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Abstract

In this project, we investigate a recently proposed alternating maximization (AM) method to

numerically solve the optimal decentralized powers and ergodic capacity of wireless Gaus-

sian MACs. This method is suited well for MAC when there are small number of trans-

mitters. For moderate to large MACs, the numerical solutions are possible but at very high

expense of computational cost. We seek to investigate this AM algorithm for the decen-

tralized MAC to improve its computational efficiency. In this direction, we notice a key

observation that central limit theorem can be invoked for the MAC with large users to solve

the partial optimization quickly for the identical-users MAC settings. We also investigate

the possibility of increasing the computational efficiency of the AM algorithm by making

use of the fast Fourier transform (FFT) algorithms.
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Chapter 1

Introduction

1.1 Overview

Since the birth of radio communications in early twentieth century, point-to-point commu-

nication systems were extensively studied, designed and improved in the decades to come.

The main challenges at the time were towards developing communication technologies al-

beit without the full knowledge of the fundamental principles of the underlying theory.

Claude E. Shannon, in his paper “A mathematical theory of communication” published in

the year 1948, laid down the mathematical foundations governing the fundamental aspects

of communication, such as the maximum possible rate of communication in a given chan-

nel [1]. However, much of the discoveries were not immediately useful as it seems now

that there was not much clarity about the utility of these results among the communication

theory experts as well as engineering community. This was further aggravated by the lack

of technological innovations at the time. Technological breakthroughs, particularly in IC

design and DSPs in the 1970s further led by reinvigorating interest in the practical aspects

of information theory in system design, have resulted in complete overhaul in the develop-

ment of communication technologies for both wired as well as wireless systems. Armed

with the knowledge of fundamental limits of performance, the system design goals now

align with optimizing the system performance under constrained resources such as power

and bandwidth as well as design and implementation issues.

With growing demand for mobile telephony services further by increasing consumption
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in data based services at an explosive pace, particularly in in the last two decades, it has

been well identified that multi-user communication scenarios are inevitable. Consequently,

efficient allocation of resources is going to be a very challenging task keeping in mind the

scarce and expensive resources namely bandwidth and energy.

Unlike communication between a single transmitter and receiver pair (point-to-point)

where optimal communication schemes are explicitly known for most of the popular chan-

nel models such as additive white Gaussian noise (AWGN), fading AWGN etc., finding the

optimal schemes for the multi-user channels is generally considered a difficult task. The

complexity arises due to the inherent nature of the multi-user communication: multiple

users try to compete and cooperate to enhance the overall performance and it is not always

possible to determine the best possible strategy of competition and cooperation in order to

optimize the performance. Furthermore, multi-user communication is limited by the in-

terference generated by the users. To fully exploit the multi-user channel, it is crucial to

examine the nature of the interference itself. This, except for a few special cases, is not a

trivial task. Some interesting results have been published for the point-to-point communi-

cation systems such as in [2] [3] [4] [5]. Unlike point-to-point communication where there

is only one sender and a single receiver, in a multi-user communication system, multiple

senders try to utilize the resource as efficiently as possible.

Mobile

station

1

Mobile

station

2

Mobile

station

K

Base

Station

Figure 1.1: A typical wireless cellular uplink. (Courtesy of Singh, K. [6]).

A well known example is the uplink of a cellular wireless radio where multiple mobile
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users communicate via the shared wireless channel to a common base station, see Figure 1.1.

The shared channel is accessed by the users in a pre-planned manner. For example, in the

GSM cellular standard, the multiple users access the uplink in different time slots allocated

by the base-station. This multiple access is known in the literature by the term time divi-

sion multiple access or simply TDMA. Alternatively, the shared channel bandwidth could

be divided among the users, which is known by the term frequency division multiple ac-

cess or FDMA. Another popular multiple access, known as code division multiple access or

CDMA, allows the multiple users to simultaneously communicate to the base-station utiliz-

ing the full bandwidth. This is made possible by orthogonalizing the senders by assigning

unique orthogonal codes to the users. More multi-user communication examples can be

such as wireless terminals connected to the access point in a Wireless local area network,

or multiple sensors in an ad-hoc network trying to send their data to a common handler etc.

Such many-to-one communication situation is modelled in network information theory un-

der the umbrella term “Multiple Access Channel” [6, Chapter 23]. In this project, motivated

by these examples, we try to evaluate the optimal communication schemes for a variant of

multiple access channel (MAC) suitable for wireless environment.

1.2 Multiple Access Channel

MAC is a multi-user channel model where multiple senders communicate to a common

receiver via a shared channel medium. Consider a two sender discrete memoryless MAC as

in Figure 1.2, where Xn
1 and Xn

2 are codeword symbols transmitted for independent messages

M1 and M2 respectively. The channel is represented by the the transition probability matrix

p(y|x1, x2). The task of the receiver is to produce an estimate of the transmitted messages

M1 and M2, denoted by (M̂1 and M̂2), using the received codeword Y n. Formally, a codebook

(n, 2nR1, 2nR2) for a multiple access channel consists of

• An ensemble of message sets Mi ∈ {1, · · · ,2nRi}, i = 1, 2.

• A set of encoders (one for each message) that assigns a codeword Xn
i (Mi), i = 1, 2.

• A decoder function that assigns an estimate (M̂1(Y n), M̂2(Y n)).

3



Encoder 1

Encoder 2

p(y|x1, x2) Decoder

M1

M2

Xn
1

Xn
2

Y n

M̂1, M̂2

Figure 1.2: Two-User Discrete Memoryless Multiple access channel

“Decoding error” occurs whenever (M̂1(Y n), M̂2(Y n)) 6= (M1, M2). By reliable communi-

cation, we mean that, on the average, there is no decoding error.

Definition 1. The average probability of error P(n)
e is defined as

P(n)
e = Pr((M̂1(Y n), M̂2(Y n)) 6= (M1, M2)). (1.1)

Definition 2. A rate pair (R1, R2) is said to achievable if there exists a sequence of codes

(n, 2nR1, 2nR2), indexed by n, for which the average probability of error P(n)
e approaches

zero as block code length n increases unboundedly i.e. lim
n→∞

P(n)
e = 0.

The collection of all achievable rate-pairs is termed as the capacity region of the multiple

access channel. Ahlswede [7] and Liao [8] characterized the capacity region of the discrete

memoryless multiple access channel which is shown next for the MAC with two senders.

Theorem 3. With fixed input distribution p(x1)p(x2), the capacity region of a discrete-

memoryless multiple access channel denoted by the transition matrix p(y|x1,x2) is given

as

R1 ≤ I(X1;Y |X2),

R2 ≤ I(X2;Y |X1),

R1 +R2 ≤ I(X1, X2;Y ). (1.2)

In general, when the input distributions are not fixed, the capacity region of a discrete

memoryless multiple access channel is given by the convex hull of the union of the in-

4



stantiated capacity regions over all p(x1)p(x2) distributions. The convex hull operation

corresponds to time-sharing between “rate tuples” in different rate regions. As previously

mentioned, due to independence of the x1 and x2 inputs, the input distribution has the prod-

uct form as p(x1)p(x2). The input distribution p(x1)p(x2) being non-convex, search for

the optimal input distribution of a multiple access channel is in general a hard problem [9]

compared to single user channel where the optimization is a convex program and thus is

a lot simpler to work with [10] [11] (see also [12]). For the multiple access channel with

correlated sources, coding theorems were given by Slepian and Wolf [13] for a special class

of correlations and by Cover, Al Gamal, and Salehi [14] for arbitrarily correlated sources.

