N
S, J

AOonona®

Jaypee University of Information Technology
Solan (H.P.)
LEARNING RESOURCE CENTER

Acc. Num.S'Po2 e§(Call Num:

General Guidelines:

¢ Library books should be used with great care.

¢ Tearing, folding, cutting of library books or making
any marks on them is not permitted and shall lead
to disciplinary action.

¢ Any defect noticed at the time of borrowing books
must be brought to the library staff immediately.
Otherwise the borrower may be required to replace
the book by a new copy.

& The loss of LRC book(s) must be immediately
brought to the notice of the Librarian in writing.

Learning Resource Centre-JUIT

R

SP02086

CONtraCEPT
| A Linux Based Firewall
Implemented On Knoppix O.S.

By

TEJAS BHATT-021202
MAYUR MANTRI-021402

JAYPEE UNIVER

SITY C
INFORMATION TECHNQLOGY

MAY-2006

Submitted in partial fulfillment of the degree of Bachelor of
Technology

DEPARTMENT OF COMPUTER SCIENCE
JAYPEE UNIVERSITY OF INFORMATION
TECHNOLOGY-WAKNAGHAT

CERTIFICATE

This is to certify that the work entitled, “CONtraCEPT a linux based firewall
implemented on knoppix 0.S” submitted by Mr. Tejas Bhatt (On Roll :021202) and Mr.
Mayur Mantri (On Roll :021402) in partial fulfillment for the award of Degree of
Bachelor of Technology in CSE of Jaypee University of Information Technology (JUIT),
Waknaghat has been carried out under my supervision. This work has not been
submitted partially or wholly to any other University or Institute for the award of this

or any other degree or diploma.

2 bl
echetha Dab/bas ' Prof. Dr. Naveen Prakash

Project Coordinator H.O.D Computer Science

ACKNOWLEDGEMENT

Many people have contributed to this project in a variety of ways over the past few
months. We are sincerely thankful to Ms, Chetna Dabbas under whose supervision the
whole project was carried out for her regular reviews and suggestions. We also
acknowledge the many helpful comments received from other teachers of the different
departments and visuakization courses and seminars. We are deeply indebted to ail those
who provided reviews and suggestions for improving the materials and topics covered in

our package, and we extend our apologies to anyone we may have failed to mention.

Thank You

TABLE OF CONTENTS

CERTIFICATE
ACKNOWLEDGEMENT
PROJECT SCHEDULE
LIST OF FIGURES

LIST OF ABBREVIATIONS

ABSTRACT

CHAPTER 1:
CHAPTER 2:
CHAPTER 3:
CHAPTER 4:
CHAPTER 5:
CHAPTER 6:
CHAPTER 7:
CHAPTER 8:

APPENDIX

A FIREWALIL PRIMER

A BRIEF INTRODUCTION

DESIGN SPECIFICATION
IMPLEMENTATION SPECIFICATION
SNAPSHOTS OF THE TOOL
LIMITATION

FUTURE SCOPE

CONCLUSION

BIBLIOGRAPHY

TS O

8-10
11-14
15-20
21-28
29

30

31
32-35
36

R i e TR Sy e o g o+ e e

e =

PROJECT SCHEDULE
SNo. Activity Description Planned Date | Actual Date Status
1 Domain research. 7" March’06 12" March’06 | Done
2 Learning about the inet deamon I\ 10" March’06 | 12" March’06 | Done
3 Requirement Analysis 15™ March’06 | 15™ March’06 | Done
4 Modeling the concepts of the tool 20™ March’06 20™ March’06 | Done
5 Designing the logical schema 22" March’06 | 22" March’06 | Done
6 Designing the Ul 24™ March’06 25" March’06 Done
7 Mid Term Reporting 10" April’06 10" April ‘06 | Done
8 Implementation of different modules | 15™ April’06 19" April>06 Done
9 Integration of the modules 2" May’06 2" May’06 Done
10 Testing 8™ May’06 10" May’06 Done
11 Reporting 11" May’06 11" May’06 Done

LIST OF FIGURES

Figure 1: Graphical Representation of TCP wrapper concept 14
Figure 2: Context Diagram 15
Figure 3: Cartesian Hierarchy 17
Figure 4: Data Flow Diagram 18
Figure 5: Snapshot of Main Menu 25
Figure 6: Snapshot of Administrative Tools=>Edit Banned Lists 26
Figure 7: Snapshot of Banned IP log File ->bannedip.log 27
Figure 8: Snapshot of Administrative Tools->Edit Banned Lists—>bannedalias.log 28
Figure 9: Snapshot of Administrative Tools=>Edit Banned Lists—>allowedip.log 29
Figure 10: Snapshot of Administrative Tools—>Secure New Service 2 Edit inetd.conf 30

