PERFORMANCE EVALUATION OF ELECTROCOAGULATION REACTOR FOR THE TREATMENT OF DISTILLERY WASTEWATER

Α

PROJECT REPORT

Submitted in partial fulfilment of the requirements for the award of the degree

of

BACHELOR OF TECHNOLOGY

IN

CIVIL ENGINEERING

Under the supervision

of

Anirban Dhulia

(Assistant Professor)

by

Harish Chander (151625)

Prikshit Gupta (151638)

Vedansh Garg (151676)

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY WAKNAGHAT, SOLAN – 173234 HIMACHAL PRADESH, INDIA May – 2019

STUDENT'S DECLARATION

We hereby declare that the work presented in the Project report entitled "Performance Evaluation of Electrocoagulation Reactor for the treatment of Distillery Wastewater" submitted for partial fulfilment of the requirements for the degree of Bachelor of Technology in Civil Engineering at Jaypee University of Information Technology, Waknaghat is an authentic record of our work carried out under the supervision of Mr. Anirban Dhulia. This work has not been submitted elsewhere for the reward of any other degree/diploma. We are fully responsible for the contents of our project report.

Harish Chander	Prikshit Gupta	Vedansh Garg
151625	151638	151676

Department of Civil Engineering Jaypee University of Information Technology, Waknaghat, India Date:

CERTIFICATE

This is to certify that the work which is being presented in the project report titled "Performance Evaluation of Electrocoagulation Reactor for treatment of Distillery Wastewater" in partial fulfilment of the requirements for the award of the degree of Bachelor of Technology in Civil Engineering submitted to the Department of Civil Engineering, Jaypee University of Information Technology, Waknaghat is an authentic record of work carried out by Prikshit Gupta (151638), Harish Chander (151625) and Vedansh Garg (151676) during a period from August 2018 to May 2019 under the supervision of Mr. Anirban Dhulia & Environment Laboratory assistant Mr. Amar Department of Civil Engineering, Jaypee University of Information Technology, Waknaghat.

The above statement is correct to the best of our knowledge.

Date:

Signature of Supervisor	Signature of HOD	Signature of External
Mr. Anirban Dhulia	Dr. Ashok Kumar Gupta	External Examiner
Assistant Professor	Professor and Head	
Department of Civil	Department of Civil	
Engineering	Engineering	
JUIT, Waknaghat	JUIT, Waknaghat	

ACKNOWLEDGEMENT

We would like to thank so many people who have helped in every possible way in successful completion of this project. Firstly, we would like to express my gratitude to my project guide **Mr. Anirban Dhulia** (Assistant Professor, Department of Civil Engineering) who have provided us an opportunity to do this project under his guidance. He has provided valuable ideas and support during the course of this work. This work would not have been possible without his support. We would like to thank our project coordinator and all other faculty members and technical staff of Department of civil engineering of Jaypee University of Information Technology for providing valuable input through the course of this work. We would also like to thank staff of **Green Valley Cider Private Limited** for their support and help in the sample collection and analysis and finally my institute Jaypee University of Information Technology.

ABSTRACT

In the recent times, numerous studies have been conducted on electrocoagulation process, yet it is a different area of study. Nearly all of the research work laid emphasis on the treatment of various wastewaters that we come across in our daily lives like household, agricultural and industrial wastewater for the reduction of pollution caused by them. It also gives us an idea of how the process works, the effect of electrode materials and various operating conditions and the design of the reactor. Electrocoagulation has a certain number of merits as well as demerits as indicated in the literature, it still has been used for over a hundred years for treating polluted water. The reactor employed for treatment comprised of sheets of acrylic. The electrodes used were made from aluminium and iron. The process has been found effective in the treatment of different varieties of wastewater including water below the ground surface. The objective of the present study is to inspect the outcomes of the various operational parameters like electrode material, inter electrode distance and electrolysis time on COD, BOD, turbidity and TSS removal on the treatment of distillery wastewater.

Thus it can be concluded that EC process is productive for treating distillery wastewater which showed highest of COD removal of 83.65%; 75% turbidity removal; 83.36% BOD removal and 83.23% of TSS reduction.

Keywords: Electrocoagulation, Electrode materials, Operating conditions, COD, BOD, Turbidity

TABLE OF CONTENTS

STUDENT'S DECLARATION	ii
CERTIFICATE	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
LIST OF TABLES	viii
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS AND SYMBOLS	ix
Chapter 1	1
Introduction	1
1.1 Objectives of the Study	2
Chapter – 2	3
Literature Review	3
2.1 Historical Development	3
2.2 Theoretical background on electrocoagulation process	3
2.3 Electrocoagulation Mechanisms	3
2.3.1 Specificity of Al electrodes	5
2.3.2 Specificity of iron electrodes	6
2.4 Key parameters influencing the EC process	8
2.4.1 Effect of current density	8
2.4.2 Effect of water pH and alkalinity	9
2.4.3 Effect of geometry of cell and design of electrodes	10
2.4.4 Arrangement of electrodes	10
2.4.5 Effect of inter electrode distance	12
2.4.6 EC reactor design	12

2.4.7 Effect of water conductivity	13
Chapter – 3	
Material and Methods	34
3.1 Experimental Setup	
3.1.1 Reactor Design	
3.2 Wastewater Sample	
3.3 Reactor Operations	35
3.4 Analytical Techniques	35
Chapter – 4	
Results and Discussions	36
4.1 Characteristics of distillery wastewater	36
4.2 Electrocoagulation experiments results	
4.2.1 Effect of electrode material	
4.2.2 Effect of inter electrode distance	
4.2.3 Effect of electrolysis time	51
Conclusions	51
5.1 Conclusions	51
5.2 Suggestions for future Scope	51
REFERENCES	52
APPENDIX A	56
APPENDIX B	

LIST OF TABLES

Table 2.1	Summary of studies related to electrocoagulation	15
Table 4.1	Composition of distillery wastewater	39

LIST OF FIGURES

Figure 2.1. Interactions Occurring within Electrocoagulation Reactor	4
Figure 2.2. Monopolar electrode in a) in parallel connections b) in series connections c) bipolar electrode in series connection	10
Figure 4.1. COD removal comparison of electrode materials with 0.5 cm spacing	38
Figure 4.2. Turbidity removal comparison of electrode materials with 0.5 cm spacing	39
Figure 4.3. BOD removal comparison of electrode materials with 0.5 cm spacing	40
Figure 4.4. TSS removal comparison of electrode materials with 0.5 cm spacing	41
Figure 4.5. COD removal comparison of different electrode spacing using Al-Al electrodes (anode-cathode)	42
Figure 4.6. COD removal comparison of different electrode spacing using Fe-Fe electrodes (anode-cathode)	s 43
Figure 4.7. Turbidity removal comparison of different electrode spacing using Al-Al electrodes (anode-cathode)	44
Figure 4.8. Turbidity removal comparison of different electrode spacing using Fe-Fe electrodes (anode-cathode)	45
Figure 4.9. BOD removal comparison of different electrode spacing using Al-Al electrodes (anode-cathode)	s 46
Figure 4.10. BOD removal comparison of different electrode spacing using Fe-Fe electrode (anode-cathode)	es 47
Figure 4.11. TSS removal comparison of different electrode spacing using Al-Al electrodes (anode-cathode)	s 48
Figure 4.12. TSS removal comparison of different electrode spacing using Fe-Fe electrodes (anode-cathode)	s 49

ABBREVIATIONS AND SYMBOLS

- EC- Electrocoagulation
- COD Chemical Oxygen Demand
- BOD Biological Oxygen Demand
- TSS Total Suspended Solids
- Al Aluminium
- Fe Iron
- Cl Chlorine
- STP- Sewage Treatment Plant

CHAPTER 1

INTRODUCTION

In the present times, the scarcity of safe consumable water is a well-known issue. To cope with this, it is very important to safeguard our natural water bodies and sources. For this it becomes very important to keep an eye on various factors responsible for this like population explosion, more and more movement of people to cities, the reduction in forest cover and changing weather patterns inclusive of global warming. As a result of increase in water contamination, the living creatures inside the water bodies also face various problems like decrease in oxygen level. Hence there is a need to bring up such technologies that prove efficient in the reduction of such contaminations from wastewater while ensuring environmental safety as well.

Electrocoagulation process can play a significant role in dealing with wastewater related problems. During the method, the current across the electrodes causes coagulant production through the oxidation of the anode. A number of coagulant species like hydroxide precipitates and other metal species are formed due to the metal ions hydrolysis produced due to the electrolytic oxidation of the anode depending on the pH conditions Due to the numerous benefits on aluminium and iron like their non-toxic nature, easy availability they are generally used as electrodes. It is possible that the anode and cathode are comprised of identical metal but electric integration takes place only at anode. Electrocoagulation can be carried out in batch mode or continuous mode as per the requirement. The applications of the process have been Kabdash et al., [4-5]. In the 19th century, England made use of lately explored by electrocoagulation in drinking water treatment plants [6]. At late 30's, chemical coagulation had taken its place with the aid of biological remedies to put an end on suspended contaminants in wastewater. The primary cause came out to be high working value, mainly the charge of power. After the 90's Mollah et al., [7] the circumstances have taken a turn due to the citation of various merits as indicated in review. EC affords additionally different issues like management of sludge, however chemical coagulation should also cope with it. Generally, sludge disposal should be similar as the characteristics of EC sludge and that of chemical coagulation are similar. Conversely a selected difficulty of this process is the lack of comprehensive evaluations of EC modelling.

1.1 OBJECTIVES OF THE STUDY

The aim of the research was to assess the workability of EC process to treat distillery wastewater. The objectives are indicated as under:

1. To design, construct batch and continuous electrocoagulation reactor for distillery wastewater treatment.

2. To investigate the impact of different operating parameters like:

- a) Effect of inter electrode distance
- b) Effect of electrolysis time

3. To study the efficiency of different electrodes (aluminium and iron) for treatment of distillery wastewater in various combinations as mentioned below:

a) Al-Al electrode b) Fe-Fe electrode

CHAPTER - 2

LITERATURE REVIEW

2.1 HISTORICAL DEVELOPMENT

Electrocoagulation process was first anticipated by Vik *et al.*, narrating a STP in London where electrochemical treatment was being done by combining household wastewater with brine. In 1909 (in US), J.T. Harries got a license for the handling of wastewater by utilising electrolysis through the use of conciliatory aluminium and iron anodes [1]. Matteson *et al.* [2] characterized the 'Electronic Coagulator', that disintegrated Al from anode to the arrangement that responds with the generation of hydroxyl ions at the cathode and leads to formation of hydroxide of aluminium. These flocculated hydroxides purified the contaminated water by flocculating and coagulating the suspended solids. In Britain in 1956[2], an identical manner was employed where electrodes of iron have been employed to cope with dirty river water. Thereon, a huge variety wastewater came up into light. Electrocoagulation was used to get rid of suspended particles [2]; heavy metals [3]; petroleum items [4]; colour from dye-containing solution [5]; aquatic humus [1]; fluorine in water [6]; and city wastewater [7].

