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ABSTRACT: 
 

SMS are short-length text documents written in a informal style. SMS text processing is 

challenging because of multi-varied text composition in terms of language, vocabulary, 

style and quality. In this project, with the help of RapidMiner software tool we have tried 

to standardize SMS texts. We have worked on American English messages only. With 

the help of a slang dictionary, we corrected most of the word. In order to improve the 

efficiency of the system, we created a database to perform next word prediction from. We 

performed bigram on our corrected dataset, retrieved the previous values to the error, and 

from our prediction dataset predicted what possible words could be used. Our system 

gives an accuracy of about 96% and can be further improved. 
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1. INTRODUCTION: 

 

1.1 INTRODUCTION: 

 

The primary motivation for the creation and use of SMS language was to convey a 

comprehensible message using the fewest number of characters possible. This was for 

two reasons; one, telecommunication companies limited the number of characters per 

SMS, and also charged the user per SMS sent. To keep costs down, users had to find a 

way of being concise while still communicating the desired message. Two, typing on a 

phone is normally slower than with a keyboard, and capitalization is even slower. As a 

result, punctuation, grammar, and capitalization are largely ignored. In many countries, 

people now have access to unlimited text options in their monthly plan, although this 

varies widely from country to country, and operator to operator. However, screens are 

still small and the input problem persists, so SMS language is still widely used for 

brevity. Any word may be shortened (for example, "text" to "txt"). Words can also be 

combined with numbers to make them shorter (for example, "later" to "l8r"), using the 

numeral "8" for its homophonic quality. 

Text standardization is rapidly gaining in popularity because of the explosion of user-

generated text content in which language norms are not followed. SMS messages used to 

be the main object of text standardization while recently Twitter has started taking over 

as the most prominent source of information encoded with non-standard language.  

There are two main approaches to text standardization.  

1. The unsupervised approach mostly relies on phonetic transcription of non-

standard words to produce standard candidates and language modeling on in-

vocabulary (IV) data for selecting the most probable candidate. 

2.  The supervised approach assumes manually standardized data from which 

standardization models are built. 

1. The unsupervised approach: There is no target variable is identified as such. Instead, 

the data mining algorithm searches for patterns and structure among all the variables. The 

most common unsupervised data mining method is clustering. 

2. The supervised approach: Most data mining methods are supervised methods, 

however, meaning that (1) there is a particular pre-specified target variable, and (2) the 

algorithm is given many examples where the value of the target variable is provided, so 

https://en.wikipedia.org/wiki/Homophone
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that the algorithm may learn which values of the target variable are associated with which 

values of the predictor variables. 

Most supervised data mining methods apply the following methodology for building and 

evaluating a model. 

First, the algorithm is provided with a training set of data, which includes the pre-

classified values of the target variable in addition to the predictor variables. For example, 

if we are interested in classifying income bracket, based on age, gender, and occupation, 

our classification algorithm would need a large pool of records, containing complete (as 

complete as possible) information about every field, including the target field, income 

bracket. In other words, the records in the training set need to be pre-classified. A 

provisional data mining model is then constructed using the training samples provided in 

the training data set. However, the training set is necessarily incomplete; that is, it does 

not include the “new” or future data that the data modelers are really interested in 

classifying. Therefore, the algorithm needs to guard against “memorizing” the training set 

and blindly applying all patterns found in the training set to the future data. For example, 

it may happen that all customers named “David” in a training set may be in the high 

income bracket. We would presumably not want our final model, to be applied to new 

data, to include the pattern “If the customer’s first name is David, the customer has a high 

income.” Such a pattern is a spurious artifact of the training set and needs to be verified 

before deployment. 

i. The next step in supervised data mining methodology is to examine how 

the provisional data mining model performs on a test set of data. In the test 

set, a holdout data set, the values of the target variable are hidden 

temporarily from the provisional model, which then performs 

classification according to the patterns and structure it learned from the 

training set. The efficacies of the classifications are then evaluated by 

comparing them against the true values of the target variable. 

ii. The provisional data mining model is then adjusted to minimize the error 

rate on the test set. 

iii. The adjusted data mining model is then applied to a validation data set, 

another holdout data set, where the values of the target variable are again 

hidden temporarily from the model. The adjusted model is itself then 

adjusted, to minimize the error rate on the validation set. Estimates of 

model performance for future, unseen data can then be computed by 

observing various evaluative measures applied to the validation set. 

  INTRODUCTION 
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Methodology for supervised modeling. 

 

  

1.1.1 Natural Language Processing 

 

Natural language processing (NLP) is a field of computer science, artificial 

intelligence, and computational linguistics concerned with the interactions 

between computers and human (natural) languages. As such, NLP is related to the area 

of human–computer interaction. Many challenges in NLP involve natural language 

understanding, that is, enabling computers to derive meaning from human or natural 

language input, and others involve natural language generation. 

