
i

Location Based Services Using

Android

Project report submitted in partial fulfillment of the requirement for the

degree of Bachelor of Technology

in

Computer Science and Engineering/Information Technology

By

Gaurav Rana(121313 C.S.E)

Under the supervision of

Ms. Nishtha Ahuja

Department of Computer Science & Engineering and Information

Technology

Jaypee University of Information Technology Waknaghat, Solan-

173234, Himachal Pradesh

i

 CERTIFICATE

 Candidate’s Declaration

I hereby declare that the work presented in this report entitled “ Location Based Services Using

Android” in partial fulfillment of the requirements for the award of the degree of Bachelor of

Technology in Computer Science and Engineering/Information Technology submitted in the

department of Computer Science & Engineering and Information Technology,

Jaypee University of Information Technology Waknaghat is an authentic record of my own work

carried out over a period from August 2015 to June 2016 under the supervision of Ms. Nishtha

Ahuja Grade 1 Professor Department of CSE

The matter embodied in the report has not been submitted for the award of any other degree or

diploma.

Gaurav Rana (121313)

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

(Signature)

Supervisor Name: Nishtha Ahuja

Designation:Assistant Professor(Grade 1)

Department name: Computer Science & Engineering

Dated:

ii

 Acknowledgement

Words betray to express our heartfelt sentiments towards the two towering peaks of our lives, our

parents who have helped us to surpass all the academic pursuits and our life.

 I sincerely express my thanks and heartfelt gratitude to Prof. Nishtha Ahuja to permit

me to undergo this project.

 I extend my cordial thanks to all those who directly or indirectly helped in the

successful fulfillment of this project work.

Date:28th Mays 2016

Place: JUIT, Waknaghat

 Gaurav Rana

iii

 Table of Contents

 Certificate...i

 Acknowledgement...ii

 Abbreviations...iv

 List of figures..v

 List of tables..v

 Abstract..vi

1.) Introduction..1

 1.1) Introduction..1

 1.2) Problem Statement...2

 1.3) Objectives...3

 1.4) Methodology..3

 1.5) Organization..5

2. Literature Survey...6

 2.1) Literature Survey..5

 2.2) Android Architecture..6

2.3) Main Components of Android Application................................9

3. System Development..20

 3.1) System Requirements...20

 3.2) Material Design...22

 3.3) Working of the app...24

iv

4.) Performance Analysis...42

 4.1) Testing Fundamentals..42

 4.2) Testing APIs..44

5.)Conclusion...47

 5.1) Conclusion...47

 5.2)Future Scope...48

References..51

v

 ABBRIVIATIONS

1. AAC Advanced Audio Coding

2. ADB Android Debug Bridge

3. AMR Adaptive-Multi Rate

4. .apk Android Application Package File

5 API Application Program Interface

6 Apps Applications

7 BSD Berkley Software Distribution

8 CDMA Code division multiple access

9 EDGE Enhanced Data Rates for GSM Evolution

10 FOAH Findings and Order After Hearing

11 gcj GreenHeck Caps Jobs

12 GIF Graphics Interchange Format

13 GPS Global Positioning System

14 GPRS General Packet Radio Service

15 GSM Global System for Mobile

16 HTML Hyper Text Markup Language

17 HTTP Hypertext Transfer Protocol

18 H.264 High quality video format

19 IT Information Technology

20 IPC Inter Process Communication

21 I/O Input Output

22 IDE Integrated development environment

23 JDT Java Development Tool

24 JPG Joint Photographic Group

vi

25 MPEG4 Motion Picture Experts Group Layer-4

26 MP3 MPEG Audio Layer 3

27 OS Operating System

28 PNG Portable Network Graphics

29 QoS Quality of Service

30 SQLite standardized query lite

31 SMS Short Message Service

32 SDK Software Development Kit

33 UI User Iterface

34 VM Virtual Manager

35 URL Uniform Resource Locator

36 WiFi Wireless Fidelity

37 3G 3rd Generation

38 .dex Dalvik Executable

vii

 LIST OF FIGURES

1. Android Architecture...7

2. Activity Stack..14

3. Background process view..18

4. Use case diagram...20

5. Use case diagram...24

6. Activity diagram..25

7. Collaboration diagram...26

8. Component diagram..28

9. Deployment diagram...30

10. Sequence diagram..31

11. Class diagram..32

12. Flow diagram...33

13. Flow diagram...34

14. Screenshots of app...35

15. Testing Framework..42

16. Default app module test directories...43

viii

 LIST OF TABLES

1. disk space requirements...21

2. common testing types of android..41

ix

 ABSTRACT

The motivation for every location based information system is: “To assist with the exact

information, at right place in real time with personalized setup and location sensitiveness”. In

this era we are dealing with palmtops and iPhones, which are going to replace the bulky desktops

even for computational purposes. We have vast number of applications and usage where a person

sitting in a roadside café needs to get relevant data and information. Such needs can only be

catered with the help of LBS. These applications include security related jobs, general survey

regarding traffic patterns, decision based on vehicular information for validity of registration and

license numbers etc. A very appealing application includes surveillance where instant

information is needed to decide if the people being monitored are any real threat or an erroneous

target. We have been able to create a number of different applications where we provide the user

with information regarding a place he or she wants to visit. But these applications are limited to

desktops only. We need to import them on mobile devices. We must ensure that a person when

visiting places need not carry the travel guides with him. All the information must be available in

his mobile device and also in user customized format

 This app uses LBS very well for tourists or any person new to any place. It list down

almost all places categories available on google developer site and user can select any place of

his/her choice and view images of that place before visiting it. Moreover the reviews of that

place by earlier visiters are also available which helps in easy decision before visiting that palce

and easy search option with autocomplete property.

1

 Chapter -1 INTRODUCTION

1.1 Introduction

Android is a mobile operating system (OS) currently developed by Google, based on

the Linux Kernel and designed primarily for touchscreen mobile devices such

as smartphones and tablets. Android's user interface is mainly based on direct

maniulation, using touch gestures that loosely correspond to real-world actions, such as

swiping, tapping and pinching, to manipulate on-screen objects, along with a virtual for

text input. In addition to touchscreen devices, Google has further developed Android

TV for televisions, Android Auto for cars, and Android Wear for wrist watches, each with

a specialized user interface. Variants of Android are also used on notebooks, game

console, digital cameras, and other electronics.

