# "COMPARISON OF SQUARE AND CIRCULAR WATER TANKS" 

## A PROJECT <br> Submitted in partial fulfillment of the requirements for the award of the degree

 of
## BACHELOR OF TECHNOLOGY

IN<br>CIVIL ENGINEERING

Under the supervision of
Mr. Abhilash Shukla
(Assistant Professor)
By
Vaibhav Sharma (121665)
to


JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY WAKNAGHAT SOLAN - 173234 HIMACHAL PRADESH INDIA

JUNE, 2016

## CERTIFICATE

This is to certify that the work which entitled " COMPARISON OF SQUARE AND
CIRCULAR WATER TANKS" in partial fulfillment of the requirements for the award of the degree of Bachelor of technology in Civil Engineering by Jaypee University of Information Technology, Waknaghat is an authentic record of work carried out by Vaibhav Sharma (121627) during a period from July 2015 to June 2016 under the supervision of Mr. Abhilash Shukla. This work has not been submitted partially or wholly to any other University or Institute for the award of this or any other degree/diploma.

The above statement made is correct to the best of my knowledge.
Date: $\qquad$

Dr. Ashok Kumar Gupta
Professor \& Head of Department
Civil Engineering Department
JUIT Waknaghat

Abhilash Shukla
External Examiner
Assistant Professor
Civil Engineering Department
JUIT Waknaghat

## ACKNOWLEDGEMENT

We would like to express our gratitude and appreciation to all those who gave us the possibility to complete this report. A special thanks to our final year project Guide, Mr. Abhilash Shukla, whose help, stimulating suggestions and encouragement, helped us to coordinate my project especially in writing this report.
We also thank the Head of Department of Civil Engineering, Dr. Ashok Kumar Gupta for providing me opportunity to embark on this project.
At last we would like to acknowledge our panel members especially in our project presentation that has improved our presentation skills by their comment and tips.

Vaibhav Sharma (121665)


#### Abstract

Storage reservoirs and overhead tank are used to store water, liquid petroleum, petroleum products and similar liquids. The force analysis of the reservoirs or tanks is about the same irrespective of the chemical nature of the product. Tanks are designed as crack free structures to eliminate any leakage.

Design of square and circular tanks is done using STAAD.Pro having the same height and same length of side of square tank and radius of circular tank. Design is done in order to find out the maximum values of displacements, moments and forces acting on the tanks and comparing them.

Results obtained of absolute maximum value can be used by engineers to design the structure for ultimate load design of beams and column.


## Contents

Page No.CERTIFICATEi
ACKNOWLEDGEMENT ..... ii
ABSTRACT ..... iii
CONTENTS ..... iv
LIST OF FIGURES ..... vi
LIST OF TABLES ..... vii
Chapter 1 Introduction ..... 1
1.1. General ..... 1
1.2. Necessity of Project ..... 1
1.3. Significance of the project ..... 1
Chapter 2 Literature Review ..... 2
2.1.1. Design of Intze Tank in Perspective of Revision of IS: 3370 by ..... 2
Lodhi .R. S
2.1.2. Structural Control System for Elevated Water Tank by Falguni ..... 2
2.1.3. Comparison of R.C.C. Prestressed Concrete Circular Water ..... 3
Tanks by Sameer. R.
2.1.4. Parametric Study of an Intze Type Tank by Sharma. M. K. ..... 3
2.1.5 Seismic Behavior of Elevated Water Tank by Patil. N. R. et al. ..... 3
2.1.6 A Study on a seismic Verification and Retrofit Methods for An ..... 4
Elevated Water Tank Against Strong Earthquakes by Mori. A. et al.
2.1.7 Seismic Response of Elevated Water Tanks by Birtharia. ..... 4
2.1.8 Economics of R.C.C. Water Tank Resting Over Firm Ground ..... 5
By Snehal.M.S.
2.2. Objectives ..... 6
Chapter 3 Planning of Work ..... 7
3.1. Dimensions of tank ..... 7
3.2. Design requirement of concrete ..... 8
3.3. Joints in liquid retaining structures ..... 10
3.4. Loads considered ..... 13
3.5. Working with STAAD pro ..... 15
Chapter 4 Cost Analysis ..... 18
4.1 Calculation of concrete required ..... 18
4.2 Calculation of reinforcement in beams by Staad.Pro ..... 19
4.3 Calculation of reinforcement of slab ..... 21
Chapter 5 Results ..... 24
5.1. Forces and Moments acting on the supports ..... 24
5.2. Displacement of nodes ..... 25
5.3. Bending of beams ..... 26
5.4. Moments on Plates ..... 27
5.5 Contours ..... 29
Chapter 6 Discussions ..... 31
Chapter 7 Conclusion ..... 32
References ..... 33

## List of Figures

Figure No. Description Page No.
3.1 Dimensions of circular water tank ..... 7
3.2 Dimensions of square water tank ..... 8
3.3 Complete Contraction Joint ..... 10
3.4 Partial Contraction Joint ..... 11
3.5 Expansion Joint ..... 11
3.6 Sliding Joint ..... 12
3.7 Wind load on circular tank ..... 13
3.8 Due to hydrostatic load ..... 14
3.9 Beams and columns in the tank ..... 15
3.10 Plates in the tank ..... 16
4.1 Columns of circular water tank ..... 20
4.2 Columns of rectangular water tank ..... 21
5.1 Maximum absolute stresses in rectangular tank ..... 29
5.2 Maximum absolute stresses in circular tank ..... 30

## List of Tables

Table No. Description Page No.
4.1 Column Reinforcement in Circular Tank ..... 20
4.2 Column Reinforcement in Square Tank ..... 20
5.1 Forces acting on the supports of square tank ..... 24
5.2 Forces acting on the supports of square tank ..... 25
5.3 Displacement of nodes of square tank ..... 25
5.4
Displacement of nodes of circular tank ..... 26
5.5 Bending of beams of circular tank ..... 26
5.6 Bending of beams of square tank ..... 27
5.7 Moment and shear force of plates in square tank ..... 27
5.8 Moment and shear force of plates in circular tank ..... 28

## CHAPTER 1

## INTRODUCTION

### 1.1. General

Project starts with general study of water retaining structures from research papers. Further it includes the design of an overhead water tank for maximum forces and moments using STAAD pro. And finally it consists of comparison of the two overhead water tanks-square and circular.

### 1.2. Necessity of Project

The project is taken in order to learn how to design reinforced concrete structures using STAAD pro. Learning of STAAD pro would be very helpful for me as a future civil engineer. Tanks are considered because tanks are important structures and are used to store not only water but other liquids like petroleum and other petroleum products. Design of tanks is different from other RCC structure as we have to take care of cracks occurring inside the concrete beams.

