

“NORMALISING MACRONIC TEXT INTO A UNIFORM

LANGUAGE”

A PROJECT

Submitted in complete fulfillment of the requirements for the award of the

degree of

BACHELOR OF TECHNOLOGY

IN

COMPUTER SCIENCE ENGINEERING

Under the supervision of

Dr.Rajni Mohana

By

Nimisha Nadda(121112)

to

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY

WAKNAGHAT SOLAN – 173 234

HIMACHAL PRADESH INDIA

May, 2016

i

CERTIFICATE

 Candidate’s Declaration

I hereby declare that the work presented in this report entitled “Normalizing macaronic

text into a uniform language” in complete fulfillment of the requirements for the

award of the degree of Bachelor of Technology in Computer Science and Engineering

submitted in the department of Computer Science & Engineering and Information

Technology, Jaypee University of Information Technology Waknaghat is an authentic

record of my own work carried out over a period from August, 2015 to May, 2016 under

the supervision of Dr. Rajni Mohana Assistant Professor in the department of Computer

Science & Engineering.

The matter embodied in the report has not been submitted for the award of any other

degree or diploma.

Nimisha Nadda, 121112

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

Dr. Rajni Mohana

Assistant Professor

Computer Science & Engineering

Dated: 30
th
 May,2016

ii

ACKNOWLEDGEMENT :-

I express my sincere thanks to Dr. Rajni Mohana, Assistant Professor in the Computer

Science & Engineering department for her support and guidance for doing the project. It

was her support and continuous guidance that helped me to achieve what I have achieved

in this project.

I would also like to thank Sukhnandan Ma’am, for helping me out understanding the

software and hence, the project better. It was her guidance that helped me achieve what I

have.

iii

CONTENTS

CHAPTER 1. INTRODUCTION……………………………………1

1.1 Introduction ………………………………………………………………………1

 1.1.1. Natural Language Processing…………….……………………………3

 1.1.2 Software Information: RapidMiner…………………………………….9

1.2 Problem Statement ………………………………………………………………10

1.3 Objectives ……………………………………………………………………….10

1.4 Methodology …………………………………………………………………….11

1.4.1 Identifying and Collecting Dataset……………………………………..11

1.4.2 Filtering…………………………………………………………………11

1.4.3 Tokenization…………………………………………………………….12

1.4.4 Standardization ………………………………………………………....12

1.4.5 Generating bi-grams…………………………………………………….12

1.4.6 Retrieving the frequency of each bigram……………………………….13

1.4.7 Saving to database………………………………………………………13

1.4.8 Predicting next word…………………………………………………….13

1.4.9 Identifying errors……………………………………………………..…13

1.4.10 Finding the previous word to error…………………………………….13

1.4.11 Predicting the correct word………………………………………….…14

CHAPTER 2. LITERATURE SURVEY……………………………15

PAPER 1:Standardizing Tweets with Character-level Machine Translation………..15

PAPER 2:Challenges of Multilingualism and Possible Approach for

 Standardization of e-Governance Solutions in India………………………………..17

PAPER 3:Rewriting the orthography of SMS messages…………………………….18

PAPER 4:Paralinguistic Restitution, Deletion, and Non-standard Orthography

 in text Messages……………………………………………………………….…….18

iv

PAPER 5:Long Distance revision in Drafting and Post-Editing…………………….19

PAPER 6:Automatic standardization of texts containing spelling variation…..…….21

CHAPTER 3. SYSTEM DEVELOPMENT…………………………23

3.1 System Model……………..……………………………………………………….23

3.2 System Design………………..……………………………………………………24

3.3 System Development………………………...…………………………………….25

CHAPTER 4. PERFORMANCE ANALYSIS……………………...42

4.1 Analysis……………………..……………………………………………………42

4.2 Accuracy……./…………………………………………………………………...53

4.3 Precision……………………..……………………………………………………53

4.4 Recall……………..……………………………………………………………….53

CHAPTER 5. CONCLUSION……………………………………….54

Conclusion……………………………………………………………………………54

Future works………………………………………………………………………….54

CHAPTER 6. REFERENCES………………………………………..55

v

LIST OF FIGURES

1. Methodology for supervised modeling…………………………3

2. System Design flowchart………………………………………..24

vi

LIST OF GRAPHS:

1. Accessibility index due to Standardization………………………17

2. Three translation progression graphs showing distinction

 is drafting, gisting and post editing……………………………….19

3. Two graphs Showing comparison in time taken by

 students and professionals in drafting and post editing…….…..20

vii

ABSTRACT:

SMS are short-length text documents written in a informal style. SMS text processing is

challenging because of multi-varied text composition in terms of language, vocabulary,

style and quality. In this project, with the help of RapidMiner software tool we have tried

to standardize SMS texts. We have worked on American English messages only. With

the help of a slang dictionary, we corrected most of the word. In order to improve the

efficiency of the system, we created a database to perform next word prediction from. We

performed bigram on our corrected dataset, retrieved the previous values to the error, and

from our prediction dataset predicted what possible words could be used. Our system

gives an accuracy of about 96% and can be further improved.

1

1. INTRODUCTION:

1.1 INTRODUCTION:

The primary motivation for the creation and use of SMS language was to convey a

comprehensible message using the fewest number of characters possible. This was for

two reasons; one, telecommunication companies limited the number of characters per

SMS, and also charged the user per SMS sent. To keep costs down, users had to find a

way of being concise while still communicating the desired message. Two, typing on a

phone is normally slower than with a keyboard, and capitalization is even slower. As a

result, punctuation, grammar, and capitalization are largely ignored. In many countries,

people now have access to unlimited text options in their monthly plan, although this

varies widely from country to country, and operator to operator. However, screens are

still small and the input problem persists, so SMS language is still widely used for

brevity. Any word may be shortened (for example, "text" to "txt"). Words can also be

combined with numbers to make them shorter (for example, "later" to "l8r"), using the

numeral "8" for its homophonic quality.

Text standardization is rapidly gaining in popularity because of the explosion of user-

generated text content in which language norms are not followed. SMS messages used to

be the main object of text standardization while recently Twitter has started taking over

as the most prominent source of information encoded with non-standard language.