1.2.1 Preliminaries: Gaussian multiple access channel

The main focus of this project is Gaussian multiple access channel with independent sources

or users. A Gaussian multiple access channel is a multiple access channel for which the

channel law p(y|x1,x2) is Gaussian. For a Gaussian MAC with scalars X1 and X2 as inputs

and Y output in the Figure 1.3, the channel output is given as

Y = h1 ·X1 +h2 ·X2 +Z,

where h1 and h2 are fixed (can be varying) multiplicative path gains from the users towards

the receiver, P1 and P2 are the fixed transmit powers of the respective users and Z is the

unity-variance AWGN noise.

T1

T2

×

×

+

X1

X2
Z

Y

h1

h2

Figure 1.3: Two-User Gaussian MAC
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For scalar Gaussian MAC, it turns out that independent Gaussian distributions for the

inputs maximize the channel capacity. Furthermore, the union and the convex-hull become

superfluous. Application of the Theorem 3 to the scalar Gaussian MAC gives its capacity

region in an elegant form as stated in the following theorem [15] [16].

Theorem 4. The capacity region of Gaussian MAC is the set of (R1, R2) pairs such that

R1 ≤ log(1+h2
1P1),

R2 ≤ log(1+h2
2P2),

R1 +R2 ≤ log(1+h2
1P1 +h2

2P2), (1.3)

Achievability of the capacity region: The mutual information between the input X1 and

ouput Y given X2, denoted by I(X1;Y |X2), is computed as

I(X1;Y |X2) = h(Y |X2)−h(Y |X1,X2),

= h(h1 ·X1 +h2 ·X2 +Z|X2)−h(h1 ·X1 +h2 ·X2 +Z|X1,X2),

= h(h1 ·X1 +Z)−h(Z),

≤ log(2πe(1+h2
1P1))− log(2πe),

= log(1+h2
1 ·P1),

, C(h2
1P1), (1.4)

where C(SNR), log(1+SNR) is the well known capacity formula for an AWGN channel

with received signal power to noise ratio given as SNR. The inequality above is due to the

fact that for a given variance (power) of input X1, Gaussian distribution maximizes entropy.

With similar arguments, the other two mutual information quantities in (1.2) can be shown

bounded by respective quantities in the RHS of (1.3) which can be achieved by choosing

X1 ∼N (0,P1) and X2 ∼N (0,P2) independent distributions. The region bounded by these

inequalities is a pentagon as shown in the Figure 1.4.

To show that this is indeed the capacity region, it is required to prove that the all rate-

pairs inside the bounds in (1.3) are achievable. The rates choice at the boundary point A
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R1

R2

C(h2
1P1)

C(h2
2P2)

C
(

h2
2P2

1+h2
1P1

)

C
(

h2
1P1

1+h2
2P2

)

A

B

Figure 1.4: Capacity region of a Two-User Gaussian Multiple access channel

given as (R1,R2) =

(
C(h2

2P2),C
(

h2
1P1

1+h2
2P2

))
is achievable: the receiver decodes the infor-

mation of user-1 treating the Gaussian signal of user-2 as interference alongwith the Gaus-

sian noise. In doing so, the best rate possible for user-1 is equal to C
(

h2
1P1

1+h2
2P2

)
. The receiver

then exactly reconstructs the user-1 signal and subtracts it from the overall received signal.

The resulting signal is thus cleaned off user-1 signal previously acting as interference for

the user-2 signal and hence, the only interference to the user-2 signal is due to Gaussian

noise Z present in the channel. Thus, the maximum possible rate for user-2 is its single-

user bound C(h2
2P2). Similarly, the rate choice at the point B can be achieved with the roles

of decoding reversed. This idea of successive cancellation and decoding the individual user

codewords at the corner points of the capacity region is due to Bergmans and Cover [15] and

to Wyner [16]. Furthermore, successive interference cancellation (SIC) decoding requires

only single-user decoders. To complete the proof, all the rate-pairs on the line segment AB

can be achieved by proper time-sharing of the rate-tuples at the corner points A and B. It

is also possible to perform joint decoding albeit with a complex multi-user decoding at the

receiver. For the more general case of Gaussian MAC where link between for each sender

and the receiver is characterized by fixed multipaths, the capacity region is completely char-

acterized in [3] where power allocation is performed in the frequency domain.

In the interest of the reader, a brief note on significant research in the asynchronous mul-
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tiple access channel follows. The capacity region theorem for the MAC channel presented

above is based on the assumption that the codewords of the senders are frame-synchronized

i.e. the block lengths of the codes used by the different users are identical and the begin-

nings of these codewords are always in unison. Furthermore, the rates chosen using the time

sharing principle requires time synchronization among the users such that a sender transmits

only when the other sender has completed transmitting its codeword. For the asynchronous

memoryless MAC, the lack of frame synchronization results in the removal of the convex

hull or time-sharing operation in the capacity region as reported first by [17] and later inde-

pendently by [18]. However, when the delay mismatch in the codeword frames of the users

is bounded, it is shown [19] that convex closure is still possible using a generalized time

sharing. Asynchronous MAC with memory with and without frame synchronization was

studied by Verdú in [20]. Later, an alternative multiple access based on successive decoding

for Gaussian MAC called rate-splitting is devised in [21] to reduce the implementation com-

plexity and frame synchronization dependence of successive cancellation and time-sharing

approaches mentioned earlier. For additional reading in this area, [22] [23] [24] are inter-

esting sources.

In this project, we focus on a special MAC, namely the wireless Gaussian MAC where

communication from each sender to the receiver is perturbed by the random or time-varying

behaviour of the channel or medium. This random nature of the wireless medium is com-

monly known by the term fading in the literature. Availability of the fading or channel in-

formation at the receiver and/or transmitter generally enhances the throughput performance

of the Gaussian MAC [25] [26]. We investigate a decentralized coherent Gaussian MAC,

where channel information is available only at the respective sender. The objective is to

find the optimal decentralized power laws and the ergodic sum-capacity of this MAC for the

case when there are moderate to large number of active senders.

The organization of this project report is as follows. Chapter 2 introduces the decentral-

ized wireless fading MAC model, followed by defining the utility of interest and introducing

the optimization problem in Section 2.1. The AM method to numerically solve the optimal

decentralized powers is presented in Section 2.2. Further, the details of the AM approach

are covered. In Section 2.3, we propose the transform based method developed to solve

8



the decentralized powers faster using the fast Fourier transform (FFT) algorithms. The spe-

cial case of MAC with large users is presented in Section 2.4, detailing the simplifications

possible using central limit theorem (CLT). In Section 2.5, we present the numerical com-

putations for decentralized identical users MAC, namely the optimal power controls and

ergodic sum-capacity. Chapter 3 concludes this project report with summarizing the results

and possible future directions.
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Chapter 2

Wireless MAC with Distributed CSI

Before we delve into the specific details of the decentralized wireless MAC, it is important

to briefly discuss the meaning and impact of fading on communication or signalling aspect

in a wireless environment. In a typical communication over a wireless medium, the received

signal strength fluctuates randomly. This manifestation of the random behaviour of a typical

non line of sight wireless channel in the received signal strength is commonly referred to

as fading. There are many definitions on channel information in the literature. Here, we

will refer the instantaneous exact value of the fading as channel state information (CSI).