### 1.3. Significance of the Project

Overhead water tank are used to store water, liquid petroleum, petroleum products and similar liquids. The force analysis of the reservoirs or tanks is about the same irrespective of the chemical nature of the product. All tanks are designed as crack free structures to eliminate any leakage. Water or raw petroleum retaining slab and walls can be of reinforced concrete with adequate cover to the reinforcement. Water and petroleum can't react with concrete and, therefore, no special treatment to the surface is required. Industrial wastes can also petrol, diesel oil, etc. are likely to leak through the concrete walls, therefore such tanks need special membranes to prevent leakage. Reservoir is a common term applied to liquid storage structure.. Reservoirs of overhead type are built for direct distribution by gravity flow and are usually of smaller capacity.

## CHAPTER 2

LITERATURE REVIEW

### 2.1 Literature Review

### 2.1.1. Design of Intze Tank in Perspective of Revision of IS: $\mathbf{3 3 7 0}$ by Lodhi .R. S. et al.

Intze type tank is commonly used overhead water tank in India. These tanks are designed as per IS: 3370 i.e. Code of practice for concrete structures for storage of liquids. BIS implemented the revised version of IS 3370 (part 1\& 2) after a long time from its 1965 version in year 2009. Presently large number of overhead water tanks is used to distribute the water for public utility. In which most of the water tanks were designed As per Old IS Code: 3370-1965 Without considering earthquake forces. The objective of this dissertation is to shed light on the difference in the design parameters of (a) intze water tanks without considering earthquake forces (b) intze water tanks designed with earthquake forces. First design is based on Indian standard code: 3370-1965 and second design is based on Indian standard code: 3370-2009 and draft code 1893Part 2, (2005) considering two mass modal i.e. impulsive and convective mode method. Intze tank supported on frame staging is considered in present study

### 2.1.2. Structural Control System for Elevated Water Tank by Falguni et al.

The paper presents the results of an analytical investigation of the seismic response of elevated water tanks using fiction damper. In This paper, the behavior of RCC elevated water tank is studied with using friction damper (FD). For FD system, the main step is to determine the slip load. In nonlinear dynamic analysis, the response of structure for three earthquake time history has been carried out to obtain the values of tower drift base shear and acceleration Time Period. These values are compared with original structure. Results of the elevated tank with FD are
compared to the corresponding fixed-base tank design and indicate that friction damper is effective in reducing the tower drift, base shear, time period, and roof acceleration for the full range of tank capacities. The obtained results show that performance of elevated water tank with FD is better than without FD.

### 2.1.3. Comparison of R.C.C. Prestressed Concrete Circular Water Tanks by Sameer. R. et al.

This paper presents a Comparative study of R.C.C. water tanks. Prestressed concrete water tanks resting over firm ground. The work includes the design and estimates for circular R.C.C. water tanks and prestressed concrete water tanks of various diameter. At times the more than one choice available for construction types leads to confusion. The best way is to select the type of construction, depending on the circumstances and type of structure. The aim of this paper is to design medium diameter R.C.C water tanks as well as pre-stress concrete water tanks variety and then compare the results. Programming in MS EXCEL is done to design the water tanks. The idea is to reach a definite conclusion regarding the superiority of the two techniques over one another. Results reveal that an RCC water tank is cheaper than prestressed concrete water tank for smaller diameter but vice versa is true for larger diameter tanks

### 2.1.4. Parametric Study of an Intze Type Tank by Sharma. M. K. et al.

This paper includes the automation of analysis and design of an Overhead RCC Intze type tank with the help of software developed in C++. The software enables us to design and estimate the material cost of the tank with less time consumption. It explains the major design parameters which directly affects the material cost of the tank. It also consists of a parametric study and finding of conditions for the minimum material cost of the tank. The dynamic and hydrodynamic effects were not incorporated in the analysis.

### 2.1.5 Seismic Behavior of Elevated Water Tank by Patil. N. R. et al.

Hydrodynamic analysis of elevated water tank is a complex procedure involving fluid structure interaction. The elevated tank supports large water mass at the top of slender staging. In case of elevated tank the resistance against lateral forces exerted by earthquake is largely dependent of
supporting system. Staging is considered to be a critical element as far as lateral resistance is concern. Satisfactory performance of staging during strong ground shaking is crucial. In this paper seismic behavior of elevated water tank in view point of their supporting system is evaluated using finite element software ETABS. The main objective is to evaluate a performance of different staging system for elevated water tank using finite element software ETABS. The spring mass model consisting of impulsive and convective masses as per IS 1893:2002 Part 2 has been used for the analysis. The parametric study is performed on mathematical model with different staging system to evaluate their performance with regard to lateral stiffness, displacement, time period, seismic base shear, overturning moment, flexure etc.

### 2.1.6 A Study on a seismic Verification and Retrofit Methods for An Elevated Water Tank Against Strong Earthquakes by Mori. A. et al.

This paper reports a case study on an aseismic verification procedure and seismic retrofit for an existing elevated steel water tank. As nature of elevated steel water tanks during earthquakes, such as the three-dimensional shape, center of mass located in high position and dynamic interaction between structure and contained water, complicated dynamic behavior of structures is expected. Because of both complicated structural behavior and large design earthquake (level 2 seismic motion), seismic diagnosis and seismic retrofit for the existing tanks have become a remarkable issue to be solved. The authors propose an aseismic verification procedure in this paper. Also retrofit techniques such as strength increase and seismic isolation, which are possibly effective to existing elevated tanks, are discussed.

### 2.1.7 Seismic Response of Elevated Water Tanks by Birtharia. A. et al.

Elevated storage reservoirs are the structures which need to remain functional after major seismic events and therefore should be designed accordingly to resist expected seismic vibrations. Depending upon the storage capacity and other considerations, these reinforced concrete tanks can be of different shapes. Failure of these structures adds to the misery of the
affected population and adversely affects the post-earthquake relief operations. Extensive research on dynamic response of liquid filled tank traces its origin back to the middle of the last century. This paper summarizes the studies of seismic response for elevated water tanks.

### 2.1.8 Economics of R.C.C. Water Tank Resting Over Firm Ground By Snehal.M.S. et al.

Water tanks are used to store water and are designed as crack free structures, to eliminate any leakage. In this paper design of two types of circular water tank resting on ground is presented. Both reinforced concrete (RC) and prestressed concrete (PSC) alternatives are considered in the design and are compared considering the total cost of the tank. These water tank are subjected to the same type of capacity and dimensions. As an objective function with the properties of tank that are tank capacity, width \& length etc.

### 2.2. OBJECTIVES

1. Design and analysis of circular and square water tank for maximum forces, moments and deflection using STAAD pro.
2. Cost estimation of the project.

## CHAPTER 3 PLANNING OF WORK

In the planning of design of water tanks, two tanks are selected such that that the volume carrying capacity of circular tank is equal to the volume carrying capacity of square water tank.


Figure 3.1: Dimensions of circular water tank.


Figure 3.2: Dimensions of square water tank.