2.2 THEORETICAL BACKGROUND OF ELECTROCOAGULATION PROCESS

Electrocoagulation merges diverse tools which may be electrochemical (anodic disintegration), chemical (pH change, redox response) and physical (coagulation, flotation). Those may be sequential or parallel. They are outlined in Fig 1. which shows the interactions among the mechanisms of EC procedure.

2.3 ELECTROCOAGULATION MECHANISMS

Electrocoagulation involves the creation of coagulant species by electro dissolution of anode normally iron or aluminium by usage of electric current passed through the electrodes.

Chemical reactions are outlined as under:

• At anode, oxidation of metal into cations take place;

Figure 2.1: Interactions Occurring within Electrocoagulation Reactor

$$M \to M^{Z_+} + Ze^- \tag{1}$$

In eq. (1), Z denotes the numerical value of electrons that are passed to the anodic disintegration system consistent with the mole of metal. Secondary reactions may arise in case of high anode potential [9, 10]. Oxidation of water can take place leading to the formation of hydronium ion and oxygen and Cl^- can oxidized into Cl_2 existence of chloride ions. Since Cl_2 is a robust oxidant, it can accord to the oxidation of disintegrated natural mixes or may prompt ClOH generation which likewise acts as an oxidizer [11].

$$2H_2O \rightarrow O_2 + 4H^+ + 4e^-$$
 (2)

$$2\mathrm{Cl}^- \to \mathrm{Cl}_2 + 2\mathrm{e}^- \tag{3}$$

$$Cl_2 + H_2O \rightarrow ClOH + Cl^- + H^+$$
(4)

• At the cathode: reduction of water takes place into hydroxyl ions and H₂

$$3H_2O + 3e^- \rightarrow 3/2 H_2 + 3OH^-$$
(5)

The measure of metal broken down by anodic oxidization can be determined by the utilization of Faraday's law. In this way, the mass m of the metal is an element of hydraulic retention time t and of current flow I:

(6)

In eq. (6) F denotes Faraday's constant and M is the weight of the materials used in the making of electrodes. Faraday's law ($\phi = 1$) is applicable only when each and every electron takes part only in the process of metal-disintegration at anode. In Eq. (6) Z indicates the valence number of ions of the substance.

2.3.1 SPECIFICITY OF AL ELECTRODES

For aluminium as Z=3, only half oxidation reaction occurs between Al^{3+}/Al which follows Eq. (1). In accordance with the acid/base reactions (Eq. (9) - (12)) and Al^{3+} concentration [10] other monomeric species are also generated due to the regular hydrolysis of Al^{3+} ions as

$$Al^{3+} + H_2O \rightarrow Al(OH)^{2+} + H^+$$
(9)

$$Al(OH)^{2+} + H_2O \rightarrow Al(OH)_2^+ + H^+$$
(10)

$$Al(OH)_{2}^{+} + H_{2}O \rightarrow Al(OH)_{3} + H^{+}$$
(11)

$$Al(OH)_3 + H_2O \rightarrow Al(OH)_4^- + H^+$$
(12)

Generally, if the pH is below 4 then aluminate cations triumph and if pH is above 10 then aluminate cations triumph otherwise the indissoluble Al(OH)₃ prevails. The development of polymeric species is additionally represented. At cathode, the acidity of aluminium accord for the development of hydroxyl ions, initiating a buffer effect resulting in final pH in the range of 7 to 8 which varies from traditional chemical coagulation by utilizing aluminium salts. Consequently, polymeric and monomeric species initiates the production of amorphous Al(OH)₃ "sweep flocs" having huge surface regions that are valuable for a quick dissolvable natural mixes and trapping of colloidal particles [12-14].

$$nAl(OH)_3 \to Al_n(OH)_{3n} \tag{13}$$

Due to a purely chemical attack of aluminium under acid or alkaline conditions, secondary reactions can also occur at the electrodes:

$$2\mathrm{Al} + 6\mathrm{H}^+ \rightarrow 2\mathrm{Al}^{3+} + 3\mathrm{H}_2 \tag{14}$$

$$2\text{Al} + 6\text{H}_2\text{O} + 2\text{OH}^- \rightarrow 2\text{Al}(\text{OH})_4^- + 3\text{H}_2 \tag{15}$$

The effect is such that the amount of broken down Al discharged during electrocoagulation surpasses the normal fixation as anticipated by the Faraday's law. So, the value of faradic yield is above 100 % and can extend up to 200 % [10].

Due to the increase in cell voltage and energy intake, cathode becomes passive. It is one of the important issues of EC. One way of reducing this passivation is the improvement of the current inversion frequency. The other way is to add NaCl to encourage pitting corrosion by a chemical interaction between Al^{3+} in the oxide cross section and Cl^{-} that is adsorbed on the aluminium oxide film. Two methods are responsible for the extent of chemical corrosion of soluble aluminium anodes [15]:

- The development and formation of a non-resistant layer of aluminium-oxide;
- The accompanying incomplete devastation of the above layer by pitting.

The factors that decide the extent of pitting corrosion include initial pH, character and concentration of electrolyte. The beneficial outcome of anions on inert layer of aluminium-oxide in decreasing order is [16]: CI^- , Br^- , I^- , F^- , CIO_4^- , OH^- , SO_4^{-2-} .

2.3.2 SPECIFICITY OF IRON ELECTRODES

Since oxidation of anode drives either to formation of ferric or ferrous cations, therefore the reactions occurring at iron electrodes are generally more complex than with that of aluminium,

$$Fe \to Fe^{2+} + 2e^{-} \tag{17}$$

$$Fe \to Fe^{3+} + 3e^{-} \tag{18}$$

Based on the concentration of ferric ion and pH, formation of monomeric and polymeric species takes place due to the hydrolysis of ferrous and ferric ions in water. In spite of certain vagueness in different papers on the procedures of Iron EC, ongoing investigations conclude that oxidation taking place at anode discharges Fe^{2+} as it has been demonstrated that the disintegration rate of Fe^{3+} is insignificant [17-18]. pH and the concentration of dissolved oxygen determine the extent of oxidation of Fe^{2+} ions to Fe^{3+} ions. If the medium is acidic then Fe^{2+} cations takes enough time in accordance with dissolved oxygen Eq. (19) and if the medium is neutral or alkaline then Fe^{2+} gets rapidly altered into $Fe(OH)_3$ Eq.(20) and is swiftly broken down dissolved oxygen into iron (III) hydroxide Eq. (21).

$$Fe^{2+} + O_2 + 2H_2O \rightarrow Fe^{3+} + 4OH^-$$
 (19)

$$Fe^{2+} + 2OH^{-} \rightarrow Fe(OH)_2$$
⁽²⁰⁾

$$4Fe(OH)_2 + O_2 + 2H_2O \rightarrow 4Fe(OH)_3 \tag{21}$$

When the pH values are low, clarifications are almost identical as stated for Al: in the existence of ionic compounds corrosion is likely to occur at each electrode. Because of the presence of secondary reactions close to the anode, alongside oxygen development when pH is high, the dissolution performance drops beneath the values given by Faraday's law. In case of alkaline medium, oxidation of iron guides to Fe (III) formation through Eq. (18). As a result, there is a decline in the iron concentration as Fe (III) generation requires 3 electrons against 2 required for Fe (II) and hence, a much higher current is needed to reach the same iron concentration [17-18]. Precipitates of amorphous Fe(OH)₃ are formed from different monomeric and polymeric species which are desirable for a fast adsorption of soluble organic mixes [19-20]. There are two other variations with aluminium electrodes. The first one being that the buffer impact outlined for Fe is fragile as compared to Al. The other distinction is the unsatisfactory EC performance can be attributed to the soluble nature of Fe²⁺ and subsequently not fit for proficient colloid destabilization with the guide of Fe(OH)₃. Thus an effective activity of Fe-EC calls for at least one of the underlying enhancement techniques for the Fe³⁺ generation:

(a) circulating air through water to enlarge the dissolved oxygen content and increase oxidation of Fe²⁺;

(b) raising the pH up to 7.5 or more to increase Fe^{2+} oxidation rate;

(c) presenting an elective oxidant, for example, chlorine which can be generated through the oxidization of the chloride ions that are there in the waste water at the iron anode [21]. From there on, oxidation of ferrous occurs in the mass arrangement:

$$Cl_2 + H_2O \rightarrow ClOH + Cl^- + H^+$$
(22)

$$2Fe^{2+} + 2HOCl \rightarrow 2Fe^{3+} + 2OH^{-} + Cl_2$$
⁽²³⁾

This process is not proficient until the wastewater to be treated carries over 600 mg Cl^{-/L}, by considering the current used up by oxidation of Cl⁻ ions.

(d) to accomplish complete oxidation of $Fe^{2\scriptscriptstyle +}$ by escalating the residence time

Iron offers two extra points of interest over aluminium: iron being non-toxic can be used for consumable water.

2.4 PARAMETERS INFLUENCING THE ELECTOCOAGULATION PROCESS

The different factors influencing the adequacy of electrocoagulation are identified with the operating conditions, for example voltage, current flow and retention time, wastewater attributes which are alkalinity, pH, conductivity and the arrangement of the electrodes of the EC reactor.

2.4.1 EFFECT OF THE CURRENT DENSITY

Current (I) is a major factor which influences electrocoagulation. EC is commonly organized as a part of current density described as the proportion of current over the surface area S of electrode. Current conservation can be imposed by the continuity equation between the two terminals, current can differentiate between terminals where

$$\mathbf{I} = \mathbf{i}_{\mathbf{A}} \cdot \mathbf{S}_{\mathbf{A}} = \mathbf{i}_{\mathbf{C}} \cdot \mathbf{S}_{\mathbf{C}} \tag{24}$$

As per Faraday's law, at anode the current density demonstrates the dosage of the chemical coagulant and at cathode the development of H₂. The density of air bubble impacts the structure hydrodynamics, which impacts the change in mass between pollutant particles, coagulant and gas miniaturized scale bubbles, and in the long run it coordinates the collision rate of coagulated particles. Current density likewise impacts hydrolysed species of metal through pH advancement amid EC process as a component of alkalinity of water. Accordingly, the current, make a dynamic physical/synthetic condition that checks the flocculation/coagulation mechanism and supports the electro movement of particles and charged colloids [22].

Because of the linkage of electric current needed for Electrocoagulation with the electric flow and potential, EC can be operated either through the galvanostatic mode or potentiostatic mode. EC process is executed only by changing the current connected by electrodes for the galvanostatic mode while for the potentiostatic mode, the connected voltage of cell is differed as an element of measure of coagulant which is to be discharged in the reactor. The potentiostatic mode isn't regularly utilized for EC and is generally utilized for various electrochemical methods, for example, electro-oxidation and electro-reduction while sacrificial anodes and cathodes are not utilized [23-24].

2.4.2 EFFECT OF WATER PH AND ALKALINITY

pH is a major characteristic which impacts the accomplishment of EC, particularly the coagulation methods as it administers the hydrolysed species of metal produced in responsive media and impacts the predominant process of EC [25]. An examination of the evolution of Al and Fe from the hydrolysis of the relating cations controlled by methods for thermodynamic stability equilibrium is earliest to get to the base of how pH adds to deal with the EC process. Coagulation and adsorption especially rely on pH. The adsorption of charged solvent monomeric species on different hydroxide molecules explains the apparent charge of the Al or Fe extracts. Talking about their superficial charge, the chemistry between the pH-subordinate coagulant species and their surrounding pollution particles might be identified with electrostatic interchange. A point by point assessment pondering these components (double layer pressure, balance and charge neutralization) has been accounted for by utilizing Jimenez *et al.*, [18] for aluminium and iron EC process so one can amplify the decrease of various pollution causing particles as an element of the hydrolysed steel species.