Knowledge of CSI at the receiver and/or at the transmitters can be exploited to leverage

the opportunistic nature of the wireless medium. That is, the transmitters may cooperate

rather than merely compete, to increase the overall performance. In general, with some

degree of channel information, the communication strategy can be improved to utilize the

resources (power and bandwidth) efficiently; as a coarse example, consider the situation

when the channel is good for one user and is bad for the other, it seems advantageous for

the better user to utilize the communication resources while the weaker user waits while

conserving its resources hoping for better channel states in the future. It is indeed true that

both the users may get benefit in the long run while not losing much in the short run. For

example, in a centralized MAC where all the transmitters and the receiver knows the CSI

at all instants, the optimal communication strategy is opportunistic TDMA where at any

instant only the transmitter with the best channel state transmits [25]. However, if the data

to be transmitted is delay-sensitive such as digital voice, it is imperative to design schemes

10



that allow guaranteed short-term rates while conceding some long-term benefits.

In this project, we investigate a wireless fast-fading MAC where the multiple users have

individual CSI while the receiver knows the full CSI at all instants. We will refer to this

MAC as decentralized MAC. The decentralized MAC is a suitable model for situations

where acquiring full CSI at all the transmitters is not practically viable but individual CSI

at the respective transmitters can be made possible [27]. This can possibly be true in time-

division duplex (TDD) setting where the time scale of fading variations are comparable to

the feedback delay in sending the full CSI from the receiver to all the transmitters [6]. An-

other possibility could be simply the cost of feedback mechanism for providing full CSI at

the transmitters is too high.

This decentralized MAC model was first introduced and investigated in [27], concluding

that the optimal solutions cannot be determined analytically. As an alternative, asymptot-

ically good power law is proposed for the decentralized power controls in [27], which are

significantly improved in recent research by [28] [29]. Very recently, a numerical algorithm

is proposed to compute the ergodic sum-capacity and the optimal power controls of the de-

centralized MAC [30]. This method is based on the principle of alternating maximization

(AM). [30] suggests that the computational complexity of the algorithm severely restricts

its usage for MAC with moderate to large number of users. This is due to the nature of the

computational approach of the proposed algorithm. In this project, we investigate whether

computational efficiency of the AM algorithm can be improved for the Gaussian MAC with

moderate to large number of users. Precisely, we explore the AM algorithm structure to take

advantage, if possible. Furthermore, we look at the optimization problem for intuitions that

can possibly lead to some simplifications that are otherwise missing in the current numerical

scheme.

2.1 System Model

As already mentioned in Chapter 1, MAC is a many-to-one channel that models the com-

munication between multiple senders and a common receiver, see Figure 2.1. To formalize

the model, consider a discrete-time wireless fading MAC with K transmitters. The symbol

11



Xi represent the signal transmitted by the user i, which in turn, experiences independent flat

fading denoted by complex-valued multiplying coefficient Hi. Notice that for simplicity of

exposition, we have dropped the time dependence of the transmitted signal, fading values,

noise etc. Thus, at the receiver, the symbol is given as

Y =
K

∑
i = 1

Hi Xi + Z,

where Z is the additive white Gaussian noise (AWGN) present in the receiver.

Transmitter 1

Transmitter 2

Transmitter K

×

×

×

+

M1

M2

MK

X1

X2

XK

H1

H2

HK

Z

Y

Figure 2.1: Decentralized/Distributed gaussian MAC. (Courtesy of Singh, K. [6])

The symbols Xi, 1 ≤ i ≤ K, represent the MAC channel inputs and are statistically inde-

pendent of each other. Further, the fadings Hi, 1≤ i≤ K, are also statistically independent

across all users and vary i.i.d. (independently and identically distributed) in time.

The transmitters adapt their rate and power allocation according to the available CSI.

We consider a channel state information (CSI) model where transmitter i only knows its

respective current channel state hi at all instants. The full CSI, represented as (h1, · · · , hK),

is available at each instant to the receiver. In a fast fading model such as ours, it is suffi-

cient to perform only power control to achieve ergodic capacity while keeping individual

communication rates fixed at the transmitters [26]. The transmitter i, observing channel
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state hi, expends Pi(hi) , E [|Xi|2|hi] as transmit power under the long-term average power

constraint E [Pi(hi)] ≤ Pavg
i . For simplicity, we shall drop the dependence of Pi(·) on hi

wherever no confusion arises and denote the i-th user power control by Pi.

Definition 5. The ergodic sum-capacity of the decentralized MAC is given by [6]

Csum = max
P1, ...,PK

E
[
log
(

1 +
K

∑
i=1
|Hi|2Pi(Hi)

)]
, (2.1)

s.t. E Pi(Hi) ≤ Pavg
i , 1≤ i≤ K.

The receiver in our model is coherent i.e. full CSI is known the receiver at all instants.

Hence, only the fading magnitudes are necessary and the above definition of ergodic sum-

capacity thus gets simplified as

Csum = max
P1, ...,PK

E
[
log
(

1 +
K

∑
i=1

ViPi(Vi)
)]

, (2.2)

where Vi := |Hi|2 and E [Pi(Vi)] ≤ Pavg
i , 1≤ i≤ K. It is straightforward to notice that the

optimization in (2.2) is a convex program; the objective function is concave and the average

power constraints are convex. Thus, KKT conditions are both necessary and sufficient for

solving the optimal solutions. Let us write the unconstrained objective or utility function as

E
[
log
(

1 +
K

∑
i=1

viPi(vi)
)]
−

K

∑
i=1

λi · E [Pi(vi)],

where the constant parameter λi is the Lagrange multiplier for the average power constraint

E [Pi(Vi)] ≤ Pavg
i , 1≤ i≤K. For the evaluation of the optimal power control P∗i whenever

non-zero, we can set the derivative of the utility function w.r.t. Pi, 1≤ i≤ K to zero. Thus,

optimal power P∗i (vi), 1≤ i≤ K are the solutions of

vi · E
[ 1

1 + viPi(vi) + ∑ j 6=i v jPj(v j)

]
=

λi

vi
, 1≤ i≤ K, (2.3)

where vi in (2.3) is fixed and the expectation is over (V1, · · · ,VK) except Vi. Extracting or

solving (2.3) for Pi(vi) does not seem feasible by applying the available variational methods,
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also suggested in [27] [29]. It thus becomes imperative to try numerical methods to solve

the optimization [30].

