2, pp. 200-
204, August 28 - 30, 1994,

[3] Bansal, P. K., Singh K., and Joshi, R. C., “Routing and path length algorithm for
a cost-effective four-tree multi-stage interconnection network,” International
Journal of Electronics, Vol. 73, No. 1, pp. 107-115, 1992.

[4] Patel, J. H., “Performance of processor-memory interconnection for
multiprocessors,” IEEE Transaction on Computers, Vol. C-30, pp. 771-780,
October 1981.

[5] Shooman, M. L., “Reliability of computer systems and networks: fault-tolerance,
analysis, and design,” John Wiley & Sons, Inc., New York 2002.

Books

[6] Jose Duato, Sudhakarar Yalamanchili and Lionel NI, “Interconnection networks:
An engineering approach”, page 1-39,139-204.

[7] William James Dally, Brian Towles, “Principals and practices of interconnection
networks”, page 1-24

[8] Gregory L Heileman, “Data structure, algorithms and object-oriented
programming”, page 5-20

Websites

[9] http://www lInl.gov/computing/tutorials/paraliel_comp

[10] http://www.cs.wisc.edu/~hasti/cs367-common/notes/COMPLEXITY

A

35