Zongo [22] considered the speciation of aluminium and iron with the objective to set up the major diagrams of relating hydroxides and also to review a piece of unsolvable hydroxides as a component of pH taking into account monomeric species only. Thus, for Al electrodes, it is seen that the quantity of insoluble aluminium hydroxide increments strongly as the pH increments from 4.5 to 7 to the disservice of aluminium hydroxide particles and the turnaround is valid for a pH from 7 to 10, while formless hydroxide of metal is missing over the last recorded value of pH. For iron cathode, with pH extending from 4 to 7, the amount of insoluble iron hydroxide radically increases. Iron hydroxide ions are missing on the major diagram at this last pH.

It is incredibly critical that after Electrocoagulation the increment for the acidic influent yet can diminish for alkaline effluent because of the buffering effect of EC. This increment of pH in acidic medium is because of the increase of hydrogen at cathode and the decrement of pH is expected because of the generation of precipitates of hydroxide that discharge hydrogen ion at the anode and the optional responses which incorporate oxidation of water and creation of

chlorine. This demonstrates the EC buffering effect that demonstrations further to alkalinity of water. Due of the advancement of aluminate anions at a high pH level, this impact is high with aluminium anodes [11]. The bicarbonate alkalinity is represented to increase possibly the pollutants expulsion productivity [26] moreover it permits to get rid of the hardness by precipitation of $CaCO_3$ [27].

2.4.3 EFFECT OF GEOMETRY OF THE CELL AND DESIGN OF ELECTRODES

The EC reactor is specifically built up of electrodes that are enclosed in specific area. The electrodes are composed in a non-conductive tank in which wastewater is treated.

2.4.4 ARRANGEMENT OF ELECTRODES

EC procedure is impacted by the electrode system by electrodes arrangement and distance between the various electrodes. Arrangement of electrodes can be fundamentally made out of an anode and a cathode or can be made out of numerous anodes and cathodes unpredictably placed in EC cell.

Figure 2.2: Monopolar electrode in a) electrodes in parallel connections; b)electrodes in series connections; c) bipolar connection of electrodes in series

The complex cathodes system can be categorized as monopolar electrodes and bipolar electrodes

• Monopolar electrodes arranged in parallel association (MP-P) are shown in Fig. 2.a. In this geometry the anode and cathode are connected alternatively at the equivalent anodic or cathodic potential, individually. Every arrangement of anode/cathode match to a little electrolytic cell having a similar voltage. The EC reactor is made thus, of parallel electrolytic cells because of which every electrolytic cell has current of additive nature.

• Monopolar electrodes arranged in series arrangement (MP-S) are depicted in Fig. 2. b. Every pair of inward conciliatory electrodes is internally related with the other having no common connection with the other two outer terminals. For these circumstances, the electric flow experienced by every one of the electrodes is equivalent, while the overall voltage is the entire of voltage in every single electrolytic cell.

• Bipolar electrode arranged in series (BP-S) includes two external electrodes that are connected with a DC power supply and also to the sacrificial electrode arranged in between the two external electrodes (Fig 2.c). External electrodes are monopolar while the internal are bipolar. The sides of bipolar terminals act at the same time as an anode and a cathode and are not connected internally. So due to the oppositely charged nature of bipolar terminals, the positive side suffers from disintegration of anode and the cathodic responses takes place at the negative side.

As a rule, monopolar electrode requires a high current and low voltage while the bipolar electrode work with a comparatively high voltage and a low density of electrical current. This is hard to assume what electrode course of action is effective than the other taking into account just EC yield given that it is already demonstrated that similarly BP-S could show a high EC effectiveness. Considering the proportion adequacy cost, monopolar cathodes may appear to be fascinating but in a large portion of the cases this sort of electrodes shows a higher reduction of pollutant with lesser power utilization, understanding that bipolar anode always uses a high amount of power. This outstanding mode which is easy to deal with, requires low support cost amid task, consequently the effect of maintenance cost on in general activity cost ought to similarly be considered to pick accurate electrode mode. Other than the outstanding rectangular

electrode, there are some other geometrical figures, for example, circular, tube shaped. Cathodes are settled either vertically or a level plane in EC cell.

2.4.5 EFFECT OF INTER ELECTRODE DISTANCE

As the separation among electrodes expands, the IR-drop increases. Henceforth, as the separation between electrode diminishes the power utilization diminishes. As the gap between electrodes reduces, all of the electrochemically created gas bubbles result in violent hydrodynamics, which leads to an unreasonable mass exchange like a high rate of reaction among the coagulant species and pollution content. Additionally, between electrode separation portrays the HRT between the anode and the cathode for a reliable structure and the treatment time for the reactor to obtain the desired EC efficiency. For a perplexing electrode course of action, the distance between the two electrodes determines that how many electrodes have to be placed in a EC reactor. [28].

2.4.6 EC REACTOR DESIGN

EC reactor arrangement is of extraordinary significance as it impacts the general operations of the EC procedure by its impact on the working settling qualities. EC reactors are arranged dependent on some basic norms, for the most part the working mode and the attainment of the predetermined goals, EC reactor design can be organized relying upon three noteworthy qualifications as shown by literature survey [6]. The first is whether a reactor is placed as a batch or a persistent framework, for example the feed mode. For a firm structure, EC reactors are perpetually nourished in waste water and set for work in those conditions, while the assignment is finished with a fixed quantity of wastewater for every cycle of treatment in a batch procedure. The second treatment is the strategy used to isolate the amassed pollutants. The last is the structure of the electrodes arrangement that describes the dispersion of electric current in the cell: normal EC cells are investigated by Mollah et al., and have undergone very little modification in the ongoing decade. Basically, cells that have rectangular arrangement still overpower, as rectangular anodes can be used, and the generally perceived structure for regular use is the open vertical-plate cell, as a rule pursued by a pioneer. This suggests that the reactor is open from the top, which helps to keep submerged contacts aside and make upkeep more straightforward; similarly, vertical anodes and cathodes are divided in parallel; any vertical length extent can be utilized, making scale-up basic, yet support is empowered by qualities less than 2. In case of current inversion, the symmetry of the anode-cathode terminals diminishes support, explicitly interestingly with tube shaped EC cells [7].

Alongside the arrangement of the electrode and their separation, EC reactor setup impacts electrocoagulation through the volume of the reactor that intercedes to describe electrode region/volume proportion (A/V). Electrode A/V proportion is the primary parameter in plant structure that grants making EC full-scale gear from research centre analyses by keeping the equivalent between electrode separate while utilizing terminal plates. The average scope of electrode A/V proportion moves from 15 m²/m³ to 45 m²/m³ [28]. At the point when the A/V proportion is expanded both the time of treatment and the ideal current thickness diminishes. Exactly when the terminal zone is sufficiently high, the huge parameter is the present fixation I/V. When this parameter is joined by the current and flow thickness and the electrode area/volume proportion it allows portrayal of convergence of coagulants discharged in water at a given treatment time under cluster circumstances. Under constant framework, the volume of the reactor licenses characterizing the habitation time for a given stream of wastewater and as such the discharged coagulant amount can be reasoned.

C = (M/ZF) (I/V) t

here C and V are the hypothetical concentrations of metallic cations (g/m³) and the volume of the EC gadget (m³), respectively. The standard geometry of reactor, for instance cubic, cylindrical marginally influences EC execution, except for a non-conventional moulded EC reactor also called electrochemically determined carrier reactor. Essadki et al., [29] considered the decolourization of material colour wastewater by EC flotation in an outside circle airdrop reactor, by and large used to do substance and biochemical oxidations. Using ideal current density and electrode position it ended up conceivable to 80% COD removal and shading from the material colour wastewater. This shows the primary occupation of the EC reactor geometry is identified with hydrodynamic and mixing properties [29].

2.4.7 EFFECT OF WATER CONDUCTIVITY

The current density productivity is based solidly on the ionic nature of wastewater and conductivity. With expanding electrolytic conductivity, the current density efficiency increments because of the decline of ohmic opposition of wastewater. The HRT needed to accomplish a given evacuation yield also diminishes due to conductivity. Thus, the vitality use

is diminished. Electrolytic conductivity is being enhanced by the use of NaCl. Chloride anions plays an important role in the decrease of the unfortunate impacts of different anions to sideline the interaction from the calcium carbonate in hard water that can prompt a protecting layer on the outside of the terminals. For incredibly high value of current density, chloride anions can in like manner be oxidized to dynamic chlorine frames, for example, hypochlorite anions, which can oxidize natural organic compounds [9] and ferrous ions [21] or add to wastewater cleansing. To make sure an ordinary activity of EC in treating waste water, it is proposed that 20% of the anions present should be of chlorine. [16].

Moreover, many restrictions are imposed on conductivity increment in waste water treatment generally in drinking water treatment. For the treatment of waste water, other than an auxiliary contamination made by an expansion of conductivity, some measures to be pursued relying upon if the wastewater being treated is offered either for reuse or to be gushed out in biological system. Conductivity increment amid the treatment of drinking water by EC is confined according to the set standards that restricts the greatest chloride concentrations in industrial discharge outflow at 250 mg/L [30].

S.	Title	Journal	Author	Methodology	Conclusion
No		Name			
		(Year)			
-	0	T	C.	D . 1	
1	Sequential	Internation	Gizem	Batch	The most effective
	Treatment	al Journal	Basaran	electrochemical	and economic
	of Food	of	Dindas,	reactor which	degradation were
	Industry	Electroche	Yasemin	made-up of	observed in the 120
	Wastewater	mical	Caliskan,	polypropylene (PP)	min EF using 5
	by Electro-	Science	Emin	with a capacity of 1	mA/cm ² pulsed
	Fenton and	(2018)	Ender	L and the working	current density and
	Electrocoag		Celebi1,	volume of the	then 180 min EC
	ulation		Mesut	effluent was 0.5 L	using 15 mA/cm ² of
	Processes		Tekbas1,	was used. EF	current density.
			Nihal	process was	Results of tandem