### 3.2. DESIGN REQUIREMENT OF CONCRETE

In water retaining structure a dense impermeable concrete is required therefore, proportion of fine and course aggregates to cement should be such as to give high quality concrete.

Concrete mix weaker than M20 is not used. The minimum quantity of cement in the concrete mix shall be not less than $30 \mathrm{kN} / \mathrm{m}^{3}$. The design of the concrete mix shall be such that the resultant concrete is sufficiently impervious.

Efficient compaction preferably by vibration is essential. The permeability of the thoroughly compacted concrete is dependent on water cement ratio. Increase in water cement ratio increases permeability, while concrete with low water cement ratio is difficult to compact. Other causes of leakage in concrete are defects such as segregation and honey combing. All joints should be made water-tight as these are potential sources of leakage.
Design of liquid retaining structure is different from ordinary R.C.C, structures as it requires that concrete should not crack and hence tensile stresses in concrete should be within permissible limits. A reinforced concrete member of liquid retaining structure is designed on the usual principles ignoring tensile resistance of concrete in bending. Additionally it should be ensured that tensile stress on the liquid retaining face of the equivalent concrete section does not exceed the permissible tensile strength of concrete For calculation purposes the cover is also taken into concrete area. Cracking may be caused due to restraint to shrinkage, expansion and contraction of concrete due to temperature or shrinkage and swelling due to moisture effects. Such restraint may be caused by
(i) The interaction between reinforcement and concrete during shrinkage due to drying.
(ii) The boundary conditions.
(iii) The differential conditions prevailing through the large thickness of massive concrete.

Use of small size bars placed properly, leads to closer cracks but of smaller width. The risk of cracking due to temperature and shrinkage effects may be minimized by limiting the changes in moisture content and temperature to which the structure as a whole is subjected. The risk of cracking can also be minimized by reducing the restraint on the free expansion of the structure with long walls or slab founded at or below ground level, restraint can be minimized by the
provision of a sliding layer. This can be provided by founding the structure on a flat layer of concrete with interposition of some material to break the bond and facilitate movement.

### 3.3. JOINTS IN LIQUID RETAINING STRUCTURES

### 3.3.1. MOVEMENT JOINTS.

There are three types of movement joints.

### 3.3.1.1. Contraction Joint

It is a movement joint with deliberate discontinuity without initial gap between the concrete on either side of the joint. The purpose of this joint is to accommodate contraction of the concrete.


## Figure 3.3: Complete Contraction Joint

A contraction joint may be either complete contraction joint or partial contraction joint. A complete contraction joint is one in which both steel and concrete are interrupted and a partial contraction joint is one in which only the concrete is interrupted, the reinforcing steel running through.


## Figure 3.4: Partial Contraction Joint

### 3.3.1.2. Expansion Joint.

It is a joint with complete discontinuity in both reinforcing steel and concrete and it is to accommodate either expansion or contraction of the structure. A typical expansion joint is


Figure 3.5: Expansion Joint

This type of joint requires the provision of an initial gap between the adjoining parts of a structure which by closing or opening accommodates the expansion or contraction of the structure.

### 3.3.1.3. Sliding Joint

It is a joint with complete discontinuity in both reinforcement and concrete and with special provision to facilitate movement in plane of the joint. A typical joint is shown in figure.


Figure 3.6: Sliding Joint

This type of joint is provided between wall and floor in some cylindrical tank designs.

### 3.4. LOADS CONSIDERED

### 3.4.1. DEAD LOADS

All permanent constructions of the structure form the dead loads. The dead load comprises of the weights of walls, partitions floor finishes, false ceilings, false floors and the other permanent constructions in the buildings. The dead load loads may be calculated from the dimensions of various members and their unit weights. The unit weights of plain concrete and reinforced concrete made with sand and gravel or crushed natural stone aggregate may be taken as 24 $\mathrm{kN} / \mathrm{m}^{2}$ and $25 \mathrm{kN} / \mathrm{m}^{2}$ respectively.

### 3.4.2. WIND LOADS

Wind load is acting in combination with dead load. It is acting in either positive or negative x direction or $z$ directions. It is multiplied by the factor 1.5 . Wind speed is taken as 100 mph which is assumed to be the maximum speed of wind. Design of wind loads is done with ASCE-7 code.


Figure 3.7: Wind load on circular tank

### 3.4.3. HYDROSTATIC LOADS

Hydrostatic load is the load due to the pressure of the water inside the water tank which is acting on the walls and floor of tank. These loads are also considered as dead loads.


Figure 3.8: Due to hydrostatic load

### 3.5. Working with STAAD pro

### 3.5.1. Input Generation

The GUI (or user) communicates with the STAAD analysis engine through the STD input file. That input file is a text file consisting of a series of commands which are executed sequentially. The commands contain either instructions or data pertaining to analysis and/or design. The STAAD input file can be created through a text editor or the GUI Modeling facility. In general, any text editor may be utilized to edit/create the STD input file. The GUI Modeling facility creates the input file through an interactive menu-driven graphics oriented.


Figure 3.9: Beams and columns in the tank

### 3.5.2. Types of Structures

A STRUCTURE can be defined as an assemblage of elements. STAAD is capable of analyzing and designing structures consisting of frame, plate/shell and solid elements. Almost any type of structure can be analyzed by STAAD. A SPACE structure, which is a three dimensional framed structure with loads applied in any plane, is the most general. A PLANE structure is bound by a global X-Y coordinate system with loads in the same plane. A TRUSS structure consists of truss members which can have only axial member forces and no bending in the members.
3.5.3. Generation of the structure The structure may be generated from the input file or mentioning the co-ordinates in the GUI. The figure below shows the GUI generation method.

### 3.5.5. Plates

The structure of tank is considered to be made of plates. Plates are like small slabs between the beams. Plates can be added in STAAD pro by selecting the beams where we add the plates and then clicking on the option "fill floor grid with plates".


Figure 3.10: Plates in the tank

### 3.5.7. Design of members

Thickness of beams and columns can be provided in property option of STAAD pro. Here the circular tank is assumed to be made of beams of dimensions $0.3 \mathrm{~m} \times 0.3 \mathrm{~m}$ and columns are assumed to be made up of diameter of 0.6 m . Rectangular slabs have beams of dimension $0.3 \mathrm{~m} \times 0.3 \mathrm{~m}$ and columns of $0.4 \mathrm{~m} \times 0.3 \mathrm{~m}$. The design of structure is done using IS 456 . We have to provide the grade of concrete we are using and grade of steel .Compressive strength of concrete is taken as $300000 \mathrm{kN} / \mathrm{m}^{\wedge} 2$ and yield strength of steel both in main and secondary reinforcement is taken as $41500 \mathrm{kN} / \mathrm{m}^{\wedge} 2$.