Modern NLP algorithms are based on machine learning, especially statistical machine 

learning. The paradigm of machine learning is different from that of most prior attempts 

at language processing. Prior implementations of language-processing tasks typically 

involved the direct hand coding of large sets of rules. The machine-learning paradigm 

  INTRODUCTION 

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Computational_linguistics
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Natural_language
https://en.wikipedia.org/wiki/Human%E2%80%93computer_interaction
https://en.wikipedia.org/wiki/Natural_language_understanding
https://en.wikipedia.org/wiki/Natural_language_understanding
https://en.wikipedia.org/wiki/Natural_language_generation
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Statistical_inference


4 

 

calls instead for using general learning algorithms — often, although not always, 

grounded in statistical inference — to automatically learn such rules through the analysis 

of large corpora of typical real-world examples. A corpus (plural, "corpora") is a set of 

documents (or sometimes, individual sentences) that have been hand-annotated with the 

correct values to be learned. 

 Typical applications for natural language processing include the following. 

 A better human-computer interface that could convert from a natural language 

into a computer language and vice versa. A natural language system could be the 

interface to a database system, such as for a travel agent to use in making 

reservations. Blind people could use a natural language system (with speech 

recognition) to interact with computers, and Steven Hawking uses one to generate 

speech from his typed text. 

 A translation program that could translate from one human language to another 

(English to French, for example). Even if programs that translate between human 

languages are not perfect, they would still be useful in that they could do the 

rudimentary translation first, with their work checks and corrected by a human 

translator. This cuts down on the time for the translation. 

 Programs that could check for grammar and writing techniques in a word 

processing document. 

 A computer that could read a human language could read whole books to stock its 

database with data. 

 

Major tasks of NLP: 

The following is a list of some of the most commonly researched tasks in NLP. Note that 

some of these tasks have direct real-world applications, while others more commonly 

serve as subtasks that are used to aid in solving larger tasks. What distinguishes these 

tasks from other potential and actual NLP tasks is not only the volume of research 

devoted to them but the fact that for each one there is typically a well-defined problem 

setting, a standard metric for evaluating the task, standard corpora on which the task can 

be evaluated, and competitions devoted to the specific task. 

1. Automatic summarization: Produce a readable summary of a chunk of text. 

Often used to provide summaries of text of a known type, such as articles in the 

financial section of a newspaper. 

 

2. Coreference resolution: Given a sentence or larger chunk of text, determine 

which words ("mentions") refer to the same objects ("entities"). Anaphora 

resolution is a specific example of this task, and is specifically concerned with 

  INTRODUCTION 
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matching up pronouns with the nouns or names that they refer to. The more 

general task of co-reference resolution also includes identifying so-called 

"bridging relationships" involving referring expressions. For example, in a 

sentence such as "He entered John's house through the front door", "the front 

door" is a referring expression and the bridging relationship to be identified is the 

fact that the door being referred to is the front door of John's house (rather than of 

some other structure that might also be referred to). 

 

3. Discourse analysis: This rubric includes a number of related tasks. One task is 

identifying the discourse structure of connected text, i.e. the nature of the 

discourse relationships between sentences (e.g. elaboration, explanation, contrast). 

Another possible task is recognizing and classifying the speech acts in a chunk of 

text (e.g. yes-no question, content question, statement, assertion, etc.). 

 

4. Machine translation: Automatically translate text from one human language to 

another. This is one of the most difficult problems, and is a member of a class of 

problems colloquially termed "AI-complete", i.e. requiring all of the different 

types of knowledge that humans possess (grammar, semantics, facts about the real 

world, etc.) in order to solve properly. 

 

5. Morphological segmentation: Separate words into individual morphemes and 

identify the class of the morphemes. The difficulty of this task depends greatly on 

the complexity of the morphology (i.e. the structure of words) of the language 

being considered. English has fairly simple morphology, especially inflectional 

morphology, and thus it is often possible to ignore this task entirely and simply 

model all possible forms of a word (e.g. "open, opens, opened, opening") as 

separate words. In languages such as Turkish or Manipuri, a highly agglutinated 

Indian language, however, such an approach is not possible, as each dictionary 

entry has thousands of possible word forms. 

 

6. Named entity recognition (NER): Given a stream of text, determine which items 

in the text map to proper names, such as people or places, and what the type of 

each such name is (e.g. person, location, organization). Note that, 

although capitalization can aid in recognizing named entities in languages such as 