Table2.1: Summary of Studies related to Electrocoagulation

			Bektas,	initially performed	sequential treatment
			H.Cengiz	to govern the	processes indicated
			Yatmaz1	amount of released	58.7 % TOC, 93.9 %
				iron ions into the	total phosphate, 82.8
				solution by	% TSS and 74.4 %
				different time	turbidity reduction at
				intervals using 5	120 min EF (pulsed 5
				mA/cm ² current	mA/cm2) and 180
				density.	min EC (15
					mA/cm^2).
2	Benefits of	Internation	Warren.	The reactor was	Electrocoagulation
	Electrocoag	al Journal	Reategui-	made of plexiglass	was evaluated as a
	ulation for	of Applied	Romero,	with a capacity of 5	possible technique
	the	Engineerin	Lisveth.V.	L, with seven Fe	for the reduction of
	Treatment	g Research	Flores-Del	electrodes arranged	pollutants from
	of	(2018)	Pino, Jose.	vertically with a	wastewater. The
	Wastewater:		Guerrero-	spacing of 0.03 m	metals were removed
	Removal of		Guevara,	and dimensions of 0	with an efficiency
	Fe and Mn		Josue.	224 m x 0.133 m.	greater than 99 %,
	metals, oil		Castro-	The reactor worked	while the oils and fats
	and grease		Torres,	with four cathodes	and phenols reached
	and COD:		Luis. M.	$(0.238 m^2)$ and	59 and 32 %
	three case		Rea-	three anodes (0.179	respectively. A
	studies		Marcos,	m ²). The analyses	special case was the
			Maria. E.	were carried out in	removal of COD,
			King	the Minsur S.A	since the treated
			Santos,	laboratory for pH	effluent was a
			Ricardo.	measurement,	mixture of effluents
			Yuli-	turbidity and	from various
			Posadas	spectrophotometer,	industrial sectors,
				the emissions used	reaching 39 %.

				for Fe and Mn were	
				372 nm and 403.1	
				nm respectively.	
3	Applying	Polish	Ha Manh	A plexiglass reactor	The quadratic models
	Response	Journal of	Bui	of greatest volume	for COD removal
	Surface	Environm		limit of 5 L was	productivity were
	Methodolog	ental		utilized in the EC	eminent at very
	y for	Studies		experiment. Four	lower likelihood
	Optimizing	(2018)		Fe electrodes were	esteem and high
	the			joined in parallel	coefficient of
	Treatment			and were put in the	assurance. Ideal
	of Swine			reactor with a	conditions for COD
	Slaughterho			functioning zone of	evacuation were set
	use			19.6 cm^2 . The	up at 130 A/m^2
	Wastewater			terminals were	current thickness, 9.5
	by			associated with a	min electrolysis time,
	Electrocoag			flexible DC control	and introductory pH
	ulation			supply (220 V, 30	8.5.
				A).	
4	Electro-	Chemosph	Danis	A bunch reactor,	Removal efficiency
	oxidation	ere (2017)	Kartikanin	made of Pyrex glass	was expanded at pH
	and		gsih, Yao-	with measurements	8-9, and diminished
	characterisat		Hui	of 12 cm \times 10 cm \times	as the pH expanded
	ion of Ni		Huang,	8 cm, was utilized	past that go. At
	foam		Yu-Jen	Nickel froth as	specific beginning
	electrodes		Shih	cathode and anode	possibilities (0.5 - 0.8
	for			in four sets	V versus Hg/HgO),
	removing			(compelling zone =	the miniaturized
	boron			$8 \text{ cm} \times 10 \text{ cm} \times 10$	scale granular nickel
				cm) were	oxide that was made
				orchestrated at 1 cm	on the outside of the

				interims and	nickel metal
				associated with a	substrate relied upon
				DC control supply.	pH, as controlled by
					cyclic voltammetry.
5	Characteriza	Journal of	Ainhoa	Another Cartridge	The total framework
	tion of a new	Electroana	Lopez,	type reactor for	incorporates the
	cartridge	lytical	David	electrocoagulation	Cartridge Type
	type	Chemistry	Valero,	is tried.	Electrocoagulation
	electrocoagu	(2016)	Leticia	Electrocoagulation	Reactor (CTECR)
	lation		Garcıa-	is performed	and its lodging. The
	reactor		Cruz,	utilizing 3D	living arrangement
	(CTECR)		Alfonso	terminals made of	time dispersion
	using a		Seaz,	steel fleece anodes.	(RTD) was utilized
	three-		Vicente	Expulsion of	as apparatus to think
	dimensional		Garcıa-	material colour	about the stream
	steel wool		Garcıa,	Remazol Red RB	conduct of the
	anode		Eduardo	133 is utilized as	electrolyte inside the
			Exposito,	test response.	reactor. The new
			Vicente		reactor has been
			Montiel		effectively utilized in
					the expulsion of a
					material colour
					(Remazol Red RB
					133) working in
					persistent method of
					activity, where the
					shading end rate
					comes to 99%.
6	Electrocoag	Chemosph	Oumar	EC tests were	The impacts of
	ulation of	ere (2016)	Dia ,	completed in a	current densities,
	bio-filtrated		Patrick	cylinder reactor in	kind of anode (Al vs

	landfill		Drogui,	distribution mode	Fe), and treatment
	leachate:		Gerardo	having a cluster	time on the execution
	Fractionatio		Buelna,	limit of 1.5 L. An	of COD evacuation
	n of organic		Rino Dube	outside empty	were researched. The
	matter and		, Ben	barrel made of	best COD evacuation
	influence of		Salah	hardened steel	exhibitions were
	anode		Ihsen	filled in as cathode,	recorded at a present
	materials			and a full chamber	thickness going
				pole was utilized as	somewhere in the
				a conciliatory	range of 8.0 and 10
				anode. The anodic	mA cm ⁻² amid 20
				terminals were	min. of treatment
				either aluminium or	time. At these
				iron. The terminal	circumstances, 70 %
				surfaces in contact	and 65 % of COD
				with the influent	were evacuated
				were 476 and 1130	utilizing aluminium
				cm ² for the anode	and iron cathodes,
				and the cathode	individually.
				individually	
			16.1.1		
1	Electrocoag	Procedia	Mohd	The pH of the	The distinctive
	ulation	Chemistry	Khairul	solution was taken	electrodes have
	Process by	(2016)	Nizam	utilizing pH meter	diverse adequacy in
	Using		Mahmad,	and noted. The	evacuating all out
	Aluminium		Mohd	terminals were	Chromium, shading
	and		Remy	clipped at anode	and turbidity,
	Stainless		Rozainy	stand. Every	depends on the sorts
	Steel as		M.A.Z,	association in the	of cathodes. In light
	Electrodes		Ismail	circuit was finished	of the outcome, can
	to treat the		Abustan	by wire association	be reasoned that
	Total			with terminal	Aluminium anodes

	Chromium,		and Norlia	positive and	are best suited for
	Colour and		Baharun	negative to DC	evacuation of
	Turbidity			control supply,	turbidity and
				anodes, voltmeter	shading. Tempered
				and ammeter. The	steel cathodes is best
				anodes were	for expulsion
				drenched in an	absolute Chromium.
				electrolyte	
				arrangement.	
Q	Flactrocoag	Journal of	Evo	A non thermostatic	As a result of these
0					As a result of these
	ulation: an	Electroche	Fekete,	rectangular-channel	experiments with oil-
	electrochem	mical	Bela	flow-through cell,	in-water type
	ical process	Science	Lengyel,	containing	emulsions with about
	for water	and	Tamas	vertically placed	1 kg/m ³ organic
	clarification	Engineerin	Cserfalvi,	parallel-plate	content, we conclude
		g (2016)	Tamas	electrodes (height	that 80-90 % of the
			Pajkossy	10 cm, width 5 cm,	organic content can
				inter-electrode	be removed on the
				distance 0.2 cm). A	expense of
				peristaltic pump	dissolution of Al of
				with a flow rate of 1	less than one-tenth of
				- 16 L/h and range	mass of the removed
				of 0.3-4 mL/s was	organics plus about
				used for continuous	0.5-1 kWh electric
				operation.	energy per kg of
					removed organics.

9	Treatment	Internation	Kaustubh	The electrolyte cell	The COD, Chlorides,
	of Distillery	al Journal	S Sasane,	(20 cm x 10 cm x 15	Sulphates, Total
	wastewater	of Modern	Sandip R	cm) is made up	hardness and
	by	Trends in	Korke	from the of	Turbidity removal
	electrocoagu	Engineerin		Plexiglas acrylic	efficiency were
	lation using	g and		material having 1.5	increased by
	Aluminium	Research		L net ability to treat	maintaining the
	electrodes	(2015)		the electrolyte, the	optimum voltage
				anode, pH meter,	supplied to the
				thermometer and	electrode, HRT and
				the attractive stirrer	the maintaining
				with hot plate. The	optimum charge
				anode and cathode	density within the
				with surface	volume of
				territory of 0.2 cm ²	electrolyte.
				were made up from	
				the aluminium	
				compound with	
				Zinc.	
10	Investigatio	Arabian	Khaled	The EC cell	Cadmium removal
	n of	Journal of	Brahmi,	comprised of 1 L	was accomplished
	electrocoagu	Chemistry	Wided	round and hollow	for a inter electrode
	lation	(2015)	Bouguerra	Plexiglas container,	separation of 0.5 cm,
	reactor		, Bechir	having wooden	in monopolar mode,
	design,		Hamrouni,	spread assisting the	mixing rate of 350
	parameters		Elimame	arrangement of	rev min ⁻¹ , surface-
	effect on the		Elaloui,	parallel aluminium	region to volume
	removal of		Mouna	sheets utilized as	proportion (S/V) of
	cadmium		Loungou,	conciliatory	13.6 m ⁻¹ , and at a
	from		Zied Tlili	cathodes. The	temperature of 50°C.
	synthetic			anodes utilized in	

	and			here were shaped	
	phosphate			using two	
	industrial			rectangular	
	wastewater			aluminium plates	
				(250 mm × 80 mm	
				\times 2 mm). The all	
				out inundated	
				territory of every	
				cathode was	
				dynamic (95 mm *	
				90 mm * 4 mm) S=	
				68 cm ² .	
11	Ontimizatio	Ioumal of	Dona mi	Domosticatod	Drudont
11	Optimizatio		Бонg-уш	Domesticated	
	n of colour	Industrial	Так,	animal's	situations and
	and COD	and	Bong-sik	wastewater; Tests	evacuation
	removal	Engineerin	Tak,	were led in a EC	efficiencies were
	from	g	Young-ju	cell which had a	observed having pH
	livestock	Chemistry	Kim,	capacity of 1 L. The	of 8, flow thickness
	wastewater	(2015)	Yong-jin	cell was produced	of 30 mA/cm ² , NaCl
	by		Park,	using 8 mm	grouping of 1 g/L,
	electrocoagu		Young-	straightforward	and 94.2 % (Y1) and
	lation		hun	Plexiglas with the	93 % (Y2),
	process:		Yoon,Gil-	components of 80	individually.
	Application		ho Min	$mm \times 80 \ mm \times 10$	
	of Box–			mm furnished with	
	Behnken			four terminals: two	
	design			anodes and two	
	(BBD)			cathodes with the	
				element of 50 mm \times	
				$60 \text{ mm} \times 3 \text{ mm},$	
				made of plate of	