## CHAPTER 4

## COST ANALYSIS

### 4.1 Calculation of concrete required

a) In circular water tank

Radius of water tank $=5 \mathrm{~m}$
Thickness of slab $=0.2$
Volume of concrete required at slab $=3.14 \times 5 \times 5 \times 0.2=15.7 \mathrm{~m}^{3}$
Length of walls of tank=2m
Thickness of walls $=0.2 \mathrm{~m}$
Volume of concrete required at the walls $=2 \times 3.14 \times 5 \times 2 \times 0.2=12.56 \mathrm{~m}^{3}$

Additional concrete volume because of thicker beams than slab by 0.1 m
At slab $=0.1 \times(5-0.820) \times 0.3 \times 18+3.14 \times 0.82 \times 0.82 \times 0.2=2.67 \mathrm{~m}^{3}$
At walls $=2 \times 0.3 \times 0.1 \times 0.1 \times 3.14+18 \times 0.1 \times 2=3.61 \mathrm{~m}^{3}$
Total concrete required $=34.54 \mathrm{~m}^{3}$
b) In square water tank

Length of side of water tank=8.8m
Thickness of slab=0.2
Volume of concrete $=8.8 \times 8.8 \times 0.2=15.488 \mathrm{~m}^{3}$

Length of wall of tank $=2 \mathrm{~m}$
Thickness of wall $=0.2 \mathrm{~m}$

Volume of concrete required at the walls $=4 \times 2 \times 8.8 \times 0.2=14.08 \mathrm{~m}^{3}$

## Additional concrete required because of thicker beams than slab by $\mathbf{0 . 1 m}$

At slab $=0.1 \times 8.8 \times 0.3 \times 6+0.1 \times(8.8-6 \times 0.3) \times 0.3 \times 6=2.844 \mathrm{~m}^{3}$
At wall $=(0.1 \times 2 \times 0.3) \times 5 \times 4+(0.1 \times 8.8 \times 0.3) \times 3 \times 4=4.368 \mathrm{~m}^{3}$
Total concrete required $=36.78 \mathrm{~m}^{3}$

Concrete required at columns of the tank
a) Circular tank

There are 4 columns of 0.3 radius. Therefore volume of concrete required $=4 \times 3.14 \times 0.3 \times 0.3 \times 10=11.304 \mathrm{~m}^{3}$

## b) Square tank

There are 4 columns of $0.4 \times 0.3$ dimensions. Therefore volume of concrete required $=4 \times 0.4 \times 0.3 \times 10=4.8 \mathrm{~m}^{3}$

### 4.2 Calculation of reinforcement in beams by Staad.Pro

## a) Circular tank

Staad pro gives reinforcement area of 165.29 sq.mm in all the beams but beams have different lengths. There are 8 beams of $1736.5 \mathrm{~mm}, 18$ beams of $2000 \mathrm{~mm}, 120$ beams of 837.5 mm and 12 beams of 289.4 mm length both in top and bottom reinforcement.

Adding all these we get, $0.5086 \mathrm{~m}^{3}$ of reinforcement.

## b) Square tank

There are lesser number of beams in square tank. But they are longer as compared to circular tank. There are 21 beams which are 8800 mm long and have $165 \mathrm{~mm}^{2}$ area of reinforcement, 4 beams which are 8800 mm long and have $227.35 \mathrm{~mm}^{2}$ of reinforcement and 2 beams of 2000 mm length and $165 \mathrm{~mm}^{2}$ of area.

Total volume of reinforcement $=0.09 \mathrm{~mm}^{3}$ of reinforcement.
Calculation of reinforcement in column by Staad Pro

## Circular Tank



Figure 4.1 Column number of circular tank
Table 4.1: Column Reinforcement in Circular Tank

| Column no. | Area(sq mm) | Length |
| :--- | :--- | :--- |
| 76 | 2261.95 | 4 |
| 80 | 2261.95 | 4 |
| 85 | 2261.95 | 4 |
| 89 | 2261.95 | 4 |
| 94 | 2261.95 | 4 |
| 98 | 2261.95 | 4 |
| 103 | 2261.95 | 4 |
| 107 | 2261.95 | 4 |

Total reinforcement $=0.072382 \mathrm{~m} 3$

## Rectangular Tank



Figure 4.2 Column of rectangular water tank
Table 4.2: Column Reinforcement in Square Tank

| Column no. | Area (sq.mm.) | Length |
| :--- | :--- | :--- |
| 4 | 960 | 4 |
| 5 | 960 | 4 |
| 6 | 960 | 4 |
| 7 | 960 | 4 |
| 8 | 720 | 4 |
| 13 | 960 | 4 |
| 14 | 960 | 4 |
| 15 | 960 | 4 |
| 16 | 960 | 4 |


| 17 | 720 | 4 |
| :--- | :--- | :--- |
| 18 | 720 | 4 |

## Total reinforcement $=\mathbf{0 . 0 4 2 2 4 0} \mathrm{m}^{\mathbf{3}}$

### 4.3 Calculation of reinforcement of slab

## Rectangular slab

The value of longitudinal and transverse reinforcement is $216 \mathrm{~mm}^{2}$ for nearly all the slabs except a few exceptions. There are in total of 25 slabs in which 18 have $216 \mathrm{~m}^{2}$ of reinforcement,

Therefore for these 18 slabs reinforcement $=216 \times 1760=380160 \mathrm{~mm}^{3}$
Total reinforcement $=6842880 \mathrm{~mm}^{3}$ both along transverse and longitudinal direction in both top and bottom directions. Total reinforcement $=6842880 \times 2 \times 2=27371520 \mathrm{~mm}^{3}$

Rest of the slabs has both longitudinal and transverse reinforcement of $379 \mathrm{~mm}^{2}$ on the top side and $216 \mathrm{~mm}^{2}$ on the bottom side

Therefore total reinforcement $=380160 \times 2 \times 7+379 \times 1760 \times 7=14819980 \mathrm{~mm}^{3}$.
Adding above two terms we get reinforcement $=42191500 \mathrm{~mm}^{3}=0.4219 \mathrm{~m}^{3}$.

## Circular Slab

Value of transverse and longitudinal reinforcement is $216 \mathrm{~mm}^{2}$. The structure is made up of 18 plates. Further these each 18 plates have 5 plates in them. We need to calculate reinforcement in 1 of these 18 plates and multiply by 18 .