2.2 AM Algorithm for Decentralized Gaussian MAC

Now we focus on the main topic of this project i.e. investigation of the alternating maximiza-

tion (AM) algorithm for the optimal decentralized powers proposed in [30]. The working

of this AM algorithm is briefly explained next, refer [30] for exact details.

The joint optimization in (2.2) gets simplified into partial optimizations due to convex

nature of (2.2), and the partial optimization is then solved numerically utilizing the mono-

tone structure of the optimal powers [30]. For ease of exposition, we reconsider the sum-rate

maximization problem in (2.2) albeit for a “two-user” Gaussian fading MAC as follows:

max
P1,P2

E [log(1 + v1P1(v1) + v2P2(v2))], (2.4)

subj.to E [Pi(vi)] ≤ Pavg
i , i = 1,2.

Employing alternative maximization (AM) technique to find the optimal decentralized pow-

ers in (2.4) as shown in [30], the steps involved for our two user MAC are as follows

Algorithm Optimal powers for Decentralized MAC

Initialization: P0
2 (v2), n = 1.

Repeat

Compute Pn
1 = max

P1
E [log(1 + v1P1(v1) + v2Pn−1

2 (v2))]

Compute Pn
2 = max

P2
E [log(1 + v1Pn

1 (v1) + v2P2(v2))]

until convergence

It is straightforward to notice that key step in the AM algorithm is solving the partial opti-
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mization as follows

P∗i = max
Pi

E [log(1 + viPi(vi) + v jPj(v j))], i = 1, 2 such that i 6= j.

To solve the partial maximization under the constraint [Pi(vi)] ≤ Pavg
i , in [30], it is shown

that the monotonicity structure of the optimal power can be exploited. Further, it is shown

that

lim
n→∞

E [log(1 + v1Pn
1 (v1) + v2Pn−1

2 (v2))] = Csum,

i.e. the ergodic sum-rate in the AM algorithm converges to the ergodic sum-capacity Csum.

For more details on convergence and optimality of the AM algorithm, please refer [30].

2.2.1 Identical Users MAC

For convenience sake, we henceforth consider identical-users1 MAC with (K + 1) trans-

mitters. As mentioned in [27], for this special MAC configuration, all the optimal power

schemes are identical due to concavity of the logarithmic utility. In the interest of the reader

and completeness, we present the proof of this property below.

Lemma 6. For identical-users Gaussian MAC, all optimal powers are identical i.e.

P∗1 = P∗2 = · · · = P∗K+1 = P∗say.

Proof. W.l.o.g we shall focus on P1 and P2 i.e. the power schemes of user 1 and user 2 re-

spectively. Further, for convenience, we denote the sum of the remaining terms ∑i>2ViPi(Vi)

by G. The average sum-rate achievable for these power schemes set is computed as

R = E [log(1 + V1 P1(V1) + V2 P2(V2) + G)],

= E [log(1 + V1 P2(V1) + V2 P1(V2) + G)],

= 1
2 · E [log(1 + V1 P1(V1) + V2 P2(V2) + G)]

+ 1
2 · E [log(1 + V1 P2(V1) + V2 P1(V2) + G)],

1All users have identical channel statistics and average power constraints
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≤ E log
(

1 + V1
P1(V1)+P2(V1)

2 + V2
P2(V2)+P1(V2)

2 + G
)
,

where the second equality follows from the fact that both the channels V1 and V2 are identi-

cally distributed, and the last inequality results from the concavity property of the logarithm

function. The last inequality suggests that the sum-rate can always be improved by choos-

ing the average of the two power functions as the common power control scheme. Thus, in

the optimal case, P∗1 = P∗2 holds. To complete the proof for the remaining powers, these

arguments can be extended to the remaining terms in G in an iterative manner. �

For the (K+1) identical-users MAC, with the help of Lemma 6, the optimization in the AM

algorithm simplifies to

max
P

E [log(1 + v1P(v1) + v2P(v2) + · · · + vK+1P(vK+1))], (2.5)

subj. to E [P(v)] ≤ Pavg,

where Pavg is the average power constraint common to all the transmitters. Suppose P∗(v)

denotes the optimal solution of (2.5) i.e.

P∗ = arg max
P

E [log(1 + v1P(v1) + v2P(v2) + · · · + vK+1P(vK+1))]. (2.6)

More importantly, the partial optimization step in the AM algorithm for the identical-users

MAC configuration is given by

P̂∗ = arg max
P

E [log(1 + vP(v) +
K

∑
j=1

v jP̂(v j))], (2.7)

where P̂ is the initialized or given power scheme chosen exactly identical for all the remain-

ing transmitters. (2.7) being analytically difficult, numerical techniques can be employed to

solve the partial optimization in (2.9) for the partially optimal P̂∗ for each run of the AM

algorithm. In the limit as the number of runs of iterative AM algorithm goes to infinity, the

partially optimal P̂∗(v) approaches the globally optimal P∗(v) [30].

Let us denote the identical fading distribution by Ψ(·). Similar to the joint optimization
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described previously in (2.1), the partial maximization in (2.7) subjected to the constraint

E [P(v)] ≤ Pavg is a convex program and thus, convex optimization techniques can be read-

ily applied. Thus, the necessary and sufficient KKT condition on the partially optimal power

P̂∗(v) can be obtained by setting the derivative of the utility function to zero. Thus we have

[30]

∫
· · ·
∫

v1 ··· vK

dΨ(v1, . . . ,vK)

1 + vP(v) + ∑
K
j=1 v jP̂(v j)

=
λ

v
· (2.8)

The partial optimization in (2.7) is solved numerically by utilizing the monotonically in-

creasing behaviour of the P̂∗(v) with increasing v, see [30] for exact details. For the interest

of the reader and completeness, we restate the monotone structural property of the par-

tially optimal power P̂∗(v) and the proof follows in a slightly tweaked manner compared

to [28], [30], as shown below:

Theorem 7. P̂∗(v) of (2.7), whenever non-zero, always satisfies
dP̂∗(v)

dv
> 0.

Proof. KKT condition for the partial optimal power P̂∗(v) in (2.7) subjected to E [P(v)] ≤
Pavg is

∫ dΨ(v1, . . . ,vK)

1 + vP(v) + ∑
K
j=1 v jP̂(v j)

=
λ

v
, whenever P(v) > 0. (2.9)

Rewriting this as

v
∫ dFZ(z)

1 + vP(v) + z
= λ whenever P(v) > 0, (2.10)

where we replace ∑
K
j=1 v jP̂(v j) by Z for notational convenience and its probability distribu-

tion is denoted by FZ(z). Let us rewrite the above condition more compactly as

E

[
v

1 + vP(v) + z

]
= λ . (2.11)

Please note that the expectation operation above is with respect to the random variable Z.