Android Components

 Application framework enabling reuse and replacement of components

 Dalvik virtual machine optimized for mobile devices

 Integrated browser based on the open source Web Kit engine

 Optimized graphics powered by a custom 2D graphics library; 3D graphics based

on the OpenGL ES specification (hardware acceleration optional)

 SQLite for structured data storage

 Media support for common audio, video, and still image formats (MPEG4,

H.264, MP3, AAC, AMR, JPG, PNG, GIF)

 GSM Telephony (hardware dependent)

 Bluetooth, EDGE, 3G, and Wi-Fi (hardware dependent)

 Camera, GPS, compass, and accelerometer (hardware dependent)

Google Maps:Whether searching for the perfect restaurant, checking out the best

hotels or finding the nearest bank, millions of people around the world get Google

Maps to do the hard work for them. So why not do the same for your own

website? The Google Maps API is one of those clever bits of Google technology

that helps you take the power of Google Maps and put it directly on your own

site. It lets you add relevant content that is useful to your visitors and customise

sthe look and feel of the map to fit with the style of your site. With over 150,000

sites already using the Google Maps API, we couldn’t fit them all into this booklet

so we picked out a few of the most useful and innovative examples to help

inspire you. And if after that you’re still hungry for more, check out the back of

this booklet for links to more examples and technical information.

Google maps is a great way of viewing the area around the property that you are

interested in, saving you hours of time and frustration being shown properties that

2

do not match your search criteria. Google maps, together with viewing the full

video of the property, serves as a powerful tool when short listing properties that

you wish to physically view. With Google maps you will be able to move up and

down the street as if you were walking along it. You can see satellite views of

the property and surrounding area, view a map, get directions and GPS coordinates

to the property and even search nearby facilities such as schools, churches and

shopping centre. As you become more familiar with Google maps you will

discover that there are different ways to perform certain tasks. You will also learn

about many other features that Google maps has to offer, that are not all covered

in this document.

Google Maps is a desktop web mapping service developed by Google. It offers satellite

imagery, street maps, 360° panoramic views of streets (street View) real-time traffic

conditions (Google traffic) , and route planning for traveling by foot, car, bicycle ,

or transportation.

Google Maps began as a C++ desktop program designed by Lars and Jens Rasmussen at

Where 2 Technologies. In October 2004, the company was acquired by Google, which

converted it into a web application. After additional acquisitions of a geospatial data

visualization company and a realtime traffic analyzer, Google Maps was launched in

February 2005. The service's front end utilizes Javascript,XML, and Ajax. Google Maps

offers an API that allows maps to be embedded on third-party websites,[1]and offers a

locator for urban businesses and other organizations in numerous countries around the

world. Google Maps Makerallows users to collaboratively expand and update the

service's mapping worldwide.

Google Maps' satellite view is a "top-down" view; most of the high-resolution imagery of

cities is aerial photography taken from aircraft flying at 800 to 1,500 feet (240 to 460 m),

while most other imagery is from satellites.[2] Much of the available satellite imagery is

no more than three years old and is updated on a regular basis. Google Maps uses a close

variant of the Mercator projection, and therefore cannot accurately show areas around the

poles.

The current redesigned version of the desktop application was made available in 2013,

alongside the "classic" (pre-2013) version. Google Maps for mobile was released in

September 2008 and features GPS turn by turn navigation. In August 2013, it was

determined to be the world's most popular app for smartphones , with over 54% of global

smartphone owners using it at least once.

1.2 Problem Statement

Currently there are android apps in the market which will help you to book hotel rooms

and apps that track your locations but no single app with both these properties. So we are

developing this app with both these features(finding tourist spots and hotels near your

location and tracking you moreover its reviews and gallery to view images).

https://en.wikipedia.org/wiki/Route_planner
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Lars_Rasmussen_(software_developer)
https://en.wikipedia.org/wiki/Google_Maps#cite_note-1
https://en.wikipedia.org/wiki/Google_Map_Maker
https://en.wikipedia.org/wiki/Google_Maps#cite_note-2

3

1.3 Objectives

 1. To help tourists to search and find tourist spots near their location .

 2. To reduce their search time and problem of visiting one websites/app

 to find tourist spots and other website/app for booking.

 3. Providing best prices in hotels(linkages,discounts,coupons).

 4. Light app which doesn't consumes much net.

 5. Track the user location and help him to reach the desired location.

 Map is the ideal way to implement our app. It offers our users to

 discover new places all over the world.

1.4 Methodology

 Today's software products are complex and constantly evolving throughout the

entire product cycle. That makes it harder than ever to hold everyone on the same

page.

Agile methods reduce overhead, but increase risk by removing process steps which

are key to managing larger projects. The answer is to not abandon time-tested

processes and documents. The answer is to make the creation and maintenance of

software engineering documents dramatically faster and more effective.

The Agile method is often used by startups for new Android mobile solutions

where the mobile developers need rapid feedback. It's also utilized by IT

organizations whose internal customers can't agree on what they want.

At Android Developers Ltd we use agile development extensively across Android

mobile development projects of different scale and needs.

Agile software development caters to fast turns and evolving requirements.

Software engineering is the practice of using selected process techniques to

enhance the quality of a software development effort. This is based on the

assumption, subject to endless debate and supported by patient experience, that a

methodical approach to software development leads to fewer defects and, therefore,

ultimately provides shorter delivery times and better value.

Which agile development methods should you consider? They have to not only

respond flexibly to changing requirements, they must also provide a disciplined

framework with predictable schedules.

4

Two methods which have proven to work when requirements are not well-

understood are the Rational Unified Process and Agile Software Development.

Benefits with Agile Software Development:

1. Minimized project risk

2. Maximized project visibility

3.Enhanced predictability, and adaptability

4.Generation of relatively high quality software

5.Availability of options to track and review the project regularly

6.Cost Control

Most agile programming methodologies lay emphasis on building releasable

software in brief time periods just like other iterative development models. Agile

development differs from other development models in two key aspects. These

primary differences are the short and strict time periods for every iteration, each of

which do not exceed week, and a highly collaborative manner of working with the

client.

Some of the key steps involved in an agile development process include:

1. Initiation of the Project: Initiation involves setting up the plan, specifying the

business needs, freezing the specifications, building the team, and preparing initial

architecture modeling.

2. Development Iterations: This repetitive stage involves active client participation,

rigorous and collaborative development by professionals, adding new features upon

requirement, confirmatory and investigative testing, and internal deployment of

software.

3. Release of the product: This stage involves final system testing, final user

acceptance testing, and deployment of system into production and regular and

updated delivery of software which meets the changing needs of the client. Release

phase allows the end user to review the software and send the feedback as well as

request for more features if required.

4. Production: This phase involves the regular maintenance of the system and

identification of defects to enhance the system performance as well as stability.

5

1.5 Organization

Chapter 1: Highlights and Underlines of the Location based services. In this chapter,

the introduction Location based services is covered. The key focus defining the problem

statement and specifying the objectives of the project

Chapter 2: The detailed literature review from the research paper, books, journals and

conferences are done. In this chapter, the extracts from assorted research papers on HCI,

Location Tracking, Tourism.

Chapter 3: Covers the system development which is the key aspect of this work. In this

chapter, the proposed model, algorithm, UML diagrams and related parameters are

emphasized.

Chapter 4: : The simulation of implementation results with the relative performance

analysis is shown in this chapter. The simulation results and screenshots are revealed to

depict and defend the proposed work.