There are two main approaches to text standardization.

1. The unsupervised approach mostly relies on phonetic transcription of non-

standard words to produce standard candidates and language modeling on in-

vocabulary (IV) data for selecting the most probable candidate.

2. The supervised approach assumes manually standardized data from which

standardization models are built.

1. The unsupervised approach: There is no target variable is identified as such. Instead,

the data mining algorithm searches for patterns and structure among all the variables. The

most common unsupervised data mining method is clustering.

2. The supervised approach: Most data mining methods are supervised methods,

however, meaning that (1) there is a particular pre-specified target variable, and (2) the

algorithm is given many examples where the value of the target variable is provided, so

https://en.wikipedia.org/wiki/Homophone

2

that the algorithm may learn which values of the target variable are associated with which

values of the predictor variables.

Most supervised data mining methods apply the following methodology for building and

evaluating a model.

First, the algorithm is provided with a training set of data, which includes the pre-

classified values of the target variable in addition to the predictor variables. For example,

if we are interested in classifying income bracket, based on age, gender, and occupation,

our classification algorithm would need a large pool of records, containing complete (as

complete as possible) information about every field, including the target field, income

bracket. In other words, the records in the training set need to be pre-classified. A

provisional data mining model is then constructed using the training samples provided in

the training data set. However, the training set is necessarily incomplete; that is, it does

not include the “new” or future data that the data modelers are really interested in

classifying. Therefore, the algorithm needs to guard against “memorizing” the training set

and blindly applying all patterns found in the training set to the future data. For example,

it may happen that all customers named “David” in a training set may be in the high

income bracket. We would presumably not want our final model, to be applied to new

data, to include the pattern “If the customer’s first name is David, the customer has a high

income.” Such a pattern is a spurious artifact of the training set and needs to be verified

before deployment.

i. The next step in supervised data mining methodology is to examine how

the provisional data mining model performs on a test set of data. In the test

set, a holdout data set, the values of the target variable are hidden

temporarily from the provisional model, which then performs

classification according to the patterns and structure it learned from the

training set. The efficacies of the classifications are then evaluated by

comparing them against the true values of the target variable.

ii. The provisional data mining model is then adjusted to minimize the error

rate on the test set.

iii. The adjusted data mining model is then applied to a validation data set,

another holdout data set, where the values of the target variable are again

hidden temporarily from the model. The adjusted model is itself then

adjusted, to minimize the error rate on the validation set. Estimates of

model performance for future, unseen data can then be computed by

observing various evaluative measures applied to the validation set.

 INTRODUCTION

3

Methodology for supervised modeling.

1.1.1 Natural Language Processing

Natural language processing (NLP) is a field of computer science, artificial

intelligence, and computational linguistics concerned with the interactions

between computers and human (natural) languages. As such, NLP is related to the area

of human–computer interaction. Many challenges in NLP involve natural language

understanding, that is, enabling computers to derive meaning from human or natural

language input, and others involve natural language generation.

Modern NLP algorithms are based on machine learning, especially statistical machine

learning. The paradigm of machine learning is different from that of most prior attempts

at language processing. Prior implementations of language-processing tasks typically

involved the direct hand coding of large sets of rules. The machine-learning paradigm

 INTRODUCTION

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Computational_linguistics
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Human%E2%80%93computer_interaction
https://en.wikipedia.org/wiki/Natural_language_understanding
https://en.wikipedia.org/wiki/Natural_language_understanding
https://en.wikipedia.org/wiki/Natural_language_generation
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Statistical_inference

4

calls instead for using general learning algorithms — often, although not always,

grounded in statistical inference — to automatically learn such rules through the analysis

of large corpora of typical real-world examples. A corpus (plural, "corpora") is a set of

documents (or sometimes, individual sentences) that have been hand-annotated with the

correct values to be learned.

 Typical applications for natural language processing include the following.

 A better human-computer interface that could convert from a natural language

into a computer language and vice versa. A natural language system could be the

interface to a database system, such as for a travel agent to use in making

reservations. Blind people could use a natural language system (with speech

recognition) to interact with computers, and Steven Hawking uses one to generate

speech from his typed text.

 A translation program that could translate from one human language to another

(English to French, for example). Even if programs that translate between human

languages are not perfect, they would still be useful in that they could do the

rudimentary translation first, with their work checks and corrected by a human

translator. This cuts down on the time for the translation.

 Programs that could check for grammar and writing techniques in a word

processing document.

 A computer that could read a human language could read whole books to stock its

database with data.

Major tasks of NLP:

The following is a list of some of the most commonly researched tasks in NLP. Note that

some of these tasks have direct real-world applications, while others more commonly

serve as subtasks that are used to aid in solving larger tasks. What distinguishes these

tasks from other potential and actual NLP tasks is not only the volume of research

devoted to them but the fact that for each one there is typically a well-defined problem

setting, a standard metric for evaluating the task, standard corpora on which the task can

be evaluated, and competitions devoted to the specific task.

1. Automatic summarization: Produce a readable summary of a chunk of text.

Often used to provide summaries of text of a known type, such as articles in the

financial section of a newspaper.

2. Coreference resolution: Given a sentence or larger chunk of text, determine

which words ("mentions") refer to the same objects ("entities"). Anaphora

resolution is a specific example of this task, and is specifically concerned with

 INTRODUCTION

https://en.wikipedia.org/wiki/Statistical_inference
https://en.wikipedia.org/wiki/Text_corpus
https://en.wikipedia.org/wiki/Text_corpus
https://en.wikipedia.org/wiki/Automatic_summarization
https://en.wikipedia.org/wiki/Coreference
https://en.wikipedia.org/wiki/Anaphora_resolution
https://en.wikipedia.org/wiki/Anaphora_resolution

5

matching up pronouns with the nouns or names that they refer to. The more

general task of co-reference resolution also includes identifying so-called

"bridging relationships" involving referring expressions. For example, in a

sentence such as "He entered John's house through the front door", "the front

door" is a referring expression and the bridging relationship to be identified is the

fact that the door being referred to is the front door of John's house (rather than of

some other structure that might also be referred to).

3. Discourse analysis: This rubric includes a number of related tasks. One task is

identifying the discourse structure of connected text, i.e. the nature of the

discourse relationships between sentences (e.g. elaboration, explanation, contrast).