Figure 11: Snapshot of Administrative Tools->Disable Firewall 31
Figure 12: Snapshot of Administrative Tools>HELP 32

~ "

BSD
BPD

DOS
GUI
1P

MAC
0S
TCP
ubpp
WAN

LIST of ABBREVIATIONS

Berkeley Software Distribution
Border Protection Device

Denial of Service
Graphical User Interface
Internet Protocol

Media Access Control
Operating System

Transmission Conirol Protocol

User Datagram Protocol

Wide Area Network

ABSTRACT

The erstwhile question of security continues to pose challenges to OS developers and
programmers in general around the world. It has become increasingly important for any
individual who owns a computer connected to any kind of network to have a well defined
security policy as a defense mechanism against any kind of intrusion attempt.A firewall,
also called a2 Border Protection Device (BPD), especially in NATO contexts, or packet

filter in BSD contexts thus has become an integral part of the suite of software installed

on a computer. The project is an endeavor in this direction in which a software firewall

(CONtraCEPT) is built for a network enabled linux/debian based system.

r

P —

A T . B 1

CHAPTER 1: A FIREWALL PRIMER

In computing, a firewall is a piece of hardware and/or software which functions in a
networked environment to prevent some communications forbidden by the security
policy, analogous to the function of firewalls in building construction.

A firewall has the basic task of controlling traffic between different zones of trust.
Typical zones of trust include the Internet (a zone with no trust) and an internal network
(a zone with high trust). The ultimate goal is to provide controlled connectivity between
zones of differing trust levels through the enforcement of a security policy and
connectivity model based on the least privilege principle.

Least privilege principle

In computer science and other fields the principle of minimal privilege, also known as
principle of least privilege or just least privilege, requires that in a particular abstraction
layer of a computing environment every module (which can be for example, a process, a
user or a program on the basis of the layer we are considering) must be able to see only
such information and resources that arc immediately necessary.

So the idea of the principle is to grant just the minimum possible privileges to permit a
legitimate action, in order to enhance protection of data and functionality from faults

(fault tolerance) and malicious behaviour (computer security).

Types of firewalls

There are three basic types of firewalls depending on:

o Whether the communication is being done between a single node and the
network, or between two or more networks.

« Whether the communication is intercepted at the network layer, or at the
application layer.

» Whether the communication state is being tracked at the firewall or not.

With regard to the scope of filtered communications there exist:

o Personal firewalls, a software application which normally filters traffic entering or
leaving a single computer.

o Network firewalls, normally running on a dedicated network device or computer
positioned on the boundary of two or more networks er DMZs (demilitarized
zones). Such a firewall filters all traffic entering or leaving the connected
networks.

The latter definition corresponds to the conventional, traditional meaning of "firewall" in
networking.

In reference to the layers where the traffic can be intercepted, three main categories of
firewalls exist:

¢ Network layer firewalls. An example would be iptables.

« Application layer firewalls. An example would be TCP Wrapper.

« Application firewalls. An example would be restricting ftp services through
/etc/ftpaccess file

These network-layer and application-layer types of firewall may overlap, even though the
personal firewall does not serve a network; indeed, single systems have implemented
both together.

There's also the notion of application firewalls which are sometimes used during wide
area network (WAN) networking on the world-wide web and govern the system software.
An extended description would place them lower than application layer firewalls, indeed
at the Operating System layer, and could alternately be called operating system firewalls.
Some firewalls have higher privileges than others like mysqgl and pj.

Lastly, depending on whether the firewalls track packet states, two additional categories
of firewalls exist:

o Stateful firewalls
o Stateless firewalls

Network layer firewalls

In computer networks, a network layer firewall works as a packet filter by deciding
what packets will pass the firewall according to rules defined by the administrator.
Filtering rules can act on the basis of source and destination address and on ports, in
addition to whatever higher-level network protocols the packet contains. Network layer
firewalls tend to operate very fast, and transparently to users.

Network layer firewalls generally fall into two sub-categories, stateful and non-stateful.
Stateful firewalls hold some information on the state of connections (for example:
established or not, initiation, handshaking, data or breaking down the connection) as part
of their rules (e.g. only hosts inside the firewall can establish connections on a certain
port).