Taking derivative of (2.11) with respect to v on both sides, we get

17



d
dv

E

[
v

1 + vP(v) + z

] = 0,

⇒ E

[
d
dv

(
v

1 + vP(v) + z

)]
= 0,

⇒ E

(1 + vP(v) + z) ·1− v
d
dv

vP(v)

(1 + vP(v) + z)2

 = 0,

⇒ E
[
(1 + vP(v) + z)− v(vP′(v)+P(v) ·1)

(1 + vP(v) + z)2

]
= 0,

⇒ E

[
1 + z− v2P′(v)
(1 + vP(v) + z)2

]
= 0,

⇒ E

[
1 + z

(1 + vP(v) + z)2

]
= v2P′(v) · E

[
1

(1 + vP(v) + z)2

]
· (2.12)

Notice that the LHS of (2.12) above is strictly positive since the argument of the expectation

operator is strictly positive as z ≥ 0 always and also the expectation on the RHS is also

strictly positive. Thus, P′(v) must be strictly positive for the condition (2.12) to hold true.

Hence the partially optimal power P̂∗(v) satisfies
dP̂∗(v)

dv
> 0. �

Recall (2.10)

∫ dFZ(z)
1 + vP(v) + z

=
λ

v
, (2.13)

and that Z := ∑
K
j=1 v jP̂(v j) is sum of K i.i.d. random variables VjP̂(Vj), 1 ≤ j ≤ K. Since

the optimal P(v) is monotone (increasing) in v, the LHS of (2.13) denoted by t(vP(v)) has

one-to-one correspondence to the RHS. Thus

t(vP(v)) =
λ

v
,

⇒ P(v) =
1
v

t−1
(

λ

v

)
, (2.14)

(2.14) can be used to solve for the optimal P(v) (see Corollary 6 in [30]). However, this
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requires computation of the integral in the LHS of (2.13) which in turn necessitates deter-

mination of the distribution FZ(z) or fZ(z). Clearly, if there exists some simplification about

solving (2.13), it can be exploited to reduce the computation of the optimal power. This

aspect is explored in further sections.

2.3 Fast Alternating Maximization (AM) using FFT

In this section, we explore the possibility of ease of computation of the optimal powers us-

ing (2.13) using transform method combined with fast Fourier transform (FFT) algorithm.

By transform method, we mean the characteristic function approach to compute the proba-

bility distribution of sum of i.i.d. random variables, this will become clearer in the discus-

sion to follow. We begin with describing the implementation of the AM method using FFT

algorithm.

Let Wi = ViP̂(Vi) and Z = ∑
K
i = 1 Wi i.e. Z is sum of i.i.d. random variables denoted

by Wi’s. The probability distribution of Z, being sum of K i.i.d. random variables, can be

found using the K-fold convolution of the distribution of W or alternatively by taking the

inverse transform of the K-th power of the characteristic function of W . We compute the

distribution of W (general) using transform approach to obtain the distribution of Z as it is

more efficient for large number of samples (will be shown later). Since the optimal power

is monotonically increasing and P(0) = 0, we can safely argue that the power allocation

begins only after V ≥ v0 for some v0 > 0, thus implying that

W = 0 whenever V < v0

and W > 0 whenever V ≥ v0.

During the initialization step in the AM algorithm, the power scheme P̂(·) is chosen to be

monotonically increasing for V ≥ v0. For example, the initialized P̂(v) can be standard

or modified waterfilling scheme [28]. From then onwards, the currently computed par-

tial optimal P(v) (set as P̂(v) in the next iteration of the AM maximization) will also be

monotonically increasing [30, Remark 4]. This monotone property guarantees one-to-one
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mapping between V and W and thus, the inverse W−1()̇ mapping exists for all choices of

W > 0. Given the cumulative distribution function (CDF) ΨV (v) (or probability density

function (PDF) fV (v)) of V , the CDF for the random variable W is as found to be

FW (w) =



0, w < 0,

ΨV (v0), w = 0,

ΨV (W−1(w))−ΨV (v0), w > 0.

Here, we have assumed a regularity condition on W namely differentiability. This can be

easily achieved choosing a suitable power control on V . Differentiating the CDF FW (w)

gives

fW (w) = ΨV (v0) ·δ (w) + fV (W−1(w))
d (W−1(w))

dw
1{w>0}.

Notice that monotone (increasing) property of the function W (·) and hence of W−1(·) func-

tion implies
d (W−1(w))

dw
is positive for all w > 0.

Let ΦZ(ω) and ΦW (ω) denote the characteristic functions of the random variables Z

and W respectively. The characteristic function of W is

ΦW (ω) =
∫

∞

0
e jωw fW (w)dw ,

= ΨV (v0) +
∫

∞

0+
e jωw fW (w)dw ,

= ΨV (v0) +
∫

∞

0+
e jωw fV (W−1(w))

d (W−1(w))
dw

dw.

Similary, the characteristic function of Z follows as

ΦZ(ω) =
∫

∞

0
e jωz fZ(z)dz ,

=
∫

∞

w1=0
· · ·
∫

∞

wK=0
e jω ∑

K
i=1 wi fW (w1)dw1 · · · fW (wK)dwK ,

=
{∫

w
e jωw fW (w)dw

}K
,

= {ΦW (ω)}K. (2.15)
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Using the characteristic function ΦZ(ω), the PDF of the random variable Z is obtained by
taking inverse transform as following:

fZ(z) =
1

2π

∫
∞

−∞

ΦZ(ω)e− jωz dω .

Finally, with dFZ(z) = fZ(z)dz in (2.13), the KKT condition simplifies as

∫
∞

0

fZ(z)dz
1 + vP(v) + z

=
λ

v
· (2.16)

2.3.1 Continuous to Discrete Representation

It is obvious that we need to compute the distribution fZ(z) efficiently particularly for the

MAC with moderate to large number of users, if possible. This is exactly the bottleneck of

the proposed AM algorithm in [30], severely restricting the usage to a few number of MAC

users.

In this direction, we desire to make use of the fast Fourier transform algorithms to speed

up the computations involved. We apply discretization to transform continuous attributes

into discrete ones wherever necessary. This is explained next in detail.

Recall the computation of characteristic function of W

ΦW (ω) =
∫

∞

0
e jωw fW (w)dw ,

= ΨV (v0) +
∫

∞

0+
e jωw fW (w)dw , (2.17)

To allow numerical computation of the integral form in (2.17) we substitute the integration

variable w by n∆ i.e.

ΦW (ω)
(a)
= ΨV (v0) +

∫
∞

0+
e jωw fW (w)dw ,

(b)
≈ ΨV (v0) + ∆ ·

∞

∑
n = 1

e jωn∆ fW (n∆),

(c)
≈ ΨV (v0) + ∆ ·

N

∑
n = 1

e jωn∆ fW (n∆). (2.18)
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• The justification for the approximation in (b) is straightforward that the step size ∆ in

the variable w can be chosen small enough such that the difference between the actual

integral in the equality a and summation term in the equality b can be made as small

as desired. However, the actual choice of ∆ is decided by the trade-off between the

accuracy and the computational load of the modified version of AM algorithm (to be

shown later).

• The justification for the “finite” upper limit of the summation N in the approximation

in (b) is the fact that most of the practical fadings observed in the wireless commu-

nication have negligible probability distribution for very large fading values. As an

example, the PDF of the normalized Rayleigh fading X is given as fX(x) = e−x.

Clearly, for this fading, the probability distribution for the very large fade values is

negligible. Since, with each run of the AM algorithm, the distribution fW (w) varies

and so does the appropriate choice of N with each run of the algorithm. One way to

resolve this issue is to choose N large enough but finite to take care of this reasonable

justification in the third equality above. Other possibility could be choosing N by hit

and trial procedure.