  INTRODUCTION 

https://en.wikipedia.org/wiki/Pronoun
https://en.wikipedia.org/wiki/Referring_expression
https://en.wikipedia.org/wiki/Discourse_analysis
https://en.wikipedia.org/wiki/Discourse
https://en.wikipedia.org/wiki/Speech_act
https://en.wikipedia.org/wiki/Machine_translation
https://en.wikipedia.org/wiki/AI-complete
https://en.wikipedia.org/wiki/Morphology_(linguistics)
https://en.wikipedia.org/wiki/Morpheme
https://en.wikipedia.org/wiki/Morphology_(linguistics)
https://en.wikipedia.org/wiki/English_language
https://en.wikipedia.org/wiki/Inflectional_morphology
https://en.wikipedia.org/wiki/Inflectional_morphology
https://en.wikipedia.org/wiki/Turkish_language
https://en.wikipedia.org/wiki/Manipuri_language
https://en.wikipedia.org/wiki/Named_entity_recognition
https://en.wikipedia.org/wiki/Capitalization
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English, this information cannot aid in determining the type of named entity, and 

in any case is often inaccurate or insufficient. For example, the first word of a 

sentence is also capitalized, and named entities often span several words, only 

some of which are capitalized. Furthermore, many other languages in non-

Western scripts (e.g. Chinese or Arabic) do not have any capitalization at all, and 

even languages with capitalization may not consistently use it to distinguish 

names. For example, German capitalizes all nouns, regardless of whether they 

refer to names, and French and Spanish do not capitalize names that serve 

as adjectives. 

 

7. Natural language generation: Convert information from computer databases 

into readable human language. 

 

8. Natural language understanding: Convert chunks of text into more formal 

representations such as first-order logic structures that are easier 

for computer programs to manipulate. Natural language understanding involves 

the identification of the intended semantic from the multiple possible semantics 

which can be derived from a natural language expression which usually takes the 

form of organized notations of natural languages concepts. Introduction and 

creation of language meta-model and ontology are efficient however empirical 

solutions. An explicit formalization of natural languages semantics without 

confusions with implicit assumptions such as closed-world assumption (CWA) 

vs. open-world assumption, or subjective Yes/No vs. objective True/False is 

expected for the construction of a basis of semantics formalization.  

 

9. Optical character recognition (OCR): Given an image representing printed text, 

determine the corresponding text. 

 

10. Part-of-speech tagging: Given a sentence, determine the part of speech for each 

word. Many words, especially common ones, can serve as multiple parts of 

speech. For example, "book" can be a noun ("the book on the table") or verb ("to 

book a flight"); "set" can be a noun, verb or adjective; and "out" can be any of at 

least five different parts of speech. Some languages have more such ambiguity 

than others. Languages with little inflectional morphology, such as English are 

  INTRODUCTION 

https://en.wikipedia.org/wiki/Chinese_language
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particularly prone to such ambiguity. Chinese is prone to such ambiguity because 

it is a tonal language during verbalization. Such inflection is not readily conveyed 

via the entities employed within the orthography to convey intended meaning. 

 

11. Parsing: Determine the parse tree (grammatical analysis) of a given sentence. 

The grammar for natural languages is ambiguous and typical sentences have 

multiple possible analyses. In fact, perhaps surprisingly, for a typical sentence 

there may be thousands of potential parses (most of which will seem completely 

nonsensical to a human). 

 

12. Question answering: Given a human-language question, determine its answer. 

Typical questions have a specific right answer (such as "What is the capital of 

Canada?"), but sometimes open-ended questions are also considered (such as 

"What is the meaning of life?"). Recent works have looked at even more complex 

questions.  

 

13. Relationship extraction: Given a chunk of text, identify the relationships among 

named entities (e.g. who is married to whom). 

 

14. Sentence breaking (also known as sentence boundary disambiguation):Given 

a chunk of text, find the sentence boundaries. Sentence boundaries are often 

marked by periods or other punctuation marks, but these same characters can 

serve other purposes (e.g. marking abbreviations). 

 

15. Sentiment analysis: Extract subjective information usually from a set of 

documents, often using online reviews to determine "polarity" about specific 

objects. It is especially useful for identifying trends of public opinion in the social 

media, for the purpose of marketing. 

 

16. Speech recognition: Given a sound clip of a person or people speaking, 

determine the textual representation of the speech. This is the opposite of text to 

speech and is one of the extremely difficult problems colloquially termed "AI-

complete" (see above). In natural speech there are hardly any pauses between 

successive words, and thus speech segmentation is a necessary subtask of speech 

  INTRODUCTION 
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recognition (see below). Note also that in most spoken languages, the sounds 

representing successive letters blend into each other in a process termed co-

articulation, so the conversion of the analog signal to discrete characters can be a 

very difficult process. 

 

17. Speech segmentation: Given a sound clip of a person or people speaking, 

separate it into words. A subtask of speech recognition and typically grouped with 

it. 

 

18. Topic segmentation and recognition: Given a chunk of text, separate it into 

segments each of which is devoted to a topic, and identify the topic of the 

segment. 

 

19. Word segmentation: Separate a chunk of continuous text into separate words. 

For a language like English, this is fairly trivial, since words are usually separated 

by spaces. However, some written languages like Chinese, Japanese and Thai do 

not mark word boundaries in such a fashion, and in those languages text 

segmentation is a significant task requiring knowledge of 

the vocabulary and morphology of words in the language. 

 

20. Word sense disambiguation: Many words have more than one meaning; we 

have to select the meaning which makes the most sense in context. For this 

problem, we are typically given a list of words and associated word senses, e.g. 

from a dictionary or from an online resource such as WordNet. 