Stateless firewalls have packet-filtering capabilities but cannot make more complex
decisions on what stage communications between hosts have reached. Stateless firewalls
therefore offer less security. Stateless firewalls somewhat resemble a router in their
ability to filter packets.

Any normal computer running an operating system which supports packet filtering and
routing can function as a network layer firewall. Appropriate operating systems for such a
configuration include Linux, Solaris, BSDs or Windows Server.

CONtraCEPT is a stateless, network layer firewall.

— il o e . o L

CHAPTER 2: A BRIEF INTRODUCTION

Using the inetd Daemon

Each server running under UNIX offering a service normally executes as a separate
process. When the number of services being offered becomes large, however, this
becomes a burden to the system.This is because resources must be allocated to each
server process running, even when there are no current requests for the services being
offered.

Additionally, it can be observed that most server programs use the same general
procedure to create, bind, listen, and accept new client connections. A similar observation
can be made for connectionless server operation.

Steps Common to Most Servers

The basic steps a connection-oriented server uses to establish contact with a client were
the following:

1. Create a socket.

2. Bind a socket to a well-known address.

3. Listen for a client connect.

4. Accept the client connect.

You will see that the inetd daemon can perform these initial steps for any connection-

oriented server, saving the server writer from having to write and debug code for these
steps. The inetd daemon idea can be extended to handle connectionless servers as well,

Introducing inetd

When a Linux system is booted for the first time, the inetd daemon is started from one of
the startup scripts. On Knoppix 3.8 systems, this daemon is started from the script file:

fusr/sbin/inetd

When the inetd daemon is started for the first time, it must know what Internet services it
must listen for and what servers to pass the request off to when a request arrives. This is
defined within the startup file /etc/inetd.conf.

The /ete/inetd.conf Configuration File

The general file layout of the /etc/inetd.conf file is organized as a text file, with each text
line representing one record, which describes one Internet service. Lines starting with #
are simply comment lines and are ignored.

The blank (or tab) separated fields are described in Table with some examples (fields
are listed in order from left to right).

Field # Description Example

1. Internet service name telnet (this might also be a port number)
2. Socket type stream or dgram

3. Protocol tep or udp

4. Flags nowait or wait

5. Userid to use root or nobody

6. Pathname of executable /usr/sbin/in.telnetd

7. Server arguments in.telnetd

The Design Parameters of inetd Servers

One of the advantages of using inetd as the front end for servers is that the server writer's
job is made easier. There is no longer the burden of writing the same Socket(2), bind(2),
listen(2), and accept(2) calls for stream tcp servers, for example.

Similar code savings can be had for dgram udp servers, also. How then, does the inetd
server hand off the connected socket to the server process when the process is started?
Using the simple elegance of UNIX, the started server is handed the client socket on the
following file units (file descriptors):

* File unit 0 has client socket for standard input
» File unit 1 has client socket for standard output
* File unif 2 has client socket for standard error

Wrapper
' Program
inetd fork() & exec(> g

Deamon

Remote Client

(JOaXd

The Application
.exe File

Figure 1: Graphical Representation of TCP wrapper concept

-10-

CHAPTER 3: DESIGN SPECIFICATIONS

Context Diagram

Socket Administrator
connected to \
authenticated)
user Policy,
Service

Application to
secure

primitives

\

Environment
variables

Intrusion

Attempt

Details

/ Authenticat
ed
Log Connection
Repository details
Banned [P

N

ata

Banned
client’s /
d

Inetdeamon

Connected Connected
Dgram Stream
Socket Socket
descriptor descriptor

Access
—» Repository

-~

Banned
Hostname

Banned
Hostname

Banned IP

Access Repository

Figure 2: Context Diagram

-11-

Event List

Sno. Event Name Stimulus Response (OQutput) Type
Input ' |
j i Arrival of a connection Connected The authentication status Flow
request Socket message, socket connected to
descriptor on authenticated client, log entry
standard input corresponding to the
authentication status
2 Arrival of arequestto -~ Security Policy The new service is added tothe Flow Z
Secure a nes.N-. and 'se_rvice list of services to be secured |
sérv_i_ce/appi_ication . primitives - |
3 Arrival of arequestto Request to The firewall is terminated Flow
terminate the firewall terminate
ﬂreWal_I_ z
4 - Arrival of requestto R_equcs_t toadd The banned hostname ot ip is Flow 4
o pOﬁulate access list banned ipor: added to the access list E
| banned | ;

hostname. .