Transverse reinforcement $=216 \times(0.087+0.261+0.4361+0.610+0.785)=470680 \mathrm{~mm}^{3}$
For whole slab $=470680 \times 18=8472240 \mathrm{~mm}^{3}$
Longitudinal reinforcement $=5000 \times 216=1080000 \mathrm{~mm}^{3}$
For whole slab $=19440000 \mathrm{~mm}^{3}$
Adding, we get $27912240 \mathrm{~mm}^{3}=0.02791 \mathrm{~m}^{3}$

## Now according to CPWD standards

Density of steel $=8050 \mathrm{~kg} / \mathrm{m}^{3}$
Density of concrete $=2400 \mathrm{~kg} / \mathrm{m}^{3}$
Rate of M30 concrete $=$ Rs $37 / \mathrm{kg}$
Rate of Fe415= Rs 40/kg

## Cost of concrete and steel for circular water tank

Total concrete required in beams, slabs and columns $=45.844 \mathrm{~m}^{3}$
Weight of concrete $=110025.6 \mathrm{~kg}$
Cost of concrete $=$ Rs 4070947
Total steel required $=0.6088 \mathrm{~m}^{3}$
Weight of steel $=4901 \mathrm{~kg}$
Cost of steel=Rs 196063
Total cost=Rs 4267010

## Cost of concrete and steel for square water tank

Total concrete required $=41.58 \mathrm{~m}^{3}$
Weight of concrete $=99792 \mathrm{~kg}$
Cost of concrete=Rs 3692304
Total steel required $=0.55924 \mathrm{~m}^{3}$
Weight of steel $=4501.88 \mathrm{~kg}$
Cost of steel=Rs 180075
Total cost $=$ Rs 3872379

## CHAPTER 5

## RESULTS

A comparison between two structures is made based on the displacement, moment along z direction, critical values of structure and maximum stresses on the plates. Loads combination of dead load + wind load is taken for the comparison of structures.

Comparison between the absolute maximum values is done. Also it is seen where the absolute maximum value of force displacement or moment is occurring in node, beam or plate.

### 5.1. Forces and Moments acting on the supports

Forces are acting on every node of the structure. Here are the maximum values of forces which are acting in a particular direction.

Table 5.1: Forces acting on the supports of square tank

|  |  |  | Horizontal | Vertical | Horizontal | Moment |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Node | L/C | $\begin{aligned} & \mathrm{Fx} \\ & \mathrm{kN} \end{aligned}$ | $\begin{aligned} & \hline \text { Fy } \\ & \text { kN } \end{aligned}$ | $\begin{aligned} & \mathrm{Fz} \\ & \mathrm{kN} \end{aligned}$ | $\begin{gathered} \hline \mathrm{Mx} \\ \mathrm{kNm} \end{gathered}$ | $\begin{gathered} \text { My } \\ k N m \end{gathered}$ | $\begin{gathered} \hline \mathrm{Mz} \\ \mathrm{kNm} \end{gathered}$ |
| Max Fx | 2 | 7 COMBINATI | 11.539 | 376.505 | -0.460 | -0.594 | -0.001 | -30.449 |
| Min Fx | 1 | 6 COMBINATI | -11.543 | 376.498 | -0.460 | -0.594 | 0.001 | 30.462 |
| Max Fy | 2 | 9 COMBINATI | 0.818 | 398.491 | 10.229 | 26.196 | 0.004 | -1.046 |
| Min Fy | 1 | 4 WL Z+VE | 0.005 | -11.281 | -10.721 | -26.858 | -0.000 | -0.006 |
| Max Fz | 10 | 9 COMBINATI | 0.804 | 375.916 | 11.192 | 27.479 | 0.001 | -1.027 |
| Min Fz | 2 | 8 COMBINATI | 0.804 | 375.929 | -11.183 | -27.456 | -0.001 | -1.028 |
| Max Mx | 10 | 9 COMBINATI | 0.804 | 375.916 | 11.192 | 27.479 | 0.001 | -1.027 |
| Min Mx | 2 | 8 COMBINATI | 0.804 | 375.929 | -11.183 | -27.456 | -0.001 | -1.028 |
| Max My | 10 | 6 COMBINATI | -9.873 | 397.902 | 0.477 | 0.628 | 0.005 | 28.270 |
| Min My | 9 | 7 COMBINATI | 9.869 | 397.895 | 0.477 | 0.628 | -0.005 | -28.257 |
| Max Mz | 1 | 6 COMBINATI | -11.543 | 376.498 | -0.460 | -0.594 | 0.001 | 30.462 |
| Min Mz | 2 | 7 COMBINATI | 11.539 | 376.505 | -0.460 | -0.594 | -0.001 | -30.449 |

Table 5.2: Forces acting on the supports of square tank

|  |  |  | Horizontal | Vertical | Horizontal | Moment |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Node | L/C | $\begin{aligned} & \text { Fx } \\ & \text { kN } \end{aligned}$ | $\begin{aligned} & \mathrm{Fy} \\ & \mathrm{kN} \end{aligned}$ | $\begin{aligned} & \hline \mathrm{Fz} \\ & \mathrm{kN} \end{aligned}$ | $\begin{gathered} \mathrm{Mx} \\ \mathrm{kNm} \end{gathered}$ | $\begin{gathered} \hline \mathrm{My} \\ \mathrm{kNm} \end{gathered}$ | $\begin{gathered} \mathrm{Mz} \\ \mathrm{kNm} \end{gathered}$ |
| Max Fx | 8 | 7 DEAD LOA | 12.887 | 621.397 | 10.171 | 23.420 | -0.103 | -42.906 |
| Min Fx | 17 | 6 DEAD LOA | -8.796 | 630.332 | -15.901 | -48.139 | -0.111 | 26.875 |
| Max Fy | 4 | 6 DEAD LOA | -5.620 | 650.603 | 13.817 | 33.334 | 0.303 | 17.994 |
| Min Fy | 8 | 2 WL X +VE | -3.064 | -5.625 | 0.192 | 0.429 | -0.005 | 13.260 |
| Max Fz | 4 | 9 DEAD LOA | -1.948 | 650.054 | 16.797 | 45.698 | 0.292 | 3.049 |
| Min Fz | 13 | 8 DEAD LOA | 3.073 | 599.543 | -19.256 | -61.640 | 0.016 | -11.135 |
| Max Mx | 4 | 9 DEAD LOA | -1.948 | 650.054 | 16.797 | 45.698 | 0.292 | 3.049 |
| Min Mx | 13 | 8 DEAD LOA | 3.073 | 599.543 | -19.256 | -61.640 | 0.016 | -11.135 |
| Max My | 4 | 8 DEAD LOA | -2.326 | 642.321 | 11.426 | 22.671 | 0.311 | 4.183 |
| Min My | 17 | 6 DEAD LOA | -8.796 | 630.332 | -15.901 | -48.139 | -0.111 | 26.875 |
| Max Mz | 17 | 6 DEAD LOA | -8.796 | 630.332 | -15.901 | -48.139 | -0.111 | 26.875 |
| Min Mz | 8 | 7 DEAD LOA | 12.887 | 621.397 | 10.171 | 23.420 | -0.103 | -42.906 |