In some cases, sets of related tasks are grouped into subfields of NLP that are 

often considered separately from NLP as a whole. Examples include: 

i. Information retrieval (IR): This is concerned with storing, searching and 

retrieving information. It is a separate field within computer science 

(closer to databases), but IR relies on some NLP methods (for example, 

stemming). Some current research and applications seek to bridge the gap 

between IR and NLP. 

ii. Information extraction (IE): This is concerned in general with the 

extraction of semantic information from text. This covers tasks such 

  INTRODUCTION 
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as named entity recognition, Co-reference resolution, relationship 

extraction, etc. 

iii. Speech processing: This covers speech recognition, text-to-speech and 

related tasks. 

 

The tool we are using for this project is RAPIDMINER 

 

1.1.2 Software Information: RapidMiner 

 

RapidMiner is a software platform developed by the company of the same name that 

provides an integrated environment for machine learning, data mining, text 

mining, predictive analytics and business analytics. It is used for business and industrial 

applications as well as for research, education, training, rapid prototyping, and 

application development and supports all steps of the data mining process including 

results visualization, validation and optimization. 

 

RapidMiner provides 99% of an advanced analytical solution through template-based 

frameworks that speed delivery and reduce errors by nearly eliminating the need to write 

code. RapidMiner provides data mining and machine learning procedures including: data 

loading and transformation (Extract, transform, load (ETL)), data preprocessing and 

visualization, predictive analytics and statistical modeling, evaluation, and deployment. 

RapidMiner is written in the Java programming language. RapidMiner provides a GUI to 

design and execute analytical workflows. Those workflows are called “Process” in 

RapidMiner and they consist of multiple “Operators”. 

 

 Each operator is performing a single task within the process and the output of each 

operator forms the input of the next one. Alternatively, the engine can be called from 

other programs or used as an API. Individual functions can be called from the command 

line. RapidMiner provides learning schemes and models and algorithms 

from Weka and Rscripts that can be used through extensions. 
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Text Mining: Text mining (also referred to as text data mining or knowledge discovery 

from textual databases), refers to the process of discovering interesting and non-trivial 

knowledge from text documents. The common practice in text mining is the analysis 

of the information extracted through text processing to form new facts and new 

hypotheses that can be explored further with other data mining algorithms. Text mining 

applications typically deal with large and complex data sets of textual documents that 

contain significant amount of irrelevant and noisy information. Feature selection aims to 

remove this irrelevant and noisy information by focusing only on relevant and 

informative data for use in text mining. Some of the topics within text mining include 

feature extraction, text categorization, clustering, trends analysis, association mining and 

visualization. 

Text processing is an important extension to perform text mining. The Text Extension 

adds all operators necessary for statistical text analysis. You can load texts from many 

different data sources, transform them by a huge set of different filtering techniques, and 

finally analyze your text data. 

The Text Extensions supports several text formats including plain text, HTML, or PDF as 

well as other data sources. It provides standard filters for tokenization, stemming, 

stopword filtering, or n-gram generation to provide everything necessary for preparing 

and analyzing texts. 

 

1.2 PROBLEM STATEMENT: 

 

To design a system that is able to identify and standardize macronic or multilingual 

language in the data provided to the system. 

In the modern world, due to various reasons, people have started using short hand, texting 

language like slangs etc, which calls for the need of text standardization. Also now the 

people have started mixing two or more language in the same text. We aim to standardize 

these texts (in specific languages) to a standard language. 
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1.3 OBJECTIVE: 

 

Our objective is to achieve: 

1. To find the dataset of the language which has the same script 

2. To learn Rapid Miner 

3. To handle macaronic text by auto identifying the text 

4. To predict the next word 

 

1.4 METHODOLOGY: 

 

Our methodology can be divided into basically 9 modules: 

1. Identifying and Collecting Dataset 

2. Filtering 

3. Tokenization 

4. Standardization  

5. Generating bi-grams 

6. Retrieving the frequency of each bigram 

7. Saving to database 

8. Predicting next word 

9. Identifying errors 

10. Finding the previous word to error 

11. Predicting the correct word 

 

1.4.1 Identifying and Collecting Dataset: 

In this module, the dataset from various sources is collected. It is important to have an 

understanding and idea about the data set to be worked on. We need to be certain about 

the data we would be working on. 

 

1.4.2 Filtering: 

In our project, filtering in different phases is involved. Filtering enables us to sort out the 

data we have collected and help us to work more efficiently. Initially we conduct filtering 

manually, where we decide on what data to precisely work on. This is done to remove 
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unnecessary data, if any, from the data we have collected. Then, once tokenization is 

performed, the data is again filtered in order to get the precise information we need to 

work on.  

 

1.4.3 Tokenization: 

Tokenization is the act of breaking up a sequence of strings into pieces such as words, 

keywords, phrases, symbols and other elements called tokens. Tokens can be individual 

words, phrases or even whole sentences. In the process of tokenization, some characters 

like punctuation marks are discarded. The tokens become the input for another process 

like parsing and text mining. 