Chapter 5: Detailed conclusion and scope of the future work which guides the

upcoming students and research scholars to enhance the current work with higher

efficiency and effectiveness on Location racking and toursim.

6

 Chapter -2 LITERATURE SURVEY

2.1 Literature Survey

Earlier, handheld GPS receivers such as a Garmin Etrex, were in use for a number of

years and have been used to enhance student learning through geocaching and mobile

mapping. With improvement, last decade has observed a new ability to geotag

photographs by using two separate devices: a GPS receiver and a camera. These devices

are linked by the time and date settings on each of the devices and then an external

application was used to synchronize them.

Now smartphones have both digital cameras and assisted GPS in-built to the device. The

relative ease and accessibility of geotagging has “generated a wave of geo-awareness”

.US News & World Report lists geotagging photos as one of “50 ways to improve your

life in 2009”. Friedland & Sommer state that “all the major smartphone makers are now

offering models allowing instantaneous upload of geotagged photos, videos, and even text

messages to sites such Flickr, YouTube, and Twitter.”

In a recent international survey of geography and bioscience higher education

practitioners conducted by the authors, geotagging was repeatedly cited as one area of

technology that practitioners expect to see expanding over the next five years, a sentiment

shared by Luo et al. who suggest that, “with the availability of internet, GPS devices and

smartphones, the proliferation and availability of geotagged media will continue to

expand”. Similarly, Johnson et al. (2010) identify the use of mobile phones in education

as one of the key areas in which they expect significant growth in next 12 months.

In context with the accuracy, there have been suggestions in improving the Quality of

Service (QoS) using crowdsourcing . Also comparative study with respect to

accuracy of location data has been done between Android and iOS .

2.2 Android Architecture

Android architecture has mainly 4 following layers:

1. Applications Layer

2. Application Framework

3. Libraries along with android runtime libraries

4. Linux Kernel.

The following diagram shows the architecture in proper stack. Each of the layer is

explained below.

7

fig 2.1 Android Architecture

Applications Layer

Android will ship with a set of core applications including an email client, SMS program,

calendar, maps, browser, contacts, and others. All applications are written using the Java

programming language. These applications comprise the application layer of android.

Application Framework

Application framework provides developers full access to the same framework APIs used

by the core applications. The application architecture is designed to simplify the reuse of

components; any application can publish its capabilities and any other application may

then make use of those capabilities (subject to security constraints enforced by the

framework). This same mechanism allows components to be replaced by the user.

Underlying all applications is a set of services and systems, including:

8

 A rich and extensible set of Views that can be used to build an application,

including lists, grids, text boxes, buttons, and even an embeddable web browser.

 Content Providers that enable applications to access data from other applications

(such as Contacts), or to share their own data.

 A Resource Manager, providing access to non-code resources such as localized

strings, graphics, and layout files.

 A Notification Manager that enables all applications to display custom alerts in the

status bar.

 An Activity Manager that manages the lifecycle of applications and provides a

common navigation backstack.

Libraries

Android includes a set of C/C++ libraries used by various components of the Android

system. These capabilities are exposed to developers through the Android application

framework. Some of the core libraries are listed below:

 System C library - a BSD-derived implementation of the standard C system

library (libc), tuned for embedded Linux-based devices

 Media Libraries - based on PacketVideo'sOpenCORE; the libraries support

playback and recording of many popular audio and video formats, as well as static

image files, including MPEG4, H.264, MP3, AAC, AMR, JPG, and PNG

 Surface Manager - manages access to the display subsystem and seamlessly

composites 2D and 3D graphic layers from multiple applications

 LibWebCore - a modern web browser engine which powers both the Android

browser and an embeddable web view

 SGL - the underlying 2D graphics engine

 3D libraries - an implementation based on OpenGL ES 1.0 APIs; the libraries use

either hardware 3D acceleration (where available) or the included, highly

optimized 3D software rasterizer

 FreeType - bitmap and vector font rendering

9

 SQLite - a powerful and lightweight relational database engine available to all

applications

Android Runtime Libraries

Android includes a set of core libraries that provides most of the functionality available in

the core libraries of the Java programming language.

Every Android application runs in its own process, with its own instance of the Dalvik

virtual machine. Dalvik has been written so that a device can run multiple VMs

efficiently. The Dalvik VM executes files in the Dalvik Executable (.dex) format which is

optimized for minimal memory footprint. The VM is register-based, and runs classes

compiled by a Java language compiler that have been transformed into the .dex format by

the included "dx" tool.

The Dalvik VM relies on the Linux kernel for underlying functionality such as threading

and low-level memory management.

Linux Kernel

Android relies on Linux version 2.6 for core system services such as security, memory

management, process management, network stack, and driver model. The kernel also acts

as an abstraction layer between the hardware and the rest of the software stack.

2.3 Main Components of Android Application

There are 5 components around which an android applications revolves. They are

1. Activities

2. Broadcast Receivers

3. Services

4. Intents

5. Content Providers

10

Activities

An Activity is an application component that provides a screen with which users can

interact in order to do something, such as dial the phone, take a photo, send an email, or

view a map. Each activity is given a window in which to draw its user interface. The

window typically fills the screen, but may be smaller than the screen and float on top of

other windows.

An application usually consists of multiple activities that are loosely bound to each other.

Typically, one activity in an application is specified as the "main" activity, which is

presented to the user when launching the application for the first time. Each activity can

then start another activity in order to perform different actions. Each time a new activity

starts, the previous activity is stopped, but the system preserves the activity in a stack (the

"back stack"). When a new activity starts, it is pushed onto the back stack and takes user

focus. The back stack abides to the basic "last in, first out" queue mechanism, so, when

the user is done with the current activity and presses the BACK key, it is popped from the

stack (and destroyed) and the previous activity resumes. (The back stack is discussed

more in the Tasks and Back Stack document.)

When an activity is stopped because a new activity starts, it is notified of this change in

state through the activity's lifecycle callback methods. There are several callback methods

that an activity might receive, due to a change in its state—whether the system is creating

it, stopping it, resuming it, or destroying it—and each callback provides you the

opportunity to perform specific work that's appropriate to that state change. For instance,

when stopped, your activity should release any large objects, such as network or database

connections. When the activity resumes, you can reacquire the necessary resources and

resume actions that were interrupted. These state transitions are all part of the activity

lifecycle.

Broadcast Receivers

Broadcast Receiver is actually a mechanism to send and receive events so that all

interested applications can be informed when something happens. There are heaps of

System events which get broadcast by Android OS such as SMS related events,

Connectivity related events, and camera related events and many more. We are able to

broadcast our application specific events as well, so for example if we have a RSS news

reader application and we want to do something whenever a new item is available, it

11

would be a good idea to use Broadcast Receiver method, not only because it will separate

your event handling code but most importantly because it will enable other applications to

register and receive a notification whenever that event takes place.