				aluminium. The all	
				out viable terminal	
				zone was 100cm ² .	
10				* 1 . • 1	
12	Reduction	Journal of	Carlos E.	Industrial	The copper
	of pollutants	Environm	Barrera	wastewater; A	electrocoagulation
	and	ental	Diaza,	cluster	alone diminishes
	disinfection	Science	Bernardo	electrochemical	COD by 56 % at pH
	of industrial	and	А.	reactor: The reactor	2.8 in 30 minutes, yet
	wastewater	Health,	Frontana	consisted of 2	the joined framework
	by an	(2015)	Uribea,	parallel monopolar	lessens COD by 78
	integrated		Gabriela	copper terminals.	%, BOD ₅ by 83 %,
	system of		Roa-	Every cathode was	and shading by 98 %
	copper		Moralesa	9.0 cm by 7.0 cm	under similar
	electrocoagu		and Bryan	having a surface	conditions. The
	lation and		W.Bilyeu	territory of 63	flocculation of
	electrochem			cm ² .The complete	colloidal particles
	ically			surface of anode	occurred and 84 %
	generated			was 75 cm ² . An	decrease in turbidity
	hydrogen			immediate current	and 99 % decrease in
	peroxide.			power source	all out solids was
				provided the	watched.
				framework with 1	
				A, relating to	
				current thickness of	
				15.3 mA/cm ² .	
10					
13	Removal of	Desalinati	Khaled	Industrial	Ideal circumstances
	zinc ions	on and	Brahmi,	wastewater; The	for zinc evacuation
	from	Water	Wided	electrolytic cell	were observed at a
	synthetic	Treatment	Bouguerra	comprises of a 1L	pH estimation of 7, a
	and	(2014)	, Bechir	glass container.	present thickness of
	industrial		Hamrouni	Two rectangular	7.35 mA cm ⁻² , a

	wastewater		and	aluminium plate	between anode
	by		Mouna	terminal of size 250	capability of 5 V, an
	electrocoagu		Loungou	mm x 80 mm x 2	EC time of 30 min., a
	lation using			mm were utilized in	conductivity of 5.3
	aluminium			parallel. The	mS cm ⁻¹ , and
	electrodes			anode– cathode	
				separate (ACD)	
				was fluctuated from	
				5 mm to 20 mm.	
14	Investigatio	Arabian	B. Khaled,	Synthetic and	The best cadmium
	n of	Journal of	B. Wided,	phosphate	removal was
	electrocoagu	Chemistry	H. Bechir,	mechanical	accomplished for a
	lation	(2014)	A. Limam,	wastewater; The	anode separation of
	reactor		L. Mouna,	EC cell was	0.5 cm, monopolar
	design		Z. Tlili,	comprised of 1L	association mode,
	parameters			barrel shaped	mixing velocity of
	effect on the			Plexiglas	300 rev min-1and
	removal of			measuring utensil.	surface-region to-
	cadmium			The cathodes	volume proportion
	from			utilized were	(S/V) of 13.6 m-1,
	synthetic			shaped by two	with a temperature of
	and			rectangular	50 C°. The study
	phosphate			aluminium plates	showed that the
	industrial			(250 mm x 80 mm x	parameters that
	wastewater			2 mm). The all out	impact the operating
				drenched region of	expense are the
				every cathode was	cathode arrangement,
				dynamic (85 mm x	between terminal
				80 mm x 2 mm) S =	separation and S/V
				68 cm^2 . The anode-	proportion.
				cathode separating	

				was shifted from 5	
				mm to 20 mm.	
15	Chromium	Journal of	T.M.	It comprised	The examination
	ions (Cr	Electroana	Zewail,	predominantly of	uncovered that as
	⁶⁺ &Cr ³⁺)	lytical	N.S.	two litres plexi-	present thickness
	removal	Chemistry	Yousef	glass tube shaped	increments, % Cr ³⁺
	from	(2014)		holder of 14 cm	expulsion marginally
	synthetic			measurement and	increments, though
	wastewater			tallness 24 cm, the	% Cr ⁶⁺ evacuation
	by			electrical circuits	somewhat
	electrocoagu			and the cell. The	diminishes. As NaCl
	lation using			cell comprised of	fixation increments,
	vertical			two concentric iron	% Cr ⁶⁺ evacuation
	expanded Fe			tube shaped	increments steadily,
	anode			cathodes. The	while % Cr^{3+}
				external terminal	expulsion increments
				consisted a strong	up to 1 g/L and
				iron cathode of 12.5	diminishes past this
				cm distance across	esteem. Most
				and 23 cm stature	extreme % Cr ⁶⁺
				which was	evacuation happens
				bolstered on the	at pH 4.5, while
				compartment	greatest % Cr ³⁺
				divider. The	expulsion happens at
				internal cathode	рН 8.
				consisted of an	
				extended round and	
				hollow iron of 11.5	
				cm width and	
				stature of 26 cm.	

				The hole between	
				the cathode and	
				anode was kept 0.5	
				cm.	
16	Electrocoag	Internation	Ana L.	Ice cream	Electrocoagulation is
	ulation	al Journal	Torres-	wastewater; The	productive and ready
	Process	of	Sanchez,	reactor consisted of	to accomplish a COD
	Coupled	Electroche	Sandra J.	Pyrex Becher glass,	expulsion of 40% at a
	with	mical	Lopez-	having 2 aluminium	present thickness (j)
	Advance	Science	Cervera,	anodes and 3 iron	of 5 mA/cm ² , the
	Oxidation	(2014)	Catalina	cathodes that are	expansion of a
	Techniques		de la Rosa,	connected with a	Fenton procedure to
	to Treatment		Maria	BK Precision	the EC further builds
	of Dairy		Maldonad	power supply	the treatment
	Industry		o-Vega,	(model 1900)	proficiency near 25
	Wastewater		Maria	connected in	% in at a proportion
			Maldonad	bipolar mode. The	$1:1 \text{ H}_2\text{O}_2/\text{Fe}^{2+}$. At the
			o-Santoyo,	overall area of	point when utilized
			Juan M.	electrodes in	in mix with ozone
			Peralta-	contact with the	limited time
			Hernández	solution was 160	framework further
				cm ² . Tests were	contributes an extra
				performed with a	30 % COD
				current density of 5	expulsion.
				mA/cm ² .	
17	Elimination	Journal of	Maria	EC tests were done	The test
	of Pb ²⁺	Electroana	M.S.G.	utilizing a solitary	consequences of EC
	through	lytical	Eiband,	compartment	demonstrated that the
	electrocoagu	Chemistry	Kamelia	electrolytic stream	exhibitions of the
	lation:	(2014)	C. de A.	cell outfitted with	procedure marginally
	Applicabilit		Trindade,	parallel plate	rely upon the

	y of		Kelvin	anodes. Round	connected current; a
	adsorptive		Gama,	about Al terminals	total evacuation of
	stripping		Jailson	were utilized, with	the poison is gotten
	voltammetry		Vieira de	an ostensible	in all cases, anyway
	for		Melo,	surface region of	with various
	monitoring		Carlos A.	63.5 cm^2 . The	treatment times for
	the lead		Martinez-	between terminal	(90, 75 and 45) min
	concentratio		Huitle,	hole was 15 mm.	for 0.25, 0.5 and 0.75
	n during its		Sergio		A of current,
	elimination		Ferro	•	individually.
10	•				
18	A	Journal of	M.S.Oncel	Wastewater: Coal	The ideal pH for
	comparative	Environm	, A.	mine seepage	evacuation of the
	study of	ental	Muhcu,	wastewater; The	vast majority of
	chemical	Chemical	E.Demirba	EC was done in	substantial metals
	precipitation	Engineerin	s, M.	bunch mode	from waste water by
	and	g (2013)	Kobya	utilizing vertically	the compound
	electrocoagu			situated iron	precipitation
	lation for			cathodes with	utilizing sodium
	treatment of			measurements of 50	hydroxide is 8 aside
	coal acid			mm \times 73 mm \times 3	from Sr, Ca and B
	drainage			mm in a 1 L	(pH 10 or higher).
	wastewater			Plexiglas reactor	Results from the EC
				$(120 \text{ mm} \times 110 \text{ mm})$	procedure
				\times 110 mm) at a	demonstrated that the
				steady temperature	evacuation of metals
				of 200C.	is expanded with
					expanding current
					thickness and
					working time.

19	Arsenic	Journal of	Susan	Groundwater test;	EC utilizing iron
	removal	Environm	Amrose,	A 3-L seat scale	cathodes may lessen
	from	ental	Ashok	cluster reactor	arsenic underneath
	groundwater	Science	Gadgil,	contained an iron	$10 \mu g/L$ in
	using iron	and	Venkat	wire anode	manufactured
	electrocoagu	Health,	Srinivasan	(measurement 0.18	groundwater and in
	lation:	Part A:	,Kristin	cm) situated over a	genuine
	Effect of	(2013)	Kowolik,	copper work	groundwater. Charge
	charge		Marc	cathode confined	measurements rate
	dosage rate		Muller,	by a polyvinylidene	affects both
			Jessica	fluoride	expulsion limit and
			Huang and	hydrophilic layer.	time of treatment and
			Robert		is a suitable
			Kostecki		parameter for
					keeping up execution
					when scaling to
					various dynamic
					territories and
					capacities.
20	Comparativ	Internation	Akanksha,	Textile wastewater;	The outcome shows
	e study of	al Journal	D 1		
		ui vouinui	Roopashre	The materials	that electro-
	electrode	of	e G. B,	Thematerialsutilizedin	that electro- coagulation is
	electrode material	of Environm	e G. B, Lokesh K.	Thematerialsutilizedinthisexaminationare	thatelectro-coagulationisexceptionally
	electrode material (iron,	of Environm ental	e G. B, Lokesh K. S.	Thematerialsutilizedinthisexaminationareironcathode,	thatelectro-coagulationisexceptionallyproductiveandhad
	electrode material (iron, aluminium	of Environm ental Sciences	e G. B, Lokesh K. S.	Thematerialsutilizedinthisexaminationareironcathode,aluminiumanode	that electro- coagulation is exceptionally productive and had the capacity to
	electrode material (iron, aluminium and stainless	of Environm ental Sciences (2013)	e G. B, Lokesh K. S.	Thematerialsutilizedinthisexaminationareironcathode,aluminiumanodeand temperedsteel	that electro- coagulation is exceptionally productive and had the capacity to accomplish shading
	electrode material (iron, aluminium and stainless steel) for	of Environm ental Sciences (2013)	Roopashre e G. B, Lokesh K. S.	Thematerialsutilizedinthisexaminationareironcathode,aluminiumanodeand temperedsteelterminal.There are	that electro- coagulation is exceptionally productive and the capacity to accomplish shating expulsion (99.46 %)
	electrode material (iron, aluminium and stainless steel) for treatment of	of Environm ental Sciences (2013)	e G. B, Lokesh K. S.	Thematerialsutilizedinthisexaminationareironcathode,aluminiumanodeand temperedsteelterminal.There aresixmonopolar	that electro- coagulation is exceptionally state productive and had the capacity to accomplish shading shading expulsion (99.46 %) shading at 14 V in 80 min and shading
	electrode material (iron, aluminium and stainless steel) for treatment of textile	of Environm ental Sciences (2013)	Roopashre e G. B, Lokesh K. S.	Thematerialsutilizedinthisexaminationareironcathode,aluminiumanodeand temperedsteelterminal.Theresixmonopolarterminals,three	that electro- coagulation is exceptionally state productive and the capacity to accomplish shading expulsion (99.46 %) at 14 V in 80 min and COD evacuation
	electrode material (iron, aluminium and stainless steel) for treatment of textile industry	of Environm ental Sciences (2013)	e G. B, Lokesh K. S.	Thematerialsutilizedinthisexaminationareironcathode,aluminiumanodeand temperedsteelterminal.Theresixmonopolarterminals,threeanodesand	that electro- coagulation is exceptionally is productive and the capacity to accomplish shading expulsion (99.46 %) at 14 V in 80 min and COD evacuation (90.12 %) in
	electrode material (iron, aluminium and stainless steel) for treatment of textile industry wastewater	of Environm ental Sciences (2013)	e G. B, Lokesh K. S.	Thematerialsutilizedinthisexaminationareironcathode,aluminiumanodeand temperedsteelterminal.Theresixmonopolarterminals,threeanodesandanodesofathodesof	that electro- coagulation is exceptionally is productive and productive and the capacity to accomplish shading expulsion (99.46 %) and at 14 V in 80 min and (90.12 %) in 80 minutes at at at