Tokenization is used in computer science, where it plays a large part in the process of 

lexical analysis. 

 

1.4.4 Standardization: 

In this we standardize our text into a uniform language and get our desired results. It is 

performed manually as well as automatically. For this project we took 3 users to 

manually standardize the text we provided and write their slangs and the correct word. 

This also helped us to identify how well our automated system is working. 

It is important for our data to be digital for it to be processed in an automated system. If 

the source is already digital text (such as a file in text, XML, or HTML format), or you 

have converted the source to that, your next task is to make sure that the text complies  

After this process we get our desired result. 

 

1.4.5 Generating bi-grams: 

An n-gram model is a type of probabilistic language model for predicting the next item in 

such a sequence in the form of a (n − 1)–order Markov model. An n-gram model models 

sequence, notably natural languages, using the statistical properties of n-grams. 

An n-gram model predicts    based on                  . In probability terms, this is  
                       . When used for language modeling, independence assumptions 

are made so that each word depends only on the last n − 1 words. This Markov model is 

used as an approximation of the true underlying language. This assumption is important 

because it massively simplifies the problem of learning the language model from data. 

  INTRODUCTION 

https://en.wikipedia.org/wiki/Language_model
https://en.wikipedia.org/wiki/Markov_chain
https://en.wikipedia.org/wiki/Language_model
https://en.wikipedia.org/wiki/Markov_model
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By generating bigrams, we can determine the combinations of words occurring in our 

corpus, and this information, hence helps us determine the word which must follow.  

 

1.4.6 Retrieving the frequency of each bigram: 

After we have attained our data, after generating bi-grams, we determine the term 

occurrences. We can now determine the frequency of each combination occurring in our 

corpus.  

This will enable us to know what combination has occurred the most, therefore, helping 

us determine what word should follow. 

 

1.4.7 Saving to database: 

In this, once we have attained the frequency of each bigram and the pair of words, we 

save this data to database so that it can be fetched and the next word prediction can be 

performed. 

 

1.4.8 Predicting the next word: 

Once our database is created, we retrieve the next word form it based on certain 

conditions and successfully retrieve our output. 

 

1.4.9 Identifying the error: 

We use our prediction system to correct the errors of our initial system. It is possible that 

the dictionary doesn’t contain some errors. So using our prediction system, we can find 

out the correct word. 

 

1.4.10 Finding the previous word to error: 

We find out the previous word to error in order to compare it with our prediction 

database. This would enable us to know what word we must look for in our database. 

This can be done using bigram on our corpus. 
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1.4.11 Predicting the correct word: 

Once we find our previous word, we look at the words corresponding to that word, giving 

us possible solution. The user can then see the correct word and know what should be the 

correct word. 

  

  INTRODUCTION 
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2. LITERATURE STUDY 

 

 PAPER 1: 

Standardizing Tweets with Character-level Machine Translation 

 

Abstract 

This paper presents the results of the standardization procedure of Slovene tweets that are 

full of colloquial, dialectal and foreign-language elements. With the aim of minimizing 

the human input required we produced a manually normalized lexicon of the most salient 

out-of-vocabulary (OOV) tokens and used it to train a character-level statistical machine 

translation system (CSMT). Best results were obtained by combining the manually 

constructed lexicon and CSMT as fallback with an overall improvement of 9.9% increase 

on all tokens and 31.3% on OOV tokens.  

Manual preparation of data in a lexicon manner has proven to be more efficient than 

normalizing running text for the task at hand. Finally we performed an extrinsic 

evaluation where we automatically lemmatized the test corpus taking as input either 

original or automatically standardized word forms, and achieved 75.1% per-token 

accuracy with the former and 83.6% with the latter, thus demonstrating that 

standardization has significant benefits for upstream processing. 

 

Dataset Collection 

The basis for our dataset was the database of tweets from the now no longer active 

aggregator sitweet.com containing (mostly) Slovene tweets posted between 2007-01-12 

and 2011-02-20. The database contains many tweets in other languages as well, so we 

first used a simple filter that keeps only those that contain one of the Slovene letters. This 

does not mean that there is no foreign language text remaining, as some closely related 

languages, in particular Croatian, also use these letters.  

Also it is fairly common to mix Slovene and another language, mostly English, in a 

single tweet. However, standard methods for language identification do not work well 

with the type of language found in tweets, and are also bad at distinguishing closely 

related languages, especially if a single text uses more than one language. In this step we 
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also shuffled the tweets in the collection so that taking any slice will give a random 

selection of tweets, making it easier to construct training and testing datasets. 

In the second step we anonymized the tweets by substituting hashtags, mentions and 

URLs with special symbols (XXX-HST, XXX-MNT, XXX-URL) and substituted 

emoticons with XXX-EMO. This is meant to serve two purposes. On the one hand, we 

make the experimental dataset freely available and by using rather old and anonymized 

tweets we hope to evade problems with 

the Twitter terms of use. On the other, tweets are difficult to tokenize correctly and by 

substituting symbols for the most problematic tokens, i.e. emoticons, we made the 

collection easier to process. 