There are two major classes of broadcasts that can be received:

 Normal broadcasts are completely asynchronous. All receivers of the broadcast

are run in an undefined order, often at the same time. This is more efficient, but

means that receivers cannot use the result or abort APIs included here.

 Ordered broadcasts are delivered to one receiver at a time. As each receiver

executes in turn, it can propagate a result to the next receiver, or it can completely

abort the broadcast so that it won't be passed to other receivers. The order

receivers run in can be controlled with the priority attribute of the matching intent-

filter; receivers with the same priority will be run in an arbitrary order.

Even in the case of normal broadcasts, the system may in some situations revert to

delivering the broadcast one receiver at a time. In particular, for receivers that may

require the creation of a process, only one will be run at a time to avoid overloading the

system with new processes. In this situation, however, the non-ordered semantics hold:

these receivers still cannot return results or abort their broadcast.

Services

A Service is an application component that can perform long-running operations in the

background and does not provide a user interface. Another application component can

start a service and it will continue to run in the background even if the user switches to

another application. Additionally, a component can bind to a service to interact with it and

even perform inter-process communication (IPC). For example, a service might handle

network transactions, play music, perform file I/O, or interact with a content provider, all

from the background.

A service can essentially take two forms:

 Started:- A service is "started" when an application component (such as an

activity) starts it by calling startService(). Once started, a service can run in the

background indefinitely, even if the component that started it is destroyed.

12

Usually, a started service performs a single operation and does not return a result

to the caller. For example, it might download or upload a file over the network.

When the operation is done, the service should stop itself.

 Bound:- A service is "bound" when an application component binds to it by

calling bindService(). A bound service offers a client-server interface that allows

components to interact with the service, send requests, get results, and even do so

across processes with inter-process communication (IPC). A bound service runs

only as long as another application component is bound to it. Multiple components

can bind to the service at once, but when all of them unbind, the service is

destroyed.

Content Providers

Content providers store and retrieve data and make it accessible to all applications.

They're the only way to share data across applications; there's no common storage area

that all Android packages can access.

Android comes with a number of content providers for common data types (audio, video,

images, personal contact information, and so on). You can see some of them listed in

the android.provider package. You can query these providers for the data they contain

(although, for some, you must acquire the proper permission to read the data).

If you want to make your own data public, you have two options: You can create your

own content provider (aContentProvider subclass) or you can add the data to an existing

provider — if there's one that controls the same type of data and you have permission to

write to it.

Intents

Three of the core components of an application — activities, services, and broadcast

receivers — are activated through messages, called intents. Intent messaging is a facility

for late run-time binding between components in the same or different applications. The

intent itself, an Intent object, is a passive data structure holding an abstract description of

an operation to be performed — or, often in the case of broadcasts, a description of

13

something that has happened and is being announced. There are separate mechanisms for

delivering intents to each type of component:

 An Intent object is passed

toContext.startActivity() or Activity.startActivityForResult()to launch an activity

or get an existing activity to do something new. (It can also be passed

to Activity.setResult() to return information to the activity that

called startActivityForResult().)

 An Intent object is passed to Context.startService() to initiate a service or deliver

new instructions to an ongoing service. Similarly, an intent can be passed to

context.bindService() to establish a connection between the calling component and

a target service. It can optionally initiate the service if it's not already running.

 Intent objects passed to any of the broadcast methods are delivered to all

interested broadcast receivers. Many kinds of broadcasts originate in system code.

In each case, the Android system finds the appropriate activity, service, or set of

broadcast receivers to respond to the intent, instantiating them if necessary. There is no

overlap within these messaging systems: Broadcast intents are delivered only to broadcast

receivers, never to activities or services. An intent passed to startActivity() is delivered

only to an activity, never to a service or broadcast.

Activity Stack

• Activities in the system y are managed as an activity stack.

• When a new activity is started, it is placed on the top of the stack and becomes the

running activity ‐‐ the previous activity always remains below it in the stack, and will not

come to the foreground again until the new activity exits.

• If the user presses the Back Button the next activity on the stack moves up and becomes

active.

14

 fig 2.2 Activity Stack

2.1.6 Processes and Threads

When an application component starts and the application does not have any other

components running, the Android system starts a new Linux process for the application

with a single thread of execution. By default, all components of the same application run

in the same process and thread (called the "main" thread). If an application component

starts and there already exists a process for that application (because another component

from the application exists), then the component is started within that process and uses the

same thread of execution. However, you can arrange for different components in your

application to run in separate processes, and you can create additional threads for any

process.

When deciding which processes to kill, the Android system weighs their relative

importance to the user. For example, it more readily shuts down a process hosting

activities that are no longer visible on screen, compared to a process hosting visible

activities. The decision whether to terminate a process, therefore, depends on the state of

the components running in that process.

When an application is launched, the system creates a thread of execution for the

application, called "main." This thread is very important because it is in charge of

15

dispatching events to the appropriate user interface widgets, including drawing events. It

is also the thread in which your application interacts with components from the Android

UI toolkit. As such, the main thread is also sometimes called the UI thread.

The system does not create a separate thread for each instance of a component. All

components that run in the same process are instantiated in the UI thread, and system calls

to each component are dispatched from that thread. Consequently, methods that respond

to system callbacks (such as onKeyDown() to report user actions or a lifecycle callback

method) always run in the UI thread of the process.

For instance, when the user touches a button on the screen, your app's UI thread

dispatches the touch event to the widget, which in turn sets its pressed state and posts an

invalidate request to the event queue. The UI thread dequeues the request and notifies the

widget that it should redraw itself.

When your app performs intensive work in response to user interaction, this single thread

model can yield poor performance unless you implement your application properly.

Specifically, if everything is happening in the UI thread, performing long operations such

as network access or database queries will block the whole UI. When the thread is

blocked, no events can be dispatched, including drawing events. From the user's

perspective, the application appears to hang. Even worse, if the UI thread is blocked for

more than a few seconds (about 5 seconds currently) the user is presented with the

infamous "application not responding" (ANR) dialog. The user might then decide to quit

your application and uninstall it if they are unhappy.

Additionally, the Android UI toolkit is not thread-safe. So, you must not manipulate your

UI from a worker thread—you must do all manipulation to your user interface from the

UI thread. Thus, there are simply two rules to Android's single thread model:

1. Do not block the UI thread

2. Do not access the Android UI toolkit from outside the UI thread

16

Processes and Threads

When an application component starts and the application does not have any other

components running, the Android system starts a new Linux process for the application

with a single thread of execution. By default, all components of the same application run

in the same process and thread (called the "main" thread). If an application component

starts and there already exists a process for that application (because another component

from the application exists), then the component is started within that process and uses the

same thread of execution. However, you can arrange for different components in your

application to run in separate processes, and you can create additional threads for any

process.

When deciding which processes to kill, the Android system weighs their relative

importance to the user. For example, it more readily shuts down a process hosting

activities that are no longer visible on screen, compared to a process hosting visible

activities. The decision whether to terminate a process, therefore, depends on the state of

the components running in that process.