To compute N sample points of ΦW (ω), we substitute ω = kω0 in (2.18) where ω0 =
2π

N∆
·

That is, ω0 is the step-size in the ω variable. Thus, for 0 ≤ k ≤ N−1, we get

ΦW [k] := ΦW (kω0) = ΨV (v0) + ∆ ·
N

∑
n = 1

e j 2π

N kn fW [n] ,

where fW [n] := fW (n∆). Notice that

ΦW [k] = ΦW [k+N],

i.e. ΦW [k] periodic in k over the period N since e j 2π

N kn = e j 2π

N (k+N)n. Further notice that

ΦW [k] = ΨV (v0) + ∆ ·
N

∑
n = 1

e j 2π

N kn fW [n] ,

= ΨV (v0) + ∆ ·
(

N−1

∑
n = 1

fW [n] · e j 2π

N kn + fW [N] · e j 2π

N Nk

)
,
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= ΨV (v0) + ∆ ·
N−1

∑
n = 0

f̂W [n] · e j 2π

N kn , 0 ≤ k ≤ N−1 ,

where

f̂W [n] =


fW [n] when n = 1, · · · , N− 1.

fW [N] when n = 0 .

(2.19)

Thus

ΦW [k] = ΨV (v0) + ∆ · DFT (k : f̂W [n], 0 ≤ n ≤ N−1) . (2.20)

where, for convenience, we have defined DFT (k : X [n],0 ≤ n ≤ N − 1) := ∑
N−1
n = 0 X [n] ·

e j 2π

N kn i.e. the sample-wise discrete Fourier transform operation, a standard analysis tool in

the digital signal processing. For convenience of notation, we shall drop the index k in the

above definition of DFT (· : · · ·) and denote the the sampled characteristic function in (2.20)

as

ΦW [k] = ΨV (v0) + ∆ · DFT ( f̂W [n], 0 ≤ n ≤ N−1) . (2.21)

On the other side, the sequence fW [n] can be computed from the ΦW [k] sequence using the

inverse DFT relation as following

f̂W [n] =
1

N∆

N−1

∑
k = 0

(
ΦW [k] − ΨV (v0)

)
e− j 2π

N kn , 0 ≤ n ≤ N−1.

• Computing PDF of W: For each value of w = n∆ (greater than 0), we compute

fW (n∆) as following:

fW (n∆) = fV (W−1(n∆))
d (W−1(w))

dw

∣∣∣∣
w=n∆

,

= fV (W−1(n∆)) lim
∆→0

W−1(w + ∆)−W−1(w)
(w + ∆)−w

∣∣∣∣
w=n∆

,
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(d)
≈ fV (W−1(n∆))

W−1((n + 1)∆)−W−1(n∆)

∆
, 1 ≤ n ≤ N , (2.22)

where the approximation in the equality (d) above is possible to the desired accuracy by

choosing the appropriate step size ∆ in the w variable.

• Computing the characteristic function of Z: Since

ΦZ(ω) = ΦW (ω)K , ∀ω ,

⇒ ΦZ(kω0) = ΦW (kω0)
K , 0 ≤ k ≤ N−1 ,

⇒ i.e. ΦZ[k] = ΦW [k]K , 0 ≤ k ≤ N−1 . (2.23)

However, to compute the ΦZ[k] sequence using (2.23), it is crucial to understand an impor-

tant omission we made while writing (2.21). To explain this, recall that

Z =
K

∑
i = 1

Wi ,

where we have already discretized and assumed the range of W large enough denoted by

[∆, N∆ ]. It is obvious that the range of Z will be approximately K times greater than that of

W . Precisely, the range of Z is [K∆, NK∆ ] with samples spaced apart by ∆. To be able to

use the DFT transform to compute the distribution function of Z, notice the exact number

of sample points in Z[k] sequence is

N̂ := NK−K + 1 .

Thus, it is required to perform N̂-point inverse DFT of the ΦW [k]K sequence rather than

N-point inverse DFT. To achieve N̂-point inverse DFT of the ΦW [k]K , it is suffice to do

zero-padding of the fW [n] sequence at the end to extend the sequence length to reach N̂ and

then compute N̂-point DFT of fW [n]. Therefore, (2.23) is corrected as

i.e. ΦZ[k] = ΦW [k]K , 0 ≤ k ≤ N̂−1, (2.24)
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where ΦW [k] sequence is a N̂-point sequence computed as

ΦW [k] = ΨV (v0) + ∆ ·DFT (k : f̂W [n], 0 ≤ n ≤ N̂−1). (2.25)

• Numerical Computation of PDF of Z: In our problem setup, Z is a continuous

random variable. Further we need to find its distribution fZ(z) numerically from the cor-

responding characteristic function, which is numerically computed in the previous step for

a finite number of equally distant points. Consider the relation between the characteristic

function and distribution function of Z in the continuous domain:

fZ(z) =
1

2π

∫
∞

−∞

ΦZ(ω)e− jωz dω ,

≈ δω

2π

M−1

∑
k =−M

ΦZ(kδω)e− jkδω z, (2.26)

where the continuous variable ω is discretized with samples spaced δω apart and the sum

neglects the integral term outside the interval [−Mδω , Mδω ).

To be able to use the ΦZ[k] sequence computed already, we set δω =
2π

N̂∆
= ω0 and

2M = N̂. Notice that the truncated random variable Z lies in the range [K∆, NK∆ ]. With

the substitution z = n∆ in (2.26), we get

fZ(n∆) ≈ 1

N̂∆

N̂/2−1

∑
k =−N̂/2

ΦZ(kω0)e
− j 2π

N̂
kn
, K ≤ n ≤ NK,

i.e. fZ[n] ≈
1

N̂∆

N̂/2−1

∑
k =−N̂/2

ΦZ[k]e
− j 2π

N̂
kn
, K ≤ n ≤ NK,

where fZ[n] := fZ(n∆).

Recall that ΦZ[k] = ΦW [k]K and N̂-point ΦW [k] sequence is periodic in k with period

N̂ and therefore, the ΦZ[k] sequence is also periodic with period N̂ i.e.

ΦZ[k] = ΦZ[k + N̂],
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and e
− j 2π

N̂
kn

= e
− j 2π

N̂
(k+ N̂)n

also holds. Thus, for K ≤ n ≤ NK, rewriting

fZ[n] ≈
1

N̂∆

N̂/2−1

∑
k = 0

ΦZ[k]e
− j 2π

N kn +
−1

∑
k =−N̂/2

ΦZ[k]e
− j 2π

N kn

 ,

=
1

N̂∆

N̂/2−1

∑
k = 0

ΦZ[k]e
− j 2π

N kn +
−1

∑
k =−N̂/2

ΦZ[k+ N̂]e− j 2π

N kn

 ,

=
1

N̂∆

N̂/2−1

∑
k = 0

ΦZ[k]e
− j 2π

N kn +
N̂−1

∑
k =N̂/2

ΦZ[k]e
− j 2π

N kn

 ,

: =
1

N̂∆

N̂−1

∑
k = 0

ΦZ[k]e
− j 2π

N kn, K ≤ n ≤ NK . (2.27)

where

Φ̂Z[k] =


ΦZ[k] when 0≤ k ≤ N̂/2−1.