				similar	capability of 8 V
				measurement (5	within the sight of
				cm× 5cm× 1mm).	iron terminal. The
				Anodes were	expulsion of colour
				associated with the	and COD by
				positive and	aluminium and
				negative terminals	treated steel
				of the DC control	terminals were
				supply.	accomplished at
					higher voltages.
01	A 11 .1		D 11	D	
21	Application	Journal of	Edris	Dairy wastewater;	The expulsion
	of	Chemistry	Bazrafsha,	A bipolar group	proficiency of COD,
	Electrocoag	(2013)	Hossein	reactor, with six	BOD_5 , and TSS
	ulation		Moein,Fer	aluminium cathode	expanded with
	Process for		dos Kord	associated in	expanding the
	Dairy		Mostafapo	parallel was utilized	connected voltage
	Wastewater		ur,Shima	for the	and the response
	Treatment		Nakhaie	investigation. The	time. The outcomes
				inner size of the cell	were productive and
				was 15 cm \times 15 cm	ready to accomplish
				\times 25 cm with a	98.84 % COD
				working volume of	evacuation, 97.95 %
				2000 cm^3 . The	BOD5 expulsion,
				capacity (V) of the	97.75 % TSS
				arrangement of	evacuation, and >
				each clump was 2	99.9 % bacterial
				L. The dynamic	pointers at 60 V amid
				zone of every	60 min.
				terminal (plate) was	
				$14 \text{ cm} \times 20 \text{ cm}$ with	
				an absolute region	

				of 280cm^2 .	
				Between terminal	
				separation was 2	
				cm.	
22	Enhanced	Egyptian	Mohamed	The EC unit	The ideal electrolysis
	removal of	Journal of	S.	comprises of a 2 L	was for $10 - 20$ min
	Methylene	Petroleum	Mahmoud,	electrochemical	at a present thickness
	Blue by	(2013)	Joseph Y.	cell with iron	of 8 mA/cm ^{2} , and the
	electrocoagu		Farah ,	anodes. The	ideal centralization
	lation using		Taha E.	elements of the	of the electrolyte was
	iron		Farrag	cathodes are 0.04 \times	observed to be 2 wt.
	electrodes			0.08 m and bury	% at the colour
				anodes separate	fixation of 50 mg/L.
				was 0.02 m. The	The usage of an
				present thickness	electro-attractive
				was kept up steady	field upgraded the
				at 8 mA/cm ² .	colour evacuation
					because of the
					instigated movement
					of paramagnetic
					particles inside the
					arrangement.
23	Electrocoag	Separation	Bassam Al	Trials were made	EC proved useful to
	ulation of	and	Aji , Yusuf	by utilizing a round	eradicate heavy
	heavy	Purificatio	Yavuz, A.	and hollow glass	metals in model
	metals	n	Savas	cell of capacity 500	wastewater with
	containing	Technolog	Koparal	mL on an attractive	preliminary
	model	y (2012)		stirrer. 6 iron plates	concentration of 250
	wastewater			were introduced	mg/L for every
	using			vertically with the	metal. As per pH
				help of a spacer to	results, EC treatment

	monopolar			guarantee fixed	was easier at higher
	iron			separation and	pH. At energy
	electrodes			drenched to a 4 cm	consumption of 49
				profundity, were	kWh/m ³ and current
				utilized as terminals	density of 25
				in monopolar way	mA/cm^2 , above
				in the	removal of 96% was
				investigations. The	reached for all metals
				complete drenched	except Mn for which
				zone of the anode	removal was 72.6 %.
				and cathode	
				terminals was 100	
				cm ² . The between	
				cathode separate	
				was 0.3 cm.	
24	Study of an	Advances	Incusso	nH actimations are	The treatment
24	Study of all	Auvalices	moussa	pri estimations are	The treatment
	alactrocom	in Applied	Zongo	dona hy a nU motor	delivers about 180
	electrocoagu	in Applied	Zongo, Balkacam	done by a pH meter	delivers about 480 m^3 yr 1 of slop after
	electrocoagu lation (EC)	in Applied Science	Zongo, Belkacem Merzouk	done by a pH meter Consort C931	delivers about 480 m ³ yr-1 of slop after
	electrocoagu lation (EC) unit for the	in Applied Science Research	Zongo, Belkacem Merzouk, Kalifa	done by a pH meter Consort C931 model having a	delivers about 480 m ³ yr-1 of slop after pressure utilizing
	electrocoagu lation (EC) unit for the treatment of industrial	in Applied Science Research (2012)	Zongo, Belkacem Merzouk, Kalifa Palm	done by a pH meter Consort C931 model having a glass cathode	delivers about 480 m ³ yr-1 of slop after pressure utilizing channel press and 216 T of dry issue
	electrocoagu lation (EC) unit for the treatment of industrial	in Applied Science Research (2012)	Zongo, Belkacem Merzouk, Kalifa Palm, Ioseph	done by a pH meter Consort C931 model having a glass cathode containing an answer of 4 M KC1	delivers about 480 m ³ yr-1 of slop after pressure utilizing channel press and 216 T of dry issue
	electrocoagu lation (EC) unit for the treatment of industrial effluent of	in Applied Science Research (2012)	Zongo, Belkacem Merzouk, Kalifa Palm, Joseph Weth	done by a pH meter Consort C931 model having a glass cathode containing an answer of 4 M KC1 fixation The	delivers about 480 m ³ yr-1 of slop after pressure utilizing channel press and 216 T of dry issue containing chromium and iron hydroxides
	electrocoagu lation (EC) unit for the treatment of industrial effluent of Ouagadoug	in Applied Science Research (2012)	Zongo, Belkacem Merzouk, Kalifa Palm, Joseph Weth, Amadou	done by a pH meter Consort C931 model having a glass cathode containing an answer of 4 M KC1 fixation. The estimation of the	delivers about 480 m ³ yr-1 of slop after pressure utilizing channel press and 216 T of dry issue containing chromium and iron hydroxides, patural and inorganic
	electrocoagu lation (EC) unit for the treatment of industrial effluent of Ouagadoug u, Burkina Easo	in Applied Science Research (2012)	Zongo, Belkacem Merzouk, Kalifa Palm, Joseph Weth, Amadou	done by a pH meter Consort C931 model having a glass cathode containing an answer of 4 M KC1 fixation. The estimation of the	delivers about 480 m ³ yr-1 of slop after pressure utilizing channel press and 216 T of dry issue containing chromium and iron hydroxides, natural and inorganic toxins
	electrocoagu lation (EC) unit for the treatment of industrial effluent of Ouagadoug u, Burkina Faso	in Applied Science Research (2012)	Zongo, Belkacem Merzouk, Kalifa Palm, Joseph Weth, Amadou Hamamaig	done by a pH meter Consort C931 model having a glass cathode containing an answer of 4 M KC1 fixation. The estimation of the convergence of broke down metal is	delivers about 480 m ³ yr-1 of slop after pressure utilizing channel press and 216 T of dry issue containing chromium and iron hydroxides, natural and inorganic toxins.
	electrocoagu lation (EC) unit for the treatment of industrial effluent of Ouagadoug u, Burkina Faso	in Applied Science Research (2012)	Zongo, Belkacem Merzouk, Kalifa Palm, Joseph Weth, Amadou Hamamaig a, Jean- Pierre	done by a pH meter Consort C931 model having a glass cathode containing an answer of 4 M KC1 fixation. The estimation of the convergence of broke down metal is finished by taking	delivers about 480 m ³ yr-1 of slop after pressure utilizing channel press and 216 T of dry issue containing chromium and iron hydroxides, natural and inorganic toxins.
	electrocoagu lation (EC) unit for the treatment of industrial effluent of Ouagadoug u, Burkina Faso	in Applied Science Research (2012)	Zongo, Belkacem Merzouk, Kalifa Palm, Joseph Weth, Amadou Hamamaig a, Jean- Pierre	done by a pH meter Consort C931 model having a glass cathode containing an answer of 4 M KC1 fixation. The estimation of the convergence of broke down metal is finished by taking an amount of the	delivers about 480 m ³ yr-1 of slop after pressure utilizing channel press and 216 T of dry issue containing chromium and iron hydroxides, natural and inorganic toxins.
	electrocoagu lation (EC) unit for the treatment of industrial effluent of Ouagadoug u, Burkina Faso	in Applied Science Research (2012)	Zongo, Belkacem Merzouk, Kalifa Palm, Joseph Weth, Amadou Hamamaig a, Jean- Pierre Leclerc, François	done by a pH meter Consort C931 model having a glass cathode containing an answer of 4 M KCl fixation. The estimation of the convergence of broke down metal is finished by taking an amount of the profluent after	delivers about 480 m ³ yr-1 of slop after pressure utilizing channel press and 216 T of dry issue containing chromium and iron hydroxides, natural and inorganic toxins.
	electrocoagu lation (EC) unit for the treatment of industrial effluent of Ouagadoug u, Burkina Faso	in Applied Science Research (2012)	Zongo, Belkacem Merzouk, Kalifa Palm, Joseph Weth, Amadou Hamamaig a, Jean- Pierre Leclerc, Francois Lapicque	done by a pH meter Consort C931 model having a glass cathode containing an answer of 4 M KCl fixation. The estimation of the convergence of broke down metal is finished by taking an amount of the profluent after	delivers about 480 m ³ yr-1 of slop after pressure utilizing channel press and 216 T of dry issue containing chromium and iron hydroxides, natural and inorganic toxins.

				the emanating	
				gathered.	
25	<u> </u>	.		D	
25	Domestic	Internation	C. Sarala	Domestic waste	The bunch which is
	Wastewater	al Journal		water; In current	worked at 0.25 A for
	Treatment	of		investigation iron	20 minutes has most
	by	Engineerin		terminals are	extreme expulsion
	Electrocoag	g Trends		utilized and the	proficiency of TSS,
	ulation with	and		example is made to	COD, pH, Colour,
	Fe-Fe	Technolo		keep running at	chlorides and so on.
	Electrodes	y (2012)		various interims of	
				time i.e., 5 min., 10	
				min., and 20	
				minutes and	
				distinctive current	
				flows through the	
				example(0.12 A,	
				0.25 A, 0.36 A).	
26	A 11 .1		D1	A 1 1	
26	Application	E-Journal	Edris	Analyses were done	The best removal
	of	of	Bazrafsha	in a bipolar clump	limits of fluoride
	Electrocoag	Chemistry	n, Kamal	reactor, having four	were accomplished at
	ulation	(2012)	Aldin	Aluminium and	electrical potential of
	Process		Ownagh1,	Iron anode	40V. Furthermore,
	Using Iron		and Amir	associated in	the expansion of
	and		Hossein	parallel. Just the	electrical potential,
	Aluminium		Mahvi	external cathodes	in the scope of 10-40
	Electrodes			were associated	V, improved the rate
	for Fluoride			with the power	of treatment.
	Removal			source. The inside	Additionally,
	from			measurements of	correlation of
	Aqueous			the cell were 10 cm	fluoride evacuation
				\times 13 cm \times 12 cm	proficiency