When an application is launched, the system creates a thread of execution for the

application, called "main." This thread is very important because it is in charge of

dispatching events to the appropriate user interface widgets, including drawing events. It

is also the thread in which your application interacts with components from the Android

UI toolkit. As such, the main thread is also sometimes called the UI thread.

The system does not create a separate thread for each instance of a component. All

components that run in the same process are instantiated in the UI thread, and system calls

to each component are dispatched from that thread. Consequently, methods that respond

to system callbacks (such as onKeyDown() to report user actions or a lifecycle callback

method) always run in the UI thread of the process.

For instance, when the user touches a button on the screen, your app's UI thread

dispatches the touch event to the widget, which in turn sets its pressed state and posts an

invalidate request to the event queue. The UI thread dequeues the request and notifies the

widget that it should redraw itself.

When your app performs intensive work in response to user interaction, this single thread

model can yield poor performance unless you implement your application properly.

17

Specifically, if everything is happening in the UI thread, performing long operations such

as network access or database queries will block the whole UI. When the thread is

blocked, no events can be dispatched, including drawing events. From the user's

perspective, the application appears to hang. Even worse, if the UI thread is blocked for

more than a few seconds (about 5 seconds currently) the user is presented with the

infamous "application not responding" (ANR) dialog. The user might then decide to quit

your application and uninstall it if they are unhappy.

Additionally, the Android UI toolkit is not thread-safe. So, you must not manipulate your

UI from a worker thread—you must do all manipulation to your user interface from the

UI thread. Thus, there are simply two rules to Android's single thread model:

1. Do not block the UI thread

2. Do not access the Android UI toolkit from outside the UI thread

2.1.7 Multi-Tasking

An application usually contains multiple activities. Each activity should be designed

around a specific kind of action the user can perform and can start other activities. For

example, an email application might have one activity to show a list of new email. When

the user selects an email, a new activity opens to view that email.

An activity can even start activities that exist in other applications on the device. For

example, if the application wants to send an email, we can define intent to perform a

"send" action and include some data, such as an email address and a message. An activity

from another application that declares itself to handle this kind of intent then opens. In

this case, the intent is to send an email, so an email application's "compose" activity starts

(if multiple activities support the same intent, then the system lets the user select which

one to use). When the email is sent, your activity resumes and it seems as if the email

activity was part of your application. Even though the activities may be from different

applications, Android maintains this seamless user experience by keeping both activities

in the same task.

18

A task is a collection of activities that users interact with when performing a certain job.

The activities are arranged in a stack (the "back stack"), in the order in which each

activity is opened.

The device Home screen is the starting place for most tasks. When the user touches an

icon in the application launcher (or a shortcut on the Home screen), that application's task

comes to the foreground. If no task exists for the application (the application has not been

used recently), then a new task is created and the "main" activity for that application

opens as the root activity in the stack.

 fig 2.3 Activity in background

When the current activity starts another, the new activity is pushed on the top of the stack

and takes focus. The previous activity remains in the stack, but is stopped. When an

activity stops, the system retains the current state of its user interface. When the user

presses the BACK key, the current activity is popped from the top of the stack (the

activity is destroyed) and the previous activity resumes (the previous state of its UI is

restored). Activities in the stack are never rearranged, only pushed and popped from the

stack—pushed onto the stack when started by the current activity and popped off when

the user leaves it using the BACK key. As such, the back stack operates as a "last in, first

out" object structure. Figure 1 visualizes this behavior with a timeline showing the

progress between activities along with the current back stack at each point in time.

19

If the user continues to press BACK, then each activity in the stack is popped off to reveal

the previous one, until the user returns to the Home screen (or to whichever activity was

running when the task began). When all activities are removed from the stack, the task no

longer exists.

A task is a cohesive unit that can move to the "background" when users begin a new task

or go to the Home screen, via the HOME key. While in the background, all the activities

in the task are stopped, but the back stack for the task remains intact—the task has simply

lost focus while another task takes place. A task can then return to the "foreground" so

users can pick up where they left off. Suppose, for example, that the current task (Task A)

has three activities in its stack—two under the current activity. The user presses the

HOME key, then starts a new application from the application launcher. When the Home

screen appears, Task A goes into the background. When the new application starts, the

system starts a task for that application (Task B) with its own stack of activities. After

interacting with that application, the user returns Home again and selects the application

that originally started Task A. Now, Task A comes to the foreground—all three activities

in its stack are intact and the activity at the top of the stack resumes.

20

 Chapter -3 SYSTEM DEVELOPMENT

3.1 System Requirements

The system and software requirements for developing Android applications using the

Android SDK are as follows:

3.1.1 Supported Operating Systems

 Windows XP (32-bit), Vista (32- or 64-bit), or Windows 7 (32- or 64-bit)

 Mac OS X 10.5.8 or later (x86 only)

 Linux (tested on Ubuntu Linux)

 GNU C Library (glibc) 2.7 or later is required.

 On Ubuntu Linux, version 8.04 or later is required.

 64-bit distributions must be capable of running 32-bit applications.

3.1.2 Supported Development Environments

 Eclipse IDE

 Eclipse 3.4 (Ganymede) or greater

 Eclipse JDT plugin (included in most Eclipse IDE packages)

 If you need to install or update Eclipse, you can download it from

http://www.eclipse.org/downloads/.

Several types of Eclipse packages are available for each platform. For developing

Android applications, we recommend that you install one of these packages:

 Eclipse IDE for Java Developers

 Eclipse Classic (versions 3.5.1 and higher)

 Eclipse IDE for Java EE Developers

 JDK 5 or JDK 6 (JRE alone is not sufficient)

 Android Development Tools plugin (required)

 Not compatible with Gnu Compiler for Java (gcj)

21

Other development environments or IDEs

 JDK 5 or JDK 6 (JRE alone is not sufficient)

 Apache Ant 1.8 or later

 Not compatible with Gnu Compiler for Java (gcj)

3.1.3 Hardware requirements

The Android SDK requires disk storage for all of the components that you choose to

install. The table below provides a rough idea of the disk-space requirements to expect,

based on the components that you plan to use.

Component type Approximate

size

Comments

SDK Tools 35 MB Required.

SDK Platform-tools 6 MB Required.

Android platform

(each)

150 MB At least one platform is

required.

SDK Add-on (each) 100 MB Optional.

USB Driver for

Windows

10 MB Optional. For Windows only.

Samples (per

platform)

10M Optional.

Offline

documentation

250 MB Optional.

 table 3.1 Components required by SDK

22

3.2 Material Design

 You may have noticed a new look to your familiar Google Apps. Drive, Gmail,

Calendar and the Docs editors on Android devices are all revamped to follow material

design principles, with additional updates across platforms planned for the coming

months. This guide explains how these changes will enhance your experience using these

apps, and eventually all Google products.