### 5.2. Displacement of nodes

Table 5.3: Displacement of nodes of square tank

|  |  |  | Horizontal | Vertical | Horizontal | Resultant | Rotational |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Node | L/C | $\begin{gathered} \hline \mathrm{X} \\ \mathrm{~mm} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ \mathrm{~mm} \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ \mathrm{~mm} \end{gathered}$ | mm | $\begin{aligned} & \hline \mathrm{rX} \\ & \text { rad } \end{aligned}$ | $\begin{aligned} & \hline \text { ry } \\ & \text { rad } \end{aligned}$ | $\begin{aligned} & \mathrm{rZ} \\ & \mathrm{rad} \end{aligned}$ |
| Max X | 34 | 6 COMBINATI | 11.202 | -1.762 | 0.080 | 11.340 | 0.000 | 0.001 | -0.002 |
| Min X | 59 | 7 COMBINATI | -11.198 | -1.762 | 0.080 | 11.336 | 0.000 | -0.001 | 0.002 |
| Max Y | 5 | 4 WL Z+VE | 0.001 | 0.026 | 9.686 | 9.686 | 0.000 | -0.000 | 0.000 |
| Min $Y$ | 78 | 8 COMBINATI | -0.008 | -16.534 | 9.697 | 19.168 | -0.002 | 0.000 | -0.002 |
| Max Z | 48 | 8 COMBINATI | -0.083 | -1.757 | 14.111 | 14.221 | 0.002 | 0.001 | 0.000 |
| Min Z | 22 | 9 COMBINATI | -0.083 | -1.757 | -14.121 | 14.230 | -0.002 | -0.001 | 0.000 |
| Max rX | 70 | 8 COMBINATI | -0.011 | -10.119 | 9.658 | 13.989 | 0.005 | -0.000 | -0.001 |
| Min rX | 82 | 9 COMBINATI | -0.011 | -10.119 | -9.668 | 13.995 | -0.005 | 0.000 | -0.001 |
| MaxrY | 31 | 7 COMBINATI | -4.766 | -1.591 | 0.205 | 5.028 | 0.000 | 0.002 | -0.001 |
| Min rY | 38 | 7 COMBINATI | -4.766 | -1.591 | -0.214 | 5.029 | -0.000 | -0.002 | -0.001 |
| Max rZ | 80 | 7 COMBINATI | -6.746 | -10.122 | 0.008 | 12.164 | -0.001 | 0.000 | 0.005 |
| Min rZ | 77 | 6 COMBINATI | 6.750 | -10.122 | 0.008 | 12.166 | -0.001 | -0.000 | -0.005 |
| Max Rs | 74 | 9 COMBINATII | -0.008 | -16.534 | -9.707 | 19.173 | 0.002 | -0.000 | -0.002 |

Table 5.4: Displacement of nodes of circular tank

|  |  |  | Horizontal | Vertical | Horizontal | Resultant | Rotational |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Node | L/C | $\begin{gathered} \mathrm{X} \\ \mathrm{~mm} \end{gathered}$ | $\begin{gathered} \mathrm{Y} \\ \mathrm{~mm} \end{gathered}$ | $\begin{gathered} \mathrm{Z} \\ \mathrm{~mm} \end{gathered}$ | mm | $\begin{gathered} \mathrm{rX} \\ \mathrm{rad} \end{gathered}$ | $\begin{gathered} \mathrm{rY} \\ \mathrm{rad} \end{gathered}$ | $\begin{gathered} \mathrm{rZ} \\ \mathrm{rad} \end{gathered}$ |
| Max X | 56 | 6 DEAD LOA | 3.001 | -2.797 | 0.685 | 4.159 | -0.000 | 0.000 | -0.002 |
| Min $X$ | 64 | 7 DEAD LOA | -4.291 | -2.838 | 1.544 | 5.371 | 0.000 | -0.000 | 0.002 |
| Max $Y$ | 65 | $2 \mathrm{WL} \mathrm{X} \mathrm{+VE}$ | 1.219 | 0.025 | 0.013 | 1.220 | -0.000 | 0.000 | -0.000 |
| Min $Y$ | 171 | 8 DEAD LOA | -0.586 | -5.688 | 2.138 | 6.105 | -0.000 | 0.000 | 0.000 |
| $\operatorname{Max} Z$ | 62 | 8 DEAD LOA | -0.150 | -0.860 | 3.656 | 3.759 | 0.001 | -0.000 | -0.000 |
| Min Z | 67 | 9 DEAD LOA | -0.706 | -0.820 | -1.450 | 1.810 | -0.001 | 0.000 | 0.000 |
| Max rX | 139 | 8 DEAD LOA | -0.630 | -1.795 | 1.863 | 2.663 | 0.002 | 0.000 | -0.000 |
| Min rX | 94 | 9 DEAD LOA | -0.562 | -1.703 | 0.334 | 1.825 | -0.002 | 0.000 | 0.000 |
| Max rY | 57 | 8 DEAD LOA | 0.561 | -1.966 | 2.455 | 3.195 | -0.000 | 0.001 | -0.001 |
| Min rY | 63 | 8 DEAD LOA | -1.577 | -1.971 | 2.881 | 3.830 | 0.000 | -0.001 | 0.001 |
| Max r $Z$ | 64 | 8 DEAD LOA | -3.138 | -2.866 | 2.591 | 4.978 | 0.000 | -0.000 | 0.002 |
| Min rZ | 56 | 8 DEAD LOA | 1.862 | -2.818 | 1.687 | 3.776 | -0.000 | 0.000 | -0.002 |
| Max Rs | 171 | 8 DEAD LOA | -0.586 | -5.688 | 2.138 | 6.105 | -0.000 | 0.000 | 0.000 |

### 5.3. Bending of beams

Table 5.5: Bending of beams of circular tank

|  | Beam | L/C | Node | $\begin{aligned} & \text { Fx } \\ & \text { kN } \end{aligned}$ | $\begin{aligned} & \text { Fy } \\ & \text { kN } \end{aligned}$ | $\begin{aligned} & \mathrm{Fz} \\ & \mathrm{kN} \end{aligned}$ | $\begin{gathered} \mathrm{Mx} \\ \mathrm{kNm} \end{gathered}$ | $\begin{gathered} \mathrm{My} \\ \mathrm{kNm} \end{gathered}$ | $\begin{gathered} \mathrm{Mz} \\ \mathrm{kNm} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Max Fx | 5 | 9 COMBINATI | 2 | 398.491 | -0.818 | 10.229 | 0.004 | -26.196 | -1.046 |
| Min Fx | 22 | 6 COMBINATI | 6 | -38.133 | 0.000 | 0.000 | 0.000 | 0.019 | -0.877 |
| Max Fy | 4 | 6 COMBINATI | 1 | 376.498 | 11.543 | -0.460 | 0.001 | 0.594 | 30.462 |
| Min Fy | 5 | 7 COMBINATI | 2 | 376.505 | -11.539 | -0.460 | -0.001 | 0.594 | -30.449 |
| Max Fz | 14 | 9 COMBINATI | 10 | 375.916 | -0.804 | 11.192 | 0.001 | -27.479 | -1.027 |
| Min Fz | 5 | 8 COMBINATI | 2 | 375.929 | -0.804 | -11.183 | -0.001 | 27.456 | -1.028 |
| Max Mx | 18 | 9 COMBINATI | 14 | 83.573 | 1.299 | -3.922 | 0.076 | 5.824 | 2.428 |
| Min Mx | 17 | 9 COMBINATI | 13 | 83.576 | -1.301 | -3.922 | -0.076 | 5.824 | -2.430 |
| Max My | 5 | 8 COMBINATI | 2 | 375.929 | -0.804 | -11.183 | -0.001 | 27.456 | -1.028 |
| Min My | 14 | 9 COMBINATI | 10 | 375.916 | -0.804 | 11.192 | 0.001 | -27.479 | -1.027 |
| Max Mz | 4 | 6 COMBINATI | 1 | 376.498 | 11.543 | -0.460 | 0.001 | 0.594 | 30.462 |
| Min Mz | 5 | 7 COMBINATI | 2 | 376.505 | -11.539 | -0.460 | -0.001 | 0.594 | -30.449 |