	Environmen			(width \times length	demonstrated that
	t			×profundity) with a	expulsion
				compelling	productivity is
				capacity of 1000	comparable with
				cm ³ . The volume of	aluminium and iron
				the arrangement of	cathodes.
				each group was 1.0	
				L. The dynamic	
				zone of every	
				terminal was 10 \times	
				10 cm. The	
				separation between	
				anodes was of 1.5	
				cm.	
27	The	Incuien	М	The investigation	The offectiveness of
27		Iranian		The investigation	The effectiveness of
	efficiency of	Journal of	Malakooti	was led by utilizing	the framework in
	electrocoagu	Environm	an,	a pilot plant with 6	different pH, time
	lation	ental	N.Yousefi	aluminium	and voltages interims
	process	Health		terminals, 15 mm	were studied. Results
	using	Science &		separated from one	indicated the
	aluminium	Engineerin		another. Pilot types	productivity of 95.6
	electrodes in	g (2009)		of gear	% for
	removal of			incorporated a	electrocoagulation
	hardness			power source, six	procedure in
	from water			business aluminium	evacuation of
				terminals with	hardness. The impact
				measurements of 10	of electric potential
				\times 10 cm and a glass	and pH was directly
				supply with the	related to hardness
				productive volume	expulsion.
				of 1.3 Electrodes	

				were associated as	
				monopolar.	
2 0	E		0		
28	Treatment	Chemosph	O.T. Can,	Textile wastewater;	The two salts
	of the textile	ere (2006)	M. Koby,	The	displayed a similar
	wastewater		Е.	electrocoagulator	act in compound
	by		Demirbas,	was built up of	coagulation, but in
	combined		М.	plexiglass with the	consolidated
	electrocoagu		Bayramog	components of 65 \times	electrocoagulation,
	lation		lu	$65 \times 110 \text{ mm}$ at	PAC upgraded the
				steady blending	COD evacuation rate
				velocity of 200	and productivity,
				rpm. It consisted,	contingent upon the
				two anodes and two	measure of the all-
				cathodes of similar	out aluminium
				measurements and	provided, by starting
				four monopolar	expansion and
				terminals. Both	electrochemical age.
				aluminium	
				cathodes and	
				anodes were	
				produced using	
				plates with	
				measurements of 46	
				\times 55 \times 3 mm. The	
				complete powerful	
				anode zone was 78	
				cm2, and the	
				separation between	
				terminals was 11	
				mm.	

CHAPTER-3 MATERIALS AND METHODS

Electrocoagulation reactor is used for the treatment of distillery wastewater and the principle of electrocoagulation were used for treatment of the wastewater. Iron and aluminium electrodes were used as cathodes and anodes. Various parameters were used in the treatment process and their removal efficiency were calculated during the experimental work.

3.1 EXPERIMENTAL SETUP

3.1.1 REACTOR DESIGN

The reactor that was employed for treatment comprised of sheets of acrylic having thickness 0.5 cm. A rectangular shaped reactor was used and has measurements of $20 \text{ cm} \times 15 \text{ cm} \times 8 \text{ cm}$ and has 2 litres net capacity. Inlet valve is located at 2 cm beneath the reactor's top surface and outlet valve is located at 2 cm above reactor's base. Eight sheets of electrode having measurements as 9 cm \times 5 cm and 0.3 cm of thickness were used. Electrode materials used were of two types i.e. aluminium and iron. The separation between the electrodes was alterable up to minimal separation of 0.5 cm. The Electrocoagulation system was linked with a DC supply of capacity 0-10 A and 0-30 V.

3.2 WASTEWATER SAMPLE

The samples of distillery wastewater were gathered from a brewery "Green Valley Cider Private limited" which is located in Shoghi, Shimla in the state of Himachal Pradesh. The industry produces vinegar, cider and wine with the use of apples. Proper fermentation of the apple fruits results in the formation of vinegar, cider and wine. The distillery wastewater of these enterprises for the most part have higher COD, BOD, turbidity and TSS content. Wastewater in such industries comes from ablution action of the huge containers utilized in cleaning of the brew house and many other things. Plastic containers with a capacity of 5 litres were used for the collection of wastewater through equalisation tank of the industry. The resulted wastewater was examined for COD, pH, BOD, total suspended solids, turbidity and conductivity.

3.3 REACTOR OPERATION

Experimental operations were performed in two phases. In first phase, the reactor was fed with a voltage of 20V and was treated for time interval of 0-15 minutes, 15-30 minutes and 30-45 minutes. All the testes were performed and removal efficiency were determined. In the second phase the reactor was fed with a voltage of 30V and was treated again for time interval of 0-15 minutes, 15-30 minutes & 30-45 minutes.

3.4 ANALYTICAL TECHNIQUES

A couple of physical and chemical analysis was done on the wastewater samples. The parameters picked for investigation included: Turbidity, pH, conductivity, Total Suspended Solids (TSS), BOD and COD.

Standard Methods were used for the estimation of TSS and COD (APHA,2005). pH paper was used for computing the pH. Turbidity has been determined with the use of a Turbidity Meter (LABTRONICS MODEL NO. 33). Deluxe Conductivity Meter (MODEL NO. LT-26) was used to determine the conductivity.

CHAPTER-4

RESULTS & DISCUSSION

4.1 CHARACTERISTICS OF DISTILLERY WASTEWATER

The waste water samples used for conducting the experiments were taken from the Distillation industry which generates cider, vinegar and wine from apple fruit. For every sample collected, the physiochemical properties differed a little. This was due to the different volumes of the batch production by the industry. The waste water was characterised for each sample that was collected. The outcomes demonstrated that the concentrations of COD, turbidity and TSS showed an up marked limits than prescribed limits. The pH of the wastewater was nearly neutral. The outcomes demonstrated that the waste water produced within the industry should be treated prior to its release to the environment. The characteristics of the distillery wastewater are shown in the *Table 4.1*.

Composition	Value
Ph	3.5
Cl content	587.33 mg/l
TS	2900 mg/l
TSS	650 mg/l
COD	20160 mg/l
Turbidity	156 NTU
Conductivity	1.072 (m. mho/cm)

Table 4.1: Composition of distillery wastewater

4.2 ELECTROCOAGULATION EXPERIMENTS RESULTS

The point of this investigation has been to inspect the effects of inter electrode separation and the electrode material. Current density was taken constant to 25 mA/cm^2 to perform the experiments. The norms for deciding the effects of electrocoagulation for these operational parameters were based on these parameters: efficiencies of removal of COD, turbidity, BOD and TSS. The outcomes revealed that for a spacing of 0.5 cm between the electrodes, maximum removal efficiencies were achieved.

.4.2.1 EFFECT OF ELECTRODE MATERIAL

The results from the experiments demonstrated that for a separation of 0.5 cm between the electrodes, the maximum COD removal was obtained i.e. 83.65 % after 45 min of electrocoagulation by using aluminium for both the cathode and the anode. The removal efficiency of turbidity, BOD and total suspended solids for these parameters were 75 %, 83.36 % and 82.23 % respectively.

While using iron for both the anode and the cathode for 0.5 cm inter electrode spacing, the maximum removal for COD i.e. 78.68 % was achieved after 45 min of electrocoagulation. The turbidity, BOD and TSS removal were 74.28 %, 79.80 % and 81.75 % respectively. The graphs comparing the electrode materials i.e. anode and cathode for the percent removal of COD, turbidity, BOD and TSS for electrode distance of 0.5 cm are shown in fig.4.1,4.2,4.3 and 4.4.

From the above results, it can be concluded that aluminium is more effective electrode material.

Fig. 4.1. COD removal comparison of electrode materials with spacing of 0.5cm

Fig. 4.2. Turbidity removal comparison of electrode materials with spacing of 0.5cm

Fig. 4.3. BOD removal comparison of electrode materials with spacing of 0.5cm

Fig. 4.4. TSS removal comparison of electrode materials with spacing of 0.5cm

4.2.2 EFFECT OF INTER ELECTRODE DISTANCE

An inter electrode separation of 0.5 cm and 1 cm were taken to notice the outcomes of inter electrode spacing for the elimination of BOD, turbidity, TSS and COD. When aluminium was used at both the terminals, the COD removals were found to be 83.65 % and 77.33 % when the separation between electrodes was 0.5 cm and 1 cm respectively. The results demonstrated that the decline in rates of removals happened in practically all the tests. The internal resistance of the cell has a role in it. With the decrease in electrode separation there is a decline in internal resistance of the cell resulting in greater passage of electric current within the electrodes leading into high coagulant production which ultimately leads to increased removals.

The contrast in the COD removals, turbidity, BOD and total suspended solids with different electrode spacings are shown in the Fig. 4.5, 4.6, 4.7, 4.7, 4.8, 4.9, 4.10, 4.11 and 4.12.

Fig. 4.5. COD removal comparison of different electrodes spacing using Al-Al electrodes (anode- cathode)

Fig. 4.6. COD removal comparison of different electrodes spacing using Fe-Fe electrodes (anode- cathode)

Fig. 4.7. Turbidity removal comparison of different electrodes spacing using Al-Al electrodes (anode- cathode)

Fig. 4.8. Turbidity removal comparison of different electrodes spacing using Fe-Fe electrodes (anode- cathode)

Fig. 4.9. BOD removal comparison of different electrodes spacing using Al-Al electrodes (anode- cathode)

Fig. 4.10. BOD removal comparison of different electrodes spacing using Fe-Fe electrodes (anode- cathode)

Fig. 4.11. TSS removal comparison of different electrodes spacing using Al-Al electrodes (anode- cathode)

Fig. 4.12. TSS removal comparison of different electrodes spacing using Fe-Fe electrodes (anode- cathode)

4.2.3 EFFECT OF ELECTROLYSIS TIME

The time for which electrolysis is carried out is a significant specification as it impacts the productivity of treatment of the electrochemical technique. To investigate the impact of electrolysis time on the removal efficiency, experiments were done. It is noticed that with the increase in the electrolysis time, the removal of BOD, COD, conductivity, turbidity and TSS increases.

CHAPTER-5

CONCLUSIONS

5.1 CONCLUSIONS

Electrocoagulation is a productive process to treat distillery wastewater having high concentration of COD, BOD and TSS. For this purpose, the investigation was done for the treatment of distillery wastewater by using the electrocoagulation technique. Iron and aluminium electrodes were used and were tested for their efficiencies concerning COD, turbidity, BOD and TSS. As the electrode material changed the efficiency also changed. Aluminium electrode was observed to be more coherent than iron electrode in removal. The results from various experiments demonstrated that for treating distillery wastewater through electrocoagulation, the electrode spacing plays significant role. As the inter electrode distance was decreased, the removal efficiency was found to increase. The ideal value of electrode separation was observed to be 0.5 cm. Thus, it can be concluded that electrocoagulation is productive for treating waste water which showed highest of COD removal of 83.65 %, 75 % turbidity removal, 83.36 % BOD removal and 83.23 % of total suspended solids reduction.