We then tokenized the collection and stored it in the so called vertical format, where each 

line is either an XML tag (in particular, <text> for an individual (tweet) or one token. 

With this we obtained a corpus of about half a million tweets and eight million word 

tokens which is the basis for our datasets. 

 

Experiments and results 

 

Our overall approach to tweet standardization is based on standardizing only OOV tokens 

by applying transformations on them with the goal of producing wordforms identical to 

the ones produced during manual corpus standardization. 

Therefore we evaluate our approaches with two types of accuracy on the corpus: 

1. ACC-ALL { accuracy on all word tokens in the corpus 

2. ACC-OOV { accuracy on OOV word tokens in the corpus 

The first measure reports how well we do on the level of complete texts, and the second 

one how well we do on the tokens we perform our transformations on .We perform all 

together five sets of experiments. 

 CSMT datasets 

 Lower and upper bounds 

 CSMT extensions 

 Lexicon vs. corpus standardization 

 Lemmatization experiment 
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PAPER 2: 

Challenges of Multilingualism and Possible Approach for 

Standardization of e-Governance Solutions in India 

 

Abstract 

In this paper we have addressed the major challenges and issues involved in the 

multilingualism aspects towards standardization of e-governance solutions in India. The 

paper also investigates the benefits of adopting open standards and open source software 

in implementing multilingual e-governance solutions. 

                        

          
                                    Fig.0 Accessibility index due to Standardization 

 

 

 

  LITERATURE SURVEY 



18 

 

PAPER 3: 

Rewriting the orthography of SMS messages 

 

Abstract 

Electronic written texts used in computer-mediated interactions (emails, blogs, chats, and 

the like) contain significant deviations from the norm of the language. This paper 

presents the detail of a system aiming at normalizing the orthography of French SMS 

messages: after discussing the linguistic peculiarities of these messages and possible 

approaches to their automatic normalization, we present, compare, and evaluate various 

instantiations of a normalization device based on weighted finite-state transducers. These 

experiments show that using an intermediate phonemic representation and training, our 

system outperforms an alternative normalization system based on phrase-based statistical 

machine translation techniques.  

 

PAPER 4: 

Paralinguistic Restitution, Deletion, and Non-standard Orthography in 

Text Messages  

Abstract 

This thesis examines the structure of text messages. In recent years, literature speculating 

about electronically mediated communication has proliferated. An abundance of literature 

on technology and language exists, but little of it explores text messaging. The literature 

that looks at texting tends to focus on the social aspects of text communication or on the 

damage people fear it will cause to language. Little literature focuses on empirical 

analysis of text messaging from a linguistic perspective. Text messages are a 

communication medium with limitations and intricacies all their own, and they deserve 

attention. The informal nature of texting allows for a variety of lexical and grammatical 

creativity. Letter and word deletions appear, perhaps inspired by the 160 character per 

message length limit. Unconventional punctuation and spelling abound. Text messaging 

has become a significant part of language use in our culture, especially for young people. 

Today, phones are used more for text messaging than for voice communication in many 

countries. Texting is a vital piece of the technology-mediated-communication puzzle and 

warrants inspection; we cannot tackle the question of what digital technology means for 

social interaction or for language until we understand text messaging structurally. It is 

worth remembering, too, that as phones and phone plans advance, the 160 character limit 

- one of the factors unique to texting and perhaps integral in generating the new linguistic 
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phenomena we see in text speak - will become less meaningful. Perhaps even more 

critically, texting patterns are also changing as phones change. In analyzing the structure 

of Elizondo, 2 text messaging today, we may be capturing a unique moment in the tech-

language trajectory before a new type of electronically mediated communication replaces 

or changes texting and we lose this piece of the language history. 

 

 

PAPER 5: 

Long Distance revision in Drafting and Post-Editing 

 

Abstract 

This paper investigates properties of translation processes, as observed in the translation 

behaviour of student and professional translators. The translation process can be divided 

into a gisting, drafting and post-editing phase. We find that student translators have 

longer gisting phases whereas professional translators have longer post-editing phases. 

Long-distance revisions, which would typically be expected during post-editing, occur to 

the same extent during drafting as during post-editing. Further, both groups of translators 

seem to face the same translation problems. We suggest how those findings might be 

taken into account in the design of computer assisted translation tools. 

 

 Some figures:  
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PAPER 6: 

Automatic standardization of texts containing spelling variation 

 

Abstract 

Large quantities of spelling variation in corpora, such as that found in Early Modern 

English, can cause significant problems for corpus linguistic tools and methods. Having 

texts with standardized spelling is key to making such tools and methods accurate and 

meaningful in their analysis. Gaining access to such versions of texts can be problematic 

however, and manual standardization of the texts is often too time-consuming to be 

feasible.  
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Our solution is a piece of software named VARD 2 which can be used to manually and 

automatically standardize spelling variation in individual texts, or corpora of any size. 