Another possible task is recognizing and classifying the speech acts in a chunk of

text (e.g. yes-no question, content question, statement, assertion, etc.).

4. Machine translation: Automatically translate text from one human language to

another. This is one of the most difficult problems, and is a member of a class of

problems colloquially termed "AI-complete", i.e. requiring all of the different

types of knowledge that humans possess (grammar, semantics, facts about the real

world, etc.) in order to solve properly.

5. Morphological segmentation: Separate words into individual morphemes and

identify the class of the morphemes. The difficulty of this task depends greatly on

the complexity of the morphology (i.e. the structure of words) of the language

being considered. English has fairly simple morphology, especially inflectional

morphology, and thus it is often possible to ignore this task entirely and simply

model all possible forms of a word (e.g. "open, opens, opened, opening") as

separate words. In languages such as Turkish or Manipuri, a highly agglutinated

Indian language, however, such an approach is not possible, as each dictionary

entry has thousands of possible word forms.

6. Named entity recognition (NER): Given a stream of text, determine which items

in the text map to proper names, such as people or places, and what the type of

each such name is (e.g. person, location, organization). Note that,

although capitalization can aid in recognizing named entities in languages such as

 INTRODUCTION

https://en.wikipedia.org/wiki/Pronoun
https://en.wikipedia.org/wiki/Referring_expression
https://en.wikipedia.org/wiki/Discourse_analysis
https://en.wikipedia.org/wiki/Discourse
https://en.wikipedia.org/wiki/Speech_act
https://en.wikipedia.org/wiki/Machine_translation
https://en.wikipedia.org/wiki/AI-complete
https://en.wikipedia.org/wiki/Morphology_(linguistics)
https://en.wikipedia.org/wiki/Morpheme
https://en.wikipedia.org/wiki/Morphology_(linguistics)
https://en.wikipedia.org/wiki/English_language
https://en.wikipedia.org/wiki/Inflectional_morphology
https://en.wikipedia.org/wiki/Inflectional_morphology
https://en.wikipedia.org/wiki/Turkish_language
https://en.wikipedia.org/wiki/Manipuri_language
https://en.wikipedia.org/wiki/Named_entity_recognition
https://en.wikipedia.org/wiki/Capitalization

6

English, this information cannot aid in determining the type of named entity, and

in any case is often inaccurate or insufficient. For example, the first word of a

sentence is also capitalized, and named entities often span several words, only

some of which are capitalized. Furthermore, many other languages in non-

Western scripts (e.g. Chinese or Arabic) do not have any capitalization at all, and

even languages with capitalization may not consistently use it to distinguish

names. For example, German capitalizes all nouns, regardless of whether they

refer to names, and French and Spanish do not capitalize names that serve

as adjectives.

7. Natural language generation: Convert information from computer databases

into readable human language.

8. Natural language understanding: Convert chunks of text into more formal

representations such as first-order logic structures that are easier

for computer programs to manipulate. Natural language understanding involves

the identification of the intended semantic from the multiple possible semantics

which can be derived from a natural language expression which usually takes the

form of organized notations of natural languages concepts. Introduction and

creation of language meta-model and ontology are efficient however empirical

solutions. An explicit formalization of natural languages semantics without

confusions with implicit assumptions such as closed-world assumption (CWA)

vs. open-world assumption, or subjective Yes/No vs. objective True/False is

expected for the construction of a basis of semantics formalization.

9. Optical character recognition (OCR): Given an image representing printed text,

determine the corresponding text.

10. Part-of-speech tagging: Given a sentence, determine the part of speech for each

word. Many words, especially common ones, can serve as multiple parts of

speech. For example, "book" can be a noun ("the book on the table") or verb ("to

book a flight"); "set" can be a noun, verb or adjective; and "out" can be any of at

least five different parts of speech. Some languages have more such ambiguity

than others. Languages with little inflectional morphology, such as English are

 INTRODUCTION

https://en.wikipedia.org/wiki/Chinese_language
https://en.wikipedia.org/wiki/Arabic_language
https://en.wikipedia.org/wiki/German_language
https://en.wikipedia.org/wiki/Noun
https://en.wikipedia.org/wiki/French_language
https://en.wikipedia.org/wiki/Spanish_language
https://en.wikipedia.org/wiki/Adjective
https://en.wikipedia.org/wiki/Natural_language_generation
https://en.wikipedia.org/wiki/Natural_language_understanding
https://en.wikipedia.org/wiki/First-order_logic
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Closed-world_assumption
https://en.wikipedia.org/wiki/Open-world_assumption
https://en.wikipedia.org/wiki/Optical_character_recognition
https://en.wikipedia.org/wiki/Part-of-speech_tagging
https://en.wikipedia.org/wiki/Part_of_speech
https://en.wikipedia.org/wiki/Parts_of_speech
https://en.wikipedia.org/wiki/Parts_of_speech
https://en.wikipedia.org/wiki/Noun
https://en.wikipedia.org/wiki/Verb
https://en.wikipedia.org/wiki/Noun
https://en.wikipedia.org/wiki/Verb
https://en.wikipedia.org/wiki/Adjective
https://en.wikipedia.org/wiki/Inflectional_morphology
https://en.wikipedia.org/wiki/English_language

7

particularly prone to such ambiguity. Chinese is prone to such ambiguity because

it is a tonal language during verbalization. Such inflection is not readily conveyed

via the entities employed within the orthography to convey intended meaning.

11. Parsing: Determine the parse tree (grammatical analysis) of a given sentence.

The grammar for natural languages is ambiguous and typical sentences have

multiple possible analyses. In fact, perhaps surprisingly, for a typical sentence

there may be thousands of potential parses (most of which will seem completely

nonsensical to a human).

12. Question answering: Given a human-language question, determine its answer.

Typical questions have a specific right answer (such as "What is the capital of

Canada?"), but sometimes open-ended questions are also considered (such as

"What is the meaning of life?"). Recent works have looked at even more complex

questions.

13. Relationship extraction: Given a chunk of text, identify the relationships among

named entities (e.g. who is married to whom).