ΦZ[k− N̂] when N̂/2≤ k ≤ N̂−1.

(2.28)

It is obvious that

fZ[n] ≈
1
∆
· IDFT (n : ΦZ[k], 0 ≤ k ≤ N̂−1) ,

where, for convenience, we have defined the inverse of the point-wise discrete Fourier trans-

form as IDFT (n : X [k],0≤ k ≤ N−1) := ∑
N−1
k = 0 x[k] · e− j 2π

N kn.

Remark 8. By choosing N̂ to be the nearest power of 2, we can compute the characteristic

function of the random variable W as well as distribution function of Z very efficiently by

implementing the DFT and inverse DFT operations using the FFT algorithms. For example,

assuming sequence length N is some exponential of 2, direct computation of discrete Fourier

transform of a N-point sequence involves N2 complex multiplications, while computing the

same using fast Fourier transform (FFT) algorithm requires only N logN complex multipli-

cations. Clearly, the computational gain is increasing with N, e.g. for N = 1024 length

sequence, FFT algorithm is approximately 100 times faster than the direct DFT method.
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Remark 9. It is important to remember that to compute the PDF of Z from the PDF of W,

we need to do zero-padding to fW (n∆) (see Section 7.6 in [31])

Finally, we summarize the required computational steps as follows:

1. Compute the samples of characteristic function ΦX(ω) as follows

ΦX [k] = ΨV (v0) + ∆ · DFT( f̂X [n] , 0 ≤ n ≤ N−1) .

2. Compute the samples of characteristic function ΦY (ω) as follows

ΦY [k] = ΦX [k]K , 0 ≤ k ≤ N−1 .

3. Compute inverse transform: F−1 ΦY (ω) to obtain ΨY (y) as follows

fY [n] ≈ 1
∆
· IDFT(ΦY [k], 0 ≤ k ≤ N−1) .

We now combine the fast Fourier transform (FFT) based digital processing presented

in the section above with the alternating maximization (AM) method proposed in [30] for

faster computation of the decentralized MAC utilities such as optimal transmitter power

control and sum-capacity.

Algorithm FFT-AM algorithm for Decentralized MAC

Initialization: Initialize P̂(·) observing average power constraint (say

with standard water-filling). Initialize KKT multiplier λ, error

tolerance ε and increment step size δ for the λ parameter and ∆ as

the discretization interval for the variable vP̂(v). Choose a large

N such that N is some power of 2.

Repeat
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1. Compute the distribution fZ(z) numerically as follows:

• 1(a): Compute the N-length sequence fW [n] by sampling

the fW (w) given as

fW (w) = ΨV (v0) ·δ (w) + fV (W−1(w))
d (W−1(w))

dw
1{w>0}.

This requires computation of W−1(w) function.

• 1(b): Compute the N-length sequence ΦW [k] as

ΦW [k] = ΨV (v0) + ∆ · FFT( f̂W [n], 0 ≤ n ≤ N−1) ,

for 0 ≤ k ≤ N−1 , where f̂W [n] is a rearranged version of

fW [n], see (2.19).

• 1(c): Compute the N-length sequence ΦZ[k] as

ΦZ[k] = ΦW [k]K , 0 ≤ k ≤ N−1 .

• 1(d): Compute fZ[n] ≈ 1
∆
· IFFT(ΦZ[k], 0 ≤ k ≤ N−1) ,

for 0 ≤ n ≤ N−1 .

2. Compute the partial optimal:

P̂∗ = arg max
P

E [log(1 + vP(v) + Z)],

using the discrete KKT condition (see (2.16)):

∆ ·
N−1

∑
n=0

fZ[n]

1 + vP̂∗(v) + n∆
=

λ

v
,

where Z = ∑i viP̂(vi).

3. Find P̄avg =
∫

P̂∗(v)dΨ(v).
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4. If


(
Pavg− P̄avg

)
> ε, then λ = λ −δ ; goto step 1(

Pavg− P̄avg
)
< −ε, then λ = λ +δ ; goto step 1

Until the sum rate converges.

2.3.2 AM algorithm: Issues & Resolutions

We have identified an issue in the proposed AM algorithm in [30] that can severely affect

its convergence particularly in the case when there are large number of MAC users and or

when the average powers at the transmitter side are huge. To explain this, we recall step for

the computation of the partial optimal in the AM algorithm i.e. (2.16) as follows:

∫
∞

0

fZ(z)dz
1 + vP(v) + z

=
λ

v
·

Since the partial optimal P(v) function is increasing in the argument, it is easy to de-

duce that the LHS of the above equation decreases as v increases. To solve this equation

numerically for P(v), it is important, in the algorithm, to know beforehand the maximum

that the function vP(v) can take. Too small the choice of vP(v) in the algorithm will result

in sub-optimal solution. At the other extreme, choosing maximum of vP(v) too large will

result in excess of computational requirements. Thus, a good estimate of max. of vP(v)

is necessary. This will depend upon both the distribution of v as well as the max. of the

optimal partial P(v).

For popular or typical fading conditions, the distribution of the fading magnitude is neg-

ligible for large values, e.g. such as Rayleigh fading where fV (v) = e−v becomes negligible

for v > 12 etc. In our numerical computations to be presented in the next section, we have

assumed Rayleigh distribution with v ranging between 0 to 20 (approx.).

Estimating the maximum of P(v) safely is a bit tedious task. One way is to do hit and

trial approach. To avoid this, we have identified a useful condition. It is not difficult to

see from the KKT condition that the optimal partial P(v) satisfies lim v→∞ P(v) ≥ 1
λ
· This

lower bound on the maximum of the optimal P(v) has turned out to be very useful in our
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numerical computations. We have used this lower bound together with v maximum as large

as 20 to determine the the maximum of the vP(v).

2.4 Identical Users MAC with Large Users

In our decentralized identical users fading MAC, the total receiver signal power, denoted by

Z, is sum of the i.i.d. received signal powers of each of the individual transmitters denoted

by Wi , 1 ≤ i ≤ K. Recall Z = ∑i Wi where Wi = vi Pi(vi). Invoking Central Limit

Theorem (CLT) for the decentralized MAC with large number of users, we assert that Z is

a Gaussian random variable with say µZ and σ2
Z as mean and variance parameters of the

distribution respectively i.e. Z ∼ N (µZ, σ2
Z ). For reference, we state the CLT theorem

next.

Theorem 10. Given a set of i.i.d. random variables, denoted as W1,W2, , · · · ,WK , with

mean E [Wi] = µW < ∞ and finite non-zero σ2
W , then the random variable

ẐK =
(W1 +W2 + · · ·+WK)−K ·µW√

K ·σW
(2.29)

converges in distribution to the standard Gaussian random variable as K approaches infin-

ity. In other words

lim
K→ ∞

Prob(ẐK ≤ z) = Φ(z), ∀ z ∈ R, (2.30)

where Φ(z) , 1√
2π

∫ z
−∞

e−
u2

2 du is the standard normal CDF.