5.2 SUGGESTIONS FOR FUTURE SCOPE

In the current research, analysis was done for the samples that were taken out and the sedimentation time was provided. The use of agitation technique was not done due to which well mixing of coagulants did not occur as agitation performs in the conventional chemical and flocculator systems.

REFERENCES

[1] E.A. Vik, D.A. Carlson, A.S. Eikun, and E.T. Gjessing, *Electrocoagulation of potable water*, Water Res. 18 (1984), pp. 1355–1360.

[2] M.J. Matteson, R.L. Dobson, R.W. Glenn Jr., N.S. Kukunoor, W.H. Waits III, and E.J. Clayfield, *Electrocoagulation and separation of aqueous suspensions of ultrafine particles*, Colloids Surfaces A 104 (1995), pp. 101–109.

[3] Jiménez, C., Sáez, C., Martínez, F., Cañizares, P., and Rodrigo, M. A. (2012). *Electrochemical dosing of iron and aluminium in continuous processes: a key step to explain electro-coagulation processes.* Separation and Purification Technology, 98, 102-108.

[4] Kobya, M., Senturk, E., and Bayramoglu, M. (2006). *Treatment of poultry slaughterhouse* wastewaters by electrocoagulation. Journal of Hazardous Materials, 133(1-3), 172-176.

[5] Zongo, I. (2009). *Etude experimentale et theorique du procede delectrocoagulation: application au traitement de deux effluents textiles et d'un effluent simule de tannerie* (Doctoral dissertation, Vandoeuvre-les-Nancy, INPL).

[6] Essadki, A. H., Bennajah, M., Gourich, B., Vial, C., Azzi, M., and Delmas, H. (2008). *Electrocoagulation/electroflotation in an external-loop airlift reactor—Application to the decolourization of textile dye wastewater: A case study. Chemical Engineering and Processing: Process Intensification*, 47(8), 1211-1223.

[7] World Health Organization. (2004). *Guidelines for drinking-water quality: recommendations (Vol. 1)*. World Health Organization.

[8] Dindas, G.B., Caliskan, Y., Celebi, E.E., Tekbas, M., Bektas, N. and Yatmaz, H.C., 2018. Sequential Treatment of Food Industry Wastewater by Electro-Fenton and Electrocoagulation Processes. *International Journal of Electrochemical science*, *13*(12), pp.12349-12359.

[9] Reátegui-Romero, W., Flores-Del Pino, L.V., Guerrero-Guevara, J.L. and Castro-Torres, J., 2018. Benefits of Electrocoagulation in Treatment of Wastewater: Removal of Fe and Mn metals, oil and grease and COD: three case studies. *International Journal of Applied Engineering Research*, *13*(8), pp.6450-6462.

[10] Bui, H.M., 2018. Applying Response Surface Methodology to Optimize the Treatment of Swine Slaughterhouse Wastewater by Electrocoagulation. *Polish Journal of Environmental Studies*, 27(5), pp.1975-1981.

[11] Kartikaningsih, D., Huang, Y.H. and Shih, Y.J., 2017. Electro-oxidation and characterization of nickel foam electrode for removing boron. *Chemosphere*, *166*, pp.184-191.

[12] López, A., Valero, D., García-Cruz, L., Sáez, A., García-García, V., Expósito, E. and Montiel, V., 2017. Characterization of a new cartridge type electrocoagulation reactor (CTECR) using a three-dimensional steel wool anode. *Journal of Electroanalytical Chemistry*, 793, pp.93-98.

[13] Dia, O., Drogui, P., Buelna, G., Dubé, R. and Ihsen, B.S., 2017. Electrocoagulation of biofiltrated landfill leachate: Fractionation of organic matter and influence of anode materials. *Chemosphere*, *168*, pp.1136-1141.

[14] Mahmad, M.K.N., Rozainy, M.M.R., Abustan, I. and Baharun, N., 2016. Electrocoagulation process by using aluminium and stainless steel electrodes to treat total chromium, colour and turbidity. *Procedia Chemistry*, *19*, pp.681-686.

[15] Fekete, É., Lengyel, B. and Cserfalvi, T., 2016. Electrocoagulation: an electrochemical process for water clarification. *Journal of Electrochemical Science and Engineering*, *6*(1), pp.57-65.

[16] Un, U.T., Koparal, A.S. and Ogutveren, U.B., 2009. Electrocoagulation of vegetable oil refinery wastewater using aluminum electrodes. *Journal of Environmental Management*, 90(1), pp.428-433.

[17] Khaled, B., Wided, B., Béchir, H., Elimame, E., Mouna, L. and Zied, T., 2015. Investigation of electrocoagulation reactor design parameters effect on the removal of cadmium from synthetic and phosphate industrial wastewater. *Arabian Journal of Chemistry*.

[18] Tak, B.Y., Tak, B.S., Kim, Y.J., Park, Y.J., Yoon, Y.H. and Min, G.H., 2015. Optimization of color and COD removal from livestock wastewater by electrocoagulation process: application of Box–Behnken design (BBD). *Journal of Industrial and Engineering Chemistry*, 28, pp.307-315.

[19] Barrera-Díaz, C.E., Frontana-Uribe, B.A., Roa-Morales, G. and Bilyeu, B.W., 2015. Reduction of pollutants and disinfection of industrial wastewater by an integrated system of copper electrocoagulation and electrochemically generated hydrogen peroxide. *Journal of Environmental Science and Health, Part A*, *50*(4), pp.406-413.

[20] Brahmi, K., Bouguerra, W., Hamrouni, B. and Loungou, M., 2015. Removal of zinc ions from synthetic and industrial Tunisian wastewater by electrocoagulation using aluminum electrodes. *Desalination and Water Treatment*, *56*(10), pp.2689-2698.

[21] Zewail, T.M. and Yousef, N.S., 2014. Chromium ions (Cr6+ & Cr3+) removal from synthetic wastewater by electrocoagulation using vertical expanded Fe anode. *Journal of Electroanalytical Chemistry*, 735, pp.123-128.

[22] Torres-Sanchez, A.L., Lopez-Cervera, S.J., de la Rosa, C., Maldonado-Vega, M., Maldonado-Santoyo, M. and Peralta-Hernandez, J.M., 2014. Electrocoagulation process coupled with advance oxidation techniques to treatment of dairy industry wastewater. *International Journal of Electrochemical Science*, *9*(7), pp.6103-6112.

[23] Eiband, M.M., Kamélia, C.D.A., Gama, K., de Melo, J.V., Martínez-Huitle, C.A. and Ferro, S., 2014. Elimination of Pb2+ through electrocoagulation: Applicability of adsorptive stripping voltammetry for monitoring the lead concentration during its elimination. *Journal of Electroanalytical Chemistry*, *717*, pp.213-218.

[24] Oncel, M.S., Muhcu, A., Demirbas, E. and Kobya, M., 2013. A comparative study of chemical precipitation and electrocoagulation for treatment of coal acid drainage wastewater. *Journal of Environmental Chemical Engineering*, *1*(4), pp.989-995.

[25] Amrose, S., Gadgil, A., Srinivasan, V., Kowolik, K., Muller, M., Huang, J. and Kostecki,
R., 2013. Arsenic removal from groundwater using iron electrocoagulation: effect of charge dosage rate. *Journal of Environmental Science and Health, Part A*, 48(9), pp.1019-1030.

[26] Roopashree, G.B. and Lokesh, K.S., 2014. Comparative study of electrode material (iron, aluminium and stainless steel) for treatment of textile industry wastewater. *International journal of environmental sciences*, *4*(4), p.519.

[27] Bazrafshan, E., Moein, H., Kord Mostafapour, F. and Nakhaie, S., 2012. Application of electrocoagulation process for dairy wastewater treatment. *Journal of Chemistry*, 2013.

[28] Mahmoud, M.S., Farah, J.Y. and Farrag, T.E., 2013. Enhanced removal of Methylene Blue by electrocoagulation using iron electrodes. *Egyptian Journal of Petroleum*, 22(1), pp.211-216.

[29] Al Aji, B., Yavuz, Y. and Koparal, A.S., 2012. Electrocoagulation of heavy metals containing model wastewater using monopolar iron electrodes. *Separation and Purification Technology*, *86*, pp.248-254.

[30] Sarala, C., 2012. Domestic wastewater treatment by electrocoagulation with Fe-Fe electrodes. *International Journal of engineering trends and technology*, *3*(4), pp.530-533.

[31] Bazrafshan, E., Ownagh, K.A. and Mahvi, A.H., 2012. Application of electrocoagulation process using iron and aluminum electrodes for fluoride removal from aqueous environment. *Journal of Chemistry*, *9*(4), pp.2297-2308.

[32] Malakootian, M. and Yousefi, N., 2009. The efficiency of electrocoagulation process using aluminum electrodes in removal of hardness from water. *Journal of Environmental Health Science & Engineering*, *6*(2), pp.131-136.

[33] Can, O.T., Kobya, M., Demirbas, E. and Bayramoglu, M., 2006. Treatment of the textile wastewater by combined electrocoagulation. *Chemosphere*, *62*(2), pp.181-187.

APPENDIX A

TABLE OF RESULTS

TABLE A.1. ALUMINIUM AS BOTH ANODE AND CATHODE

Electrode	Time	рН	COD	Conductivity	Turbidity	BOD	TSS
Spacing	(min.)		(mg/L)	(m.mho/cm)	(NTU)	(mg/L)	(mg/L)
(cm)							
0.5	0	3.5	20160	1.212	156	5423	650
	15	4.0	13727	1.131	107	3610	424
	30	4.3	7023	1.076	77	1877	292
	45	4.8	5916	0.838	68	1538	252
1	0	3.5	20160	1.212	156	5423	650
	15	3.8	14816	1.198	113	3812	442
	30	4.0	8412	1.110	89	2076	302
	45	4.3	7194	0.997	82	1779	271

TABLE A.2	. IRON AS BOTH	ANODE AND	CATHODE
------------------	----------------	-----------	---------

Electrode	Time	pН	COD	Conductivity	Turbidity	BOD	TSS
Spacing (cm)	(min.)		(mg/L)	(m.mho/cm)	(NTU)	(mg/L)	(mg/L)
0.5	0	3.8	18420	1.114	140	4912	592
	15	4.3	13096	1.101	109	3321	392
	30	4.5	7468	0.972	72	2087	267
	45	4.8	6321	0.845	62	1679	238
1	0	3.8	18420	1.114	140	4912	592
	15	4.0	13922	1.107	112	3587	403
	30	4.3	8096	0.990	80	2266	280
	45	4.5	6484	0.899	74	2105	256

APPENDIX B

PHOTOGRAPHS

Photograph B.1. Electrocoagulation Reactor with DC power supply

Photograph B.2. Electrocoagulation Reactor after treatment of distillery wastewater