14. Sentence breaking (also known as sentence boundary disambiguation):Given

a chunk of text, find the sentence boundaries. Sentence boundaries are often

marked by periods or other punctuation marks, but these same characters can

serve other purposes (e.g. marking abbreviations).

15. Sentiment analysis: Extract subjective information usually from a set of

documents, often using online reviews to determine "polarity" about specific

objects. It is especially useful for identifying trends of public opinion in the social

media, for the purpose of marketing.

16. Speech recognition: Given a sound clip of a person or people speaking,

determine the textual representation of the speech. This is the opposite of text to

speech and is one of the extremely difficult problems colloquially termed "AI-

complete" (see above). In natural speech there are hardly any pauses between

successive words, and thus speech segmentation is a necessary subtask of speech

 INTRODUCTION

https://en.wikipedia.org/wiki/Chinese_language
https://en.wikipedia.org/wiki/Tonal_language
https://en.wikipedia.org/wiki/Parsing
https://en.wikipedia.org/wiki/Parse_tree
https://en.wikipedia.org/wiki/Grammar
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Ambiguous
https://en.wikipedia.org/wiki/Question_answering
https://en.wikipedia.org/wiki/Relationship_extraction
https://en.wikipedia.org/wiki/Sentence_breaking
https://en.wikipedia.org/wiki/Sentence_boundary_disambiguation
https://en.wikipedia.org/wiki/Full_stop
https://en.wikipedia.org/wiki/Punctuation_mark
https://en.wikipedia.org/wiki/Abbreviation
https://en.wikipedia.org/wiki/Sentiment_analysis
https://en.wikipedia.org/wiki/Speech_recognition
https://en.wikipedia.org/wiki/Text_to_speech
https://en.wikipedia.org/wiki/Text_to_speech
https://en.wikipedia.org/wiki/AI-complete
https://en.wikipedia.org/wiki/AI-complete
https://en.wikipedia.org/wiki/Natural_speech
https://en.wikipedia.org/wiki/Speech_segmentation

8

recognition (see below). Note also that in most spoken languages, the sounds

representing successive letters blend into each other in a process termed co-

articulation, so the conversion of the analog signal to discrete characters can be a

very difficult process.

17. Speech segmentation: Given a sound clip of a person or people speaking,

separate it into words. A subtask of speech recognition and typically grouped with

it.

18. Topic segmentation and recognition: Given a chunk of text, separate it into

segments each of which is devoted to a topic, and identify the topic of the

segment.

19. Word segmentation: Separate a chunk of continuous text into separate words.

For a language like English, this is fairly trivial, since words are usually separated

by spaces. However, some written languages like Chinese, Japanese and Thai do

not mark word boundaries in such a fashion, and in those languages text

segmentation is a significant task requiring knowledge of

the vocabulary and morphology of words in the language.

20. Word sense disambiguation: Many words have more than one meaning; we

have to select the meaning which makes the most sense in context. For this

problem, we are typically given a list of words and associated word senses, e.g.

from a dictionary or from an online resource such as WordNet.

In some cases, sets of related tasks are grouped into subfields of NLP that are

often considered separately from NLP as a whole. Examples include:

i. Information retrieval (IR): This is concerned with storing, searching and

retrieving information. It is a separate field within computer science

(closer to databases), but IR relies on some NLP methods (for example,

stemming). Some current research and applications seek to bridge the gap

between IR and NLP.

ii. Information extraction (IE): This is concerned in general with the

extraction of semantic information from text. This covers tasks such

 INTRODUCTION

https://en.wikipedia.org/wiki/Coarticulation
https://en.wikipedia.org/wiki/Coarticulation
https://en.wikipedia.org/wiki/Speech_segmentation
https://en.wikipedia.org/wiki/Speech_recognition
https://en.wikipedia.org/wiki/Topic_segmentation
https://en.wikipedia.org/wiki/Word_segmentation
https://en.wikipedia.org/wiki/English_language
https://en.wikipedia.org/wiki/Chinese_language
https://en.wikipedia.org/wiki/Japanese_language
https://en.wikipedia.org/wiki/Thai_language
https://en.wikipedia.org/wiki/Vocabulary
https://en.wikipedia.org/wiki/Morphology_(linguistics)
https://en.wikipedia.org/wiki/Word_sense_disambiguation
https://en.wikipedia.org/wiki/Meaning_(linguistics)
https://en.wikipedia.org/wiki/WordNet
https://en.wikipedia.org/wiki/Information_retrieval
https://en.wikipedia.org/wiki/Information_extraction

9

as named entity recognition, Co-reference resolution, relationship

extraction, etc.

iii. Speech processing: This covers speech recognition, text-to-speech and

related tasks.

The tool we are using for this project is RAPIDMINER

1.1.2 Software Information: RapidMiner

RapidMiner is a software platform developed by the company of the same name that

provides an integrated environment for machine learning, data mining, text

mining, predictive analytics and business analytics. It is used for business and industrial

applications as well as for research, education, training, rapid prototyping, and

application development and supports all steps of the data mining process including

results visualization, validation and optimization.

RapidMiner provides 99% of an advanced analytical solution through template-based

frameworks that speed delivery and reduce errors by nearly eliminating the need to write

code. RapidMiner provides data mining and machine learning procedures including: data

loading and transformation (Extract, transform, load (ETL)), data preprocessing and

visualization, predictive analytics and statistical modeling, evaluation, and deployment.

RapidMiner is written in the Java programming language. RapidMiner provides a GUI to

design and execute analytical workflows. Those workflows are called “Process” in

RapidMiner and they consist of multiple “Operators”.

 Each operator is performing a single task within the process and the output of each

operator forms the input of the next one. Alternatively, the engine can be called from

other programs or used as an API. Individual functions can be called from the command

line. RapidMiner provides learning schemes and models and algorithms

from Weka and Rscripts that can be used through extensions.