3.2.1 What is material design? Google developed material design as a new visual

language for its products that is consistent across devices, so that as you switch from

one screen to another, the experience feels the same. The focus is on creating a

consistent and predictable experience that refers to our material world. For example, we

are all familiar with the way paper and ink behave in the real world. Aspects of that

material behavior are reflected in this new design standard. nterface elements behave

predictably in this new visual language. For example, tap a menu item (e.g. All) to display

the menu as a temporary sheet of paper that always overlaps the app bar and then

disappears, instead of behaving like an extension of the app bar.

 When you use an application, your actions have a starting point. Movement from there

is smooth and predictable. When you touch the menu icon to open the menu, it follows

your touch to open in a smooth, natural manner. When you touch screen elements, they

respond with a gray touch ripple effect, giving a clear response to your touch. Rather than

impose the same layout for each view, the new design takes advantage of each device

layout and adapts accordingly. One of the key features of this new design standard is

consistency across platforms. The user experience is fundamentally the same on all

devices and operating systems.

 This is the tablet view for Gmail. Notice how all of the major elements are still there: The

app bar, icons, avatars, and action button are all where you expect them to be. The

additional space is used to present the selected conversation, which only adds to the

usability of the app on this platform. Room to grow and improve Google recognizes

that good design is never finished, and the best designs improve and contribute to better

designs over time. This new design system is intended to grow and evolve with our

customers and their needs. We are aiming for a unified and consistent experience

across all Google products in the coming months.

 A material metaphor is the unifying theory of a rationalized space and a system of

motion. The material is grounded in tactile reality, inspired by the study of paper and ink,

yet technologically advanced and open to imagination and magic.

Surfaces and edges of the material provide visual cues that are grounded in reality. The

use of familiar tactile attributes helps users quickly understand affordances. Yet the

flexibility of the material creates new affordances that supercede those in the physical

world, without breaking the rules of physics.

The fundamentals of light, surface, and movement are key to conveying how objects

move, interact, and exist in space and in relation to each other. Realistic lighting shows

seams, divides space, and indicates moving parts.

23

The foundational elements of print-based design – typography, grids, space, scale, color,

and use of imagery – guide visual treatments. These elements do far more than please the

eye. They create hierarchy, meaning, and focus. Deliberate color choices, edge-to-edge

imagery, large-scale typography, and intentional white space create a bold and graphic

interface that immerse the user in the experience.

An emphasis on user actions makes core functionality immediately apparent and provides

waypoints for the user.

Motion respects and reinforces the user as the prime mover. Primary user actions are

inflection points that initiate motion, transforming the whole design.

All action takes place in a single environment. Objects are presented to the user without

breaking the continuity of experience even as they transform and reorganize.

Motion is meaningful and appropriate, serving to focus attention and maintain continuity.

Feedback is subtle yet clear. Transitions are efficient yet coherent. The material

environment is a 3D space, which means all objects have x, y, and z dimensions. The z-

axis is perpendicularly aligned to the plane of the display, with the positive z-axis

extending towards the viewer. Every sheet of material occupies a single position along

the z-axis and has a standard 1dp thickness, equivalent to one pixel of thickness on

screens with a pixel density of 160.

On the web, the z-axis is used for layering and not for perspective. The 3D world is

emulated by manipulating the y-axis. Within the material environment, virtual lights

illuminate the scene. Key lights create directional shadows, while ambient light creates

soft shadows from all angles.

Shadows in the material environment are cast by these two light sources. In Android

development, shadows occur when light sources are blocked by sheets of material at

various positions along the z-axis. On the web, shadows are depicted by manipulating

the y-axis only. The following example shows the card with a height of 6dp.

3.2.2 Usability

A well-designed product is accessible to users of all abilities, including those with low

vision, blindness, hearing impairments, cognitive impairments, or motor impairments.

Improving your product’s accessibility enhances the usability for everyone who uses it.

It’s also the right thing to do.

24

Material design’s built-in accessibility considerations will help you accommodate all of

your users. This section primarily applies to mobile UI design. For more information on

designing and developing fully accessible products, visit the Google accessibility site.

3.3 Working of the app

1. USE CASE DIAGRAM

 fig 3.1a

USER

SELECT

CURRENT

LOCATION

PLAN

TRAVEL
SEARCH

PLACES

TO

VISITS

ESTIMATED

BUDGET

QUERY

FORM

25

 fig 3.1b

This use case shows the various ways in which the app interacts with the user

26

2. Activity Diagram:(Login or New Registration)

 fig 3.2

This Activity Diagram shows graphical representation of workflows of

stepwise activities and actions of our project. How new user can register or existing user

can login and choose packages(Future Aspects)

27

3. Collaboration Diagram:

 fig 3.3

This diagram tells how components of our app are interacting with each other as the user

uses it.

28

4. Component Diagram:

 fig 3.4

This diagram shows the physical aspects of a system.

29

 fig 3.5

These are the components used to build our app.

30

5. Deployment Diagram:

 fig 3.6

These are the hardware components and software components existing .

31

6. Sequence Diagram:

 fig 3.7

this diagram shoes how objects are intercating with each other in the system

32

7. Class Diagram:

 fig 3.8

this diagram visualizes, describes and document different aspects of a system and also

tells how to construct executable code of the software application.

33

8. Flow Diagram:

 fig 3.9a

this diagram reveals the underlined sructure

34

 fig 3.9b

35

3.4 Screenshots:

1 Splash Screen: splash screen displayed on starting app. Uses animation to move the

icons on the splash screen. The icons rotates at their own position.

 fig 3.10

36

2. Categories: category list as tiles view, there are over 50 categories picked up from

google developers website from food to health which makes it easy for the user to locate

any type of place of interest.

 fig 3.11

37

3. Details: on clicking cafe it list down the all the cafes within 10 km of range with its

current status, rating and address. Uses material design concept to beautifully diplay the

details. On selecting cafe it takes you to new activity which displays its position on map

its reviews and gallery. It also displays two icons on map one for directions and other for

google maps page

 fig 3.12 fig 3.13

38

4.Maps: shows directions for the place selected. It shows paths in yellow color and also

diatance and time by foot,car or tran if available.

 fig 3.14

39

5. Searching: search option with autocomplete facility and on clicking yellow sign it

shows direction on google maps. User can search any place whether in locality or not, it

can be any place in any part of the earth.

 fig 3.15

40

6. Gallery: gallery activity shows images of selected place. It picks up pictures from

google database if anyone has uploaded by tagging that place.

 fig 3.16

41

 Chapter-4 PERFORMANCE ANALYSIS

4.1 Testing Fundamentals

Android provides an integrated framework that helps you test all aspects of your app. The

Android platform and Testing Support Library include tools and APIs for setting up and

running test apps within an emulator or physical device.