Remark 11. Generally, the distribution of the sum of i.i.d. random variables begins to

approach the Gaussian shape (“bell curve”) even for a relatively small number K. Thus,

once the distribution of the sum is close enough (to the desired accuracy) to the Gaussian

for a certain K say K0, Theorem 10 suggests that it is safe to assume that the distribution of

the sum for K ≥ K0 i.i.d. variables is Gaussian with sufficient accuracy.

Under this condition, computation of the distribution of Z gets a lot easier as it requires

30



only the determination of two parameters, namely the mean µZ and the variance σ2
Z . Recall

the PDF of W as following

fX(w) = ΨV (v0) ·δ (w) + fV (W−1(w))
d (W−1(w))

dw
· 1{W>0}. (2.31)

We denote the second component of fW (w) in (2.31) as f̂W (w). Thus

µW = E [W ],

=
∫

∞

0
w fW (w)dw,

=
∫

∞

0
w(ΨV (v0)δ (w) + f̂W (w))dw,

=
∫

∞

0+
w f̂W (w)dw,

≈ ∆ ·
N

∑
n = 1

f̂W (n∆) ·n∆,

= ∆
2 ·

N

∑
n = 1

f̂W (n∆) ·n. (2.32)

The numerical computation of σ2
W is as following

σ
2
W = E [W 2]−µ

2
W ,

=
∫

∞

0
w2 fW (w)dw−µ

2
W ,

=
∫

∞

0
w2(ΨV (v0)δ (w) + f̂W (w))dw−µ

2
W ,

=
∫

∞

0+
w2 f̂W (w)dw−µ

2
W ,

≈ ∆ ·
N

∑
n = 1

f̂W (n∆) ·n2
∆

2−µ
2
W ,

= ∆
3 ·

N

∑
n = 1

f̂W (n∆) ·n2−µ
2
W . (2.33)

31



The mean and variance parameters of the random variable Z are computed numerically as

shown below. Firstly, the mean is computed as

µZ = E [Z]

= E [
K

∑
i = 1

Wi]

= K µW

= K ∆
2 ·

N

∑
n = 1

f̂W (n∆) ·n . (2.34)

Similarly, the variance is determined as

σ
2
Z = E [(Z−µZ)

2]

= KE [(W −µW )2]

= K σ
2
W

= K ∆
3 ·

N

∑
n = 1

f̂W (n∆) ·n2−K µ
2
W . (2.35)

Recall the KKT condition (2.13) for the partial optimal power scheme:

∫ dFZ(z)
1 + vP(v) + z

=
λ

v
, ∀ v > v0 . (2.36)

For large MAC, choosing the Gaussian distribution in the above condition, we get

1√
2πσ2

Z

∫
∞

−∞

e
− (z−µZ)

2

2σ2
Z dz

1 + vP(v) + z
=

λ

v
, ∀ v > v0 . (2.37)

Together with the property (2.14) and that LHS in (2.37) is a single variable integral, and

the mean and variance parameters determined from (2.34) and (2.35) respectively, (2.37)

can be easily solved numerically for the partially optimal power P(v).
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2.5 Numerical Results
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Figure 2.2: Ergodic Sum-capacity of K = 10, 15 decentralized identical users MAC with
fading on all the links as Rayleigh distributed.
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Figure 2.3: Ergodic Sum-capacity of K = 20, 40 decentralized identical users MAC with
fading on all the links as Rayleigh distributed.
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Figure 2.4: Optimal power schemes for K = 10 decentralized identical users MAC with
fading on all the links as Rayleigh distributed.

0 2 4 6 8 10 12 14 16 18 20

0

20

40

60

80

100

120

K = 10

v

O
p
ti
m
al

P
ow

er
P
(v
)

10 dB

Figure 2.5: Optimal power schemes for K = 10 decentralized identical users MAC with
fading on all the links as Rayleigh distributed.
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Figure 2.6: Optimal power schemes for K = 15 decentralized identical users MAC with
fading on all the links as Rayleigh distributed.
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Figure 2.7: Optimal power schemes for K = 15 decentralized identical users MAC with
fading on all the links as Rayleigh distributed.
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Figure 2.8: Optimal power schemes for K = 20 decentralized identical users MAC with
fading on all the links as Rayleigh distributed.
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Figure 2.9: Optimal power schemes for K = 20 decentralized identical users MAC with
fading on all the links as Rayleigh distributed.

36



0 2 4 6 8 10 12 14 16 18 20

0

20

40

60

80

100

K = 40

v

O
p
ti
m
al

P
ow

er
P
(v
)

4 dB
3 dB
0 dB

Figure 2.10: Optimal power schemes for K = 40 decentralized identical users MAC with
fading on all the links as Rayleigh distributed.
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Figure 2.11: Optimal power schemes for K = 40 decentralized identical users MAC with
fading on all the links as Rayleigh distributed.
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Pavg (dB) Csum (bits/s/Hz)

K = 10

0

5

10

4.239702

5.639849

7.111351

K = 15

0

2

5

8

10

4.908040

5.488721

6.355934

7.266379

7.862811

K = 20

0

1

2

2.5

8

10

5.392953

5.694281

5.993126

6.137255

7.798280

8.408797

K = 40

0

3

4

8

10

6.613407

7.565446

7.851965

9.102039

9.750037

Table 2.1: Summary table for the Sum-capacity computations presented in the Figure 2.2
and Figure 2.3.
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Chapter 3

Conclusion

We investigated the performance of the AM algorithm proposed for the optimal decen-

tralized powers in Gaussian fading MAC [30]. Firstly, we identified the bottleneck in the

algorithm; computation of the distribution of the received SNR is tedious and inefficient.

Secondly, to enhance the performance in terms of required computations, we utilized the

fast Fourier transform (FFT) algorithm to compute the probability distributions involved in

the partial optimization step in the AM algorithm.

For the special case of identical users fading MAC with large number of users, we

approximated the probability distribution of the total received SNR by the Gaussian. This

is done in line with the Central Limit Theorem (CLT). This approximation is proven to be

excellent for large users and verified by comparing the actual and approximated distributions

for some large MAC users. This revelation have enabled us to compute the ergodic sum-

capacity of large identical users MAC of size as large as up to 40 users so far in the presence

of IID Rayleigh fadings. These numerical results are extremely significant given that prior to

our work, the optimal sum-rates for the same MAC configuration are known only for up to 4

MAC users, see Figure 2(b) in [30]. In [30], the convergence of the proposed AM algorithm

to the desired accuracy is based on the comparing the actual and estimated average tranmitter

power. This seems as an another bottleneck in the proposed AM algorithm. Future work

will include finding a more efficient criteria for convergence of this algorithm.

Although general version of the CLT suggests the Gaussian approximation even for the

‘large’ non-identical users MAC, it seems difficult to determine how the accuracy of the
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Gaussian approximation of the probability distribution for large MAC vary as there are a lot

of known and unknown factors involved unlike the identical users MAC. Nevertheless, the

decentralized ‘large’ non-identical users MAC is an equally important model in some cases.
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