 INTRODUCTION

https://en.wikipedia.org/wiki/Named_entity_recognition
https://en.wikipedia.org/wiki/Coreference
https://en.wikipedia.org/wiki/Relationship_extraction
https://en.wikipedia.org/wiki/Relationship_extraction
https://en.wikipedia.org/wiki/Speech_processing
https://en.wikipedia.org/wiki/Speech_recognition
https://en.wikipedia.org/wiki/Text-to-speech
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Text_mining
https://en.wikipedia.org/wiki/Text_mining
https://en.wikipedia.org/wiki/Predictive_analytics
https://en.wikipedia.org/wiki/Business_analytics
https://en.wikipedia.org/wiki/Information_visualization
https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Extract,_transform,_load
https://en.wikipedia.org/wiki/Weka
https://en.wikipedia.org/wiki/R_(programming_language)

10

Text Mining: Text mining (also referred to as text data mining or knowledge discovery

from textual databases), refers to the process of discovering interesting and non-trivial

knowledge from text documents. The common practice in text mining is the analysis

of the information extracted through text processing to form new facts and new

hypotheses that can be explored further with other data mining algorithms. Text mining

applications typically deal with large and complex data sets of textual documents that

contain significant amount of irrelevant and noisy information. Feature selection aims to

remove this irrelevant and noisy information by focusing only on relevant and

informative data for use in text mining. Some of the topics within text mining include

feature extraction, text categorization, clustering, trends analysis, association mining and

visualization.

Text processing is an important extension to perform text mining. The Text Extension

adds all operators necessary for statistical text analysis. You can load texts from many

different data sources, transform them by a huge set of different filtering techniques, and

finally analyze your text data.

The Text Extensions supports several text formats including plain text, HTML, or PDF as

well as other data sources. It provides standard filters for tokenization, stemming,

stopword filtering, or n-gram generation to provide everything necessary for preparing

and analyzing texts.

1.2 PROBLEM STATEMENT:

To design a system that is able to identify and standardize macronic or multilingual

language in the data provided to the system.

In the modern world, due to various reasons, people have started using short hand, texting

language like slangs etc, which calls for the need of text standardization. Also now the

people have started mixing two or more language in the same text. We aim to standardize

these texts (in specific languages) to a standard language.

 INTRODUCTION

11

1.3 OBJECTIVE:

Our objective is to achieve:

1. To find the dataset of the language which has the same script

2. To learn Rapid Miner

3. To handle macaronic text by auto identifying the text

4. To predict the next word

1.4 METHODOLOGY:

Our methodology can be divided into basically 9 modules:

1. Identifying and Collecting Dataset

2. Filtering

3. Tokenization

4. Standardization

5. Generating bi-grams

6. Retrieving the frequency of each bigram

7. Saving to database

8. Predicting next word

9. Identifying errors

10. Finding the previous word to error

11. Predicting the correct word

1.4.1 Identifying and Collecting Dataset:

In this module, the dataset from various sources is collected. It is important to have an

understanding and idea about the data set to be worked on. We need to be certain about

the data we would be working on.

1.4.2 Filtering:

In our project, filtering in different phases is involved. Filtering enables us to sort out the

data we have collected and help us to work more efficiently. Initially we conduct filtering

manually, where we decide on what data to precisely work on. This is done to remove

 INTRODUCTION

12

unnecessary data, if any, from the data we have collected. Then, once tokenization is

performed, the data is again filtered in order to get the precise information we need to

work on.

1.4.3 Tokenization:

Tokenization is the act of breaking up a sequence of strings into pieces such as words,

keywords, phrases, symbols and other elements called tokens. Tokens can be individual

words, phrases or even whole sentences. In the process of tokenization, some characters

like punctuation marks are discarded. The tokens become the input for another process

like parsing and text mining.

Tokenization is used in computer science, where it plays a large part in the process of

lexical analysis.

1.4.4 Standardization:

In this we standardize our text into a uniform language and get our desired results. It is

performed manually as well as automatically. For this project we took 3 users to

manually standardize the text we provided and write their slangs and the correct word.

This also helped us to identify how well our automated system is working.

It is important for our data to be digital for it to be processed in an automated system. If

the source is already digital text (such as a file in text, XML, or HTML format), or you

have converted the source to that, your next task is to make sure that the text complies

After this process we get our desired result.

1.4.5 Generating bi-grams:

An n-gram model is a type of probabilistic language model for predicting the next item in

such a sequence in the form of a (n − 1)–order Markov model. An n-gram model models

sequence, notably natural languages, using the statistical properties of n-grams.

An n-gram model predicts based on . In probability terms, this is
 . When used for language modeling, independence assumptions

are made so that each word depends only on the last n − 1 words. This Markov model is

used as an approximation of the true underlying language. This assumption is important

because it massively simplifies the problem of learning the language model from data.

 INTRODUCTION

https://en.wikipedia.org/wiki/Language_model
https://en.wikipedia.org/wiki/Markov_chain
https://en.wikipedia.org/wiki/Language_model
https://en.wikipedia.org/wiki/Markov_model

13

By generating bigrams, we can determine the combinations of words occurring in our

corpus, and this information, hence helps us determine the word which must follow.

1.4.6 Retrieving the frequency of each bigram:

After we have attained our data, after generating bi-grams, we determine the term

occurrences. We can now determine the frequency of each combination occurring in our

corpus.

This will enable us to know what combination has occurred the most, therefore, helping

us determine what word should follow.

1.4.7 Saving to database:

In this, once we have attained the frequency of each bigram and the pair of words, we

save this data to database so that it can be fetched and the next word prediction can be

performed.

1.4.8 Predicting the next word:

Once our database is created, we retrieve the next word form it based on certain

conditions and successfully retrieve our output.

1.4.9 Identifying the error:

We use our prediction system to correct the errors of our initial system. It is possible that

the dictionary doesn’t contain some errors. So using our prediction system, we can find

out the correct word.

1.4.10 Finding the previous word to error:

We find out the previous word to error in order to compare it with our prediction

database. This would enable us to know what word we must look for in our database.

This can be done using bigram on our corpus.

 INTRODUCTION

14

1.4.11 Predicting the correct word:

Once we find our previous word, we look at the words corresponding to that word, giving

us possible solution. The user can then see the correct word and know what should be the

correct word.