Table 5.6: Bending of beams of square tank

|  | Beam | L/C | Node | $\begin{aligned} & \mathrm{Fx} \\ & \mathrm{kN} \end{aligned}$ | $\begin{aligned} & \text { Fy } \\ & \text { kN } \end{aligned}$ | $\begin{aligned} & \mathrm{Fz} \\ & \mathrm{kN} \end{aligned}$ | $\begin{gathered} \mathrm{Mx} \\ \mathrm{kNm} \end{gathered}$ | $\begin{gathered} \mathrm{My} \\ \mathrm{kNm} \end{gathered}$ | $\begin{array}{r} \mathrm{Mz} \\ \mathrm{kNm} \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Max Fx | 76 | 6 DEAD LOA | 4 | 650.603 | 5.620 | 13.817 | 0.303 | -33.334 | 17.994 |
| Min Fx | 37 | 7 DEAD LOA | 37 | -161.650 | 1.974 | 0.059 | 0.003 | -0.327 | -2.867 |
| Max Fy | 249 | 9 DEAD LOA | 130 | 45.055 | 17.456 | -0.333 | -1.066 | -0.210 | 7.130 |
| Min Fy | 187 | 6 DEAD LOA | 53 | 11.133 | -27.968 | 1.683 | 0.651 | 0.770 | 26.696 |
| Max Fz | 76 | 9 DEAD LOA | 4 | 650.054 | 1.948 | 16.797 | 0.292 | -45.698 | 3.049 |
| Min Fz | 85 | 8 DEAD LOA | 13 | 599.543 | -3.073 | -19.256 | 0.016 | 61.640 | -11.135 |
| Max Mx | 65 | 8 DEAD LOA | 65 | 11.914 | 0.313 | 12.874 | 6.109 | -14.580 | -0.087 |
| Min Mx | 254 | 6 DEAD LOA | 130 | 91.921 | -17.640 | -0.258 | -6.335 | -0.001 | -10.651 |
| Max My | 94 | 9 DEAD LOA | 40 | 596.758 | 1.948 | 16.797 | 0.292 | 88.676 | -12.532 |
| Min My | 103 | 8 DEAD LOA | 49 | 546.248 | -3.073 | -19.256 | 0.016 | -92.409 | 13.452 |
| Max Mz | 98 | 7 DEAD LOA | 44 | 568.102 | -12.887 | 10.171 | -0.103 | 57.952 | 60.193 |
| Min Mz | 107 | 6 DEAD LOA | 53 | 577.037 | 8.796 | -15.901 | -0.111 | -79.073 | -43.493 |

### 5.4. Moments on Plates

Table 5.7: Moment and shear force of plates in square tank

|  |  |  | Shear |  | Membrane |  |  | Bending Moment |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Plate | L/C | SQX (local) | SQY (local) $\mathrm{N} / \mathrm{mm} 2$ | SX (local) $\mathrm{N} / \mathrm{mm} 2$ | SY (local) N/mm2 | SXY (local) $\mathrm{N} / \mathrm{mm} 2$ | $\begin{gathered} \mathrm{Mx} \\ \mathrm{kNm} / \mathrm{m} \end{gathered}$ | $\begin{gathered} \mathrm{My} \\ \mathrm{kNm} / \mathrm{m} \end{gathered}$ | Mxy kNm/m |
| Max Qx | 111 | 7 COMBINATI | 0.234 | 0.000 | 0.206 | 0.568 | 0.000 | -10.611 | 8.709 | -0.000 |
| Min Qx | 115 | 6 COMBINATI | -0.234 | 0.000 | 0.206 | 0.568 | -0.000 | -10.611 | 8.709 | 0.000 |
| Max $\mathrm{Q}^{\text {y }}$ | 103 | 9 COMBINATI | -0.000 | 0.234 | 0.563 | 0.206 | -0.000 | 8.693 | -10.631 | 0.000 |
| Min Qy | 123 | 8 COMBINATI | -0.000 | -0.234 | 0.563 | 0.206 | 0.000 | 8.693 | -10.631 | -0.000 |
| Max Sx | 103 | 8 COMBINATI | -0.000 | 0.231 | 0.564 | 0.203 | -0.000 | 8.653 | -10.669 | 0.000 |
| Min Sx | 88 | 8 COMBINATI | -0.000 | -0.034 | -1.278 | 0.019 | -0.007 | -10.841 | -4.331 | -0.014 |
| Max Sy | 115 | 7 COMBINATI | -0.231 | 0.000 | 0.203 | 0.568 | -0.000 | -10.654 | 8.666 | 0.000 |
| Min Sy | 44 | 6 COMBINATI | -0.079 | 0.188 | -0.189 | -0.310 | -0.566 | -3.041 | 7.655 | -7.270 |
| Max Sx | 75 | 7 COMBINATI | -0.079 | -0.188 | -0.189 | -0.310 | 0.566 | 3.042 | -7.655 | -7.269 |
| Min Sx | 82 | 6 COMBINATI | 0.079 | -0.188 | -0.189 | -0.310 | -0.566 | 3.042 | -7.655 | 7.270 |
| Max Mx | 113 | 8 COMBINATI | -0.000 | -0.000 | 0.298 | 0.298 | 0.000 | 40.868 | 40.876 | 0.000 |
| Min Mx | 54 | 7 COMBINATI | -0.136 | 0.043 | -0.025 | 0.073 | -0.389 | -10.992 | -1.384 | -3.936 |
| Max My | 113 | 6 COMBINATI | -0.000 | 0.000 | 0.300 | 0.296 | 0.000 | 40.865 | 40.880 | 0.000 |
| Min My | 97 | 7 COMBINATI | -0.000 | -0.105 | 0.056 | 0.285 | 0.000 | -8.351 | -24.433 | -0.000 |
| Max Mx | 105 | 6 COMBINATI | -0.032 | 0.020 | 0.168 | 0.203 | -0.333 | -5.548 | -5.320 | 15.402 |
| Min Mx | 101 | 7 COMBINATI | 0.032 | 0.020 | 0.168 | 0.203 | 0.333 | -5.548 | -5.320 | -15.402 |