Cartesian Hierarchy

Authenticate
Request

Authenticate
TCP request

Firewall

h

Secure new
service

\

disable
firewall

Populate
Access list

N,

Check for
IP spoofing

Authenticate Check for Authenticate Authenticate
TCP request by IP spoofing TCP request by UDP request
hostname P

Authenticate Authenticate

UDP request UDP request

by IP by hostname

Figure 3: Cartesian Hierarchy

Data Flow Diagram

Access Files

Administrator

Populate
access InetDeamon
list
Secure s
new
Disable service
Firewall UDP
InetDeamon Wrapper
UDP application

UDPCh
eck if
allowed

p

UDPChe
ckif

bammed
hostnam

UDPCh
eck if
banned

p

TCP application TCP
Wrapper

UDPCh
eck if

UDPChe UDPCh

ckif eck if

1
bammed banned ?p owed
hostnam ip

S

TCPLog
Files
b
Figure 4: Data Flow Diagram ;|
]
~14- il

CHAPTER 4: IMPLEMENTATION SPECIFICATION

The .c files of the project along with their key functions

TCPWrapper.c

e Responsibility:
This c file is responsible for the authentication and logging of any
TCP connection request.

¢ Arguments: 7
It accepts the full application path , policy variable and environment
variables(implicit) as arguments.

Key functions

Sno. Function Name ' - (Impnt) Response]Outp__ut_[:

1 CheckifBannedip() Pointers to a hostent Log entry corfeéponding to
structure and the authentication status of
sockaddr_in structure the client
, both filled with
clients address
information

2 Checkifbannedhostname() . -~ Pointers to a hostent = Log entry corresponding to

o E c structure and - R L

- sockaddr_in structure:- " "
; both filled with . theclient . =
- information

-15-

"~ the -aﬁt_henticaﬁdn status of

r

no.

——

3

4

Function Name

Checkifspoofed()

Check_i_failowedip() :

nput
Pointers to a hostent
structure and
sockaddr_in structure
, both filled with
clients address
information
Pointers to a hostent
structureand
soclgadd‘re_i_r.l‘s_tfucture
, both filled with

~ clients address -

information -

Response (Output)

Log entry corresponding to
the authentication status of

the client

'Log entry corresponding to

the authentication status of

thg client

-16-

UDPWrapper.c

* Responsibility:
This c¢ file is responsible for the authentication and logging of any
UDP connection request.

e Arguments:
It accepts the full application path , policy variable and environment
variables(implicit) as arguments.

Key functions

Sno. Function Name (Input) Response (OQutput)
i CheckifBannedip() Pointers to a hostent Log entry corresponding to
structure and the authentication status of

sockaddr_in structure the client
, both filled with

clients address

— ol ..

information

2 Checkifbannedhostname() Pointers to a hostent Log entry corresponding to
sockaddr_in structure

~, both filled with -the client:

clients address - e

the authentication status of

B, S < . . -

o _ information
3 Checkifspoofed() Pointers to a hostent ~ Log entry corresponding to
structure and the authentication status of

sockaddr_in structure the client
, both filled with
clients address

information

-17-

| gl

1no.

————

4

Function Name

Checkifallowedip()

{Input)

Pointers to a hostent .
structure and
sockaddr _in structure
, both filled with -

clients address

_ information

Response (OQutput)
Log entry corresponding to
the authentication status of

the client

-18-

N~ Syt sy r

JEmame - B o

.

» Responsibilities:
This non-executable ¢ file holds all the functions responsible for
the logging of information into the log files.

Sno, Function Name ~ (Input) Response (Output)
| Log_open() Pathneme of file to File pointer to the file
open, and mode in opened

which it is to be

_ opened.
2 LoglQ) ~ - Messagetobelogged Message is logged into the ,
~ . the format specifier . - _._PQBI.. gog .1=e_.
3 Log_cioée(). o _ ' File pointer.to the file Thé file is closed and thé !
L tobeclosed memory associated with |
the file pointer is freed.)
4 Bail) - Onwhat, errorcode - - Error message is logged is

~ logged. .

ey

-19-

gadmin.c

» Responsibility:
To show the CUI at the server side.

Key functions

. EventName '~ (Imput) . Response(Output)
appeﬂdEnﬁ‘yConfO void : Append entries into the
| ined.conf file for starting

= s
|=
=

of services.