 INTRODUCTION

15

2. LITERATURE STUDY

 PAPER 1:

Standardizing Tweets with Character-level Machine Translation

Abstract

This paper presents the results of the standardization procedure of Slovene tweets that are

full of colloquial, dialectal and foreign-language elements. With the aim of minimizing

the human input required we produced a manually normalized lexicon of the most salient

out-of-vocabulary (OOV) tokens and used it to train a character-level statistical machine

translation system (CSMT). Best results were obtained by combining the manually

constructed lexicon and CSMT as fallback with an overall improvement of 9.9% increase

on all tokens and 31.3% on OOV tokens.

Manual preparation of data in a lexicon manner has proven to be more efficient than

normalizing running text for the task at hand. Finally we performed an extrinsic

evaluation where we automatically lemmatized the test corpus taking as input either

original or automatically standardized word forms, and achieved 75.1% per-token

accuracy with the former and 83.6% with the latter, thus demonstrating that

standardization has significant benefits for upstream processing.

Dataset Collection

The basis for our dataset was the database of tweets from the now no longer active

aggregator sitweet.com containing (mostly) Slovene tweets posted between 2007-01-12

and 2011-02-20. The database contains many tweets in other languages as well, so we

first used a simple filter that keeps only those that contain one of the Slovene letters. This

does not mean that there is no foreign language text remaining, as some closely related

languages, in particular Croatian, also use these letters.

Also it is fairly common to mix Slovene and another language, mostly English, in a

single tweet. However, standard methods for language identification do not work well

with the type of language found in tweets, and are also bad at distinguishing closely

related languages, especially if a single text uses more than one language. In this step we

16

also shuffled the tweets in the collection so that taking any slice will give a random

selection of tweets, making it easier to construct training and testing datasets.

In the second step we anonymized the tweets by substituting hashtags, mentions and

URLs with special symbols (XXX-HST, XXX-MNT, XXX-URL) and substituted

emoticons with XXX-EMO. This is meant to serve two purposes. On the one hand, we

make the experimental dataset freely available and by using rather old and anonymized

tweets we hope to evade problems with

the Twitter terms of use. On the other, tweets are difficult to tokenize correctly and by

substituting symbols for the most problematic tokens, i.e. emoticons, we made the

collection easier to process.

We then tokenized the collection and stored it in the so called vertical format, where each

line is either an XML tag (in particular, <text> for an individual (tweet) or one token.

With this we obtained a corpus of about half a million tweets and eight million word

tokens which is the basis for our datasets.

Experiments and results

Our overall approach to tweet standardization is based on standardizing only OOV tokens

by applying transformations on them with the goal of producing wordforms identical to

the ones produced during manual corpus standardization.

Therefore we evaluate our approaches with two types of accuracy on the corpus:

1. ACC-ALL { accuracy on all word tokens in the corpus

2. ACC-OOV { accuracy on OOV word tokens in the corpus

The first measure reports how well we do on the level of complete texts, and the second

one how well we do on the tokens we perform our transformations on .We perform all

together five sets of experiments.

 CSMT datasets

 Lower and upper bounds

 CSMT extensions

 Lexicon vs. corpus standardization

 Lemmatization experiment

 LITERATURE SURVEY

17

PAPER 2:

Challenges of Multilingualism and Possible Approach for

Standardization of e-Governance Solutions in India

Abstract

In this paper we have addressed the major challenges and issues involved in the

multilingualism aspects towards standardization of e-governance solutions in India. The

paper also investigates the benefits of adopting open standards and open source software

in implementing multilingual e-governance solutions.

 Fig.0 Accessibility index due to Standardization

 LITERATURE SURVEY

18

PAPER 3:

Rewriting the orthography of SMS messages

Abstract

Electronic written texts used in computer-mediated interactions (emails, blogs, chats, and

the like) contain significant deviations from the norm of the language. This paper

presents the detail of a system aiming at normalizing the orthography of French SMS

messages: after discussing the linguistic peculiarities of these messages and possible

approaches to their automatic normalization, we present, compare, and evaluate various

instantiations of a normalization device based on weighted finite-state transducers. These

experiments show that using an intermediate phonemic representation and training, our

system outperforms an alternative normalization system based on phrase-based statistical

machine translation techniques.

PAPER 4:

Paralinguistic Restitution, Deletion, and Non-standard Orthography in

Text Messages

Abstract

This thesis examines the structure of text messages. In recent years, literature speculating

about electronically mediated communication has proliferated. An abundance of literature

on technology and language exists, but little of it explores text messaging. The literature

that looks at texting tends to focus on the social aspects of text communication or on the

damage people fear it will cause to language. Little literature focuses on empirical

analysis of text messaging from a linguistic perspective. Text messages are a

communication medium with limitations and intricacies all their own, and they deserve

attention. The informal nature of texting allows for a variety of lexical and grammatical

creativity. Letter and word deletions appear, perhaps inspired by the 160 character per

message length limit. Unconventional punctuation and spelling abound. Text messaging

has become a significant part of language use in our culture, especially for young people.

Today, phones are used more for text messaging than for voice communication in many

countries. Texting is a vital piece of the technology-mediated-communication puzzle and

warrants inspection; we cannot tackle the question of what digital technology means for

social interaction or for language until we understand text messaging structurally. It is

worth remembering, too, that as phones and phone plans advance, the 160 character limit

- one of the factors unique to texting and perhaps integral in generating the new linguistic

 LITERATURE SURVEY

19

phenomena we see in text speak - will become less meaningful. Perhaps even more

critically, texting patterns are also changing as phones change. In analyzing the structure

of Elizondo, 2 text messaging today, we may be capturing a unique moment in the tech-

language trajectory before a new type of electronically mediated communication replaces

or changes texting and we lose this piece of the language history.

PAPER 5:

Long Distance revision in Drafting and Post-Editing

Abstract

This paper investigates properties of translation processes, as observed in the translation

behaviour of student and professional translators. The translation process can be divided

into a gisting, drafting and post-editing phase. We find that student translators have

longer gisting phases whereas professional translators have longer post-editing phases.

Long-distance revisions, which would typically be expected during post-editing, occur to

the same extent during drafting as during post-editing. Further, both groups of translators

seem to face the same translation problems. We suggest how those findings might be

taken into account in the design of computer assisted translation tools.