This document guides you through key concepts related to Android app testing, and

provides an overview of the testing tools and APIs developed by Google. If you want to

skip the conceptual overview, and start learning how to build and run your tests using

these APIs and tools, go to Getting started with testing in Android Studio. If you are not

using Android Studio, go toTesting from the command line.

Testing Concepts

Android testing is based on JUnit. In general, a JUnit test is a method whose statements

test a part of the app. You organize test methods into classes called test cases, and group

test cases into test suites.

In JUnit, you build one or more test classes and use a test runner to execute them on your

local machine. With Android Studio, you can build one or more test source files into

an Android test app and use it to test your app on the Emulator or physical Android

device.

The structure of your test code and the way you build and run the tests in Android Studio

depend on the type of testing you are performing. The following table summarizes the

common testing types for Android:

https://developer.android.com/training/testing/start/index.html

42

 table 4.1 (testing types)

Instrumentation

Android instrumentation is a set of control methods, or hooks, in the Android system.

These hooks control an Android component independently of its normal lifecycle. They

also control how Android loads apps.

The following diagram summarizes the testing framework:

 fig 4.1

Normally, an Android component runs in a lifecycle that the system determines. For

example, an Acticity object's lifecycle starts when an Intent activates the Acticity. The

system calls the object's oncreate() method, on then the onResume() method. When the

user starts another app, the system calls the onPause() method. If the Activity code calls

the finsih() method, the system calls the onDestroy() method. The Android framework

43

API does not provide a way for your code to invoke these callback methods directly, but

you can do so using instrumentation.

The system runs all the components of an app in the same process. You can allow some

components, such as content providers, to run in a separate process, but you typically

can't force an app onto the same process as another running app.

Instrumentation tests, however, can load both a test APK of your test classes and your

app's APK into the same process. Since the components of your app and their tests are in

the same process, your tests can invoke methods, and modify and examine fields in your

app.

Testing Source Sets:

When you create a new app module, Android Studio creates

the src/test/ and src/androidTest/ source set directories for you. Place the test classes you

want to run locally on your machine in the test/ source set and the test classes you want to

run on an actual Android device in the androidTest/ source set. Gradle uses

the androidTest/source set when generating the test APK you use to test your app. To

learn more about build variants and source sets, read the Configure your build overview.

fig 4.2 Default app module test directories.

Tests in the androidTest/ source set are common to all your build variants. However, you

can create additional source set directories for tests that are specific to certain build

variants:

src/

 main/

 androidTest/

44

 flavor1/

 androidTestFlavor1/

 flavor2/

 androidTestFlavor2/

For example, when building a test APK for the "flavor1" version of your app, Gradle uses

both the androidTestFlavor1/ and androidTest/ source sets. By default, all tests run against

the debug build type. You can change this to another build type by using

the testBuildType property in your module-level build.gradle file, as shown in the

following code snippet.

android {

 ...

 testBuildType "staging"

}

Gradle automatically generates manifest files for your androidTest/ source sets.

Optionally, you can create your own manifest, for example, to specify a different value

for minSdkVersion or register run listeners just for your tests. When building your app,

Gradle merges multiple manifest files into one manifest.

4.2 Testing APIs:

The following list summarizes the common APIs related to app testing for Android.

JUnit

You should write your unit or integration test class as a JUnit 4 test class. JUnit is the

most popular and widely-used unit testing framework for Java. The framework offers a

convenient way to perform common setup, teardown, and assertion operations in your

test.

JUnit 4 allows you to write tests in a cleaner and more flexible way than its predecessor

versions. Unlike the previous approach to Android unit testing based on JUnit 3, with

JUnit 4, you do not need to extend the junit.framework.TestCase class. You also do not

45

need to prepend the test keyword to your test method name, or use any classes in

thejunit.framework or junit.extensions package.

A basic JUnit 4 test class is a Java class that contains one or more test methods. A test

method begins with the @Test annotation and contains the code to exercise and verify a

single functionality (that is, a logical unit) in the component that you want to test.

The following snippet shows an example JUnit 4 integration test that uses the Espresso

APIs to perform a click action on a UI element, then checks to see if an expected string is

displayed.

@RunWith(AndroidJUnit4.class)

@LargeTest

public class MainActivityInstrumentationTest {

 @Rule

 public ActivityTestRule mActivityRule = new ActivityTestRule<>(

 MainActivity.class);

 @Test

 public void sayHello(){

 onView(withText("Say hello!")).perform(click());

 onView(withId(R.id.textView)).check(matches(withText("Hello, World!")));

 }

}

In your JUnit 4 test class, you can call out sections in your test code for special processing

by using the following annotations:

 @Before: Use this annotation to specify a block of code that contains test setup

operations. The test class invokes this code block before each test. You can have

multiple@Before methods but the order in which the test class calls these methods is

not guaranteed.

 @After: This annotation specifies a block of code that contains test tear-down

operations. The test class calls this code block after every test method. You can define

multiple @After operations in your test code. Use this annotation to release any

resources from memory.

 @Test: Use this annotation to mark a test method. A single test class can contain

multiple test methods, each prefixed with this annotation.

46

 @Rule: Rules allow you to flexibly add or redefine the behavior of each test method in

a reusable way. In Android testing, use this annotation together with one of the test

rule classes that the Android Testing Support Library provides, such as Activity Test

Rule or ServiceTestRule.

 @BeforeClass: Use this annotation to specify static methods for each test class to

invoke only once. This testing step is useful for expensive operations such as

connecting to a database.

 @AfterClass: Use this annotation to specify static methods for the test class to invoke

only after all tests in the class have run. This testing step is useful for releasing any

resources allocated in the @BeforeClass block.

 @Test(timeout=<milliseconds>): Some annotations support the ability to pass in

elements for which you can set values. For example, you can specify a timeout period

for the test. If the test starts but does not complete within the given timeout period, it

automatically fails. You must specify the timeout period in milliseconds, for

example:@Test(timeout=5000).

For more annotations, see the documentation for JUnit Annotations and the Android-

Specific Annotations.

You use the JUnit Assert class to verify the correctness of an object's state. The assert

methods compare values you expect from a test to the actual results and throw an

exception if the comparison fails. Assertion Classes describes these methods in more

detail.

Android Testing Support Library APIs

The Android Testing Support Library provides a set of APIs that allow you to quickly

build and run test code for your apps, including JUnit 4 and functional UI tests. The

library includes the following instrumentation-based APIs that are useful when you want

to automate your tests:

AndroidJUnitRunner

A JUnit 4-compatible test runner for Android.

Espresso

A UI testing framework; suitable for functional UI testing within an app.

UI Automator

47

A UI testing framework suitable for cross-app functional UI testing between both system

and installed apps.

Assertion classes

Because Android Testing Support Library APIs extend JUnit, you can use assertion

methods to display the results of tests. An assertion method compares an actual value

returned by a test to an expected value, and throws an AssertionException if the

comparison test fails. Using assertions is more convenient than logging, and provides

better test performance.