2. appendEntryLog() . - Index which. Any of the log files viz, -

3 adminMainMenu() void ~ Return the position of the
menu item selected by the

administrator.

4 edittogFile) ~ woid .~ Returnsthe target index to
- e | | the log file. |

5. helpPage) void - Displays the help file

gelient.c

» Responsibility:
To show the CUT at the client side.

-20-

‘i ;

CHPTER 5: SNAPSHOTS OF THE TOOL

[}~ Shell = Konsole R R
Session Edit View Bookmarks Settings . Help

e Edit Banned Lists

(=) & shel e _

‘._. é ‘0 - .‘17 .77:, 1% Hz ‘iﬂ\ @ j -‘ 4 Shell - Konsole
i i LA S AT

Figure 5: Snapshot of Main Menu

oy

L}~ shell . Konsele
Segslon Edit Vlew Bockmarks - Settings. . 1

Figure 6: Snapshot of Administrative Tools—>Edit Banned Lists

[~ shell - Konsole

- hetl - romeate

Figure 7: Snapshot of Banned IP log File > bannedip.log

23-

Shelf - Konsui, fipy272.16.- | 1opng -Kelew

-, wrapperl.c - ¥ Shell « Konse

Figure 8: Snapshot of Administrative Tools—Edit Banned Lists->bannedalias.log

24

B

e —

50Ty S Awn e e mag L)

-~

Figure 9: Snapshot of Administrative Tools->Edit Banned Lists—>allowedip.log

-25-

h i
|
i
- Shell - Konsole
! Session Edit Miew Bookmarks Settimgs. Help -~ . .
|
] H
]

- {(-‘ i — et L , — ; ¥ Shell - Konsele - Shell fipa2 72,16 73 2repae. [= a L
Iy : & -l % el - b At [l L= e e N
Sad 6 j @ ey ﬁ @ : . wrapperl.c - Knirite " Shell » Konsole ﬂﬁm@

E9XY 2 . b L3200

Figure 10: Snapshot of Administrative Tools>Secure New Service >Edit inctd.conf \

-26-

-+ Shell - Konsole)
Session Edit View Bookmarks Seiings Help

——

Figure 11: Snapshot of Administrative Tools->Disable Firewall \

27-

— -

[#-shel
S

[Jossamn@- = 1 weo U]

Figure 12: Snapshot of Administrative Tools>HELP \

-28-

et

CHAPTER 6: LIMITATIONS

Major limitations of the tool are :

1. No prevention from attacks like DOS attacks.
2. IP spoofing by changing MAC address is not detected by the tool.

3. CUI does not allow allow all administrative options to be handled from it only.

4. Virulent Data Patterns cannot be recognized once the connection is made.

-29.

— -

CHAPTER 7: FUTURE SCOPE

The Software is currently a prototype level application. The scope and scale of this

application can be extended by future developers. The potential arcas of extension are

listed below.

Sl

Eradication of the major limitations as listed above.

The tool can be made with a GUI rather than a CUI for more ease of use.

The tool can be made generic for all type of linux based systems.

The tool can be further developed into a generic firewall for a stand alone system

which protects the system from all type of intrusions attempts.

-30-

CHAPTER 8: CONCLUSION

L

The project was a great learning experience for both of us and made us learn new
concepts of network programming. The project has many potential areas of extensions
and with the limitations eradicated the tool can prove really helpful and can be easily

used as part of the security mechanism of a system.

-31-

APPENDIX

The following selected artifacts form a comprehensive list of the various BSD
sockets APl structures and functions used in the project.

The sockaddr in Structure

struct sockaddr_in {

sa_family t sin_family; /* Address Family */
uint16_t sin_port; /* Port number */

struct in addr sin addr; /* Internet address */
unsigned char sin_zero[8]; /* Pad bytes */

35

struct in_addr {

uint32 ts addr; /* Internet address */

¥
The above structure ¢an be described as follows:

+ The sin_family member occupies the same storage area that sa family does in the
generic socket definition. The value of sin_family is initialized to the value of AF_INET.

» The sin_port member defines the TCP/IP port number for the socket address. This value
must be in network byte order (this will be elaborated upon later).

» The sin_addr member is defined as the structure in_addr, which holds the IP number in
network byte order. If you examine the structure in_addr, you will see that it consists of
one 32- bit unsigned integer.