 Some figures:

 LITERATURE SURVEY

20

 LITERATURE SURVEY

21

PAPER 6:

Automatic standardization of texts containing spelling variation

Abstract

Large quantities of spelling variation in corpora, such as that found in Early Modern

English, can cause significant problems for corpus linguistic tools and methods. Having

texts with standardized spelling is key to making such tools and methods accurate and

meaningful in their analysis. Gaining access to such versions of texts can be problematic

however, and manual standardization of the texts is often too time-consuming to be

feasible.

 LITERATURE SURVEY

22

Our solution is a piece of software named VARD 2 which can be used to manually and

automatically standardize spelling variation in individual texts, or corpora of any size.

This paper evaluates VARD 2’s performance on a corpus of Early Modern English letters

and a corpus of children’s written English. The software’s ability to learn from manual

standardization is put under particular scrutiny as we examine what effect different levels

of training have on its performance.

 LITERATURE SURVEY

23

3. SYSTEM DEVELOPMENT

3.1 SYSTEM MODEL:

In this project we use the incremental model.

The incremental build model is a method of software development where the product is

designed, implemented and tested incrementally a little more is added each time until the

product is finished

In incremental model the whole requirement is divided into various phases. Multiple

development cycles take place making the life cycle a“multi-waterfall” cycle. Cycles are

divided up into smaller, more easily managed modules. Each module passes through the

requirements, design, implementation and testing phases. A working version of software

is produced during the first module, so we get working software early on during the

software life cycle. Each subsequent release of the module adds function to the previous

release. The process continues till the complete system is achieved.

• This model can be used when the requirements of the complete system are clearly

defined and understood.

• Major requirements must be defined whereas; some details can evolve with time.

• There are some high risk features and goals.

In this project, in the first phase words are standardized with respect to a “slang

dictionary.

In second phase, we create database for predicting the correct word.

In the third phase, we sync our corrected data, identify the wrong words, and predict the

correct word from our prediction database.

24

3.2 SYSTEM DESIGN:

Input

Tokenization

Read next token

Compare with dictionary

Slangs

Replace

More Input Output

Errors exists

Filter out English words
Take correct English

corpus

Generate bigrams

Find frequency of each

word combination

Take output as input

Identify errors

Create database

Generate bigrams

Find previous word to error

Compare with database

Value found

Suggest correct replacement

Final output

No

No

No

Yes

Yes

Yes

 SYSTEM DEVELOPMENT

25

3.3 SYSTEM DEVELOPMENT:

The following step were undertaken to get our desired output from our system:

1. Collection of data:

We collected data from various sources and sorted out and finalized around 70

sms, statuses etc to work on for our initial stage.

Various data sources:

 SYSTEM DEVELOPMENT

26

Final data selected:

 SYSTEM DEVELOPMENT

27

 SYSTEM DEVELOPMENT

28

2. Importing the data:

Once we had our final data to work on, we loaded this data on our software by reading

the excel file.

This “read excel” operator retrieved the data from our excel file and imported it to the

software.

 SYSTEM DEVELOPMENT

29

Data is being read by the software.

3. Tokenization:

Once we had our finalized data, we firstly transform the cases of each data, as our system

is case sensitive and hence, would have caused problem in our future processes. Then, we

perform tokenization on the data, converting each of the words in tokens. For this

purpose, text processing extension is required on the software.

 SYSTEM DEVELOPMENT

30

As tokenization cannot be performed on a dataset, we firstly convert the data into

individual Documents using “Process Documents from Data” operator, and inside this

operator perform our operation. Here the data is first converted into different documents

and then the processes are applied.

Firstly, we transform the cases of our data for easy processing. And then tokenization is

performed.

 SYSTEM DEVELOPMENT

31

Transformed and Tokenized data:

4. Replacement:

Once the data has been tokenized, we formed a replacing dictionary which consisted of

the slangs and their correct words. These tokens were then replaced by the correct word

once passed through the dictionary created, giving us the result we needed.

“Read Excel (2)” operator imports the dictionary created, and the “Replace (Dictionary0

operator takes the input of the sms and the dictionary and compares them to give us the

corrected data.

 SYSTEM DEVELOPMENT

32

Dictionary:

This Dictionary consists of about 900+ words and many more can be added according to

the different slangs used in different part of the world. Moreover, same word can be

written in different forms. Many common words have been listed in this dictionary,

having different slangs for the same word.

 SYSTEM DEVELOPMENT

33

5. Exporting the data:

After the replacement is performed, the data is then exported to an Excel Workbook

using “Write Excel” operator. This enables us to store the output somewhere.

Our output:

 SYSTEM DEVELOPMENT

34

6. Re - Import:

After the standardization is complete, we again import the standardized data, or take

another relatively large corpus to perform next word prediction. We firstly convert this

corpus into “.csv” format as it makes further processing easier.

6. Re - Tokenization:

Again, the dataset is first converted into individual documents and then the cases are

transformed into lower case and then tokenized.

Data converted into Documents and further processed.

 SYSTEM DEVELOPMENT

35

7. Filtering tokens (by Length):

When we perform tokenization, apostrophe etc. are removes, hence making “s” an

individual word having no meaning. Hence we remove the single letter words by filtering

the tokens by content.

8. Generating n-grams (bigram):

After we have tokenized our data, we generate bigram for our corpus, and also get the

frequency of each word and each bigram as well. This will help us determine what word

should become the predicted word for our given input.

 SYSTEM DEVELOPMENT

36

The wordlist created, which consists of total occurrence, and the word is as follows.

Here, as we can see, various words in our documents, corresponding to “a” are displayed

along with the occurring frequency.

 SYSTEM DEVELOPMENT

37

9. Splitting the bigrams:

For reading this data on database and easily retrieving the required value, we split our

bigrams in two separate columns using the “Split” operator.

Now our output looks like:

 SYSTEM DEVELOPMENT

38

10. Loading on database:

Using XAMPP MySQL server, this data was loaded on a database.

11. Importing corrected data:

In order to get higher efficiency, we use the next word prediction to fix error. In order to

do that, we import this data using “Read Excel” operator.

 SYSTEM DEVELOPMENT

39

12. Filtering out English words:

This data is again converted into individual documents, tokenized and then all words

existing in an English dictionary are filtered out, leaving only the words with error in it.