This paper evaluates VARD 2’s performance on a corpus of Early Modern English letters 

and a corpus of children’s written English. The software’s ability to learn from manual 

standardization is put under particular scrutiny as we examine what effect different levels 

of training have on its performance. 
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3. SYSTEM DEVELOPMENT 

3.1 SYSTEM MODEL: 

 

In this project we use the incremental model. 

The incremental build model is a method of software development where the product is 

designed, implemented and tested incrementally a little more is added each time until the 

product is finished 

 

In incremental model the whole requirement is divided into various phases. Multiple 

development cycles take place making the life cycle a“multi-waterfall” cycle.  Cycles are 

divided up into smaller, more easily managed modules.  Each module passes through the 

requirements, design, implementation and testing phases. A working version of software 

is produced during the first module, so we get working software early on during the 

software life cycle. Each subsequent release of the module adds function to the previous 

release. The process continues till the complete system is achieved. 

 

• This model can be used when the requirements of the complete system are clearly 

defined and understood. 

• Major requirements must be defined whereas; some details can evolve with time. 

• There are some high risk features and goals. 

 

In this project, in the first phase words are standardized with respect to a “slang 

dictionary. 

In second phase, we create database for predicting the correct word. 

In the third phase, we sync our corrected data, identify the wrong words, and predict the 

correct word from our prediction database.  
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3.2 SYSTEM DESIGN: 

 

  

Input 

Tokenization 

Read next token 

Compare with dictionary 

Slangs 

Replace 

More Input Output 

Errors exists 

Filter out English words 
Take correct English 

corpus 

Generate bigrams 

Find frequency of each 

word combination 

Take output as input 

Identify errors 

Create database 

Generate bigrams 

Find previous word to error 

Compare with database 

Value found 

Suggest correct replacement 

Final output 

No 

No 

No 

Yes  

Yes  

Yes  
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3.3 SYSTEM DEVELOPMENT: 

The following step were undertaken to get our desired output from our system: 

1. Collection of data:  

We collected data from various sources and sorted out and finalized around 70 

sms, statuses etc to work on for our initial stage. 

 

 

Various data sources: 
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Final data selected: 
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2. Importing the data: 

Once we had our final data to work on, we loaded this data on our software by reading 

the excel file. 

 

 

 

This “read excel” operator retrieved the data from our excel file and imported it to the 

software. 
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Data is being read by the software. 

 

3. Tokenization:  

Once we had our finalized data, we firstly transform the cases of each data, as our system 

is case sensitive and hence, would have caused problem in our future processes. Then, we 

perform tokenization on the data, converting each of the words in tokens. For this 

purpose, text processing extension is required on the software. 
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As tokenization cannot be performed on a dataset, we firstly convert the data into 

individual Documents using “Process Documents from Data” operator, and inside this 

operator perform our operation. Here the data is first converted into different documents 

and then the processes are applied. 

 

                      

Firstly, we transform the cases of our data for easy processing. And then tokenization is 

performed. 
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Transformed and Tokenized data: 

 

 

 

 

 

 

4. Replacement: 

Once the data has been tokenized, we formed a replacing dictionary which consisted of 

the slangs and their correct words. These tokens were then replaced by the correct word 

once passed through the dictionary created, giving us the result we needed. 

“Read Excel (2)” operator imports the dictionary created, and the “Replace (Dictionary0 

operator takes the input of the sms and the dictionary and compares them to give us the 

corrected data. 
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Dictionary: 

                          

                                  

 

 

This Dictionary consists of about 900+ words and many more can be added according to 

the different slangs used in different part of the world. Moreover, same word can be 

written in different forms. Many common words have been listed in this dictionary, 

having different slangs for the same word. 
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5. Exporting the data: 

After the replacement is performed, the data is then exported to an Excel Workbook 

using “Write Excel” operator. This enables us to store the output somewhere. 

 

 

 

 

Our output: 
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6. Re - Import: 

After the standardization is complete, we again import the standardized data, or take 

another relatively large corpus to perform next word prediction. We firstly convert this 

corpus into “.csv” format as it makes further processing easier.  

 

 

6. Re - Tokenization: 

Again, the dataset is first converted into individual documents and then the cases are 

transformed into lower case and then tokenized. 

 

Data converted into Documents and further processed. 
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7. Filtering tokens (by Length): 

When we perform tokenization, apostrophe etc. are removes, hence making “s” an 

individual word having no meaning. Hence we remove the single letter words by filtering 

the tokens by content. 

 

 

8. Generating n-grams (bigram): 

After we have tokenized our data, we generate bigram for our corpus, and also get the 

frequency of each word and each bigram as well. This will help us determine what word 

should become the predicted word for our given input. 
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The wordlist created, which consists of total occurrence, and the word is as follows. 