30

. The struct hostent Structure

struct hostent {

char *h_name; /* official name of host */
char **h_aliases; /¥ alias list */

int h_addrtype; /* host address type */
int h_length; /* length of address */

char **h_addr_list; /* list of addresses */
¥

/* for backward compatibility */

#define h_addr h_addr_list[0]

The hostent h_name Member :

The h _name entry within the hostent structure is the official name of the host that your

are looking up. Tt is also known as the canonical name of the host. If you provided an .
alias, or a hostname without the domain name, then this entry will describe the proper |
name for what you have queried. This entry is useful for displaying or logging your result !
to a log file.

The hostent h_aliases Member :

The hostent h_aliases member of the returned structure is an array of alias names for the
hostname that you have queried. The end of the list is marked by a NULL pointer.

The recvfrom function ¢

z = recvirom(s, /* Socket */
dgram, /* Receiving buffer */
sizeof dgram,/* Max rcv buf size */
0, /* Flags: no options */
(struct sockaddr *)&adr, /* Addr */
&x); /* Addr len, in & out */

It is used to receive a datagram packet or to eat a datagram packet.

The getpeername() function

int getpeername(int s, struct sockaddr *name, socklen_t *namelen);

It is used to retrieve client data from a connected TCP socket.

-33-

The gethostbyaddr() Function

There are times where you have an Internet address, but you need to report the hostname
instead of the IP number. A server might want to log the hostname of the client that has
contacted it, instead of the IP number alone. The function synopsis for gethostbyaddr() is
as follows:

#include <sys/socket.h> /* for AF_INET */
struct hostent *gethostbyaddr(
const char *addr, /* Input address */

int len, /* Address length */
int type); /* Address type */

The inet ntoa() Function

There are times when a socket address represents the address of a user that has connected
to your server, or represents the sender of a UDP packet. The job of converting a network
sequenced 32-bit value into dottedquad notation is inconvenient. Hence, the inet_ntoa()
function has been provided. The synopsis of the function is as follows:

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

char *inet_ntoa(struct in_addr addr);

The gethostbyname() Function

This function accepts the name of the host that you want to resolve, and it returns a
structure identifying it in various ways. The function synopsis is as follows:

#include <netdb.h>
extern int h_errno;

struct hostent *gethostbyname(const char *name);

The function gethostbyname() accepts one input argument that is a C string representing
the hostname that you want to resolve into an address. The value returned is a pointer to
the hostent structure if the call is successful. If the function fails, then a NULL pointer is
returned, and the value of h_ermo contains the reason for the failure.

-34-

The following selected artifacts form a comprehensive list of the various ncurses
functions used in the project which are included in the <ncurses.h> header file.

initscr() Function

The function initscr(} initializes the terminal in curses mode. In some implementations it
clears the screen and presents a blank screen.

refresh(} Function

This function is analogous to normal printf in all respects except that it prints the data in
the buffer of a window called stdscr at the current (y,x) co-ordinates,

endwin{) Function

This function is vsed to end the curses mode,

printw() and myprintw Functions

These two functions work much like printf(). mvprintw() can be used to move the cursor to a
position and then print.

attron(ATTRIBUTE) and attroff(ATTRIBUTE) Functions

These two functions switch on and off the attribute passed as an argument respectively.

newwin(height,width starty,startx) Function

A Window can be created by calling the function newwin(). It doesn't create any thing on
the screen actually. It allocates memory for a structure to manipulate the window and
updates the structure with data regarding the window like it's size, starty, startx. The
function newwin () returns a pointer to structure WINDOW.

start colovt) Function

Curses initializes all the colors supported by terminal when start_color () is called.

init_pair()Function

Defines the foreground and background for the pair number given as an argument.

-35-

A BIBLIOGRAPHY

Books:
Warren W, Gay, Linux Socket Programming by Example, QUE Indiana 2000.
Phil Jones, Knowing Knoppix, Phil Jones California 2005.

Kyle Rankin, Knoppix Hacks, O Reilly .

Manuals:
Pradeep Padla, NCURSES Programming HOWTO

Brian Beej Hall, Beej’s Guide to Network Programming

Web References:

http://www.porcupine.org/wietse/

http://en.wikipedia.org/wiki/Knoppix

http://www knopper.net/
http://www.pjls16812.pwp.blueyonder.co.uk/knowing-knoppix/index.html

www.e'cst.csuchico.edu/~beej/

~-36-