Table 5.8: Moment and shear force of plates in circular tank

|  |  |  | Shear |  | Membrane |  |  | Bending Moment |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Plate | L/C | $\begin{gathered} \hline \text { SQX (local) } \\ \mathrm{N} / \mathrm{mm} 2 \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { SQY (local) } \\ \mathrm{N} / \mathrm{mm} 2 \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { SX (local) } \\ \text { N/mm2 } \\ \hline \end{gathered}$ | SY (local) N/mm2 | $\begin{gathered} \hline \text { SXY (local) } \\ \text { N/mm2 } \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{Mx} \\ \mathrm{kNm} / \mathrm{m} \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{My} \\ \mathrm{kNm} / \mathrm{m} \end{gathered}$ | $\begin{gathered} \mathrm{Mxy} \\ \mathrm{kNm} / \mathrm{m} \end{gathered}$ |
| Max Qx | 452 | 7 DEAD LOA | 0.175 | 0.031 | 0.070 | 1.559 | -0.276 | 18.340 | -1.055 | 3.361 |
| Min Qx | 373 | 6 DEAD LOA | -0.227 | 0.114 | -1.306 | -1.164 | 0.088 | -19.644 | -7.402 | 3.273 |
| Max Qy | 354 | 6 DEAD LOA | -0.137 | 0.165 | -1.084 | -1.069 | 0.214 | -12.162 | -12.814 | 6.851 |
| Min Qy | 393 | 7 DEAD LOA | 0.054 | -0.198 | -0.921 | -1.478 | 0.209 | -5.635 | -18.384 | -0.990 |
| Max Sx | 501 | 6 DEAD LOA | 0.003 | -0.195 | 1.590 | 0.027 | -0.001 | 1.969 | -18.214 | -0.739 |
| Min Sx | 361 | 9 DEAD LOA | -0.143 | 0.097 | -1.352 | -1.079 | 0.266 | -12.846 | -7.806 | 3.762 |
| Max Sy | 452 | 7 DEAD LOA | 0.175 | 0.031 | 0.070 | 1.559 | -0.276 | 18.340 | -1.055 | 3.361 |
| Min Sy | 393 | 8 DEAD LOA | 0.055 | -0.197 | -0.918 | -1.485 | 0.210 | -5.590 | -18.408 | -0.973 |
| Max Sx | 516 | 8 DEAD LOA | -0.006 | -0.011 | 0.153 | -0.220 | 0.515 | -3.267 | -4.879 | 3.733 |
| Min Sx | 407 | 9 DEAD LOA | -0.048 | -0.095 | -0.829 | -0.821 | -0.652 | -7.537 | -7.226 | -5.083 |
| Max Mx | 452 | 8 DEAD LOA | 0.174 | 0.030 | 0.074 | 1.553 | -0.281 | 18.386 | -1.068 | 3.335 |
| Min Mx | 373 | 6 DEAD LOA | -0.227 | 0.114 | -1.306 | -1.164 | 0.088 | -19.644 | -7.402 | 3.273 |
| Max My | 479 | 8 DEAD LOA | -0.001 | -0.013 | 0.101 | -0.518 | -0.054 | 8.688 | 13.632 | 0.222 |
| Min My | 393 | 8 DEAD LOA | 0.055 | -0.197 | -0.918 | -1.485 | 0.210 | -5.590 | -18.408 | -0.973 |
| Max Mx | 354 | 6 DEAD LOA | -0.137 | 0.165 | -1.084 | -1.069 | 0.214 | -12.162 | -12.814 | 6.851 |
| Min Mx | 391 | 6 DEAD LOA | -0.174 | -0.006 | -1.192 | -0.694 | -0.369 | -13.807 | $-5.313$ | -6.420 |

### 5.5 Contours



Figure 5.1: Maximum absolute stresses in rectangular tank


Figure 5.2: Maximum absolute stresses in circular tank

## CHAPTER 6

## DISCUSSIONS

The following discussions were made in the analysis of circular and square water tank.

1. It can be seen that the maximum force on node is acting on the y direction. It is because the whole structures weight acts on the $y$ direction. The absolute maximum value of force is 650.603 kN in circular in y direction and 398.491 kN in square water tank. It can be seen that one support of circular water tank is resisting a larger force as compared to square water tank. The maximum absolute moment on support acting is $30.449 \mathrm{kN} / \mathrm{m}$ in square water tank whereas in circular it is $42.906 \mathrm{kN} / \mathrm{m}$.
2. In square tank the maximum value of displacement along y direction is 16.634 mm . It means that the structure is deflecting more towards ground than it is deflecting away from ground.figure. In circular tank maximum value of deflection is 5.688 mm .
3. It can be seen that the maximum stress on the circular tank is $2.83 \mathrm{kN} / \mathrm{m}$ where as in rectangular tank is $6.43 \mathrm{kN} / \mathrm{m}$ for the same volume of tank. The middle portion of the tanks has the points of maximum stresses.
4. It is also seen that where the wind load is acting on the tanks the color of maximum plate stresses is different of that portion compared to the portion where wind loads are not acting.
5. Maximum and minimum displacement in z direction is occurring opposite to each other in both tanks. It is because of the symmetrical nature of forces.

## Chapter 7 CONCLUSION

1. Circular tank is more difficult to design as compared to square tank because the geometry of circular tank and more skilled labour is required for its construction.
2. We have to design the structure for maximum stresses, forces and bending moments. It is clearly seen that the maximum values of square water tank are higher. So we prefer circular tank over square seeing the maximum stresses.
3. Cost of material for circular water tank is Rs. 4267010 whereas for square water tank it is Rs.3872379. So if we want a cost effective model we would take square water tank.
4. Circular water tank is more pleasing to look and require lesser space because of its circular space. So if we have space problem we would chose circular tank.

## REFERENCES

1. "Design of Reinforced Concrete Structures" S.Ramamrutham Dhanpat Rai Publishing Company, 2012
2. "Reinforces Concrete Design" Pillai Mennon, (Macgraw Hill Education Private Limited, 2009)
3. "Design of Reinforced Concrete" Jack C. McCormac, Russell H. Brown
4. "Learning staad pro" T.S. Sharma
5. "Learn Yourself STAAD.Pro V8i: Structural Analysis and Design using STAAD.Pro
6. IS 456:2000 Plain and reinforced Concrete Code of Practice (Forth Revision)
7. ASCI-7 American Standard Code for wind load.