Using “Filter Stopwords (dictionary)” we import an English dictionary in it, hence

filtering out all English words.

This process extracts all non corrected words. Once these words are identified, these can

be used to detect correct word from our “prediction” database.

 SYSTEM DEVELOPMENT

40

13. Generating n-grams on corrected data:

We process the same data and tokenize it. After tokenization we perform bigram on it so

that we could create another database and retrieve the previous word of uncorrected data

with the help of identified errors.

 SYSTEM DEVELOPMENT

41

We get the final output after performing “split” operation.

14. Predicting the correct word:

Now once we have the knowledge which words are not corrected, we can retrieve those

words and check them in the second database to find out their preceding words. Once we

have the previous word, we look into our “prediction” database and find the words

corresponding to it. Once we have the list of possible words, the user can choose the

word.

 SYSTEM DEVELOPMENT

42

4. PERFORMANCE ANALYSIS

We sent the database to 3 users, who filled up the form identifying the slangs used in

each data line and writing their corresponding meanings according to their knowledge.

These slangs with their corresponding meanings were tested against the database for

slangs made by us to automatically convert the slang into formal language. The accuracy

of the database is thus tested and can be now imported into the Rapid Miner Tool to filter

the data into correct language.

4.1 ANALYSIS

USER1:

Data and its slangs recognized

43

Slangs along with their corresponding meanings

 PERFORMANCE ANALYSIS

44

 PERFORMANCE ANALYSIS

45

 PERFORMANCE ANALYSIS

46

USER2:

 PERFORMANCE ANALYSIS

47

 PERFORMANCE ANALYSIS

48

 PERFORMANCE ANALYSIS

49

USER3:

 PERFORMANCE ANALYSIS

50

 PERFORMANCE ANALYSIS

51

 PERFORMANCE ANALYSIS

52

Data Dictionary:

Our dictionary consists of about 1000 words, which include popular slangs.

Few of them being:

Gnite: goodnight

Wat: what

Wot: what

Y: why

Whr: where

Wen: when

Dnt: don’t

Aftn: afternoon

Mon: Monday

Fri: Friday

Nyt: night

Lst: last

 PERFORMANCE ANALYSIS

53

4.2 ACCURACY:

Accuracy refers to the closeness of a measured value to a standard or known value. In our

case we compare the results in our forms to the self-made dictionary for the slangs that

are usually used on an everyday basis.

The formula we will use to calculate it:

Accuracy= (Total no. of values – No. of errors)*100/total no. of values

After measuring each user’s answers against the database:

Total no. of errors including USER1, USER2 & USER3= 124

Total no. of values=124

Accuracy= (124-4)*100/124=> 94.4%

Note: Because of survey of a limited dataset, the accuracy has come out to be 94.4%, this

is so because most common slangs for a particular area is used for common purposes.

The remaining discrepancy is due to different perceptions for different slangs which is

where the main challenge for normalization lies.

true positive (TP): equiv. . with hit

true negative (TN): equiv. with correct rejection

false positive (FP): equiv. with false alarm

false negative (FN): equiv. with miss,

PRECISION:

 tp/ (tp+ fp) = 122/ (122+2) = 98.38%

RECALL :

 tp/ (tp+ fn) = 122/ (122+1) = 99.18%

 PERFORMANCE ANALYSIS

54

5. CONCLUSION

In this Project we have learnt the Rapid Miner tool, read research papers on NLP and

studied about the work across the world on various language processing techniques. We

have also searched and collected the required dataset of multiple text messages; filtered it

in order to concentrate the content down. We have then imported it and tokenized it using

Rapid Miner tool, finally creating slang to formal language dictionary and testing its

accuracy by comparing various responses of users.

After this first phase was over, we took a proper English dataset, used n-grams on it so as

to detect the probability of a word following the other, saved it to the database. This data

base helped us to predict what word would follow another.

In the third phase, we used our predictor in order to improve the accuracy of our system.

We first identified the uncorrected words, and found the word previous to it. Then we use

the word previous to the wrong word and compared it with the earlier made database of

our predictor. All words corresponding to the entered word would be displayed enabling

us to determine what word should be used.

The system can so far recognize the basic slang words and convert it into the

corresponding formal English words. Although further filtration and more accurate

database can be created in order to deal with a vaster arena of slangs and people using it.

Future work:

In the future, normalization can be performed on multilingual languages, for eg. English

and hindi or a mixture of both languages. Moreover, methods can be followed to improve

efficiency or the system. The scope of this field is very large, hence efforts can be made

to get better result with better precision.

55

6. REFERENCES

1. Nikola Ljubesi, Tomaz Eriavec, Daria Fiser; “Standardizing Tweets with

Character-Level Machine Translation”; 15th International Conference, CICLing

82014, Kathmandu, Nepal, April 6-12, 2014, Proceedings, Part II; pp 164-175.

2. Swaran Lata and Somnath Chandra ; “Challenges of Multilingualism and Possible

Approach for Standardization of e-Governance”, Department of Information

Technology, Ministry of Communications & Information Technology, New

Delhi, India ; pp 42-52.

3. Michael Carl ; Martin Kay ; Kristian Tangsgaard Hvelplund Jensen ;“Long

Distance Revisions in Drafting and Post-editing”; CICLing-2010, Iasi, Romania,

March 21-27, 2010;

http://openarchive.cbs.dk/bitstream/handle/10398/8046/LonDistRevision.pdf?seq

uence=1

4. FranÇois Yvon; “Rewriting the orthography of sms messages”; Journal- Natural

Language Engineering; Volume 16 Issue 2, April 2010; pp 133-159

5. Alistair Baron and Paul Rayson; “Automatic standardization of texts containing

spelling variation”; Proceedings of the Corpus Linguistics Conference. Lancaster :

Lancaster University; 2009; 25 p.

http://research.ku.dk/search/?pure=en%2Fpersons%2Fkristian-tangsgaard-hvelplund(b439e620-336f-420b-b2a9-289aa32992cc).html
http://openarchive.cbs.dk/bitstream/handle/10398/8046/LonDistRevision.pdf?sequence=1
http://openarchive.cbs.dk/bitstream/handle/10398/8046/LonDistRevision.pdf?sequence=1