 

 

 

 

 

Here, as we can see, various words in our documents, corresponding to “a” are displayed 

along with the occurring frequency.   
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9. Splitting the bigrams: 

For reading this data on database and easily retrieving the required value, we split our 

bigrams in two separate columns using the “Split” operator. 

 

 

 

Now our output looks like: 
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10. Loading on database: 

Using XAMPP MySQL server, this data was loaded on a database. 

                   

        

11. Importing corrected data:     

In order to get higher efficiency, we use the next word prediction to fix error. In order to 

do that, we import this data using “Read Excel” operator.            
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12. Filtering out English words: 

This data is again converted into individual documents, tokenized and then all words 

existing in an English dictionary are filtered out, leaving only the words with error in it. 

 

 

 

 

 

 

 

 

 

 

 

 

Using “Filter Stopwords (dictionary)” we import an English dictionary in it, hence 

filtering out all English words.  

 

 

 

This process extracts all non corrected words. Once these words are identified, these can 

be used to detect correct word from our “prediction” database. 
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13. Generating n-grams on corrected data: 

We process the same data and tokenize it. After tokenization we perform bigram on it so 

that we could create another database and retrieve the previous word of uncorrected data 

with the help of identified errors. 
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We get the final output after performing “split” operation. 

                                      

 

14. Predicting the correct word:  

Now once we have the knowledge which words are not corrected, we can retrieve those 

words and check them in the second database to find out their preceding words. Once we 

have the previous word, we look into our “prediction” database and find the words 

corresponding to it. Once we have the list of possible words, the user can choose the 

word.   
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4. PERFORMANCE ANALYSIS 

 

We  sent the database to 3 users, who filled up the form identifying the slangs used in 

each data line and writing their corresponding meanings according to their knowledge. 

These slangs with their corresponding meanings were tested against the database for 

slangs made by us to automatically convert the slang into formal language. The accuracy 

of the database is thus tested and can be now imported into the Rapid Miner Tool to filter 

the data into correct language. 

4.1 ANALYSIS 

 

USER1: 

 

 

Data and its slangs recognized 
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Slangs along with their corresponding meanings 
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USER2: 
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USER3: 
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Data Dictionary: 

Our dictionary consists of about 1000 words, which include popular slangs. 

Few of them being: 

Gnite: goodnight 

Wat: what 

Wot: what 

Y: why 

Whr: where 

Wen: when 

Dnt: don’t 

Aftn: afternoon 

Mon: Monday 

Fri: Friday 

Nyt: night 

Lst: last 
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4.2 ACCURACY: 

Accuracy refers to the closeness of a measured value to a standard or known value. In our 

case we compare the results in our forms to the self-made dictionary for the slangs that 

are usually used on an everyday basis. 

The formula we will use to calculate it: 

Accuracy= (Total no. of values – No. of errors)*100/total no. of values 

After measuring each user’s answers against the database: 

Total no. of errors including USER1, USER2 & USER3= 124 

Total no. of values=124 

Accuracy= (124-4)*100/124=> 94.4%  

Note: Because of survey of a limited dataset, the accuracy has come out to be 94.4%, this 

is so because most common slangs for a particular area is used for common purposes. 

The remaining discrepancy is due to different perceptions for different slangs which is 

where the main challenge for normalization lies.  

true positive (TP): equiv. . with hit 

true negative (TN): equiv. with correct rejection 

false positive (FP): equiv. with false alarm  

false negative (FN): equiv. with miss, 

 

PRECISION: 

 tp/ (tp+ fp) =  122/ (122+2) = 98.38% 

 

RECALL : 

 tp/ (tp+ fn) = 122/ (122+1) = 99.18% 
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5. CONCLUSION 

 

In this Project we have learnt the Rapid Miner tool, read research papers on NLP and 

studied about the work across the world on various language processing techniques. We 

have also searched and collected the required dataset of multiple text messages; filtered it 

in order to concentrate the content down. We have then imported it and tokenized it using 

Rapid Miner tool, finally creating slang to formal language dictionary and testing its 

accuracy by comparing various responses of users.  

After this first phase was over, we took a proper English dataset, used n-grams on it so as 

to detect the probability of a word following the other, saved it to the database. This data 

base helped us to predict what word would follow another. 

In the third phase, we used our predictor in order to improve the accuracy of our system. 

We first identified the uncorrected words, and found the word previous to it. Then we use 

the word previous to the wrong word and compared it with the earlier made database of 

our predictor. All words corresponding to the entered word would be displayed enabling 

us to determine what word should be used. 

The system can so far recognize the basic slang words and convert it into the 

corresponding formal English words. Although further filtration and more accurate 

database can be created in order to deal with a vaster arena of slangs and people using it. 

 

Future work: 

In the future, normalization can be performed on multilingual languages, for eg. English 

and hindi or a mixture of both languages. Moreover, methods can be followed to improve 

efficiency or the system. The scope of this field is very large, hence efforts can be made 

to get better result with better precision. 
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