To simplify test development, you should use the Hamcrest library, which lets you create

more flexible tests using the Hamcrest matcher APIs.

Monkey And MonkeuRunner

The SDK provides two tools for functional-level app testing:

Monkey

This is a command-line tool that sends pseudo-random streams of keystrokes, touches,

and gestures to a device. You run it with the Android Debug Bridge (adb) tool, and use it

to stress-test your app, report back errors any that are encountered, or repeat a stream of

events by running the tool multiple times with the same random number seed.

monkeyrunner

This tool is an API and execution environment for test programs written in Python. The

API includes functions for connecting to a device, installing and uninstalling packages,

taking screenshots, comparing two images, and running a test package against an app.

Using the API, you can write a wide range of large, powerful, and complex tests. You run

programs that use the API with the monkeyrunner command-line tool.

48

 Chapter-5 CONCLUSION

5.1)CONCLUSION

Location based Services offer many advantages to the mobile users to retrieve the

information about their current location and process that data to get more useful

information near to their location. With the help of A-GPS in phones and through Web

Services using GPRS, Location based Services can be implemented on Android based

smart phones to provide these value-added services: advising clients of current traffic

conditions, providing routing information, helping them find nearby hotels.

In this paper, we propose the implementation of Location based services through Google

Web Services and Walk Score Transit APIs on Android Phones to give multiple services

to the user based on their Location.

Location Based Services is an Android App , enabling travelers to plan and book the

perfect trip. Location Based Services offers users an easy and simple interface helping

them to find places. Upon using the app the user can simply select the city he wants to

visit and nearby places.

On selecting the city the user will come across a list of places. These places are the most

famous places in the that area. They can be historical monuments like forts, palaces etc..

The user can select any place of his personal liking and then can gather information about

that place with the help of a short article or with the pictorial information provided at the

interface.

The main purpose of this app is to make the travel experience of the user easy and simple

by providing reliable and easy information to the user about the places near him.

In this project we have tried to implement all the above functions with the help of the

android app.

5.2)FUTURE SCOPE

For future we can have the following features in the app which will be user friendly

and will help the user to easily go to place he wants to visit.

 Add more cities

 Add more place in each city

 Ask for specific travel details

49

 Do booking of tickets

for 1)Bus/Train/Plane

2)Hotel

 Include Review for Hotels

 Include reviews for mode of transport

 Ask for user preferences on which more cities to add

 Ask for user preferences places to be added in the existing cities

 Log in feature for users

 Disount for regular customers

We want to build an app that simplifies the entire user expierence of a person who is

visting a new cities by providing him complete details of the entire list of places he

wants to visit and provide the user with a happy and memorable trip.

In the end we would like to publish oir app on the play store.

5.2.1) TECHNOLOGIES TO BE IMPLEMENTED IN

FUTURE

1.WEB CRWALING

A Web crawler is an Internet bot which systematically browses the World Wide Web,

typically for the purpose of Web indexing. A Web crawler may also be called a Web

spider, an ant, an automatic indexer, or (in the FOAF software context) a Web scutter.

Web search engines and some other sites use Web crawling or spidering software to

update their web content or indexes of others sites' web content. Web crawlers can copy

all the pages they visit for later processing by a search engine which indexes the

downloaded pages so the users can search much more efficiently.

Crawlers can validate hyperlinks and HTML code. They can also be used for web

scraping.

Overview

A Web crawler starts with a list of URLs to visit, called the seeds. As the crawler visits

these URLs, it identifies all the hyperlinks in the page and adds them to the list of URLs

to visit, called the crawl frontier. URLs from the frontier are recursively visited

50

according to a set of policies. If the crawler is performing archiving of websites it copies

and saves the information as it goes. The archives are usually stored in such a way they

can be viewed, read and navigated as they were on the live web, but are preserved as

‘snapshots'.

The large volume implies the crawler can only download a limited number of the Web

pages within a given time, so it needs to prioritize its downloads. The high rate of change

can imply the pages might have already been updated or even deleted.

The number of possible URLs crawled being generated by server-side software has also

made it difficult for web crawlers to avoid retrieving duplicate content. Endless

combinations of HTTP GET (URL-based) parameters exist, of which only a small

selection will actually return unique content. For example, a simple online photo gallery

may offer three options to users, as specified through HTTP GET parameters in the

URL. If there exist four ways to sort images, three choices of thumbnail size, two file

formats, and an option to disable user-provided content, then the same set of content can

be accessed with 48 different URLs, all of which may be linked on the site. This

mathematical combination creates a problem for crawlers, as they must sort through

endless combinations of relatively minor scripted changes in order to retrieve unique

content.

51

Crawling policy

The behavior of a Web crawler is the outcome of a combination of policies:

1)a selection policy which states the pages to download,

2)a re-visit policy which states when to check for changes to the pages, 3)a

politeness policy that states how to avoid overloading Web sites, and

4)a parallelization policy that states how to coordinate distributed web crawlers.

References

 [1] Manav Singhal and Anupam Shukla, “Implementation of Location based Services

in Android using GPS and Web Services”, IJCSI International Journal of Computer

Science Issues, Vol. 9, Issue 1, No 2, January 2012.

[2] Isha Sahu and Ishita Chakraborty, “Understanding Location Manager in Android and

Implementing an Optimal Image Geotagging Application”, (IJCTT) – volume 4 Issue 6–

Month 2013.

[3] Alexander Troshkov, Kirill Kulakov, ” Tourist Application for Mobile Platforms” ,

Petrozavodsk State University Petrozavodsk, Russia.

[4] Qusay H. Mahmoud ,”J2ME and Location based Services” - March 2004

http://developers.sun.com/mobility/apis/articles/location.

[5]ValerieBennett,”LocationBasedServices”,http://www.ibm.com/developerworks/ibm/lib

rary/i-lbs.

[6]Shane Condor and Lauren Darcy ,“Android Wireless Application Development”.

[7]Google Places API, http://code.google.com/apis/maps/documentation/places/

 [9]Google Places API ,https://developers.google.com/places/android-api/start

 [10]Material Desigin, https://design.google.com/

[11]Google Placespicker,https://developers.google.com/places/android-api/placepicker

[12]Google Places Autocomplete, https://developers.google.com/places/android-

api/autocomplete

52

53

54

	Android Components
	2.2 Android Architecture
	Applications Layer
	Application Framework
	Libraries
	Android Runtime Libraries
	Linux Kernel
	2.3 Main Components of Android Application

	Activities
	Broadcast Receivers
	Services
	Content Providers
	Intents
	fig 2.2 Activity Stack
	2.1.6 Processes and Threads
	Processes and Threads
	2.1.7 Multi-Tasking

	3.1 System Requirements
	3.1.1 Supported Operating Systems
	3.1.2 Supported Development Environments
	Eclipse IDE
	Other development environments or IDEs

	3.1.3 Hardware requirements

	1. USE CASE DIAGRAM

